*/
static bool pfmemalloc_active __read_mostly;
-/*
- * struct slab
- *
- * Manages the objs in a slab. Placed either at the beginning of mem allocated
- * for a slab, or allocated from an general cache.
- * Slabs are chained into three list: fully used, partial, fully free slabs.
- */
-struct slab {
- struct {
- struct list_head list;
- void *s_mem; /* including colour offset */
- unsigned int active; /* num of objs active in slab */
- };
-};
-
/*
* struct array_cache
*
return page->slab_cache;
}
-static inline struct slab *virt_to_slab(const void *obj)
-{
- struct page *page = virt_to_head_page(obj);
-
- VM_BUG_ON(!PageSlab(page));
- return page->slab_page;
-}
-
-static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
+static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
unsigned int idx)
{
- return slab->s_mem + cache->size * idx;
+ return page->s_mem + cache->size * idx;
}
/*
* reciprocal_divide(offset, cache->reciprocal_buffer_size)
*/
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
- const struct slab *slab, void *obj)
+ const struct page *page, void *obj)
{
- u32 offset = (obj - slab->s_mem);
+ u32 offset = (obj - page->s_mem);
return reciprocal_divide(offset, cache->reciprocal_buffer_size);
}
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
{
- return ALIGN(sizeof(struct slab)+nr_objs*sizeof(unsigned int), align);
+ return ALIGN(nr_objs * sizeof(unsigned int), align);
}
/*
* on it. For the latter case, the memory allocated for a
* slab is used for:
*
- * - The struct slab
* - One unsigned int for each object
* - Padding to respect alignment of @align
* - @buffer_size bytes for each object
* into the memory allocation when taking the padding
* into account.
*/
- nr_objs = (slab_size - sizeof(struct slab)) /
- (buffer_size + sizeof(unsigned int));
+ nr_objs = (slab_size) / (buffer_size + sizeof(unsigned int));
/*
* This calculated number will be either the right
return nc;
}
-static inline bool is_slab_pfmemalloc(struct slab *slabp)
+static inline bool is_slab_pfmemalloc(struct page *page)
{
- struct page *page = virt_to_page(slabp->s_mem);
+ struct page *mem_page = virt_to_page(page->s_mem);
- return PageSlabPfmemalloc(page);
+ return PageSlabPfmemalloc(mem_page);
}
/* Clears pfmemalloc_active if no slabs have pfmalloc set */
struct array_cache *ac)
{
struct kmem_cache_node *n = cachep->node[numa_mem_id()];
- struct slab *slabp;
+ struct page *page;
unsigned long flags;
if (!pfmemalloc_active)
return;
spin_lock_irqsave(&n->list_lock, flags);
- list_for_each_entry(slabp, &n->slabs_full, list)
- if (is_slab_pfmemalloc(slabp))
+ list_for_each_entry(page, &n->slabs_full, lru)
+ if (is_slab_pfmemalloc(page))
goto out;
- list_for_each_entry(slabp, &n->slabs_partial, list)
- if (is_slab_pfmemalloc(slabp))
+ list_for_each_entry(page, &n->slabs_partial, lru)
+ if (is_slab_pfmemalloc(page))
goto out;
- list_for_each_entry(slabp, &n->slabs_free, list)
- if (is_slab_pfmemalloc(slabp))
+ list_for_each_entry(page, &n->slabs_free, lru)
+ if (is_slab_pfmemalloc(page))
goto out;
pfmemalloc_active = false;
*/
n = cachep->node[numa_mem_id()];
if (!list_empty(&n->slabs_free) && force_refill) {
- struct slab *slabp = virt_to_slab(objp);
- ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
+ struct page *page = virt_to_head_page(objp);
+ ClearPageSlabPfmemalloc(virt_to_head_page(page->s_mem));
clear_obj_pfmemalloc(&objp);
recheck_pfmemalloc_active(cachep, ac);
return objp;
{
if (unlikely(pfmemalloc_active)) {
/* Some pfmemalloc slabs exist, check if this is one */
- struct slab *slabp = virt_to_slab(objp);
- struct page *page = virt_to_head_page(slabp->s_mem);
- if (PageSlabPfmemalloc(page))
+ struct page *page = virt_to_head_page(objp);
+ struct page *mem_page = virt_to_head_page(page->s_mem);
+ if (PageSlabPfmemalloc(mem_page))
set_obj_pfmemalloc(&objp);
}
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
struct kmem_cache_node *n;
- struct slab *slabp;
+ struct page *page;
unsigned long flags;
int node;
continue;
spin_lock_irqsave(&n->list_lock, flags);
- list_for_each_entry(slabp, &n->slabs_full, list) {
+ list_for_each_entry(page, &n->slabs_full, lru) {
active_objs += cachep->num;
active_slabs++;
}
- list_for_each_entry(slabp, &n->slabs_partial, list) {
- active_objs += slabp->active;
+ list_for_each_entry(page, &n->slabs_partial, lru) {
