struct mutex chunk_mutex;
struct mutex volume_mutex;
+ /*
+ * this is taken to make sure we don't set block groups ro after
+ * the free space cache has been allocated on them
+ */
+ struct mutex ro_block_group_mutex;
+
/* this is used during read/modify/write to make sure
* no two ios are trying to mod the same stripe at the same
* time
u64 bytenr, u64 num_bytes, u64 parent,
u64 root_objectid, u64 owner, u64 offset, int no_quota);
+int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root);
int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
struct btrfs_root *root);
int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
mutex_init(&fs_info->transaction_kthread_mutex);
mutex_init(&fs_info->cleaner_mutex);
mutex_init(&fs_info->volume_mutex);
+ mutex_init(&fs_info->ro_block_group_mutex);
init_rwsem(&fs_info->commit_root_sem);
init_rwsem(&fs_info->cleanup_work_sem);
init_rwsem(&fs_info->subvol_sem);
if (ret)
goto out_put;
- ret = btrfs_truncate_free_space_cache(root, trans, inode);
+ ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
if (ret)
goto out_put;
}
return 0;
}
-int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
+/*
+ * transaction commit does final block group cache writeback during a
+ * critical section where nothing is allowed to change the FS. This is
+ * required in order for the cache to actually match the block group,
+ * but can introduce a lot of latency into the commit.
+ *
+ * So, btrfs_start_dirty_block_groups is here to kick off block group
+ * cache IO. There's a chance we'll have to redo some of it if the
+ * block group changes again during the commit, but it greatly reduces
+ * the commit latency by getting rid of the easy block groups while
+ * we're still allowing others to join the commit.
+ */
+int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_block_group_cache *cache;
struct btrfs_transaction *cur_trans = trans->transaction;
int ret = 0;
int should_put;
- struct btrfs_path *path;
- LIST_HEAD(io);
+ struct btrfs_path *path = NULL;
+ LIST_HEAD(dirty);
+ struct list_head *io = &cur_trans->io_bgs;
int num_started = 0;
- int num_waited = 0;
+ int loops = 0;
+
+ spin_lock(&cur_trans->dirty_bgs_lock);
+ if (!list_empty(&cur_trans->dirty_bgs)) {
+ list_splice_init(&cur_trans->dirty_bgs, &dirty);
+ }
+ spin_unlock(&cur_trans->dirty_bgs_lock);
- if (list_empty(&cur_trans->dirty_bgs))
+again:
+ if (list_empty(&dirty)) {
+ btrfs_free_path(path);
return 0;
+ }
+
+ /*
+ * make sure all the block groups on our dirty list actually
+ * exist
+ */
+ btrfs_create_pending_block_groups(trans, root);
+
+ if (!path) {
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+ }
+
+ while (!list_empty(&dirty)) {
+ cache = list_first_entry(&dirty,
+ struct btrfs_block_group_cache,
+ dirty_list);
+
+ /*
+ * cache_write_mutex is here only to save us from balance
+ * deleting this block group while we are writing out the
+ * cache
+ */
+ mutex_lock(&trans->transaction->cache_write_mutex);
+
+ /*
+ * this can happen if something re-dirties a block
+ * group that is already under IO. Just wait for it to
+ * finish and then do it all again
+ */
+ if (!list_empty(&cache->io_list)) {
+ list_del_init(&cache->io_list);
+ btrfs_wait_cache_io(root, trans, cache,
+ &cache->io_ctl, path,
+ cache->key.objectid);
+ btrfs_put_block_group(cache);
+ }
+
+
+ /*
+ * btrfs_wait_cache_io uses the cache->dirty_list to decide
+ * if it should update the cache_state. Don't delete
+ * until after we wait.
