When doing a direct IO that spans the current EOF, and there are
written blocks beyond EOF that extend beyond the current write, the
only metadata update that needs to be done is a file size extension.
However, we don't mark such iomaps as IOMAP_F_DIRTY to indicate that
there is IO completion metadata updates required, and hence we may
fail to correctly sync file size extensions made in IO completion
when O_DSYNC writes are being used and the hardware supports FUA.
Hence when setting IOMAP_F_DIRTY, we need to also take into account
whether the iomap spans the current EOF. If it does, then we need to
mark it dirty so that IO completion will call generic_write_sync()
to flush the inode size update to stable storage correctly.
Fixes: 3460cac1ca76 ("iomap: Use FUA for pure data O_DSYNC DIO writes")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: removed the ext4 part; they'll handle it separately]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap);
out_finish:
+ /*
+ * Writes that span EOF might trigger an IO size update on completion,
+ * so consider them to be dirty for the purposes of O_DSYNC even if
+ * there is no other metadata changes pending or have been made here.
+ */
+ if ((flags & IOMAP_WRITE) && offset + length > i_size_read(inode))
+ iomap->flags |= IOMAP_F_DIRTY;
return xfs_bmbt_to_iomap(ip, iomap, &imap, shared);
out_found:
*
* IOMAP_F_DIRTY indicates the inode has uncommitted metadata needed to access
* written data and requires fdatasync to commit them to persistent storage.
+ * This needs to take into account metadata changes that *may* be made at IO
+ * completion, such as file size updates from direct IO.
*/
#define IOMAP_F_NEW 0x01 /* blocks have been newly allocated */
#define IOMAP_F_DIRTY 0x02 /* uncommitted metadata */