skein/threefish TODO
- - rename camelcase vars
- rename files
- move macros into appropriate header files
- add / pass test vectors
#endif
/* below two prototype assume we are handed aligned data */
-#define Skein_Put64_LSB_First(dst08, src64, bCnt) memcpy(dst08, src64, bCnt)
-#define Skein_Get64_LSB_First(dst64, src08, wCnt) memcpy(dst64, src08, 8*(wCnt))
+#define Skein_Put64_LSB_First(dst08, src64, b_cnt) memcpy(dst08, src64, b_cnt)
+#define Skein_Get64_LSB_First(dst64, src08, w_cnt) \
+ memcpy(dst64, src08, 8*(w_cnt))
#define Skein_Swap64(w64) (w64)
enum {
#define SKEIN1024_BLOCK_BYTES (8*SKEIN1024_STATE_WORDS)
struct skein_ctx_hdr {
- size_t hashBitLen; /* size of hash result, in bits */
- size_t bCnt; /* current byte count in buffer b[] */
- u64 T[SKEIN_MODIFIER_WORDS]; /* tweak: T[0]=byte cnt, T[1]=flags */
+ size_t hash_bit_len; /* size of hash result, in bits */
+ size_t b_cnt; /* current byte count in buffer b[] */
+ u64 T[SKEIN_MODIFIER_WORDS]; /* tweak: T[0]=byte cnt, T[1]=flags */
};
struct skein_256_ctx { /* 256-bit Skein hash context structure */
struct skein_ctx_hdr h; /* common header context variables */
- u64 X[SKEIN_256_STATE_WORDS]; /* chaining variables */
- u8 b[SKEIN_256_BLOCK_BYTES]; /* partial block buf (8-byte aligned) */
+ u64 X[SKEIN_256_STATE_WORDS]; /* chaining variables */
+ u8 b[SKEIN_256_BLOCK_BYTES]; /* partial block buf (8-byte aligned) */
};
struct skein_512_ctx { /* 512-bit Skein hash context structure */
struct skein_ctx_hdr h; /* common header context variables */
- u64 X[SKEIN_512_STATE_WORDS]; /* chaining variables */
- u8 b[SKEIN_512_BLOCK_BYTES]; /* partial block buf (8-byte aligned) */
+ u64 X[SKEIN_512_STATE_WORDS]; /* chaining variables */
+ u8 b[SKEIN_512_BLOCK_BYTES]; /* partial block buf (8-byte aligned) */
};
struct skein1024_ctx { /* 1024-bit Skein hash context structure */
struct skein_ctx_hdr h; /* common header context variables */
- u64 X[SKEIN1024_STATE_WORDS]; /* chaining variables */
- u8 b[SKEIN1024_BLOCK_BYTES]; /* partial block buf (8-byte aligned) */
+ u64 X[SKEIN1024_STATE_WORDS]; /* chaining variables */
+ u8 b[SKEIN1024_BLOCK_BYTES]; /* partial block buf (8-byte aligned) */
};
/* Skein APIs for (incremental) "straight hashing" */
-int skein_256_init(struct skein_256_ctx *ctx, size_t hashBitLen);
-int skein_512_init(struct skein_512_ctx *ctx, size_t hashBitLen);
-int skein_1024_init(struct skein1024_ctx *ctx, size_t hashBitLen);
+int skein_256_init(struct skein_256_ctx *ctx, size_t hash_bit_len);
+int skein_512_init(struct skein_512_ctx *ctx, size_t hash_bit_len);
+int skein_1024_init(struct skein1024_ctx *ctx, size_t hash_bit_len);
int skein_256_update(struct skein_256_ctx *ctx, const u8 *msg,
- size_t msgByteCnt);
+ size_t msg_byte_cnt);
int skein_512_update(struct skein_512_ctx *ctx, const u8 *msg,
- size_t msgByteCnt);
+ size_t msg_byte_cnt);
int skein_1024_update(struct skein1024_ctx *ctx, const u8 *msg,
- size_t msgByteCnt);
+ size_t msg_byte_cnt);
-int skein_256_final(struct skein_256_ctx *ctx, u8 *hashVal);
-int skein_512_final(struct skein_512_ctx *ctx, u8 *hashVal);
-int skein_1024_final(struct skein1024_ctx *ctx, u8 *hashVal);
+int skein_256_final(struct skein_256_ctx *ctx, u8 *hash_val);
+int skein_512_final(struct skein_512_ctx *ctx, u8 *hash_val);
+int skein_1024_final(struct skein1024_ctx *ctx, u8 *hash_val);
/*
** Skein APIs for "extended" initialization: MAC keys, tree hashing.
** After an init_ext() call, just use update/final calls as with init().
**
-** Notes: Same parameters as _init() calls, plus treeInfo/key/keyBytes.
-** When keyBytes == 0 and treeInfo == SKEIN_SEQUENTIAL,
+** Notes: Same parameters as _init() calls, plus tree_info/key/key_bytes.
+** When key_bytes == 0 and tree_info == SKEIN_SEQUENTIAL,
** the results of init_ext() are identical to calling init().
** The function init() may be called once to "precompute" the IV for
-** a given hashBitLen value, then by saving a copy of the context
+** a given hash_bit_len value, then by saving a copy of the context
** the IV computation may be avoided in later calls.
** Similarly, the function init_ext() may be called once per MAC key
** to precompute the MAC IV, then a copy of the context saved and
** reused for each new MAC computation.
**/
-int skein_256_init_ext(struct skein_256_ctx *ctx, size_t hashBitLen,
- u64 treeInfo, const u8 *key, size_t keyBytes);
-int skein_512_init_ext(struct skein_512_ctx *ctx, size_t hashBitLen,
- u64 treeInfo, const u8 *key, size_t keyBytes);
-int skein_1024_init_ext(struct skein1024_ctx *ctx, size_t hashBitLen,
- u64 treeInfo, const u8 *key, size_t keyBytes);
+int skein_256_init_ext(struct skein_256_ctx *ctx, size_t hash_bit_len,
+ u64 tree_info, const u8 *key, size_t key_bytes);
+int skein_512_init_ext(struct skein_512_ctx *ctx, size_t hash_bit_len,
+ u64 tree_info, const u8 *key, size_t key_bytes);
+int skein_1024_init_ext(struct skein1024_ctx *ctx, size_t hash_bit_len,
+ u64 tree_info, const u8 *key, size_t key_bytes);
/*
** Skein APIs for MAC and tree hash:
** final_pad: pad, do final block, but no OUTPUT type
** output: do just the output stage
*/
-int skein_256_final_pad(struct skein_256_ctx *ctx, u8 *hashVal);
-int skein_512_final_pad(struct skein_512_ctx *ctx, u8 *hashVal);
-int skein_1024_final_pad(struct skein1024_ctx *ctx, u8 *hashVal);
+int skein_256_final_pad(struct skein_256_ctx *ctx, u8 *hash_val);
+int skein_512_final_pad(struct skein_512_ctx *ctx, u8 *hash_val);
+int skein_1024_final_pad(struct skein1024_ctx *ctx, u8 *hash_val);
#ifndef SKEIN_TREE_HASH
#define SKEIN_TREE_HASH (1)
#endif
#if SKEIN_TREE_HASH
-int skein_256_output(struct skein_256_ctx *ctx, u8 *hashVal);
-int skein_512_output(struct skein_512_ctx *ctx, u8 *hashVal);
-int skein_1024_output(struct skein1024_ctx *ctx, u8 *hashVal);
+int skein_256_output(struct skein_256_ctx *ctx, u8 *hash_val);
+int skein_512_output(struct skein_512_ctx *ctx, u8 *hash_val);
+int skein_1024_output(struct skein1024_ctx *ctx, u8 *hash_val);
#endif
/*****************************************************************
#define SKEIN_CFG_STR_LEN (4*8)
-/* bit field definitions in config block treeInfo word */
+/* bit field definitions in config block tree_info word */
#define SKEIN_CFG_TREE_LEAF_SIZE_POS (0)
#define SKEIN_CFG_TREE_NODE_SIZE_POS (8)
#define SKEIN_CFG_TREE_MAX_LEVEL_POS (16)
#define SKEIN_CFG_TREE_MAX_LEVEL_MSK (((u64)0xFF) << \
SKEIN_CFG_TREE_MAX_LEVEL_POS)
-#define SKEIN_CFG_TREE_INFO(leaf, node, maxLvl) \
+#define SKEIN_CFG_TREE_INFO(leaf, node, max_lvl) \
((((u64)(leaf)) << SKEIN_CFG_TREE_LEAF_SIZE_POS) | \
(((u64)(node)) << SKEIN_CFG_TREE_NODE_SIZE_POS) | \
- (((u64)(maxLvl)) << SKEIN_CFG_TREE_MAX_LEVEL_POS))
+ (((u64)(max_lvl)) << SKEIN_CFG_TREE_MAX_LEVEL_POS))
-/* use as treeInfo in InitExt() call for sequential processing */
+/* use as tree_info in InitExt() call for sequential processing */
#define SKEIN_CFG_TREE_INFO_SEQUENTIAL SKEIN_CFG_TREE_INFO(0, 0, 0)
/*
** Skein macros for getting/setting tweak words, etc.
** These are useful for partial input bytes, hash tree init/update, etc.
**/
-#define Skein_Get_Tweak(ctxPtr, TWK_NUM) ((ctxPtr)->h.T[TWK_NUM])
-#define Skein_Set_Tweak(ctxPtr, TWK_NUM, tVal) { \
- (ctxPtr)->h.T[TWK_NUM] = (tVal); \
+#define Skein_Get_Tweak(ctx_ptr, TWK_NUM) ((ctx_ptr)->h.T[TWK_NUM])
+#define Skein_Set_Tweak(ctx_ptr, TWK_NUM, t_val) { \
+ (ctx_ptr)->h.T[TWK_NUM] = (t_val); \
}
-#define Skein_Get_T0(ctxPtr) Skein_Get_Tweak(ctxPtr, 0)
-#define Skein_Get_T1(ctxPtr) Skein_Get_Tweak(ctxPtr, 1)
-#define Skein_Set_T0(ctxPtr, T0) Skein_Set_Tweak(ctxPtr, 0, T0)
-#define Skein_Set_T1(ctxPtr, T1) Skein_Set_Tweak(ctxPtr, 1, T1)
+#define Skein_Get_T0(ctx_ptr) Skein_Get_Tweak(ctx_ptr, 0)
+#define Skein_Get_T1(ctx_ptr) Skein_Get_Tweak(ctx_ptr, 1)
+#define Skein_Set_T0(ctx_ptr, T0) Skein_Set_Tweak(ctx_ptr, 0, T0)
+#define Skein_Set_T1(ctx_ptr, T1) Skein_Set_Tweak(ctx_ptr, 1, T1)
/* set both tweak words at once */
-#define Skein_Set_T0_T1(ctxPtr, T0, T1) \
+#define Skein_Set_T0_T1(ctx_ptr, T0, T1) \
{ \
- Skein_Set_T0(ctxPtr, (T0)); \
- Skein_Set_T1(ctxPtr, (T1)); \
+ Skein_Set_T0(ctx_ptr, (T0)); \
+ Skein_Set_T1(ctx_ptr, (T1)); \
}
-#define Skein_Set_Type(ctxPtr, BLK_TYPE) \
- Skein_Set_T1(ctxPtr, SKEIN_T1_BLK_TYPE_##BLK_TYPE)
+#define Skein_Set_Type(ctx_ptr, BLK_TYPE) \
+ Skein_Set_T1(ctx_ptr, SKEIN_T1_BLK_TYPE_##BLK_TYPE)
/*
* setup for starting with a new type:
- * h.T[0]=0; h.T[1] = NEW_TYPE; h.bCnt=0;
+ * h.T[0]=0; h.T[1] = NEW_TYPE; h.b_cnt=0;
*/
-#define Skein_Start_New_Type(ctxPtr, BLK_TYPE) { \
- Skein_Set_T0_T1(ctxPtr, 0, SKEIN_T1_FLAG_FIRST | \
+#define Skein_Start_New_Type(ctx_ptr, BLK_TYPE) { \
+ Skein_Set_T0_T1(ctx_ptr, 0, SKEIN_T1_FLAG_FIRST | \
SKEIN_T1_BLK_TYPE_##BLK_TYPE); \
- (ctxPtr)->h.bCnt = 0; \
+ (ctx_ptr)->h.b_cnt = 0; \
}
#define Skein_Clear_First_Flag(hdr) { \
#ifdef SKEIN_DEBUG /* examine/display intermediate values? */
#include "skein_debug.h"
#else /* default is no callouts */
-#define Skein_Show_Block(bits, ctx, X, blkPtr, wPtr, ksEvenPtr, ksOddPtr)
+#define Skein_Show_Block(bits, ctx, X, blk_ptr, w_ptr, ks_event_ptr, ks_odd_ptr)
#define Skein_Show_Round(bits, ctx, r, X)
#define Skein_Show_R_Ptr(bits, ctx, r, X_ptr)
-#define Skein_Show_Final(bits, ctx, cnt, outPtr)
-#define Skein_Show_Key(bits, ctx, key, keyBytes)
+#define Skein_Show_Final(bits, ctx, cnt, out_ptr)
+#define Skein_Show_Key(bits, ctx, key, key_bytes)
#endif
-#define Skein_Assert(x, retCode)/* ignore all Asserts, for performance */
+#define Skein_Assert(x, ret_code)/* ignore all Asserts, for performance */
#define Skein_assert(x)
/*****************************************************************
*
* // Now update Skein with any number of message bits. A function that
* // takes a number of bytes is also available.