+ active_objs += page->active;
active_slabs++;
}
- list_for_each_entry(slabp, &n->slabs_free, list)
+ list_for_each_entry(page, &n->slabs_free, lru)
num_slabs++;
free_objects += n->free_objects;
BUG_ON(!PageSlab(page));
__ClearPageSlabPfmemalloc(page);
__ClearPageSlab(page);
+ page_mapcount_reset(page);
+ page->mapping = NULL;
memcg_release_pages(cachep, cachep->gfporder);
if (current->reclaim_state)
/* Print some data about the neighboring objects, if they
* exist:
*/
- struct slab *slabp = virt_to_slab(objp);
+ struct page *page = virt_to_head_page(objp);
unsigned int objnr;
- objnr = obj_to_index(cachep, slabp, objp);
+ objnr = obj_to_index(cachep, page, objp);
if (objnr) {
- objp = index_to_obj(cachep, slabp, objnr - 1);
+ objp = index_to_obj(cachep, page, objnr - 1);
realobj = (char *)objp + obj_offset(cachep);
printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
realobj, size);
print_objinfo(cachep, objp, 2);
}
if (objnr + 1 < cachep->num) {
- objp = index_to_obj(cachep, slabp, objnr + 1);
+ objp = index_to_obj(cachep, page, objnr + 1);
realobj = (char *)objp + obj_offset(cachep);
printk(KERN_ERR "Next obj: start=%p, len=%d\n",
realobj, size);
#endif
#if DEBUG
-static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
+static void slab_destroy_debugcheck(struct kmem_cache *cachep,
+ struct page *page)
{
int i;
for (i = 0; i < cachep->num; i++) {
- void *objp = index_to_obj(cachep, slabp, i);
+ void *objp = index_to_obj(cachep, page, i);
if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
}
}
#else
-static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
+static void slab_destroy_debugcheck(struct kmem_cache *cachep,
+ struct page *page)
{
}
#endif
* Before calling the slab must have been unlinked from the cache. The
* cache-lock is not held/needed.
*/
-static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
+static void slab_destroy(struct kmem_cache *cachep, struct page *page)
{
- struct page *page = virt_to_head_page(slabp->s_mem);
+ struct freelist *freelist;
- slab_destroy_debugcheck(cachep, slabp);
+ freelist = page->freelist;
+ slab_destroy_debugcheck(cachep, page);
if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
struct rcu_head *head;
}
/*
- * From now on, we don't use slab management
+ * From now on, we don't use freelist
* although actual page can be freed in rcu context
*/
if (OFF_SLAB(cachep))
- kmem_cache_free(cachep->slabp_cache, slabp);
+ kmem_cache_free(cachep->freelist_cache, freelist);
}
/**
* use off-slab slabs. Needed to avoid a possible
* looping condition in cache_grow().
*/
- offslab_limit = size - sizeof(struct slab);
+ offslab_limit = size;
offslab_limit /= sizeof(unsigned int);
if (num > offslab_limit)
int
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
{
- size_t left_over, slab_size, ralign;
+ size_t left_over, freelist_size, ralign;
gfp_t gfp;
int err;
size_t size = cachep->size;
if (!cachep->num)
return -E2BIG;
- slab_size = ALIGN(cachep->num * sizeof(unsigned int)
- + sizeof(struct slab), cachep->align);
+ freelist_size =
+ ALIGN(cachep->num * sizeof(unsigned int), cachep->align);
/*
* If the slab has been placed off-slab, and we have enough space then
* move it on-slab. This is at the expense of any extra colouring.
*/
- if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
+ if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
flags &= ~CFLGS_OFF_SLAB;
- left_over -= slab_size;
+ left_over -= freelist_size;
}
if (flags & CFLGS_OFF_SLAB) {
/* really off slab. No need for manual alignment */
- slab_size =
- cachep->num * sizeof(unsigned int) + sizeof(struct slab);
+ freelist_size = cachep->num * sizeof(unsigned int);
#ifdef CONFIG_PAGE_POISONING
/* If we're going to use the generic kernel_map_pages()
if (cachep->colour_off < cachep->align)
cachep->colour_off = cachep->align;
cachep->colour = left_over / cachep->colour_off;
- cachep->slab_size = slab_size;
+ cachep->freelist_size = freelist_size;
cachep->flags = flags;
cachep->allocflags = __GFP_COMP;
if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
cachep->reciprocal_buffer_size = reciprocal_value(size);
if (flags & CFLGS_OFF_SLAB) {
- cachep->slabp_cache = kmalloc_slab(slab_size, 0u);
+ cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
/*
* This is a possibility for one of the malloc_sizes caches.
