* Note that we only take the tracking lock when clearing the bit and when
* checking if we need to re-queue this task. The only place where bits can be
* set is the hard xmit routine where an SKB has a request flag set. The only
- * places where we clear bits are this work function, or the periodic cleanup
- * thread. If the cleanup thread clears a bit we're processing we catch it
- * when we lock to clear the bit and then grab the SKB pointer. If a Tx thread
- * starts a new timestamp, we might not begin processing it right away but we
- * will notice it at the end when we re-queue the task. If a Tx thread starts
- * a new timestamp just after this function exits without re-queuing,
- * the interrupt when the timestamp finishes should trigger. Avoiding holding
- * the lock for the entire function is important in order to ensure that Tx
- * threads do not get blocked while waiting for the lock.
+ * places where we clear bits are this work function, or when flushing the Tx
+ * timestamp tracker.
+ *
+ * If the Tx tracker gets flushed while we're processing a packet, we catch
+ * this because we grab the SKB pointer under lock. If the SKB is NULL we know
+ * that another thread already discarded the SKB and we can avoid passing it
+ * up to the stack.
+ *
+ * If a Tx thread starts a new timestamp, we might not begin processing it
+ * right away but we will notice it at the end when we re-queue the task.
+ *
+ * If a Tx thread starts a new timestamp just after this function exits, the
+ * interrupt for that timestamp should re-trigger this function once
+ * a timestamp is ready.
+ *
+ * Note that minimizing the time we hold the lock is important. If we held the
+ * lock for the entire function we would unnecessarily block the Tx hot path
+ * which needs to set the timestamp index. Limiting how long we hold the lock
+ * ensures we do not block Tx threads.
+ *
+ * If a Tx packet has been waiting for more than 2 seconds, it is not possible
+ * to correctly extend the timestamp using the cached PHC time. It is
+ * extremely unlikely that a packet will ever take this long to timestamp. If
+ * we detect a Tx timestamp request that has waited for this long we assume
+ * the packet will never be sent by hardware and discard it without reading
+ * the timestamp register.
*/
static bool ice_ptp_tx_tstamp(struct ice_ptp_tx *tx)
{
for_each_set_bit(idx, tx->in_use, tx->len) {
struct skb_shared_hwtstamps shhwtstamps = {};
u8 phy_idx = idx + tx->offset;
- u64 raw_tstamp, tstamp;
+ u64 raw_tstamp = 0, tstamp;
+ bool drop_ts = false;
struct sk_buff *skb;
int err;
+ /* Drop packets which have waited for more than 2 seconds */
+ if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
+ drop_ts = true;
+
+ /* Count the number of Tx timestamps that timed out */
+ pf->ptp.tx_hwtstamp_timeouts++;
+
+ goto skip_ts_read;
+ }
+
ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
err = ice_read_phy_tstamp(&pf->hw, tx->block, phy_idx,
raw_tstamp == tx->tstamps[idx].cached_tstamp)
continue;
- /* The timestamp is valid, so we'll go ahead and clear this
- * index and then send the timestamp up to the stack.
- */
+skip_ts_read:
spin_lock(&tx->lock);
- tx->tstamps[idx].cached_tstamp = raw_tstamp;
+ if (raw_tstamp)
+ tx->tstamps[idx].cached_tstamp = raw_tstamp;
clear_bit(idx, tx->in_use);
skb = tx->tstamps[idx].skb;
tx->tstamps[idx].skb = NULL;
spin_unlock(&tx->lock);
- /* it's (unlikely but) possible we raced with the cleanup
- * thread for discarding old timestamp requests.
+ /* It is unlikely but possible that the SKB will have been
+ * flushed at this point due to link change or teardown.
*/
if (!skb)
continue;
+ if (drop_ts) {
+ dev_kfree_skb_any(skb);
+ continue;
+ }
+
/* Extend the timestamp using cached PHC time */
tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
if (tstamp) {
return ice_ptp_alloc_tx_tracker(tx);
}
-/**
- * ice_ptp_tx_tstamp_cleanup - Cleanup old timestamp requests that got dropped
- * @pf: pointer to the PF struct
- * @tx: PTP Tx tracker to clean up
- *
- * Loop through the Tx timestamp requests and see if any of them have been
- * waiting for a long time. Discard any SKBs that have been waiting for more
- * than 2 seconds. This is long enough to be reasonably sure that the
- * timestamp will never be captured. This might happen if the packet gets
- * discarded before it reaches the PHY timestamping block.
- */
-static void ice_ptp_tx_tstamp_cleanup(struct ice_pf *pf, struct ice_ptp_tx *tx)
-{
- struct ice_hw *hw = &pf->hw;
- u8 idx;
-
- if (!tx->init)
- return;
-
- for_each_set_bit(idx, tx->in_use, tx->len) {
- struct sk_buff *skb;
- u64 raw_tstamp;
-
- /* Check if this SKB has been waiting for too long */
- if (time_is_after_jiffies(tx->tstamps[idx].start + 2 * HZ))
- continue;
-
- /* Read tstamp to be able to use this register again */
- ice_read_phy_tstamp(hw, tx->block, idx + tx->offset,
- &raw_tstamp);
-
- spin_lock(&tx->lock);
- skb = tx->tstamps[idx].skb;
- tx->tstamps[idx].skb = NULL;
- clear_bit(idx, tx->in_use);
- spin_unlock(&tx->lock);
-
- /* Count the number of Tx timestamps which have timed out */
- pf->ptp.tx_hwtstamp_timeouts++;
-
- /* Free the SKB after we've cleared the bit */
- dev_kfree_skb_any(skb);
- }
-}
-
/**
* ice_ptp_update_cached_phctime - Update the cached PHC time values
* @pf: Board specific private structure
err = ice_ptp_update_cached_phctime(pf);
- ice_ptp_tx_tstamp_cleanup(pf, &pf->ptp.port.tx);
-
/* Run twice a second or reschedule if phc update failed */
kthread_queue_delayed_work(ptp->kworker, &ptp->work,
msecs_to_jiffies(err ? 10 : 500));