- * skein_update_bits(&ctx, message, msgLength);
+ * skein_update_bits(&ctx, message, msg_length);
*
* // Now get the result of the Skein hash. The output buffer must be
* // large enough to hold the request number of output bits. The application
* structures as well.
*/
struct skein_ctx {
- u64 skeinSize;
- u64 XSave[SKEIN_MAX_STATE_WORDS]; /* save area for state variables */
+ u64 skein_size;
+ u64 X_save[SKEIN_MAX_STATE_WORDS]; /* save area for state variables */
union {
struct skein_ctx_hdr h;
struct skein_256_ctx s256;
*
* @param ctx
* Pointer to a Skein context.
- * @param hashBitLen
+ * @param hash_bit_len
* Number of MAC hash bits to compute
* @return
* SKEIN_SUCESS of SKEIN_FAIL
* @see skein_reset
*/
-int skein_init(struct skein_ctx *ctx, size_t hashBitLen);
+int skein_init(struct skein_ctx *ctx, size_t hash_bit_len);
/**
* Resets a Skein context for further use.
* Pointer to an empty or preinitialized Skein MAC context
* @param key
* Pointer to key bytes or NULL
- * @param keyLen
+ * @param key_len
* Length of the key in bytes or zero
- * @param hashBitLen
+ * @param hash_bit_len
* Number of MAC hash bits to compute
* @return
* SKEIN_SUCESS of SKEIN_FAIL
*/
-int skein_mac_init(struct skein_ctx *ctx, const u8 *key, size_t keyLen,
- size_t hashBitLen);
+int skein_mac_init(struct skein_ctx *ctx, const u8 *key, size_t key_len,
+ size_t hash_bit_len);
/**
* Update Skein with the next part of the message.
* Pointer to initialized Skein context
* @param msg
* Pointer to the message.
- * @param msgByteCnt
+ * @param msg_byte_cnt
* Length of the message in @b bytes
* @return
* Success or error code.
*/
int skein_update(struct skein_ctx *ctx, const u8 *msg,
- size_t msgByteCnt);
+ size_t msg_byte_cnt);
/**
* Update the hash with a message bit string.
* Pointer to initialized Skein context
* @param msg
* Pointer to the message.
- * @param msgBitCnt
+ * @param msg_bit_cnt
* Length of the message in @b bits.
*/
int skein_update_bits(struct skein_ctx *ctx, const u8 *msg,
- size_t msgBitCnt);
+ size_t msg_bit_cnt);
/**
* Finalize Skein and return the hash.
* Pointer to initialized Skein context
* @param hash
* Pointer to buffer that receives the hash. The buffer must be large
- * enough to store @c hashBitLen bits.
+ * enough to store @c hash_bit_len bits.
* @return
* Success or error code.
* @see skein_reset
#include <skein.h> /* get the Skein API definitions */
-void skein_256_process_block(struct skein_256_ctx *ctx, const u8 *blkPtr,
- size_t blkCnt, size_t byteCntAdd);
-void skein_512_process_block(struct skein_512_ctx *ctx, const u8 *blkPtr,
- size_t blkCnt, size_t byteCntAdd);
-void skein_1024_process_block(struct skein1024_ctx *ctx, const u8 *blkPtr,
- size_t blkCnt, size_t byteCntAdd);
+void skein_256_process_block(struct skein_256_ctx *ctx, const u8 *blk_ptr,
+ size_t blk_cnt, size_t byte_cnt_add);
+void skein_512_process_block(struct skein_512_ctx *ctx, const u8 *blk_ptr,
+ size_t blk_cnt, size_t byte_cnt_add);
+void skein_1024_process_block(struct skein1024_ctx *ctx, const u8 *blk_ptr,
+ size_t blk_cnt, size_t byte_cnt_add);
#endif
*
@code
// Threefish cipher context data
- struct threefish_key keyCtx;
+ struct threefish_key key_ctx;
// Initialize the context
- threefish_set_key(&keyCtx, Threefish512, key, tweak);
+ threefish_set_key(&key_ctx, Threefish512, key, tweak);
// Encrypt
- threefish_encrypt_block_bytes(&keyCtx, input, cipher);
+ threefish_encrypt_block_bytes(&key_ctx, input, cipher);
@endcode
*/
* structures as well.
*/
struct threefish_key {
- u64 stateSize;
+ u64 state_size;
u64 key[SKEIN_MAX_STATE_WORDS+1]; /* max number of key words*/
u64 tweak[3];
};
* the given size. The key data must have the same length (number of bits)
* as the state size
*
- * @param keyCtx
+ * @param key_ctx
* Pointer to a Threefish key structure.
* @param size
* Which Skein size to use.
- * @param keyData
+ * @param key_data
* Pointer to the key words (word has 64 bits).
* @param tweak
* Pointer to the two tweak words (word has 64 bits).
*/
-void threefish_set_key(struct threefish_key *keyCtx,
- enum threefish_size stateSize,
- u64 *keyData, u64 *tweak);
+void threefish_set_key(struct threefish_key *key_ctx,
+ enum threefish_size state_size,
+ u64 *key_data, u64 *tweak);
/**
* Encrypt Threefisch block (bytes).
*
* The buffer must have at least the same length (number of bits) aas the
- * state size for this key. The function uses the first @c stateSize bits
+ * state size for this key. The function uses the first @c state_size bits
* of the input buffer, encrypts them and stores the result in the output
* buffer.
*
- * @param keyCtx
+ * @param key_ctx
* Pointer to a Threefish key structure.
* @param in
* Poionter to plaintext data buffer.
* @param out
* Pointer to cipher buffer.
*/
-void threefish_encrypt_block_bytes(struct threefish_key *keyCtx, u8 *in,
+void threefish_encrypt_block_bytes(struct threefish_key *key_ctx, u8 *in,
u8 *out);
/**
* Encrypt Threefisch block (words).
*
* The buffer must have at least the same length (number of bits) aas the
- * state size for this key. The function uses the first @c stateSize bits
+ * state size for this key. The function uses the first @c state_size bits
* of the input buffer, encrypts them and stores the result in the output
* buffer.
*
* The wordsize ist set to 64 bits.
*
- * @param keyCtx
+ * @param key_ctx
* Pointer to a Threefish key structure.
* @param in
* Poionter to plaintext data buffer.
* @param out
* Pointer to cipher buffer.
*/
-void threefish_encrypt_block_words(struct threefish_key *keyCtx, u64 *in,
+void threefish_encrypt_block_words(struct threefish_key *key_ctx, u64 *in,
u64 *out);
/**
* Decrypt Threefisch block (bytes).
*
* The buffer must have at least the same length (number of bits) aas the
- * state size for this key. The function uses the first @c stateSize bits
+ * state size for this key. The function uses the first @c state_size bits
* of the input buffer, decrypts them and stores the result in the output
* buffer
*
- * @param keyCtx
+ * @param key_ctx
* Pointer to a Threefish key structure.
* @param in
* Poionter to cipher data buffer.
* @param out
* Pointer to plaintext buffer.
*/
-void threefish_decrypt_block_bytes(struct threefish_key *keyCtx, u8 *in,
+void threefish_decrypt_block_bytes(struct threefish_key *key_ctx, u8 *in,
u8 *out);
/**
* Decrypt Threefisch block (words).
*
* The buffer must have at least the same length (number of bits) aas the
- * state size for this key. The function uses the first @c stateSize bits
+ * state size for this key. The function uses the first @c state_size bits
* of the input buffer, encrypts them and stores the result in the output
* buffer.
*
* The wordsize ist set to 64 bits.
*
- * @param keyCtx
+ * @param key_ctx
* Pointer to a Threefish key structure.
* @param in
* Poionter to cipher data buffer.
* @param out
* Pointer to plaintext buffer.
*/
-void threefish_decrypt_block_words(struct threefish_key *keyCtx, u64 *in,
+void threefish_decrypt_block_words(struct threefish_key *key_ctx, u64 *in,
u64 *out);
-void threefish_encrypt_256(struct threefish_key *keyCtx, u64 *input,
+void threefish_encrypt_256(struct threefish_key *key_ctx, u64 *input,
u64 *output);
-void threefish_encrypt_512(struct threefish_key *keyCtx, u64 *input,
+void threefish_encrypt_512(struct threefish_key *key_ctx, u64 *input,
u64 *output);
-void threefish_encrypt_1024(struct threefish_key *keyCtx, u64 *input,
+void threefish_encrypt_1024(struct threefish_key *key_ctx, u64 *input,
u64 *output);
-void threefish_decrypt_256(struct threefish_key *keyCtx, u64 *input,
+void threefish_decrypt_256(struct threefish_key *key_ctx, u64 *input,
u64 *output);
-void threefish_decrypt_512(struct threefish_key *keyCtx, u64 *input,
+void threefish_decrypt_512(struct threefish_key *key_ctx, u64 *input,
u64 *output);
-void threefish_decrypt_1024(struct threefish_key *keyCtx, u64 *input,
+void threefish_decrypt_1024(struct threefish_key *key_ctx, u64 *input,
u64 *output);
/**
* @}
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* init the context for a straight hashing operation */
-int skein_256_init(struct skein_256_ctx *ctx, size_t hashBitLen)
+int skein_256_init(struct skein_256_ctx *ctx, size_t hash_bit_len)
{
union {
- u8 b[SKEIN_256_STATE_BYTES];
- u64 w[SKEIN_256_STATE_WORDS];
+ u8 b[SKEIN_256_STATE_BYTES];
+ u64 w[SKEIN_256_STATE_WORDS];
} cfg; /* config block */
- Skein_Assert(hashBitLen > 0, SKEIN_BAD_HASHLEN);
- ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
+ Skein_Assert(hash_bit_len > 0, SKEIN_BAD_HASHLEN);
+ ctx->h.hash_bit_len = hash_bit_len; /* output hash bit count */
- switch (hashBitLen) { /* use pre-computed values, where available */
+ switch (hash_bit_len) { /* use pre-computed values, where available */
case 256:
memcpy(ctx->X, SKEIN_256_IV_256, sizeof(ctx->X));
break;
/* set the schema, version */
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
/* hash result length in bits */
- cfg.w[1] = Skein_Swap64(hashBitLen);
+ cfg.w[1] = Skein_Swap64(hash_bit_len);
cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);
/* zero pad config block */
memset(&cfg.w[3], 0, sizeof(cfg) - 3*sizeof(cfg.w[0]));
skein_256_process_block(ctx, cfg.b, 1, SKEIN_CFG_STR_LEN);
break;
}
- /* The chaining vars ctx->X are now initialized for hashBitLen. */
+ /* The chaining vars ctx->X are now initialized for hash_bit_len. */
/* Set up to process the data message portion of the hash (default) */
Skein_Start_New_Type(ctx, MSG); /* T0=0, T1= MSG type */
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* init the context for a MAC and/or tree hash operation */
-/* [identical to skein_256_init() when keyBytes == 0 && \
- * treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */
-int skein_256_init_ext(struct skein_256_ctx *ctx, size_t hashBitLen,
- u64 treeInfo, const u8 *key, size_t keyBytes)
+/* [identical to skein_256_init() when key_bytes == 0 && \
+ * tree_info == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */
+int skein_256_init_ext(struct skein_256_ctx *ctx, size_t hash_bit_len,
+ u64 tree_info, const u8 *key, size_t key_bytes)
{
union {
u8 b[SKEIN_256_STATE_BYTES];
- u64 w[SKEIN_256_STATE_WORDS];
+ u64 w[SKEIN_256_STATE_WORDS];
} cfg; /* config block */
- Skein_Assert(hashBitLen > 0, SKEIN_BAD_HASHLEN);
- Skein_Assert(keyBytes == 0 || key != NULL, SKEIN_FAIL);
+ Skein_Assert(hash_bit_len > 0, SKEIN_BAD_HASHLEN);
+ Skein_Assert(key_bytes == 0 || key != NULL, SKEIN_FAIL);
/* compute the initial chaining values ctx->X[], based on key */
- if (keyBytes == 0) { /* is there a key? */