* But since we go off slab only for object size greater than
* this should not happen at all.
* But leave a BUG_ON for some lucky dude.
*/
- BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
+ BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
}
err = setup_cpu_cache(cachep, gfp);
{
struct list_head *p;
int nr_freed;
- struct slab *slabp;
+ struct page *page;
nr_freed = 0;
while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
goto out;
}
- slabp = list_entry(p, struct slab, list);
+ page = list_entry(p, struct page, lru);
#if DEBUG
- BUG_ON(slabp->active);
+ BUG_ON(page->active);
#endif
- list_del(&slabp->list);
+ list_del(&page->lru);
/*
* Safe to drop the lock. The slab is no longer linked
* to the cache.
*/
n->free_objects -= cache->num;
spin_unlock_irq(&n->list_lock);
- slab_destroy(cache, slabp);
+ slab_destroy(cache, page);
nr_freed++;
}
out:
* descriptors in kmem_cache_create, we search through the malloc_sizes array.
* If we are creating a malloc_sizes cache here it would not be visible to
* kmem_find_general_cachep till the initialization is complete.
- * Hence we cannot have slabp_cache same as the original cache.
+ * Hence we cannot have freelist_cache same as the original cache.
*/
-static struct slab *alloc_slabmgmt(struct kmem_cache *cachep,
+static struct freelist *alloc_slabmgmt(struct kmem_cache *cachep,
struct page *page, int colour_off,
gfp_t local_flags, int nodeid)
{
- struct slab *slabp;
+ struct freelist *freelist;
void *addr = page_address(page);
if (OFF_SLAB(cachep)) {
/* Slab management obj is off-slab. */
- slabp = kmem_cache_alloc_node(cachep->slabp_cache,
+ freelist = kmem_cache_alloc_node(cachep->freelist_cache,
local_flags, nodeid);
/*
* If the first object in the slab is leaked (it's allocated
* kmemleak does not treat the ->s_mem pointer as a reference
* to the object. Otherwise we will not report the leak.
*/
- kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
+ kmemleak_scan_area(&page->lru, sizeof(struct list_head),
local_flags);
- if (!slabp)
+ if (!freelist)
return NULL;
} else {
- slabp = addr + colour_off;
- colour_off += cachep->slab_size;
+ freelist = addr + colour_off;
+ colour_off += cachep->freelist_size;
}
- slabp->active = 0;
- slabp->s_mem = addr + colour_off;
- return slabp;
+ page->active = 0;
+ page->s_mem = addr + colour_off;
+ return freelist;
}
-static inline unsigned int *slab_bufctl(struct slab *slabp)
+static inline unsigned int *slab_bufctl(struct page *page)
{
- return (unsigned int *) (slabp + 1);
+ return (unsigned int *)(page->freelist);
}
static void cache_init_objs(struct kmem_cache *cachep,
- struct slab *slabp)
+ struct page *page)
{
int i;
for (i = 0; i < cachep->num; i++) {
- void *objp = index_to_obj(cachep, slabp, i);
+ void *objp = index_to_obj(cachep, page, i);
#if DEBUG
/* need to poison the objs? */
if (cachep->flags & SLAB_POISON)
if (cachep->ctor)
cachep->ctor(objp);
#endif
- slab_bufctl(slabp)[i] = i;
+ slab_bufctl(page)[i] = i;
}
}
}
}
-static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
+static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
int nodeid)
{
void *objp;
- objp = index_to_obj(cachep, slabp, slab_bufctl(slabp)[slabp->active]);
- slabp->active++;
+ objp = index_to_obj(cachep, page, slab_bufctl(page)[page->active]);
+ page->active++;
#if DEBUG
WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
#endif
return objp;
}
-static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
+static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
void *objp, int nodeid)
{
- unsigned int objnr = obj_to_index(cachep, slabp, objp);
+ unsigned int objnr = obj_to_index(cachep, page, objp);
#if DEBUG
unsigned int i;
WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
/* Verify double free bug */
- for (i = slabp->active; i < cachep->num; i++) {
- if (slab_bufctl(slabp)[i] == objnr) {
+ for (i = page->active; i < cachep->num; i++) {
+ if (slab_bufctl(page)[i] == objnr) {
printk(KERN_ERR "slab: double free detected in cache "
"'%s', objp %p\n", cachep->name, objp);
BUG();
}
}
#endif
- slabp->active--;
- slab_bufctl(slabp)[slabp->active] = objnr;
+ page->active--;
+ slab_bufctl(page)[page->active] = objnr;
}
/*
* for the slab allocator to be able to lookup the cache and slab of a
* virtual address for kfree, ksize, and slab debugging.
