GUEST_SYNC(0);
}
+/*
+ * We have to perform direct system call for getcpu() because it's
+ * not available until glic 2.29.
+ */
+static void sys_getcpu(unsigned *cpu)
+{
+ int r;
+
+ r = syscall(__NR_getcpu, cpu, NULL, NULL);
+ TEST_ASSERT(!r, "getcpu failed, errno = %d (%s)", errno, strerror(errno));
+}
+
static int next_cpu(int cpu)
{
/*
atomic_inc(&seq_cnt);
/*
- * Ensure the odd count is visible while sched_getcpu() isn't
+ * Ensure the odd count is visible while getcpu() isn't
* stable, i.e. while changing affinity is in-progress.
*/
smp_wmb();
* check completes.
*
* 3. To ensure the read-side makes efficient forward progress,
- * e.g. if sched_getcpu() involves a syscall. Stalling the
- * read-side means the test will spend more time waiting for
- * sched_getcpu() to stabilize and less time trying to hit
- * the timing-dependent bug.
+ * e.g. if getcpu() involves a syscall. Stalling the read-side
+ * means the test will spend more time waiting for getcpu()
+ * to stabilize and less time trying to hit the timing-dependent
+ * bug.
*
* Because any bug in this area is likely to be timing-dependent,
* run with a range of delays at 1us intervals from 1us to 10us
/*
* Verify rseq's CPU matches sched's CPU. Ensure migration
- * doesn't occur between sched_getcpu() and reading the rseq
- * cpu_id by rereading both if the sequence count changes, or
- * if the count is odd (migration in-progress).
+ * doesn't occur between getcpu() and reading the rseq cpu_id
+ * by rereading both if the sequence count changes, or if the
+ * count is odd (migration in-progress).
*/
do {
/*
snapshot = atomic_read(&seq_cnt) & ~1;
/*
- * Ensure reading sched_getcpu() and rseq.cpu_id
- * complete in a single "no migration" window, i.e. are
- * not reordered across the seq_cnt reads.
+ * Ensure calling getcpu() and reading rseq.cpu_id complete
+ * in a single "no migration" window, i.e. are not reordered
+ * across the seq_cnt reads.
*/
smp_rmb();
- cpu = sched_getcpu();
+ sys_getcpu(&cpu);
rseq_cpu = rseq_current_cpu_raw();
smp_rmb();
} while (snapshot != atomic_read(&seq_cnt));
/*
* Sanity check that the test was able to enter the guest a reasonable
* number of times, e.g. didn't get stalled too often/long waiting for
- * sched_getcpu() to stabilize. A 2:1 migration:KVM_RUN ratio is a
- * fairly conservative ratio on x86-64, which can do _more_ KVM_RUNs
- * than migrations given the 1us+ delay in the migration task.
+ * getcpu() to stabilize. A 2:1 migration:KVM_RUN ratio is a fairly
+ * conservative ratio on x86-64, which can do _more_ KVM_RUNs than
+ * migrations given the 1us+ delay in the migration task.
*/
TEST_ASSERT(i > (NR_TASK_MIGRATIONS / 2),
"Only performed %d KVM_RUNs, task stalled too much?\n", i);