+ if (key_bytes == 0) { /* is there a key? */
/* no key: use all zeroes as key for config block */
memset(ctx->X, 0, sizeof(ctx->X));
} else { /* here to pre-process a key */
Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X));
/* do a mini-Init right here */
/* set output hash bit count = state size */
- ctx->h.hashBitLen = 8*sizeof(ctx->X);
+ ctx->h.hash_bit_len = 8*sizeof(ctx->X);
/* set tweaks: T0 = 0; T1 = KEY type */
Skein_Start_New_Type(ctx, KEY);
/* zero the initial chaining variables */
memset(ctx->X, 0, sizeof(ctx->X));
/* hash the key */
- skein_256_update(ctx, key, keyBytes);
+ skein_256_update(ctx, key, key_bytes);
/* put result into cfg.b[] */
skein_256_final_pad(ctx, cfg.b);
/* copy over into ctx->X[] */
* precomputed for each key)
*/
/* output hash bit count */
- ctx->h.hashBitLen = hashBitLen;
+ ctx->h.hash_bit_len = hash_bit_len;
Skein_Start_New_Type(ctx, CFG_FINAL);
/* pre-pad cfg.w[] with zeroes */
memset(&cfg.w, 0, sizeof(cfg.w));
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
/* hash result length in bits */
- cfg.w[1] = Skein_Swap64(hashBitLen);
+ cfg.w[1] = Skein_Swap64(hash_bit_len);
/* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
- cfg.w[2] = Skein_Swap64(treeInfo);
+ cfg.w[2] = Skein_Swap64(tree_info);
- Skein_Show_Key(256, &ctx->h, key, keyBytes);
+ Skein_Show_Key(256, &ctx->h, key, key_bytes);
/* compute the initial chaining values from config block */
skein_256_process_block(ctx, cfg.b, 1, SKEIN_CFG_STR_LEN);
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* process the input bytes */
int skein_256_update(struct skein_256_ctx *ctx, const u8 *msg,
- size_t msgByteCnt)
+ size_t msg_byte_cnt)
{
size_t n;
/* catch uninitialized context */
- Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL);
+ Skein_Assert(ctx->h.b_cnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL);
/* process full blocks, if any */
- if (msgByteCnt + ctx->h.bCnt > SKEIN_256_BLOCK_BYTES) {
+ if (msg_byte_cnt + ctx->h.b_cnt > SKEIN_256_BLOCK_BYTES) {
/* finish up any buffered message data */
- if (ctx->h.bCnt) {
+ if (ctx->h.b_cnt) {
/* # bytes free in buffer b[] */
- n = SKEIN_256_BLOCK_BYTES - ctx->h.bCnt;
+ n = SKEIN_256_BLOCK_BYTES - ctx->h.b_cnt;
if (n) {
/* check on our logic here */
- Skein_assert(n < msgByteCnt);
- memcpy(&ctx->b[ctx->h.bCnt], msg, n);
- msgByteCnt -= n;
+ Skein_assert(n < msg_byte_cnt);
+ memcpy(&ctx->b[ctx->h.b_cnt], msg, n);
+ msg_byte_cnt -= n;
msg += n;
- ctx->h.bCnt += n;
+ ctx->h.b_cnt += n;
}
- Skein_assert(ctx->h.bCnt == SKEIN_256_BLOCK_BYTES);
+ Skein_assert(ctx->h.b_cnt == SKEIN_256_BLOCK_BYTES);
skein_256_process_block(ctx, ctx->b, 1,
SKEIN_256_BLOCK_BYTES);
- ctx->h.bCnt = 0;
+ ctx->h.b_cnt = 0;
}
/*
* now process any remaining full blocks, directly from input
* message data
*/
- if (msgByteCnt > SKEIN_256_BLOCK_BYTES) {
+ if (msg_byte_cnt > SKEIN_256_BLOCK_BYTES) {
/* number of full blocks to process */
- n = (msgByteCnt-1) / SKEIN_256_BLOCK_BYTES;
+ n = (msg_byte_cnt-1) / SKEIN_256_BLOCK_BYTES;
skein_256_process_block(ctx, msg, n,
SKEIN_256_BLOCK_BYTES);
- msgByteCnt -= n * SKEIN_256_BLOCK_BYTES;
+ msg_byte_cnt -= n * SKEIN_256_BLOCK_BYTES;
msg += n * SKEIN_256_BLOCK_BYTES;
}
- Skein_assert(ctx->h.bCnt == 0);
+ Skein_assert(ctx->h.b_cnt == 0);
}
/* copy any remaining source message data bytes into b[] */
- if (msgByteCnt) {
- Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES);
- memcpy(&ctx->b[ctx->h.bCnt], msg, msgByteCnt);
- ctx->h.bCnt += msgByteCnt;
+ if (msg_byte_cnt) {
+ Skein_assert(msg_byte_cnt + ctx->h.b_cnt <=
+ SKEIN_256_BLOCK_BYTES);
+ memcpy(&ctx->b[ctx->h.b_cnt], msg, msg_byte_cnt);
+ ctx->h.b_cnt += msg_byte_cnt;
}
return SKEIN_SUCCESS;
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* finalize the hash computation and output the result */
-int skein_256_final(struct skein_256_ctx *ctx, u8 *hashVal)
+int skein_256_final(struct skein_256_ctx *ctx, u8 *hash_val)
{
- size_t i, n, byteCnt;
+ size_t i, n, byte_cnt;
u64 X[SKEIN_256_STATE_WORDS];
/* catch uninitialized context */
- Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL);
+ Skein_Assert(ctx->h.b_cnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL);
/* tag as the final block */
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;
/* zero pad b[] if necessary */
- if (ctx->h.bCnt < SKEIN_256_BLOCK_BYTES)
- memset(&ctx->b[ctx->h.bCnt], 0,
- SKEIN_256_BLOCK_BYTES - ctx->h.bCnt);
+ if (ctx->h.b_cnt < SKEIN_256_BLOCK_BYTES)
+ memset(&ctx->b[ctx->h.b_cnt], 0,
+ SKEIN_256_BLOCK_BYTES - ctx->h.b_cnt);
/* process the final block */
- skein_256_process_block(ctx, ctx->b, 1, ctx->h.bCnt);
+ skein_256_process_block(ctx, ctx->b, 1, ctx->h.b_cnt);
/* now output the result */
/* total number of output bytes */
- byteCnt = (ctx->h.hashBitLen + 7) >> 3;
+ byte_cnt = (ctx->h.hash_bit_len + 7) >> 3;
/* run Threefish in "counter mode" to generate output */
/* zero out b[], so it can hold the counter */
memset(ctx->b, 0, sizeof(ctx->b));
/* keep a local copy of counter mode "key" */
memcpy(X, ctx->X, sizeof(X));
- for (i = 0; i*SKEIN_256_BLOCK_BYTES < byteCnt; i++) {
+ for (i = 0; i*SKEIN_256_BLOCK_BYTES < byte_cnt; i++) {
/* build the counter block */
((u64 *)ctx->b)[0] = Skein_Swap64((u64) i);
Skein_Start_New_Type(ctx, OUT_FINAL);
/* run "counter mode" */
skein_256_process_block(ctx, ctx->b, 1, sizeof(u64));
/* number of output bytes left to go */
- n = byteCnt - i*SKEIN_256_BLOCK_BYTES;
+ n = byte_cnt - i*SKEIN_256_BLOCK_BYTES;
if (n >= SKEIN_256_BLOCK_BYTES)
n = SKEIN_256_BLOCK_BYTES;
/* "output" the ctr mode bytes */
- Skein_Put64_LSB_First(hashVal+i*SKEIN_256_BLOCK_BYTES, ctx->X,
+ Skein_Put64_LSB_First(hash_val+i*SKEIN_256_BLOCK_BYTES, ctx->X,
n);
Skein_Show_Final(256, &ctx->h, n,
- hashVal+i*SKEIN_256_BLOCK_BYTES);
+ hash_val+i*SKEIN_256_BLOCK_BYTES);
/* restore the counter mode key for next time */
memcpy(ctx->X, X, sizeof(X));
}
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* init the context for a straight hashing operation */
-int skein_512_init(struct skein_512_ctx *ctx, size_t hashBitLen)
+int skein_512_init(struct skein_512_ctx *ctx, size_t hash_bit_len)
{
union {
- u8 b[SKEIN_512_STATE_BYTES];
- u64 w[SKEIN_512_STATE_WORDS];
+ u8 b[SKEIN_512_STATE_BYTES];
+ u64 w[SKEIN_512_STATE_WORDS];
} cfg; /* config block */
- Skein_Assert(hashBitLen > 0, SKEIN_BAD_HASHLEN);
- ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
+ Skein_Assert(hash_bit_len > 0, SKEIN_BAD_HASHLEN);
+ ctx->h.hash_bit_len = hash_bit_len; /* output hash bit count */
- switch (hashBitLen) { /* use pre-computed values, where available */
+ switch (hash_bit_len) { /* use pre-computed values, where available */
case 512:
memcpy(ctx->X, SKEIN_512_IV_512, sizeof(ctx->X));
break;
/* set the schema, version */
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
/* hash result length in bits */
- cfg.w[1] = Skein_Swap64(hashBitLen);
+ cfg.w[1] = Skein_Swap64(hash_bit_len);
cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);
/* zero pad config block */
memset(&cfg.w[3], 0, sizeof(cfg) - 3*sizeof(cfg.w[0]));
/*
* The chaining vars ctx->X are now initialized for the given
- * hashBitLen.
+ * hash_bit_len.
*/
/* Set up to process the data message portion of the hash (default) */
Skein_Start_New_Type(ctx, MSG); /* T0=0, T1= MSG type */
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* init the context for a MAC and/or tree hash operation */
-/* [identical to skein_512_init() when keyBytes == 0 && \
- * treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */
-int skein_512_init_ext(struct skein_512_ctx *ctx, size_t hashBitLen,
- u64 treeInfo, const u8 *key, size_t keyBytes)
+/* [identical to skein_512_init() when key_bytes == 0 && \
+ * tree_info == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */
+int skein_512_init_ext(struct skein_512_ctx *ctx, size_t hash_bit_len,
+ u64 tree_info, const u8 *key, size_t key_bytes)
{
union {
- u8 b[SKEIN_512_STATE_BYTES];
- u64 w[SKEIN_512_STATE_WORDS];
+ u8 b[SKEIN_512_STATE_BYTES];
+ u64 w[SKEIN_512_STATE_WORDS];
} cfg; /* config block */
- Skein_Assert(hashBitLen > 0, SKEIN_BAD_HASHLEN);
- Skein_Assert(keyBytes == 0 || key != NULL, SKEIN_FAIL);
+ Skein_Assert(hash_bit_len > 0, SKEIN_BAD_HASHLEN);
+ Skein_Assert(key_bytes == 0 || key != NULL, SKEIN_FAIL);
/* compute the initial chaining values ctx->X[], based on key */
- if (keyBytes == 0) { /* is there a key? */
+ if (key_bytes == 0) { /* is there a key? */
/* no key: use all zeroes as key for config block */
memset(ctx->X, 0, sizeof(ctx->X));
} else { /* here to pre-process a key */
Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X));
/* do a mini-Init right here */
/* set output hash bit count = state size */
- ctx->h.hashBitLen = 8*sizeof(ctx->X);
+ ctx->h.hash_bit_len = 8*sizeof(ctx->X);
/* set tweaks: T0 = 0; T1 = KEY type */
Skein_Start_New_Type(ctx, KEY);
/* zero the initial chaining variables */
memset(ctx->X, 0, sizeof(ctx->X));
/* hash the key */
- skein_512_update(ctx, key, keyBytes);
+ skein_512_update(ctx, key, key_bytes);
/* put result into cfg.b[] */
skein_512_final_pad(ctx, cfg.b);
/* copy over into ctx->X[] */
* build/process the config block, type == CONFIG (could be
* precomputed for each key)
*/
- ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
+ ctx->h.hash_bit_len = hash_bit_len; /* output hash bit count */
Skein_Start_New_Type(ctx, CFG_FINAL);
/* pre-pad cfg.w[] with zeroes */
memset(&cfg.w, 0, sizeof(cfg.w));
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
/* hash result length in bits */
- cfg.w[1] = Skein_Swap64(hashBitLen);
+ cfg.w[1] = Skein_Swap64(hash_bit_len);
/* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
- cfg.w[2] = Skein_Swap64(treeInfo);
+ cfg.w[2] = Skein_Swap64(tree_info);
- Skein_Show_Key(512, &ctx->h, key, keyBytes);
+ Skein_Show_Key(512, &ctx->h, key, key_bytes);
/* compute the initial chaining values from config block */
skein_512_process_block(ctx, cfg.b, 1, SKEIN_CFG_STR_LEN);
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* process the input bytes */
int skein_512_update(struct skein_512_ctx *ctx, const u8 *msg,
- size_t msgByteCnt)
+ size_t msg_byte_cnt)
{
size_t n;
/* catch uninitialized context */
- Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL);
+ Skein_Assert(ctx->h.b_cnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL);
/* process full blocks, if any */
- if (msgByteCnt + ctx->h.bCnt > SKEIN_512_BLOCK_BYTES) {
+ if (msg_byte_cnt + ctx->h.b_cnt > SKEIN_512_BLOCK_BYTES) {
/* finish up any buffered message data */
- if (ctx->h.bCnt) {
+ if (ctx->h.b_cnt) {
/* # bytes free in buffer b[] */