*/
-static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
- struct page *page)
+static void slab_map_pages(struct kmem_cache *cache, struct page *page,
+ struct freelist *freelist)
{
page->slab_cache = cache;
- page->slab_page = slab;
+ page->freelist = freelist;
}
/*
static int cache_grow(struct kmem_cache *cachep,
gfp_t flags, int nodeid, struct page *page)
{
- struct slab *slabp;
+ struct freelist *freelist;
size_t offset;
gfp_t local_flags;
struct kmem_cache_node *n;
goto failed;
/* Get slab management. */
- slabp = alloc_slabmgmt(cachep, page, offset,
+ freelist = alloc_slabmgmt(cachep, page, offset,
local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
- if (!slabp)
+ if (!freelist)
goto opps1;
- slab_map_pages(cachep, slabp, page);
+ slab_map_pages(cachep, page, freelist);
- cache_init_objs(cachep, slabp);
+ cache_init_objs(cachep, page);
if (local_flags & __GFP_WAIT)
local_irq_disable();
spin_lock(&n->list_lock);
/* Make slab active. */
- list_add_tail(&slabp->list, &(n->slabs_free));
+ list_add_tail(&page->lru, &(n->slabs_free));
STATS_INC_GROWN(cachep);
n->free_objects += cachep->num;
spin_unlock(&n->list_lock);
unsigned long caller)
{
unsigned int objnr;
- struct slab *slabp;
+ struct page *page;
BUG_ON(virt_to_cache(objp) != cachep);
objp -= obj_offset(cachep);
kfree_debugcheck(objp);
- slabp = virt_to_slab(objp);
+ page = virt_to_head_page(objp);
if (cachep->flags & SLAB_RED_ZONE) {
verify_redzone_free(cachep, objp);
if (cachep->flags & SLAB_STORE_USER)
*dbg_userword(cachep, objp) = (void *)caller;
- objnr = obj_to_index(cachep, slabp, objp);
+ objnr = obj_to_index(cachep, page, objp);
BUG_ON(objnr >= cachep->num);
- BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
+ BUG_ON(objp != index_to_obj(cachep, page, objnr));
if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
while (batchcount > 0) {
struct list_head *entry;
- struct slab *slabp;
+ struct page *page;
/* Get slab alloc is to come from. */
entry = n->slabs_partial.next;
if (entry == &n->slabs_partial) {
goto must_grow;
}
- slabp = list_entry(entry, struct slab, list);
+ page = list_entry(entry, struct page, lru);
check_spinlock_acquired(cachep);
/*
* there must be at least one object available for
* allocation.
*/
- BUG_ON(slabp->active >= cachep->num);
+ BUG_ON(page->active >= cachep->num);
- while (slabp->active < cachep->num && batchcount--) {
+ while (page->active < cachep->num && batchcount--) {
STATS_INC_ALLOCED(cachep);
STATS_INC_ACTIVE(cachep);
STATS_SET_HIGH(cachep);
- ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
+ ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
node));
}
/* move slabp to correct slabp list: */
- list_del(&slabp->list);
- if (slabp->active == cachep->num)
- list_add(&slabp->list, &n->slabs_full);
+ list_del(&page->lru);
+ if (page->active == cachep->num)
+ list_add(&page->list, &n->slabs_full);
else
- list_add(&slabp->list, &n->slabs_partial);
+ list_add(&page->list, &n->slabs_partial);
}
must_grow:
int nodeid)
{
struct list_head *entry;
- struct slab *slabp;
+ struct page *page;
struct kmem_cache_node *n;
void *obj;
int x;
goto must_grow;
}
- slabp = list_entry(entry, struct slab, list);
+ page = list_entry(entry, struct page, lru);
check_spinlock_acquired_node(cachep, nodeid);
STATS_INC_NODEALLOCS(cachep);
STATS_INC_ACTIVE(cachep);
STATS_SET_HIGH(cachep);
- BUG_ON(slabp->active == cachep->num);
+ BUG_ON(page->active == cachep->num);
- obj = slab_get_obj(cachep, slabp, nodeid);
+ obj = slab_get_obj(cachep, page, nodeid);
n->free_objects--;
/* move slabp to correct slabp list: */
- list_del(&slabp->list);
+ list_del(&page->lru);
- if (slabp->active == cachep->num)
- list_add(&slabp->list, &n->slabs_full);
+ if (page->active == cachep->num)
+ list_add(&page->lru, &n->slabs_full);
else
- list_add(&slabp->list, &n->slabs_partial);
+ list_add(&page->lru, &n->slabs_partial);
spin_unlock(&n->list_lock);
goto done;
for (i = 0; i < nr_objects; i++) {
void *objp;
- struct slab *slabp;
+ struct page *page;
clear_obj_pfmemalloc(&objpp[i]);
objp = objpp[i];
- slabp = virt_to_slab(objp);
+ page = virt_to_head_page(objp);
n = cachep->node[node];
- list_del(&slabp->list);
+ list_del(&page->lru);
check_spinlock_acquired_node(cachep, node);
- slab_put_obj(cachep, slabp, objp, node);
+ slab_put_obj(cachep, page, objp, node);
STATS_DEC_ACTIVE(cachep);
n->free_objects++;
/* fixup slab chains */
- if (slabp->active == 0) {
+ if (page->active == 0) {
if (n->free_objects > n->free_limit) {
n->free_objects -= cachep->num;
/* No need to drop any previously held
* a different cache, refer to comments before
* alloc_slabmgmt.