+ *
+ * Since we're not running in the commit critical section
+ * we need the dirty_bgs_lock to protect from update_block_group
+ */
+ spin_lock(&cur_trans->dirty_bgs_lock);
+ list_del_init(&cache->dirty_list);
+ spin_unlock(&cur_trans->dirty_bgs_lock);
+
+ should_put = 1;
+
+ cache_save_setup(cache, trans, path);
+
+ if (cache->disk_cache_state == BTRFS_DC_SETUP) {
+ cache->io_ctl.inode = NULL;
+ ret = btrfs_write_out_cache(root, trans, cache, path);
+ if (ret == 0 && cache->io_ctl.inode) {
+ num_started++;
+ should_put = 0;
+
+ /*
+ * the cache_write_mutex is protecting
+ * the io_list
+ */
+ list_add_tail(&cache->io_list, io);
+ } else {
+ /*
+ * if we failed to write the cache, the
+ * generation will be bad and life goes on
+ */
+ ret = 0;
+ }
+ }
+ if (!ret)
+ ret = write_one_cache_group(trans, root, path, cache);
+ mutex_unlock(&trans->transaction->cache_write_mutex);
+
+ /* if its not on the io list, we need to put the block group */
+ if (should_put)
+ btrfs_put_block_group(cache);
+
+ if (ret)
+ break;
+ }
+
+ /*
+ * go through delayed refs for all the stuff we've just kicked off
+ * and then loop back (just once)
+ */
+ ret = btrfs_run_delayed_refs(trans, root, 0);
+ if (!ret && loops == 0) {
+ loops++;
+ spin_lock(&cur_trans->dirty_bgs_lock);
+ list_splice_init(&cur_trans->dirty_bgs, &dirty);
+ spin_unlock(&cur_trans->dirty_bgs_lock);
+ goto again;
+ }
+
+ btrfs_free_path(path);
+ return ret;
+}
+
+int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ struct btrfs_block_group_cache *cache;
+ struct btrfs_transaction *cur_trans = trans->transaction;
+ int ret = 0;
+ int should_put;
+ struct btrfs_path *path;
+ struct list_head *io = &cur_trans->io_bgs;
+ int num_started = 0;
path = btrfs_alloc_path();
if (!path)
&cache->io_ctl, path,
cache->key.objectid);
btrfs_put_block_group(cache);
- num_waited++;
}
+ /*
+ * don't remove from the dirty list until after we've waited
+ * on any pending IO
+ */
list_del_init(&cache->dirty_list);
should_put = 1;
- if (cache->disk_cache_state == BTRFS_DC_CLEAR)
- cache_save_setup(cache, trans, path);
+ cache_save_setup(cache, trans, path);
if (!ret)
ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
if (ret == 0 && cache->io_ctl.inode) {
num_started++;
should_put = 0;
- list_add_tail(&cache->io_list, &io);
+ list_add_tail(&cache->io_list, io);
} else {
/*
* if we failed to write the cache, the
btrfs_put_block_group(cache);
}
- while (!list_empty(&io)) {
- cache = list_first_entry(&io, struct btrfs_block_group_cache,
+ while (!list_empty(io)) {
+ cache = list_first_entry(io, struct btrfs_block_group_cache,
io_list);
list_del_init(&cache->io_list);
- num_waited++;
btrfs_wait_cache_io(root, trans, cache,
&cache->io_ctl, path, cache->key.objectid);
btrfs_put_block_group(cache);
if (!alloc && cache->cached == BTRFS_CACHE_NO)
cache_block_group(cache, 1);
- spin_lock(&trans->transaction->dirty_bgs_lock);
- if (list_empty(&cache->dirty_list)) {
- list_add_tail(&cache->dirty_list,
- &trans->transaction->dirty_bgs);
- trans->transaction->num_dirty_bgs++;
- btrfs_get_block_group(cache);
- }
- spin_unlock(&trans->transaction->dirty_bgs_lock);
-
byte_in_group = bytenr - cache->key.objectid;
WARN_ON(byte_in_group > cache->key.offset);
spin_unlock(&info->unused_bgs_lock);