- n = SKEIN_512_BLOCK_BYTES - ctx->h.bCnt;
+ n = SKEIN_512_BLOCK_BYTES - ctx->h.b_cnt;
if (n) {
/* check on our logic here */
- Skein_assert(n < msgByteCnt);
- memcpy(&ctx->b[ctx->h.bCnt], msg, n);
- msgByteCnt -= n;
+ Skein_assert(n < msg_byte_cnt);
+ memcpy(&ctx->b[ctx->h.b_cnt], msg, n);
+ msg_byte_cnt -= n;
msg += n;
- ctx->h.bCnt += n;
+ ctx->h.b_cnt += n;
}
- Skein_assert(ctx->h.bCnt == SKEIN_512_BLOCK_BYTES);
+ Skein_assert(ctx->h.b_cnt == SKEIN_512_BLOCK_BYTES);
skein_512_process_block(ctx, ctx->b, 1,
SKEIN_512_BLOCK_BYTES);
- ctx->h.bCnt = 0;
+ ctx->h.b_cnt = 0;
}
/*
* now process any remaining full blocks, directly from input
* message data
*/
- if (msgByteCnt > SKEIN_512_BLOCK_BYTES) {
+ if (msg_byte_cnt > SKEIN_512_BLOCK_BYTES) {
/* number of full blocks to process */
- n = (msgByteCnt-1) / SKEIN_512_BLOCK_BYTES;
+ n = (msg_byte_cnt-1) / SKEIN_512_BLOCK_BYTES;
skein_512_process_block(ctx, msg, n,
SKEIN_512_BLOCK_BYTES);
- msgByteCnt -= n * SKEIN_512_BLOCK_BYTES;
+ msg_byte_cnt -= n * SKEIN_512_BLOCK_BYTES;
msg += n * SKEIN_512_BLOCK_BYTES;
}
- Skein_assert(ctx->h.bCnt == 0);
+ Skein_assert(ctx->h.b_cnt == 0);
}
/* copy any remaining source message data bytes into b[] */
- if (msgByteCnt) {
- Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES);
- memcpy(&ctx->b[ctx->h.bCnt], msg, msgByteCnt);
- ctx->h.bCnt += msgByteCnt;
+ if (msg_byte_cnt) {
+ Skein_assert(msg_byte_cnt + ctx->h.b_cnt <=
+ SKEIN_512_BLOCK_BYTES);
+ memcpy(&ctx->b[ctx->h.b_cnt], msg, msg_byte_cnt);
+ ctx->h.b_cnt += msg_byte_cnt;
}
return SKEIN_SUCCESS;
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* finalize the hash computation and output the result */
-int skein_512_final(struct skein_512_ctx *ctx, u8 *hashVal)
+int skein_512_final(struct skein_512_ctx *ctx, u8 *hash_val)
{
- size_t i, n, byteCnt;
+ size_t i, n, byte_cnt;
u64 X[SKEIN_512_STATE_WORDS];
/* catch uninitialized context */
- Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL);
+ Skein_Assert(ctx->h.b_cnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL);
/* tag as the final block */
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;
/* zero pad b[] if necessary */
- if (ctx->h.bCnt < SKEIN_512_BLOCK_BYTES)
- memset(&ctx->b[ctx->h.bCnt], 0,
- SKEIN_512_BLOCK_BYTES - ctx->h.bCnt);
+ if (ctx->h.b_cnt < SKEIN_512_BLOCK_BYTES)
+ memset(&ctx->b[ctx->h.b_cnt], 0,
+ SKEIN_512_BLOCK_BYTES - ctx->h.b_cnt);
/* process the final block */
- skein_512_process_block(ctx, ctx->b, 1, ctx->h.bCnt);
+ skein_512_process_block(ctx, ctx->b, 1, ctx->h.b_cnt);
/* now output the result */
/* total number of output bytes */
- byteCnt = (ctx->h.hashBitLen + 7) >> 3;
+ byte_cnt = (ctx->h.hash_bit_len + 7) >> 3;
/* run Threefish in "counter mode" to generate output */
/* zero out b[], so it can hold the counter */
memset(ctx->b, 0, sizeof(ctx->b));
/* keep a local copy of counter mode "key" */
memcpy(X, ctx->X, sizeof(X));
- for (i = 0; i*SKEIN_512_BLOCK_BYTES < byteCnt; i++) {
+ for (i = 0; i*SKEIN_512_BLOCK_BYTES < byte_cnt; i++) {
/* build the counter block */
((u64 *)ctx->b)[0] = Skein_Swap64((u64) i);
Skein_Start_New_Type(ctx, OUT_FINAL);
/* run "counter mode" */
skein_512_process_block(ctx, ctx->b, 1, sizeof(u64));
/* number of output bytes left to go */
- n = byteCnt - i*SKEIN_512_BLOCK_BYTES;
+ n = byte_cnt - i*SKEIN_512_BLOCK_BYTES;
if (n >= SKEIN_512_BLOCK_BYTES)
n = SKEIN_512_BLOCK_BYTES;
/* "output" the ctr mode bytes */
- Skein_Put64_LSB_First(hashVal+i*SKEIN_512_BLOCK_BYTES, ctx->X,
+ Skein_Put64_LSB_First(hash_val+i*SKEIN_512_BLOCK_BYTES, ctx->X,
n);
Skein_Show_Final(512, &ctx->h, n,
- hashVal+i*SKEIN_512_BLOCK_BYTES);
+ hash_val+i*SKEIN_512_BLOCK_BYTES);
/* restore the counter mode key for next time */
memcpy(ctx->X, X, sizeof(X));
}
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* init the context for a straight hashing operation */
-int skein_1024_init(struct skein1024_ctx *ctx, size_t hashBitLen)
+int skein_1024_init(struct skein1024_ctx *ctx, size_t hash_bit_len)
{
union {
- u8 b[SKEIN1024_STATE_BYTES];
- u64 w[SKEIN1024_STATE_WORDS];
+ u8 b[SKEIN1024_STATE_BYTES];
+ u64 w[SKEIN1024_STATE_WORDS];
} cfg; /* config block */
- Skein_Assert(hashBitLen > 0, SKEIN_BAD_HASHLEN);
- ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
+ Skein_Assert(hash_bit_len > 0, SKEIN_BAD_HASHLEN);
+ ctx->h.hash_bit_len = hash_bit_len; /* output hash bit count */
- switch (hashBitLen) { /* use pre-computed values, where available */
+ switch (hash_bit_len) { /* use pre-computed values, where available */
case 512:
memcpy(ctx->X, SKEIN1024_IV_512, sizeof(ctx->X));
break;
/* set the schema, version */
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
/* hash result length in bits */
- cfg.w[1] = Skein_Swap64(hashBitLen);
+ cfg.w[1] = Skein_Swap64(hash_bit_len);
cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);
/* zero pad config block */
memset(&cfg.w[3], 0, sizeof(cfg) - 3*sizeof(cfg.w[0]));
break;
}
- /* The chaining vars ctx->X are now initialized for the hashBitLen. */
+ /* The chaining vars ctx->X are now initialized for the hash_bit_len. */
/* Set up to process the data message portion of the hash (default) */
Skein_Start_New_Type(ctx, MSG); /* T0=0, T1= MSG type */
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* init the context for a MAC and/or tree hash operation */
-/* [identical to skein_1024_init() when keyBytes == 0 && \
- * treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */
-int skein_1024_init_ext(struct skein1024_ctx *ctx, size_t hashBitLen,
- u64 treeInfo, const u8 *key, size_t keyBytes)
+/* [identical to skein_1024_init() when key_bytes == 0 && \
+ * tree_info == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */
+int skein_1024_init_ext(struct skein1024_ctx *ctx, size_t hash_bit_len,
+ u64 tree_info, const u8 *key, size_t key_bytes)
{
union {
- u8 b[SKEIN1024_STATE_BYTES];
- u64 w[SKEIN1024_STATE_WORDS];
+ u8 b[SKEIN1024_STATE_BYTES];
+ u64 w[SKEIN1024_STATE_WORDS];
} cfg; /* config block */
- Skein_Assert(hashBitLen > 0, SKEIN_BAD_HASHLEN);
- Skein_Assert(keyBytes == 0 || key != NULL, SKEIN_FAIL);
+ Skein_Assert(hash_bit_len > 0, SKEIN_BAD_HASHLEN);
+ Skein_Assert(key_bytes == 0 || key != NULL, SKEIN_FAIL);
/* compute the initial chaining values ctx->X[], based on key */
- if (keyBytes == 0) { /* is there a key? */
+ if (key_bytes == 0) { /* is there a key? */
/* no key: use all zeroes as key for config block */
memset(ctx->X, 0, sizeof(ctx->X));
} else { /* here to pre-process a key */
Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X));
/* do a mini-Init right here */
/* set output hash bit count = state size */
- ctx->h.hashBitLen = 8*sizeof(ctx->X);
+ ctx->h.hash_bit_len = 8*sizeof(ctx->X);
/* set tweaks: T0 = 0; T1 = KEY type */
Skein_Start_New_Type(ctx, KEY);
/* zero the initial chaining variables */
memset(ctx->X, 0, sizeof(ctx->X));
/* hash the key */
- skein_1024_update(ctx, key, keyBytes);
+ skein_1024_update(ctx, key, key_bytes);
/* put result into cfg.b[] */
skein_1024_final_pad(ctx, cfg.b);
/* copy over into ctx->X[] */
* precomputed for each key)
*/
/* output hash bit count */
- ctx->h.hashBitLen = hashBitLen;
+ ctx->h.hash_bit_len = hash_bit_len;
Skein_Start_New_Type(ctx, CFG_FINAL);
/* pre-pad cfg.w[] with zeroes */
memset(&cfg.w, 0, sizeof(cfg.w));
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
/* hash result length in bits */
- cfg.w[1] = Skein_Swap64(hashBitLen);
+ cfg.w[1] = Skein_Swap64(hash_bit_len);
/* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
- cfg.w[2] = Skein_Swap64(treeInfo);
+ cfg.w[2] = Skein_Swap64(tree_info);
- Skein_Show_Key(1024, &ctx->h, key, keyBytes);
+ Skein_Show_Key(1024, &ctx->h, key, key_bytes);
/* compute the initial chaining values from config block */
skein_1024_process_block(ctx, cfg.b, 1, SKEIN_CFG_STR_LEN);
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* process the input bytes */
int skein_1024_update(struct skein1024_ctx *ctx, const u8 *msg,
- size_t msgByteCnt)
+ size_t msg_byte_cnt)
{
size_t n;
/* catch uninitialized context */
- Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL);
+ Skein_Assert(ctx->h.b_cnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL);
/* process full blocks, if any */
- if (msgByteCnt + ctx->h.bCnt > SKEIN1024_BLOCK_BYTES) {
+ if (msg_byte_cnt + ctx->h.b_cnt > SKEIN1024_BLOCK_BYTES) {
/* finish up any buffered message data */
- if (ctx->h.bCnt) {
+ if (ctx->h.b_cnt) {
/* # bytes free in buffer b[] */
- n = SKEIN1024_BLOCK_BYTES - ctx->h.bCnt;
+ n = SKEIN1024_BLOCK_BYTES - ctx->h.b_cnt;
if (n) {
/* check on our logic here */
- Skein_assert(n < msgByteCnt);
- memcpy(&ctx->b[ctx->h.bCnt], msg, n);
- msgByteCnt -= n;
+ Skein_assert(n < msg_byte_cnt);
+ memcpy(&ctx->b[ctx->h.b_cnt], msg, n);
+ msg_byte_cnt -= n;
msg += n;
- ctx->h.bCnt += n;
+ ctx->h.b_cnt += n;
}
- Skein_assert(ctx->h.bCnt == SKEIN1024_BLOCK_BYTES);
+ Skein_assert(ctx->h.b_cnt == SKEIN1024_BLOCK_BYTES);
skein_1024_process_block(ctx, ctx->b, 1,
SKEIN1024_BLOCK_BYTES);
- ctx->h.bCnt = 0;
+ ctx->h.b_cnt = 0;
}
/*
* now process any remaining full blocks, directly from input
* message data
*/
- if (msgByteCnt > SKEIN1024_BLOCK_BYTES) {
+ if (msg_byte_cnt > SKEIN1024_BLOCK_BYTES) {
/* number of full blocks to process */
- n = (msgByteCnt-1) / SKEIN1024_BLOCK_BYTES;
+ n = (msg_byte_cnt-1) / SKEIN1024_BLOCK_BYTES;
skein_1024_process_block(ctx, msg, n,
SKEIN1024_BLOCK_BYTES);
- msgByteCnt -= n * SKEIN1024_BLOCK_BYTES;
+ msg_byte_cnt -= n * SKEIN1024_BLOCK_BYTES;
msg += n * SKEIN1024_BLOCK_BYTES;
}
- Skein_assert(ctx->h.bCnt == 0);
+ Skein_assert(ctx->h.b_cnt == 0);
}
/* copy any remaining source message data bytes into b[] */
- if (msgByteCnt) {
- Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES);
- memcpy(&ctx->b[ctx->h.bCnt], msg, msgByteCnt);
- ctx->h.bCnt += msgByteCnt;
+ if (msg_byte_cnt) {
+ Skein_assert(msg_byte_cnt + ctx->h.b_cnt <=
+ SKEIN1024_BLOCK_BYTES);
+ memcpy(&ctx->b[ctx->h.b_cnt], msg, msg_byte_cnt);
+ ctx->h.b_cnt += msg_byte_cnt;
}
return SKEIN_SUCCESS;
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* finalize the hash computation and output the result */
-int skein_1024_final(struct skein1024_ctx *ctx, u8 *hashVal)
+int skein_1024_final(struct skein1024_ctx *ctx, u8 *hash_val)
{
- size_t i, n, byteCnt;
+ size_t i, n, byte_cnt;
u64 X[SKEIN1024_STATE_WORDS];
/* catch uninitialized context */
- Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL);
+ Skein_Assert(ctx->h.b_cnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL);
/* tag as the final block */