*/
- slab_destroy(cachep, slabp);
+ slab_destroy(cachep, page);
} else {
- list_add(&slabp->list, &n->slabs_free);
+ list_add(&page->lru, &n->slabs_free);
}
} else {
/* Unconditionally move a slab to the end of the
* partial list on free - maximum time for the
* other objects to be freed, too.
*/
- list_add_tail(&slabp->list, &n->slabs_partial);
+ list_add_tail(&page->lru, &n->slabs_partial);
}
}
}
p = n->slabs_free.next;
while (p != &(n->slabs_free)) {
- struct slab *slabp;
+ struct page *page;
- slabp = list_entry(p, struct slab, list);
- BUG_ON(slabp->active);
+ page = list_entry(p, struct page, lru);
+ BUG_ON(page->active);
i++;
p = p->next;
#ifdef CONFIG_SLABINFO
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
{
- struct slab *slabp;
+ struct page *page;
unsigned long active_objs;
unsigned long num_objs;
unsigned long active_slabs = 0;
check_irq_on();
spin_lock_irq(&n->list_lock);
- list_for_each_entry(slabp, &n->slabs_full, list) {
- if (slabp->active != cachep->num && !error)
+ list_for_each_entry(page, &n->slabs_full, lru) {
+ if (page->active != cachep->num && !error)
error = "slabs_full accounting error";
active_objs += cachep->num;
active_slabs++;
}
- list_for_each_entry(slabp, &n->slabs_partial, list) {
- if (slabp->active == cachep->num && !error)
+ list_for_each_entry(page, &n->slabs_partial, lru) {
+ if (page->active == cachep->num && !error)
error = "slabs_partial accounting error";
- if (!slabp->active && !error)
+ if (!page->active && !error)
error = "slabs_partial accounting error";
- active_objs += slabp->active;
+ active_objs += page->active;
active_slabs++;
}
- list_for_each_entry(slabp, &n->slabs_free, list) {
- if (slabp->active && !error)
+ list_for_each_entry(page, &n->slabs_free, lru) {
+ if (page->active && !error)
error = "slabs_free accounting error";
num_slabs++;
}
return 1;
}
-static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
+static void handle_slab(unsigned long *n, struct kmem_cache *c,
+ struct page *page)
{
void *p;
int i, j;
if (n[0] == n[1])
return;
- for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
+ for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
bool active = true;
- for (j = s->active; j < c->num; j++) {
+ for (j = page->active; j < c->num; j++) {
/* Skip freed item */
- if (slab_bufctl(s)[j] == i) {
+ if (slab_bufctl(page)[j] == i) {
active = false;
break;
}
static int leaks_show(struct seq_file *m, void *p)
{
struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
- struct slab *slabp;
+ struct page *page;
struct kmem_cache_node *n;
const char *name;
unsigned long *x = m->private;
check_irq_on();
spin_lock_irq(&n->list_lock);
- list_for_each_entry(slabp, &n->slabs_full, list)
- handle_slab(x, cachep, slabp);
- list_for_each_entry(slabp, &n->slabs_partial, list)
- handle_slab(x, cachep, slabp);
+ list_for_each_entry(page, &n->slabs_full, lru)
+ handle_slab(x, cachep, page);
+ list_for_each_entry(page, &n->slabs_partial, lru)
+ handle_slab(x, cachep, page);
spin_unlock_irq(&n->list_lock);
}
name = cachep->name;