}
}
+
+ spin_lock(&trans->transaction->dirty_bgs_lock);
+ if (list_empty(&cache->dirty_list)) {
+ list_add_tail(&cache->dirty_list,
+ &trans->transaction->dirty_bgs);
+ trans->transaction->num_dirty_bgs++;
+ btrfs_get_block_group(cache);
+ }
+ spin_unlock(&trans->transaction->dirty_bgs_lock);
+
btrfs_put_block_group(cache);
total -= num_bytes;
bytenr += num_bytes;
BUG_ON(cache->ro);
+again:
trans = btrfs_join_transaction(root);
if (IS_ERR(trans))
return PTR_ERR(trans);
+ /*
+ * we're not allowed to set block groups readonly after the dirty
+ * block groups cache has started writing. If it already started,
+ * back off and let this transaction commit
+ */
+ mutex_lock(&root->fs_info->ro_block_group_mutex);
+ if (trans->transaction->dirty_bg_run) {
+ u64 transid = trans->transid;
+
+ mutex_unlock(&root->fs_info->ro_block_group_mutex);
+ btrfs_end_transaction(trans, root);
+
+ ret = btrfs_wait_for_commit(root, transid);
+ if (ret)
+ return ret;
+ goto again;
+ }
+
+
ret = set_block_group_ro(cache, 0);
if (!ret)
goto out;
alloc_flags = update_block_group_flags(root, cache->flags);
check_system_chunk(trans, root, alloc_flags);
}
+ mutex_unlock(&root->fs_info->ro_block_group_mutex);
btrfs_end_transaction(trans, root);
return ret;
goto out;
}
+ /*
+ * get the inode first so any iput calls done for the io_list
+ * aren't the final iput (no unlinks allowed now)
+ */
inode = lookup_free_space_inode(tree_root, block_group, path);
+
+ mutex_lock(&trans->transaction->cache_write_mutex);
+ /*
+ * make sure our free spache cache IO is done before remove the
+ * free space inode
+ */
+ spin_lock(&trans->transaction->dirty_bgs_lock);
+ if (!list_empty(&block_group->io_list)) {
+ list_del_init(&block_group->io_list);
+
+ WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
+
+ spin_unlock(&trans->transaction->dirty_bgs_lock);
+ btrfs_wait_cache_io(root, trans, block_group,
+ &block_group->io_ctl, path,
+ block_group->key.objectid);
+ btrfs_put_block_group(block_group);
+ spin_lock(&trans->transaction->dirty_bgs_lock);
+ }
+
+ if (!list_empty(&block_group->dirty_list)) {
+ list_del_init(&block_group->dirty_list);
+ btrfs_put_block_group(block_group);
+ }
+ spin_unlock(&trans->transaction->dirty_bgs_lock);
+ mutex_unlock(&trans->transaction->cache_write_mutex);
+
if (!IS_ERR(inode)) {
ret = btrfs_orphan_add(trans, inode);
if (ret) {
spin_lock(&trans->transaction->dirty_bgs_lock);
if (!list_empty(&block_group->dirty_list)) {
- list_del_init(&block_group->dirty_list);
- btrfs_put_block_group(block_group);
+ WARN_ON(1);
+ }
+ if (!list_empty(&block_group->io_list)) {
+ WARN_ON(1);
}
spin_unlock(&trans->transaction->dirty_bgs_lock);
-
btrfs_remove_free_space_cache(block_group);
spin_lock(&block_group->space_info->lock);
int btrfs_truncate_free_space_cache(struct btrfs_root *root,
struct btrfs_trans_handle *trans,
+ struct btrfs_block_group_cache *block_group,
struct inode *inode)
{
int ret = 0;
+ struct btrfs_path *path = btrfs_alloc_path();
+
+ if (!path) {
+ ret = -ENOMEM;
+ goto fail;
+ }
+
+ if (block_group) {
+ mutex_lock(&trans->transaction->cache_write_mutex);
+ if (!list_empty(&block_group->io_list)) {
+ list_del_init(&block_group->io_list);
+
+ btrfs_wait_cache_io(root, trans, block_group,