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;
/* zero pad b[] if necessary */
- if (ctx->h.bCnt < SKEIN1024_BLOCK_BYTES)
- memset(&ctx->b[ctx->h.bCnt], 0,
- SKEIN1024_BLOCK_BYTES - ctx->h.bCnt);
+ if (ctx->h.b_cnt < SKEIN1024_BLOCK_BYTES)
+ memset(&ctx->b[ctx->h.b_cnt], 0,
+ SKEIN1024_BLOCK_BYTES - ctx->h.b_cnt);
/* process the final block */
- skein_1024_process_block(ctx, ctx->b, 1, ctx->h.bCnt);
+ skein_1024_process_block(ctx, ctx->b, 1, ctx->h.b_cnt);
/* now output the result */
/* total number of output bytes */
- byteCnt = (ctx->h.hashBitLen + 7) >> 3;
+ byte_cnt = (ctx->h.hash_bit_len + 7) >> 3;
/* run Threefish in "counter mode" to generate output */
/* zero out b[], so it can hold the counter */
memset(ctx->b, 0, sizeof(ctx->b));
/* keep a local copy of counter mode "key" */
memcpy(X, ctx->X, sizeof(X));
- for (i = 0; i*SKEIN1024_BLOCK_BYTES < byteCnt; i++) {
+ for (i = 0; i*SKEIN1024_BLOCK_BYTES < byte_cnt; i++) {
/* build the counter block */
((u64 *)ctx->b)[0] = Skein_Swap64((u64) i);
Skein_Start_New_Type(ctx, OUT_FINAL);
/* run "counter mode" */
skein_1024_process_block(ctx, ctx->b, 1, sizeof(u64));
/* number of output bytes left to go */
- n = byteCnt - i*SKEIN1024_BLOCK_BYTES;
+ n = byte_cnt - i*SKEIN1024_BLOCK_BYTES;
if (n >= SKEIN1024_BLOCK_BYTES)
n = SKEIN1024_BLOCK_BYTES;
/* "output" the ctr mode bytes */
- Skein_Put64_LSB_First(hashVal+i*SKEIN1024_BLOCK_BYTES, ctx->X,
+ Skein_Put64_LSB_First(hash_val+i*SKEIN1024_BLOCK_BYTES, ctx->X,
n);
Skein_Show_Final(1024, &ctx->h, n,
- hashVal+i*SKEIN1024_BLOCK_BYTES);
+ hash_val+i*SKEIN1024_BLOCK_BYTES);
/* restore the counter mode key for next time */
memcpy(ctx->X, X, sizeof(X));
}
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* finalize the hash computation and output the block, no OUTPUT stage */
-int skein_256_final_pad(struct skein_256_ctx *ctx, u8 *hashVal)
+int skein_256_final_pad(struct skein_256_ctx *ctx, u8 *hash_val)
{
/* catch uninitialized context */
- Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL);
+ Skein_Assert(ctx->h.b_cnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL);
/* tag as the final block */
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;
/* zero pad b[] if necessary */
- if (ctx->h.bCnt < SKEIN_256_BLOCK_BYTES)
- memset(&ctx->b[ctx->h.bCnt], 0,
- SKEIN_256_BLOCK_BYTES - ctx->h.bCnt);
+ if (ctx->h.b_cnt < SKEIN_256_BLOCK_BYTES)
+ memset(&ctx->b[ctx->h.b_cnt], 0,
+ SKEIN_256_BLOCK_BYTES - ctx->h.b_cnt);
/* process the final block */
- skein_256_process_block(ctx, ctx->b, 1, ctx->h.bCnt);
+ skein_256_process_block(ctx, ctx->b, 1, ctx->h.b_cnt);
/* "output" the state bytes */
- Skein_Put64_LSB_First(hashVal, ctx->X, SKEIN_256_BLOCK_BYTES);
+ Skein_Put64_LSB_First(hash_val, ctx->X, SKEIN_256_BLOCK_BYTES);
return SKEIN_SUCCESS;
}
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* finalize the hash computation and output the block, no OUTPUT stage */
-int skein_512_final_pad(struct skein_512_ctx *ctx, u8 *hashVal)
+int skein_512_final_pad(struct skein_512_ctx *ctx, u8 *hash_val)
{
/* catch uninitialized context */
- Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL);
+ Skein_Assert(ctx->h.b_cnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL);
/* tag as the final block */
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;
/* zero pad b[] if necessary */
- if (ctx->h.bCnt < SKEIN_512_BLOCK_BYTES)
- memset(&ctx->b[ctx->h.bCnt], 0,
- SKEIN_512_BLOCK_BYTES - ctx->h.bCnt);
+ if (ctx->h.b_cnt < SKEIN_512_BLOCK_BYTES)
+ memset(&ctx->b[ctx->h.b_cnt], 0,
+ SKEIN_512_BLOCK_BYTES - ctx->h.b_cnt);
/* process the final block */
- skein_512_process_block(ctx, ctx->b, 1, ctx->h.bCnt);
+ skein_512_process_block(ctx, ctx->b, 1, ctx->h.b_cnt);
/* "output" the state bytes */
- Skein_Put64_LSB_First(hashVal, ctx->X, SKEIN_512_BLOCK_BYTES);
+ Skein_Put64_LSB_First(hash_val, ctx->X, SKEIN_512_BLOCK_BYTES);
return SKEIN_SUCCESS;
}
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* finalize the hash computation and output the block, no OUTPUT stage */
-int skein_1024_final_pad(struct skein1024_ctx *ctx, u8 *hashVal)
+int skein_1024_final_pad(struct skein1024_ctx *ctx, u8 *hash_val)
{
/* catch uninitialized context */
- Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL);
+ Skein_Assert(ctx->h.b_cnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL);
/* tag as the final block */
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;
/* zero pad b[] if necessary */
- if (ctx->h.bCnt < SKEIN1024_BLOCK_BYTES)
- memset(&ctx->b[ctx->h.bCnt], 0,
- SKEIN1024_BLOCK_BYTES - ctx->h.bCnt);
+ if (ctx->h.b_cnt < SKEIN1024_BLOCK_BYTES)
+ memset(&ctx->b[ctx->h.b_cnt], 0,
+ SKEIN1024_BLOCK_BYTES - ctx->h.b_cnt);
/* process the final block */
- skein_1024_process_block(ctx, ctx->b, 1, ctx->h.bCnt);
+ skein_1024_process_block(ctx, ctx->b, 1, ctx->h.b_cnt);
/* "output" the state bytes */
- Skein_Put64_LSB_First(hashVal, ctx->X, SKEIN1024_BLOCK_BYTES);
+ Skein_Put64_LSB_First(hash_val, ctx->X, SKEIN1024_BLOCK_BYTES);
return SKEIN_SUCCESS;
}
#if SKEIN_TREE_HASH
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* just do the OUTPUT stage */
-int skein_256_output(struct skein_256_ctx *ctx, u8 *hashVal)
+int skein_256_output(struct skein_256_ctx *ctx, u8 *hash_val)
{
- size_t i, n, byteCnt;
+ size_t i, n, byte_cnt;
u64 X[SKEIN_256_STATE_WORDS];
/* catch uninitialized context */
- Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL);
+ Skein_Assert(ctx->h.b_cnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL);
/* now output the result */
/* total number of output bytes */
- byteCnt = (ctx->h.hashBitLen + 7) >> 3;
+ byte_cnt = (ctx->h.hash_bit_len + 7) >> 3;
/* run Threefish in "counter mode" to generate output */
/* zero out b[], so it can hold the counter */
memset(ctx->b, 0, sizeof(ctx->b));
/* keep a local copy of counter mode "key" */
memcpy(X, ctx->X, sizeof(X));
- for (i = 0; i*SKEIN_256_BLOCK_BYTES < byteCnt; i++) {
+ for (i = 0; i*SKEIN_256_BLOCK_BYTES < byte_cnt; i++) {
/* build the counter block */
((u64 *)ctx->b)[0] = Skein_Swap64((u64) i);
Skein_Start_New_Type(ctx, OUT_FINAL);
/* run "counter mode" */
skein_256_process_block(ctx, ctx->b, 1, sizeof(u64));
/* number of output bytes left to go */
- n = byteCnt - i*SKEIN_256_BLOCK_BYTES;
+ n = byte_cnt - i*SKEIN_256_BLOCK_BYTES;
if (n >= SKEIN_256_BLOCK_BYTES)
n = SKEIN_256_BLOCK_BYTES;
/* "output" the ctr mode bytes */
- Skein_Put64_LSB_First(hashVal+i*SKEIN_256_BLOCK_BYTES, ctx->X,
+ Skein_Put64_LSB_First(hash_val+i*SKEIN_256_BLOCK_BYTES, ctx->X,
n);
Skein_Show_Final(256, &ctx->h, n,
- hashVal+i*SKEIN_256_BLOCK_BYTES);
+ hash_val+i*SKEIN_256_BLOCK_BYTES);
/* restore the counter mode key for next time */
memcpy(ctx->X, X, sizeof(X));
}
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* just do the OUTPUT stage */
-int skein_512_output(struct skein_512_ctx *ctx, u8 *hashVal)
+int skein_512_output(struct skein_512_ctx *ctx, u8 *hash_val)
{
- size_t i, n, byteCnt;
+ size_t i, n, byte_cnt;
u64 X[SKEIN_512_STATE_WORDS];
/* catch uninitialized context */
- Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL);
+ Skein_Assert(ctx->h.b_cnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL);
/* now output the result */
/* total number of output bytes */
- byteCnt = (ctx->h.hashBitLen + 7) >> 3;
+ byte_cnt = (ctx->h.hash_bit_len + 7) >> 3;
/* run Threefish in "counter mode" to generate output */
/* zero out b[], so it can hold the counter */
memset(ctx->b, 0, sizeof(ctx->b));
/* keep a local copy of counter mode "key" */
memcpy(X, ctx->X, sizeof(X));
- for (i = 0; i*SKEIN_512_BLOCK_BYTES < byteCnt; i++) {
+ for (i = 0; i*SKEIN_512_BLOCK_BYTES < byte_cnt; i++) {
/* build the counter block */
((u64 *)ctx->b)[0] = Skein_Swap64((u64) i);
Skein_Start_New_Type(ctx, OUT_FINAL);
/* run "counter mode" */
skein_512_process_block(ctx, ctx->b, 1, sizeof(u64));
/* number of output bytes left to go */
- n = byteCnt - i*SKEIN_512_BLOCK_BYTES;
+ n = byte_cnt - i*SKEIN_512_BLOCK_BYTES;
if (n >= SKEIN_512_BLOCK_BYTES)
n = SKEIN_512_BLOCK_BYTES;
/* "output" the ctr mode bytes */
- Skein_Put64_LSB_First(hashVal+i*SKEIN_512_BLOCK_BYTES, ctx->X,
+ Skein_Put64_LSB_First(hash_val+i*SKEIN_512_BLOCK_BYTES, ctx->X,
n);
Skein_Show_Final(256, &ctx->h, n,
- hashVal+i*SKEIN_512_BLOCK_BYTES);
+ hash_val+i*SKEIN_512_BLOCK_BYTES);
/* restore the counter mode key for next time */
memcpy(ctx->X, X, sizeof(X));
}
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* just do the OUTPUT stage */
-int skein_1024_output(struct skein1024_ctx *ctx, u8 *hashVal)
+int skein_1024_output(struct skein1024_ctx *ctx, u8 *hash_val)
{
- size_t i, n, byteCnt;
+ size_t i, n, byte_cnt;
u64 X[SKEIN1024_STATE_WORDS];
/* catch uninitialized context */
- Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL);
+ Skein_Assert(ctx->h.b_cnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL);
/* now output the result */
/* total number of output bytes */
- byteCnt = (ctx->h.hashBitLen + 7) >> 3;
+ byte_cnt = (ctx->h.hash_bit_len + 7) >> 3;
/* run Threefish in "counter mode" to generate output */
/* zero out b[], so it can hold the counter */
memset(ctx->b, 0, sizeof(ctx->b));
/* keep a local copy of counter mode "key" */
memcpy(X, ctx->X, sizeof(X));
- for (i = 0; i*SKEIN1024_BLOCK_BYTES < byteCnt; i++) {
+ for (i = 0; i*SKEIN1024_BLOCK_BYTES < byte_cnt; i++) {
/* build the counter block */
((u64 *)ctx->b)[0] = Skein_Swap64((u64) i);
Skein_Start_New_Type(ctx, OUT_FINAL);
/* run "counter mode" */
skein_1024_process_block(ctx, ctx->b, 1, sizeof(u64));
/* number of output bytes left to go */
- n = byteCnt - i*SKEIN1024_BLOCK_BYTES;
+ n = byte_cnt - i*SKEIN1024_BLOCK_BYTES;
if (n >= SKEIN1024_BLOCK_BYTES)
n = SKEIN1024_BLOCK_BYTES;
/* "output" the ctr mode bytes */
- Skein_Put64_LSB_First(hashVal+i*SKEIN1024_BLOCK_BYTES, ctx->X,
+ Skein_Put64_LSB_First(hash_val+i*SKEIN1024_BLOCK_BYTES, ctx->X,
n);
Skein_Show_Final(256, &ctx->h, n,
- hashVal+i*SKEIN1024_BLOCK_BYTES);
+ hash_val+i*SKEIN1024_BLOCK_BYTES);
/* restore the counter mode key for next time */
memcpy(ctx->X, X, sizeof(X));
}
Skein_Assert(ctx && size, SKEIN_FAIL);
memset(ctx , 0, sizeof(struct skein_ctx));
- ctx->skeinSize = size;
+ ctx->skein_size = size;
return SKEIN_SUCCESS;
}
-int skein_init(struct skein_ctx *ctx, size_t hashBitLen)
+int skein_init(struct skein_ctx *ctx, size_t hash_bit_len)
{
int ret = SKEIN_FAIL;
- size_t Xlen = 0;
+ size_t X_len = 0;
u64 *X = NULL;
- u64 treeInfo = SKEIN_CFG_TREE_INFO_SEQUENTIAL;
+ u64 tree_info = SKEIN_CFG_TREE_INFO_SEQUENTIAL;
Skein_Assert(ctx, SKEIN_FAIL);
/*
* memory available. The beauty of C :-) .
*/
X = ctx->m.s256.X;
- Xlen = ctx->skeinSize/8;
+ X_len = ctx->skein_size/8;
/*
* If size is the same and hash bit length is zero then reuse
* the save chaining variables.
*/
- switch (ctx->skeinSize) {
+ switch (ctx->skein_size) {
case Skein256:
- ret = skein_256_init_ext(&ctx->m.s256, hashBitLen,
- treeInfo, NULL, 0);
+ ret = skein_256_init_ext(&ctx->m.s256, hash_bit_len,
+ tree_info, NULL, 0);
break;
case Skein512:
- ret = skein_512_init_ext(&ctx->m.s512, hashBitLen,
- treeInfo, NULL, 0);
+ ret = skein_512_init_ext(&ctx->m.s512, hash_bit_len,
+ tree_info, NULL, 0);
break;
case Skein1024:
- ret = skein_1024_init_ext(&ctx->m.s1024, hashBitLen,
- treeInfo, NULL, 0);
+ ret = skein_1024_init_ext(&ctx->m.s1024, hash_bit_len,
+ tree_info, NULL, 0);
break;
}
if (ret == SKEIN_SUCCESS) {
/*
* Save chaining variables for this combination of size and
- * hashBitLen
+ * hash_bit_len
*/
- memcpy(ctx->XSave, X, Xlen);
+ memcpy(ctx->X_save, X, X_len);
}
return ret;
}
-int skein_mac_init(struct skein_ctx *ctx, const u8 *key, size_t keyLen,
- size_t hashBitLen)
+int skein_mac_init(struct skein_ctx *ctx, const u8 *key, size_t key_len,
+ size_t hash_bit_len)
{
int ret = SKEIN_FAIL;
u64 *X = NULL;
- size_t Xlen = 0;
- u64 treeInfo = SKEIN_CFG_TREE_INFO_SEQUENTIAL;
+ size_t X_len = 0;
+ u64 tree_info = SKEIN_CFG_TREE_INFO_SEQUENTIAL;
Skein_Assert(ctx, SKEIN_FAIL);
X = ctx->m.s256.X;
- Xlen = ctx->skeinSize/8;
+ X_len = ctx->skein_size/8;
- Skein_Assert(hashBitLen, SKEIN_BAD_HASHLEN);
+ Skein_Assert(hash_bit_len, SKEIN_BAD_HASHLEN);
- switch (ctx->skeinSize) {
+ switch (ctx->skein_size) {
case Skein256:
- ret = skein_256_init_ext(&ctx->m.s256, hashBitLen,
- treeInfo,
- (const u8 *)key, keyLen);
+ ret = skein_256_init_ext(&ctx->m.s256, hash_bit_len,
+ tree_info,
+ (const u8 *)key, key_len);
break;
case Skein512:
- ret = skein_512_init_ext(&ctx->m.s512, hashBitLen,
- treeInfo,
- (const u8 *)key, keyLen);
+ ret = skein_512_init_ext(&ctx->m.s512, hash_bit_len,
+ tree_info,
+ (const u8 *)key, key_len);
break;
case Skein1024:
- ret = skein_1024_init_ext(&ctx->m.s1024, hashBitLen,
- treeInfo,
- (const u8 *)key, keyLen);
+ ret = skein_1024_init_ext(&ctx->m.s1024, hash_bit_len,
+ tree_info,
+ (const u8 *)key, key_len);
break;
}
if (ret == SKEIN_SUCCESS) {
/*
* Save chaining variables for this combination of key,
- * keyLen, hashBitLen
+ * key_len, hash_bit_len
*/
- memcpy(ctx->XSave, X, Xlen);
+ memcpy(ctx->X_save, X, X_len);
}
return ret;
}
void skein_reset(struct skein_ctx *ctx)
{
- size_t Xlen = 0;
+ size_t X_len = 0;
u64 *X = NULL;
/*
* memory available. The beautiy of C :-) .
*/
X = ctx->m.s256.X;
- Xlen = ctx->skeinSize/8;
+ X_len = ctx->skein_size/8;
/* Restore the chaing variable, reset byte counter */
- memcpy(X, ctx->XSave, Xlen);
+ memcpy(X, ctx->X_save, X_len);
/* Setup context to process the message */
Skein_Start_New_Type(&ctx->m, MSG);
}
int skein_update(struct skein_ctx *ctx, const u8 *msg,
- size_t msgByteCnt)
+ size_t msg_byte_cnt)
{
int ret = SKEIN_FAIL;
+
Skein_Assert(ctx, SKEIN_FAIL);
- switch (ctx->skeinSize) {
+ switch (ctx->skein_size) {
case Skein256:
ret = skein_256_update(&ctx->m.s256, (const u8 *)msg,
- msgByteCnt);
+ msg_byte_cnt);
break;
case Skein512:
ret = skein_512_update(&ctx->m.s512, (const u8 *)msg,
- msgByteCnt);
+ msg_byte_cnt);
break;
case Skein1024:
ret = skein_1024_update(&ctx->m.s1024, (const u8 *)msg,
- msgByteCnt);
+ msg_byte_cnt);
break;
}
return ret;
}
int skein_update_bits(struct skein_ctx *ctx, const u8 *msg,
- size_t msgBitCnt)
+ size_t msg_bit_cnt)
{
/*
* I've used the bit pad implementation from skein_test.c (see NIST CD)
* assert an error
*/
Skein_Assert((ctx->m.h.T[1] & SKEIN_T1_FLAG_BIT_PAD) == 0 ||
- msgBitCnt == 0, SKEIN_FAIL);
+ msg_bit_cnt == 0, SKEIN_FAIL);
/* if number of bits is a multiple of bytes - that's easy */
- if ((msgBitCnt & 0x7) == 0)
- return skein_update(ctx, msg, msgBitCnt >> 3);
+ if ((msg_bit_cnt & 0x7) == 0)
+ return skein_update(ctx, msg, msg_bit_cnt >> 3);
- skein_update(ctx, msg, (msgBitCnt >> 3) + 1);
+ skein_update(ctx, msg, (msg_bit_cnt >> 3) + 1);
/*
* The next line rely on the fact that the real Skein contexts
* Skein's real partial block buffer.
* If this layout ever changes we have to adapt this as well.
*/
- up = (u8 *)ctx->m.s256.X + ctx->skeinSize / 8;
+ up = (u8 *)ctx->m.s256.X + ctx->skein_size / 8;
/* set tweak flag for the skein_final call */
Skein_Set_Bit_Pad_Flag(ctx->m.h);
/* now "pad" the final partial byte the way NIST likes */
- /* get the bCnt value (same location for all block sizes) */
- length = ctx->m.h.bCnt;
+ /* get the b_cnt value (same location for all block sizes) */
+ length = ctx->m.h.b_cnt;
/* internal sanity check: there IS a partial byte in the buffer! */
Skein_assert(length != 0);
/* partial byte bit mask */
- mask = (u8) (1u << (7 - (msgBitCnt & 7)));
+ mask = (u8) (1u << (7 - (msg_bit_cnt & 7)));
/* apply bit padding on final byte (in the buffer) */
up[length-1] = (u8)((up[length-1] & (0-mask))|mask);
int skein_final(struct skein_ctx *ctx, u8 *hash)
{
int ret = SKEIN_FAIL;
+
Skein_Assert(ctx, SKEIN_FAIL);
- switch (ctx->skeinSize) {
+ switch (ctx->skein_size) {
case Skein256:
ret = skein_256_final(&ctx->m.s256, (u8 *)hash);
break;
/***************************** Skein_256 ******************************/
-void skein_256_process_block(struct skein_256_ctx *ctx, const u8 *blkPtr,
- size_t blkCnt, size_t byteCntAdd)
+void skein_256_process_block(struct skein_256_ctx *ctx, const u8 *blk_ptr,
+ size_t blk_cnt, size_t byte_cnt_add)
{
struct threefish_key key;
u64 tweak[2];
u64 w[SKEIN_256_STATE_WORDS]; /* local copy of input block */
u64 words[3];
- Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
+ Skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
tweak[0] = ctx->h.T[0];
tweak[1] = ctx->h.T[1];
do {
- u64 carry = byteCntAdd;
+ u64 carry = byte_cnt_add;
words[0] = tweak[0] & 0xffffffffL;
words[1] = ((tweak[0] >> 32) & 0xffffffffL);
threefish_set_key(&key, Threefish256, ctx->X, tweak);
/* get input block in little-endian format */
- Skein_Get64_LSB_First(w, blkPtr, SKEIN_256_STATE_WORDS);
+ Skein_Get64_LSB_First(w, blk_ptr, SKEIN_256_STATE_WORDS);
threefish_encrypt_block_words(&key, w, ctx->X);
- blkPtr += SKEIN_256_BLOCK_BYTES;
+ blk_ptr += SKEIN_256_BLOCK_BYTES;
/* do the final "feedforward" xor, update ctx chaining vars */
ctx->X[0] = ctx->X[0] ^ w[0];
ctx->X[3] = ctx->X[3] ^ w[3];
tweak[1] &= ~SKEIN_T1_FLAG_FIRST;
- } while (--blkCnt);
+ } while (--blk_cnt);
ctx->h.T[0] = tweak[0];
ctx->h.T[1] = tweak[1];
}
-void skein_512_process_block(struct skein_512_ctx *ctx, const u8 *blkPtr,
- size_t blkCnt, size_t byteCntAdd)
+void skein_512_process_block(struct skein_512_ctx *ctx, const u8 *blk_ptr,
+ size_t blk_cnt, size_t byte_cnt_add)
{
struct threefish_key key;
u64 tweak[2];
u64 words[3];
u64 w[SKEIN_512_STATE_WORDS]; /* local copy of input block */
- Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
+ Skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
tweak[0] = ctx->h.T[0];
tweak[1] = ctx->h.T[1];
do {
- u64 carry = byteCntAdd;
+ u64 carry = byte_cnt_add;
words[0] = tweak[0] & 0xffffffffL;
words[1] = ((tweak[0] >> 32) & 0xffffffffL);
threefish_set_key(&key, Threefish512, ctx->X, tweak);
/* get input block in little-endian format */
- Skein_Get64_LSB_First(w, blkPtr, SKEIN_512_STATE_WORDS);
+ Skein_Get64_LSB_First(w, blk_ptr, SKEIN_512_STATE_WORDS);
threefish_encrypt_block_words(&key, w, ctx->X);
- blkPtr += SKEIN_512_BLOCK_BYTES;
+ blk_ptr += SKEIN_512_BLOCK_BYTES;
/* do the final "feedforward" xor, update ctx chaining vars */
ctx->X[0] = ctx->X[0] ^ w[0];
ctx->X[7] = ctx->X[7] ^ w[7];
tweak[1] &= ~SKEIN_T1_FLAG_FIRST;
- } while (--blkCnt);
+ } while (--blk_cnt);
ctx->h.T[0] = tweak[0];
ctx->h.T[1] = tweak[1];
}
-void skein_1024_process_block(struct skein1024_ctx *ctx, const u8 *blkPtr,
- size_t blkCnt, size_t byteCntAdd)
+void skein_1024_process_block(struct skein1024_ctx *ctx, const u8 *blk_ptr,
+ size_t blk_cnt, size_t byte_cnt_add)
{
struct threefish_key key;
u64 tweak[2];
u64 words[3];
u64 w[SKEIN1024_STATE_WORDS]; /* local copy of input block */
- Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
+ Skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
tweak[0] = ctx->h.T[0];
tweak[1] = ctx->h.T[1];
do {
- u64 carry = byteCntAdd;
+ u64 carry = byte_cnt_add;
words[0] = tweak[0] & 0xffffffffL;
words[1] = ((tweak[0] >> 32) & 0xffffffffL);
threefish_set_key(&key, Threefish1024, ctx->X, tweak);
/* get input block in little-endian format */
- Skein_Get64_LSB_First(w, blkPtr, SKEIN1024_STATE_WORDS);
+ Skein_Get64_LSB_First(w, blk_ptr, SKEIN1024_STATE_WORDS);
threefish_encrypt_block_words(&key, w, ctx->X);
- blkPtr += SKEIN1024_BLOCK_BYTES;
+ blk_ptr += SKEIN1024_BLOCK_BYTES;
/* do the final "feedforward" xor, update ctx chaining vars */
ctx->X[0] = ctx->X[0] ^ w[0];
ctx->X[15] = ctx->X[15] ^ w[15];
tweak[1] &= ~SKEIN_T1_FLAG_FIRST;
- } while (--blkCnt);
+ } while (--blk_cnt);
ctx->h.T[0] = tweak[0];
ctx->h.T[1] = tweak[1];
/***************************** Skein_256 ******************************/
#if !(SKEIN_USE_ASM & 256)
-void skein_256_process_block(struct skein_256_ctx *ctx, const u8 *blkPtr,
- size_t blkCnt, size_t byteCntAdd)
+void skein_256_process_block(struct skein_256_ctx *ctx, const u8 *blk_ptr,
+ size_t blk_cnt, size_t byte_cnt_add)
{ /* do it in C */
enum {
WCNT = SKEIN_256_STATE_WORDS
u64 X0, X1, X2, X3; /* local copy of context vars, for speed */
u64 w[WCNT]; /* local copy of input block */
#ifdef SKEIN_DEBUG
- const u64 *Xptr[4]; /* use for debugging (help cc put Xn in regs) */