+ &block_group->io_ctl, path,
+ block_group->key.objectid);
+ btrfs_put_block_group(block_group);
+ }
+
+ /*
+ * now that we've truncated the cache away, its no longer
+ * setup or written
+ */
+ spin_lock(&block_group->lock);
+ block_group->disk_cache_state = BTRFS_DC_CLEAR;
+ spin_unlock(&block_group->lock);
+ }
+ btrfs_free_path(path);
btrfs_i_size_write(inode, 0);
truncate_pagecache(inode, 0);
ret = btrfs_truncate_inode_items(trans, root, inode,
0, BTRFS_EXTENT_DATA_KEY);
if (ret) {
+ mutex_unlock(&trans->transaction->cache_write_mutex);
btrfs_abort_transaction(trans, root, ret);
return ret;
}
ret = btrfs_update_inode(trans, root, inode);
+
+ if (block_group)
+ mutex_unlock(&trans->transaction->cache_write_mutex);
+
+fail:
if (ret)
btrfs_abort_transaction(trans, root, ret);
{
int ret;
struct btrfs_free_cluster *cluster = NULL;
+ struct btrfs_free_cluster *cluster_locked = NULL;
struct rb_node *node = rb_first(&ctl->free_space_offset);
struct btrfs_trim_range *trim_entry;
}
if (!node && cluster) {
+ cluster_locked = cluster;
+ spin_lock(&cluster_locked->lock);
node = rb_first(&cluster->root);
cluster = NULL;
}
node = rb_next(node);
if (!node && cluster) {
node = rb_first(&cluster->root);
+ cluster_locked = cluster;
+ spin_lock(&cluster_locked->lock);
cluster = NULL;
}
}
+ if (cluster_locked) {
+ spin_unlock(&cluster_locked->lock);
+ cluster_locked = NULL;
+ }
/*
* Make sure we don't miss any range that was removed from our rbtree
return 0;
fail:
+ if (cluster_locked)
+ spin_unlock(&cluster_locked->lock);
return -ENOSPC;
}
int ret;
struct inode *inode = io_ctl->inode;
+ if (!inode)
+ return 0;
+
root = root->fs_info->tree_root;
/* Flush the dirty pages in the cache file. */
btrfs_update_inode(trans, root, inode);
if (block_group) {
+ /* the dirty list is protected by the dirty_bgs_lock */
+ spin_lock(&trans->transaction->dirty_bgs_lock);
+
+ /* the disk_cache_state is protected by the block group lock */
spin_lock(&block_group->lock);
/*
* only mark this as written if we didn't get put back on
- * the dirty list while waiting for IO.
+ * the dirty list while waiting for IO. Otherwise our
+ * cache state won't be right, and we won't get written again
*/
if (!ret && list_empty(&block_group->dirty_list))
block_group->disk_cache_state = BTRFS_DC_WRITTEN;
block_group->disk_cache_state = BTRFS_DC_ERROR;
spin_unlock(&block_group->lock);
+ spin_unlock(&trans->transaction->dirty_bgs_lock);
io_ctl->inode = NULL;
iput(inode);
}
mutex_lock(&ctl->cache_writeout_mutex);
/* Write out the extent entries in the free space cache */
+ spin_lock(&ctl->tree_lock);
ret = write_cache_extent_entries(io_ctl, ctl,
block_group, &entries, &bitmaps,
&bitmap_list);
+ spin_unlock(&ctl->tree_lock);
if (ret) {
mutex_unlock(&ctl->cache_writeout_mutex);
goto out_nospc;
* Some spaces that are freed in the current transaction are pinned,
* they will be added into free space cache after the transaction is
* committed, we shouldn't lose them.
+ *
+ * If this changes while we are working we'll get added back to
+ * the dirty list and redo it. No locking needed
*/
ret = write_pinned_extent_entries(root, block_group, io_ctl, &entries);
if (ret) {
* locked while doing it because a concurrent trim can be manipulating
* or freeing the bitmap.
*/
+ spin_lock(&ctl->tree_lock);
ret = write_bitmap_entries(io_ctl, &bitmap_list);
+ spin_unlock(&ctl->tree_lock);
mutex_unlock(&ctl->cache_writeout_mutex);
if (ret)
goto out_nospc;
spin_unlock(&block_group->lock);
return 0;
}
-
- if (block_group->delalloc_bytes) {
- block_group->disk_cache_state = BTRFS_DC_WRITTEN;
- spin_unlock(&block_group->lock);
- return 0;
- }
spin_unlock(&block_group->lock);
inode = lookup_free_space_inode(root, block_group, path);
struct btrfs_block_rsv *rsv);
int btrfs_truncate_free_space_cache(struct btrfs_root *root,
struct btrfs_trans_handle *trans,
+ struct btrfs_block_group_cache *block_group,
struct inode *inode);
int load_free_space_cache(struct btrfs_fs_info *fs_info,
struct btrfs_block_group_cache *block_group);
}
if (i_size_read(inode) > 0) {
- ret = btrfs_truncate_free_space_cache(root, trans, inode);
+ ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
if (ret) {
if (ret != -ENOSPC)
btrfs_abort_transaction(trans, root, ret);
}
static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
- struct inode *inode, u64 ino)
+ struct btrfs_block_group_cache *block_group,
+ struct inode *inode,
+ u64 ino)
{
struct btrfs_key key;
struct btrfs_root *root = fs_info->tree_root;
goto out;
}
- ret = btrfs_truncate_free_space_cache(root, trans, inode);
+ ret = btrfs_truncate_free_space_cache(root, trans, block_group, inode);
btrfs_end_transaction(trans, root);
btrfs_btree_balance_dirty(root);
*/
if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
ret = delete_block_group_cache(rc->extent_root->fs_info,
+ rc->block_group,
NULL, ref_objectid);
if (ret != -ENOENT)
return ret;
btrfs_free_path(path);
if (!IS_ERR(inode))
- ret = delete_block_group_cache(fs_info, inode, 0);
+ ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
else
ret = PTR_ERR(inode);
atomic_set(&cur_trans->use_count, 2);
cur_trans->have_free_bgs = 0;
cur_trans->start_time = get_seconds();
+ cur_trans->dirty_bg_run = 0;
cur_trans->delayed_refs.href_root = RB_ROOT;
atomic_set(&cur_trans->delayed_refs.num_entries, 0);
INIT_LIST_HEAD(&cur_trans->switch_commits);
INIT_LIST_HEAD(&cur_trans->pending_ordered);
INIT_LIST_HEAD(&cur_trans->dirty_bgs);
+ INIT_LIST_HEAD(&cur_trans->io_bgs);
+ mutex_init(&cur_trans->cache_write_mutex);
cur_trans->num_dirty_bgs = 0;
spin_lock_init(&cur_trans->dirty_bgs_lock);
list_add_tail(&cur_trans->list, &fs_info->trans_list);
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
+ struct list_head *io_bgs = &trans->transaction->io_bgs;
struct list_head *next;
struct extent_buffer *eb;
int ret;
return ret;
}
- while (!list_empty(dirty_bgs)) {
+ while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
ret = btrfs_write_dirty_block_groups(trans, root);
if (ret)
return ret;
return ret;
}
+ if (!cur_trans->dirty_bg_run) {
+ int run_it = 0;
+
+ /* this mutex is also taken before trying to set
+ * block groups readonly. We need to make sure
+ * that nobody has set a block group readonly
+ * after a extents from that block group have been
+ * allocated for cache files. btrfs_set_block_group_ro
+ * will wait for the transaction to commit if it
+ * finds dirty_bg_run = 1
+ *
+ * The dirty_bg_run flag is also used to make sure only
+ * one process starts all the block group IO. It wouldn't
+ * hurt to have more than one go through, but there's no
+ * real advantage to it either.
+ */
+ mutex_lock(&root->fs_info->ro_block_group_mutex);
+ if (!cur_trans->dirty_bg_run) {
+ run_it = 1;
+ cur_trans->dirty_bg_run = 1;
+ }
+ mutex_unlock(&root->fs_info->ro_block_group_mutex);
+
+ if (run_it)
+ ret = btrfs_start_dirty_block_groups(trans, root);
+ }
+ if (ret) {
+ btrfs_end_transaction(trans, root);
+ return ret;
+ }
+
spin_lock(&root->fs_info->trans_lock);
list_splice(&trans->ordered, &cur_trans->pending_ordered);
if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
assert_qgroups_uptodate(trans);
ASSERT(list_empty(&cur_trans->dirty_bgs));
+ ASSERT(list_empty(&cur_trans->io_bgs));
update_super_roots(root);
btrfs_set_super_log_root(root->fs_info->super_copy, 0);
struct list_head pending_ordered;
struct list_head switch_commits;
struct list_head dirty_bgs;
+ struct list_head io_bgs;
u64 num_dirty_bgs;
+
+ /*
+ * we need to make sure block group deletion doesn't race with
+ * free space cache writeout. This mutex keeps them from stomping
+ * on each other
+ */
+ struct mutex cache_write_mutex;
spinlock_t dirty_bgs_lock;
struct btrfs_delayed_ref_root delayed_refs;
int aborted;
+ int dirty_bg_run;
};
#define __TRANS_FREEZABLE (1U << 0)