- Xptr[0] = &X0; Xptr[1] = &X1; Xptr[2] = &X2; Xptr[3] = &X3;
+ const u64 *X_ptr[4]; /* use for debugging (help cc put Xn in regs) */
+
+ X_ptr[0] = &X0; X_ptr[1] = &X1; X_ptr[2] = &X2; X_ptr[3] = &X3;
#endif
- Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
+ Skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
ts[0] = ctx->h.T[0];
ts[1] = ctx->h.T[1];
do {
* this implementation only supports 2**64 input bytes
* (no carry out here)
*/
- ts[0] += byteCntAdd; /* update processed length */
+ ts[0] += byte_cnt_add; /* update processed length */
/* precompute the key schedule for this block */
ks[0] = ctx->X[0];
ts[2] = ts[0] ^ ts[1];
/* get input block in little-endian format */
- Skein_Get64_LSB_First(w, blkPtr, WCNT);
+ Skein_Get64_LSB_First(w, blk_ptr, WCNT);
DebugSaveTweak(ctx);
- Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
+ Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blk_ptr, w, ks, ts);
X0 = w[0] + ks[0]; /* do the first full key injection */
X1 = w[1] + ks[1] + ts[0];
/* show starting state values */
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
- Xptr);
+ X_ptr);
- blkPtr += SKEIN_256_BLOCK_BYTES;
+ blk_ptr += SKEIN_256_BLOCK_BYTES;
/* run the rounds */
-#define Round256(p0, p1, p2, p3, ROT, rNum) \
+#define Round256(p0, p1, p2, p3, ROT, r_num) \
do { \
X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0; \
X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2; \
} while (0)
#if SKEIN_UNROLL_256 == 0
-#define R256(p0, p1, p2, p3, ROT, rNum) /* fully unrolled */ \
+#define R256(p0, p1, p2, p3, ROT, r_num) /* fully unrolled */ \
do { \
- Round256(p0, p1, p2, p3, ROT, rNum) \
- Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rNum, Xptr); \
+ Round256(p0, p1, p2, p3, ROT, r_num); \
+ Skein_Show_R_Ptr(BLK_BITS, &ctx->h, r_num, X_ptr); \
} while (0)
#define I256(R) \
X1 += ks[((R)+2) % 5] + ts[((R)+1) % 3]; \
X2 += ks[((R)+3) % 5] + ts[((R)+2) % 3]; \
X3 += ks[((R)+4) % 5] + (R)+1; \
- Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr); \
+ Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, X_ptr); \
} while (0)
#else /* looping version */
-#define R256(p0, p1, p2, p3, ROT, rNum) \
+#define R256(p0, p1, p2, p3, ROT, r_num) \
do { \
- Round256(p0, p1, p2, p3, ROT, rNum) \
- Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rNum, Xptr); \
+ Round256(p0, p1, p2, p3, ROT, r_num); \
+ Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + r_num, X_ptr); \
} while (0)
#define I256(R) \
/* rotate key schedule */ \
ks[r + (R) + 4] = ks[r + (R) - 1]; \
ts[r + (R) + 2] = ts[r + (R) - 1]; \
- Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr); \
+ Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, X_ptr); \
} while (0)
for (r = 1; r < 2 * RCNT; r += 2 * SKEIN_UNROLL_256)
Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);
ts[1] &= ~SKEIN_T1_FLAG_FIRST;
- } while (--blkCnt);
+ } while (--blk_cnt);
ctx->h.T[0] = ts[0];
ctx->h.T[1] = ts[1];
}
/***************************** Skein_512 ******************************/
#if !(SKEIN_USE_ASM & 512)
-void skein_512_process_block(struct skein_512_ctx *ctx, const u8 *blkPtr,
- size_t blkCnt, size_t byteCntAdd)
+void skein_512_process_block(struct skein_512_ctx *ctx, const u8 *blk_ptr,
+ size_t blk_cnt, size_t byte_cnt_add)
{ /* do it in C */
enum {
WCNT = SKEIN_512_STATE_WORDS
u64 X0, X1, X2, X3, X4, X5, X6, X7; /* local copies, for speed */
u64 w[WCNT]; /* local copy of input block */
#ifdef SKEIN_DEBUG
- const u64 *Xptr[8]; /* use for debugging (help cc put Xn in regs) */
- Xptr[0] = &X0; Xptr[1] = &X1; Xptr[2] = &X2; Xptr[3] = &X3;
- Xptr[4] = &X4; Xptr[5] = &X5; Xptr[6] = &X6; Xptr[7] = &X7;
+ const u64 *X_ptr[8]; /* use for debugging (help cc put Xn in regs) */
+
+ X_ptr[0] = &X0; X_ptr[1] = &X1; X_ptr[2] = &X2; X_ptr[3] = &X3;
+ X_ptr[4] = &X4; X_ptr[5] = &X5; X_ptr[6] = &X6; X_ptr[7] = &X7;
#endif
- Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
+ Skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
ts[0] = ctx->h.T[0];
ts[1] = ctx->h.T[1];
do {
* this implementation only supports 2**64 input bytes
* (no carry out here)
*/
- ts[0] += byteCntAdd; /* update processed length */
+ ts[0] += byte_cnt_add; /* update processed length */
/* precompute the key schedule for this block */
ks[0] = ctx->X[0];
ts[2] = ts[0] ^ ts[1];
/* get input block in little-endian format */
- Skein_Get64_LSB_First(w, blkPtr, WCNT);
+ Skein_Get64_LSB_First(w, blk_ptr, WCNT);
DebugSaveTweak(ctx);
- Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
+ Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blk_ptr, w, ks, ts);
X0 = w[0] + ks[0]; /* do the first full key injection */
X1 = w[1] + ks[1];
X6 = w[6] + ks[6] + ts[1];
X7 = w[7] + ks[7];
- blkPtr += SKEIN_512_BLOCK_BYTES;
+ blk_ptr += SKEIN_512_BLOCK_BYTES;
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
- Xptr);
+ X_ptr);
/* run the rounds */
-#define Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
+#define Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) \
do { \
X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0; \
X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2; \
} while (0)
#if SKEIN_UNROLL_512 == 0
-#define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) /* unrolled */ \
+#define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) /* unrolled */ \
do { \
- Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
- Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rNum, Xptr); \
+ Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) \
+ Skein_Show_R_Ptr(BLK_BITS, &ctx->h, r_num, X_ptr); \
} while (0)
#define I512(R) \
X5 += ks[((R) + 6) % 9] + ts[((R) + 1) % 3]; \
X6 += ks[((R) + 7) % 9] + ts[((R) + 2) % 3]; \
X7 += ks[((R) + 8) % 9] + (R) + 1; \
- Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr); \
+ Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, X_ptr); \
} while (0)
#else /* looping version */
-#define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
+#define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) \
do { \
- Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
- Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rNum, Xptr); \
+ Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num); \
+ Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + r_num, X_ptr); \
} while (0)
#define I512(R) \
/* rotate key schedule */ \
ks[r + (R) + 8] = ks[r + (R) - 1]; \
ts[r + (R) + 2] = ts[r + (R) - 1]; \
- Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr); \
+ Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, X_ptr); \
} while (0)
for (r = 1; r < 2 * RCNT; r += 2 * SKEIN_UNROLL_512)
Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);
ts[1] &= ~SKEIN_T1_FLAG_FIRST;
- } while (--blkCnt);
+ } while (--blk_cnt);
ctx->h.T[0] = ts[0];
ctx->h.T[1] = ts[1];
}
/***************************** Skein1024 ******************************/
#if !(SKEIN_USE_ASM & 1024)
-void skein_1024_process_block(struct skein1024_ctx *ctx, const u8 *blkPtr,
- size_t blkCnt, size_t byteCntAdd)
+void skein_1024_process_block(struct skein1024_ctx *ctx, const u8 *blk_ptr,
+ size_t blk_cnt, size_t byte_cnt_add)
{ /* do it in C, always looping (unrolled is bigger AND slower!) */
enum {
WCNT = SKEIN1024_STATE_WORDS
X08, X09, X10, X11, X12, X13, X14, X15;
u64 w[WCNT]; /* local copy of input block */
#ifdef SKEIN_DEBUG
- const u64 *Xptr[16]; /* use for debugging (help cc put Xn in regs) */
- Xptr[0] = &X00; Xptr[1] = &X01; Xptr[2] = &X02; Xptr[3] = &X03;
- Xptr[4] = &X04; Xptr[5] = &X05; Xptr[6] = &X06; Xptr[7] = &X07;
- Xptr[8] = &X08; Xptr[9] = &X09; Xptr[10] = &X10; Xptr[11] = &X11;
- Xptr[12] = &X12; Xptr[13] = &X13; Xptr[14] = &X14; Xptr[15] = &X15;
+ const u64 *X_ptr[16]; /* use for debugging (help cc put Xn in regs) */
+
+ X_ptr[0] = &X00; X_ptr[1] = &X01; X_ptr[2] = &X02;
+ X_ptr[3] = &X03; X_ptr[4] = &X04; X_ptr[5] = &X05;
+ X_ptr[6] = &X06; X_ptr[7] = &X07; X_ptr[8] = &X08;
+ X_ptr[9] = &X09; X_ptr[10] = &X10; X_ptr[11] = &X11;
+ X_ptr[12] = &X12; X_ptr[13] = &X13; X_ptr[14] = &X14;
+ X_ptr[15] = &X15;
#endif
- Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
+ Skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
ts[0] = ctx->h.T[0];
ts[1] = ctx->h.T[1];
do {
* this implementation only supports 2**64 input bytes
* (no carry out here)
*/
- ts[0] += byteCntAdd; /* update processed length */
+ ts[0] += byte_cnt_add; /* update processed length */
/* precompute the key schedule for this block */
ks[0] = ctx->X[0];
ts[2] = ts[0] ^ ts[1];
/* get input block in little-endian format */
- Skein_Get64_LSB_First(w, blkPtr, WCNT);
+ Skein_Get64_LSB_First(w, blk_ptr, WCNT);
DebugSaveTweak(ctx);
- Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
+ Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blk_ptr, w, ks, ts);
X00 = w[0] + ks[0]; /* do the first full key injection */
X01 = w[1] + ks[1];
X15 = w[15] + ks[15];
Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
- Xptr);
+ X_ptr);
#define Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
- pF, ROT, rNum) \
+ pF, ROT, r_num) \
do { \
X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0; \
X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2; \
do { \
Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
pF, ROT, rn) \
- Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rn, Xptr); \
+ Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rn, X_ptr); \
} while (0)
#define I1024(R) \
X13 += ks[((R) + 14) % 17] + ts[((R) + 1) % 3]; \
X14 += ks[((R) + 15) % 17] + ts[((R) + 2) % 3]; \
X15 += ks[((R) + 16) % 17] + (R) + 1; \
- Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr); \
+ Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, X_ptr); \
} while (0)
#else /* looping version */
#define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, \
do { \
Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
pF, ROT, rn) \
- Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rn, Xptr); \
+ Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rn, X_ptr); \
} while (0)
#define I1024(R) \
/* rotate key schedule */ \
ks[r + (R) + 16] = ks[r + (R) - 1]; \
ts[r + (R) + 2] = ts[r + (R) - 1]; \
- Skein_Show_R_Ptr(BLK_BITSi, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr); \
+ Skein_Show_R_Ptr(BLK_BITSi, &ctx->h, SKEIN_RND_KEY_INJECT, X_ptr); \
} while (0)
for (r = 1; r <= 2 * RCNT; r += 2 * SKEIN_UNROLL_1024)
Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);
ts[1] &= ~SKEIN_T1_FLAG_FIRST;
- blkPtr += SKEIN1024_BLOCK_BYTES;
- } while (--blkCnt);
+ blk_ptr += SKEIN1024_BLOCK_BYTES;
+ } while (--blk_cnt);
ctx->h.T[0] = ts[0];
ctx->h.T[1] = ts[1];
}
#include <threefishApi.h>
-void threefish_encrypt_1024(struct threefish_key *keyCtx, u64 *input,
+void threefish_encrypt_1024(struct threefish_key *key_ctx, u64 *input,
u64 *output)
{
u64 b0 = input[0], b1 = input[1],
- b2 = input[2], b3 = input[3],
- b4 = input[4], b5 = input[5],
- b6 = input[6], b7 = input[7],
- b8 = input[8], b9 = input[9],
- b10 = input[10], b11 = input[11],
- b12 = input[12], b13 = input[13],
- b14 = input[14], b15 = input[15];
- u64 k0 = keyCtx->key[0], k1 = keyCtx->key[1],
- k2 = keyCtx->key[2], k3 = keyCtx->key[3],
- k4 = keyCtx->key[4], k5 = keyCtx->key[5],
- k6 = keyCtx->key[6], k7 = keyCtx->key[7],
- k8 = keyCtx->key[8], k9 = keyCtx->key[9],
- k10 = keyCtx->key[10], k11 = keyCtx->key[11],
- k12 = keyCtx->key[12], k13 = keyCtx->key[13],
- k14 = keyCtx->key[14], k15 = keyCtx->key[15],
- k16 = keyCtx->key[16];
- u64 t0 = keyCtx->tweak[0], t1 = keyCtx->tweak[1],
- t2 = keyCtx->tweak[2];
+ b2 = input[2], b3 = input[3],
+ b4 = input[4], b5 = input[5],
+ b6 = input[6], b7 = input[7],
+ b8 = input[8], b9 = input[9],
+ b10 = input[10], b11 = input[11],
+ b12 = input[12], b13 = input[13],
+ b14 = input[14], b15 = input[15];
+ u64 k0 = key_ctx->key[0], k1 = key_ctx->key[1],
+ k2 = key_ctx->key[2], k3 = key_ctx->key[3],
+ k4 = key_ctx->key[4], k5 = key_ctx->key[5],
+ k6 = key_ctx->key[6], k7 = key_ctx->key[7],
+ k8 = key_ctx->key[8], k9 = key_ctx->key[9],
+ k10 = key_ctx->key[10], k11 = key_ctx->key[11],
+ k12 = key_ctx->key[12], k13 = key_ctx->key[13],
+ k14 = key_ctx->key[14], k15 = key_ctx->key[15],
+ k16 = key_ctx->key[16];
+ u64 t0 = key_ctx->tweak[0], t1 = key_ctx->tweak[1],
+ t2 = key_ctx->tweak[2];
b1 += k1;
b0 += b1 + k0;
output[15] = b15 + k1 + 20;
}
-void threefish_decrypt_1024(struct threefish_key *keyCtx, u64 *input,
+void threefish_decrypt_1024(struct threefish_key *key_ctx, u64 *input,
u64 *output)
{
u64 b0 = input[0], b1 = input[1],
- b2 = input[2], b3 = input[3],
- b4 = input[4], b5 = input[5],
- b6 = input[6], b7 = input[7],
- b8 = input[8], b9 = input[9],
- b10 = input[10], b11 = input[11],
- b12 = input[12], b13 = input[13],
- b14 = input[14], b15 = input[15];
- u64 k0 = keyCtx->key[0], k1 = keyCtx->key[1],
- k2 = keyCtx->key[2], k3 = keyCtx->key[3],
- k4 = keyCtx->key[4], k5 = keyCtx->key[5],
- k6 = keyCtx->key[6], k7 = keyCtx->key[7],
- k8 = keyCtx->key[8], k9 = keyCtx->key[9],
- k10 = keyCtx->key[10], k11 = keyCtx->key[11],
- k12 = keyCtx->key[12], k13 = keyCtx->key[13],
- k14 = keyCtx->key[14], k15 = keyCtx->key[15],
- k16 = keyCtx->key[16];
- u64 t0 = keyCtx->tweak[0], t1 = keyCtx->tweak[1],
- t2 = keyCtx->tweak[2];
+ b2 = input[2], b3 = input[3],
+ b4 = input[4], b5 = input[5],
+ b6 = input[6], b7 = input[7],
+ b8 = input[8], b9 = input[9],
+ b10 = input[10], b11 = input[11],
+ b12 = input[12], b13 = input[13],
+ b14 = input[14], b15 = input[15];
+ u64 k0 = key_ctx->key[0], k1 = key_ctx->key[1],
+ k2 = key_ctx->key[2], k3 = key_ctx->key[3],
+ k4 = key_ctx->key[4], k5 = key_ctx->key[5],
+ k6 = key_ctx->key[6], k7 = key_ctx->key[7],
+ k8 = key_ctx->key[8], k9 = key_ctx->key[9],
+ k10 = key_ctx->key[10], k11 = key_ctx->key[11],
+ k12 = key_ctx->key[12], k13 = key_ctx->key[13],
+ k14 = key_ctx->key[14], k15 = key_ctx->key[15],
+ k16 = key_ctx->key[16];
+ u64 t0 = key_ctx->tweak[0], t1 = key_ctx->tweak[1],
+ t2 = key_ctx->tweak[2];
u64 tmp;
b0 -= k3;
#include <threefishApi.h>
-void threefish_encrypt_256(struct threefish_key *keyCtx, u64 *input,
+void threefish_encrypt_256(struct threefish_key *key_ctx, u64 *input,
u64 *output)
{
u64 b0 = input[0], b1 = input[1],
- b2 = input[2], b3 = input[3];
- u64 k0 = keyCtx->key[0], k1 = keyCtx->key[1],
- k2 = keyCtx->key[2], k3 = keyCtx->key[3],
- k4 = keyCtx->key[4];
- u64 t0 = keyCtx->tweak[0], t1 = keyCtx->tweak[1],
- t2 = keyCtx->tweak[2];
+ b2 = input[2], b3 = input[3];
+ u64 k0 = key_ctx->key[0], k1 = key_ctx->key[1],
+ k2 = key_ctx->key[2], k3 = key_ctx->key[3],
+ k4 = key_ctx->key[4];
+ u64 t0 = key_ctx->tweak[0], t1 = key_ctx->tweak[1],
+ t2 = key_ctx->tweak[2];
b1 += k1 + t0;
b0 += b1 + k0;
output[3] = b3 + k1 + 18;
}
-void threefish_decrypt_256(struct threefish_key *keyCtx, u64 *input,
+void threefish_decrypt_256(struct threefish_key *key_ctx, u64 *input,
u64 *output)
{
u64 b0 = input[0], b1 = input[1],
- b2 = input[2], b3 = input[3];
- u64 k0 = keyCtx->key[0], k1 = keyCtx->key[1],
- k2 = keyCtx->key[2], k3 = keyCtx->key[3],
- k4 = keyCtx->key[4];
- u64 t0 = keyCtx->tweak[0], t1 = keyCtx->tweak[1],
- t2 = keyCtx->tweak[2];
+ b2 = input[2], b3 = input[3];
+ u64 k0 = key_ctx->key[0], k1 = key_ctx->key[1],
+ k2 = key_ctx->key[2], k3 = key_ctx->key[3],
+ k4 = key_ctx->key[4];
+ u64 t0 = key_ctx->tweak[0], t1 = key_ctx->tweak[1],
+ t2 = key_ctx->tweak[2];
u64 tmp;
#include <threefishApi.h>
-void threefish_encrypt_512(struct threefish_key *keyCtx, u64 *input,
+void threefish_encrypt_512(struct threefish_key *key_ctx, u64 *input,
u64 *output)
{
u64 b0 = input[0], b1 = input[1],
- b2 = input[2], b3 = input[3],
- b4 = input[4], b5 = input[5],
- b6 = input[6], b7 = input[7];
- u64 k0 = keyCtx->key[0], k1 = keyCtx->key[1],
- k2 = keyCtx->key[2], k3 = keyCtx->key[3],
- k4 = keyCtx->key[4], k5 = keyCtx->key[5],
- k6 = keyCtx->key[6], k7 = keyCtx->key[7],
- k8 = keyCtx->key[8];
- u64 t0 = keyCtx->tweak[0], t1 = keyCtx->tweak[1],
- t2 = keyCtx->tweak[2];
+ b2 = input[2], b3 = input[3],
+ b4 = input[4], b5 = input[5],
+ b6 = input[6], b7 = input[7];
+ u64 k0 = key_ctx->key[0], k1 = key_ctx->key[1],
+ k2 = key_ctx->key[2], k3 = key_ctx->key[3],
+ k4 = key_ctx->key[4], k5 = key_ctx->key[5],
+ k6 = key_ctx->key[6], k7 = key_ctx->key[7],
+ k8 = key_ctx->key[8];
+ u64 t0 = key_ctx->tweak[0], t1 = key_ctx->tweak[1],
+ t2 = key_ctx->tweak[2];
b1 += k1;
b0 += b1 + k0;
output[7] = b7 + k7 + 18;
}
-void threefish_decrypt_512(struct threefish_key *keyCtx, u64 *input,
+void threefish_decrypt_512(struct threefish_key *key_ctx, u64 *input,
u64 *output)
{
u64 b0 = input[0], b1 = input[1],
- b2 = input[2], b3 = input[3],
- b4 = input[4], b5 = input[5],
- b6 = input[6], b7 = input[7];
- u64 k0 = keyCtx->key[0], k1 = keyCtx->key[1],
- k2 = keyCtx->key[2], k3 = keyCtx->key[3],
- k4 = keyCtx->key[4], k5 = keyCtx->key[5],
- k6 = keyCtx->key[6], k7 = keyCtx->key[7],
- k8 = keyCtx->key[8];
- u64 t0 = keyCtx->tweak[0], t1 = keyCtx->tweak[1],
- t2 = keyCtx->tweak[2];
+ b2 = input[2], b3 = input[3],
+ b4 = input[4], b5 = input[5],
+ b6 = input[6], b7 = input[7];
+ u64 k0 = key_ctx->key[0], k1 = key_ctx->key[1],
+ k2 = key_ctx->key[2], k3 = key_ctx->key[3],
+ k4 = key_ctx->key[4], k5 = key_ctx->key[5],
+ k6 = key_ctx->key[6], k7 = key_ctx->key[7],
+ k8 = key_ctx->key[8];
+ u64 t0 = key_ctx->tweak[0], t1 = key_ctx->tweak[1],
+ t2 = key_ctx->tweak[2];
u64 tmp;
#include <linux/string.h>
#include <threefishApi.h>
-void threefish_set_key(struct threefish_key *keyCtx,
- enum threefish_size stateSize,
- u64 *keyData, u64 *tweak)
+void threefish_set_key(struct threefish_key *key_ctx,
+ enum threefish_size state_size,
+ u64 *key_data, u64 *tweak)
{
- int keyWords = stateSize / 64;
+ int key_words = state_size / 64;
int i;
u64 parity = KeyScheduleConst;
- keyCtx->tweak[0] = tweak[0];
- keyCtx->tweak[1] = tweak[1];
- keyCtx->tweak[2] = tweak[0] ^ tweak[1];
+ key_ctx->tweak[0] = tweak[0];
+ key_ctx->tweak[1] = tweak[1];
+ key_ctx->tweak[2] = tweak[0] ^ tweak[1];
- for (i = 0; i < keyWords; i++) {
- keyCtx->key[i] = keyData[i];
- parity ^= keyData[i];
+ for (i = 0; i < key_words; i++) {
+ key_ctx->key[i] = key_data[i];
+ parity ^= key_data[i];
}
- keyCtx->key[i] = parity;
- keyCtx->stateSize = stateSize;
+ key_ctx->key[i] = parity;
+ key_ctx->state_size = state_size;
}
-void threefish_encrypt_block_bytes(struct threefish_key *keyCtx, u8 *in,
+void threefish_encrypt_block_bytes(struct threefish_key *key_ctx, u8 *in,
u8 *out)
{
u64 plain[SKEIN_MAX_STATE_WORDS]; /* max number of words*/
u64 cipher[SKEIN_MAX_STATE_WORDS];
- Skein_Get64_LSB_First(plain, in, keyCtx->stateSize / 64);
- threefish_encrypt_block_words(keyCtx, plain, cipher);
- Skein_Put64_LSB_First(out, cipher, keyCtx->stateSize / 8);
+ Skein_Get64_LSB_First(plain, in, key_ctx->state_size / 64);
+ threefish_encrypt_block_words(key_ctx, plain, cipher);
+ Skein_Put64_LSB_First(out, cipher, key_ctx->state_size / 8);
}
-void threefish_encrypt_block_words(struct threefish_key *keyCtx, u64 *in,
+void threefish_encrypt_block_words(struct threefish_key *key_ctx, u64 *in,
u64 *out)
{
- switch (keyCtx->stateSize) {
+ switch (key_ctx->state_size) {
case Threefish256:
- threefish_encrypt_256(keyCtx, in, out);
+ threefish_encrypt_256(key_ctx, in, out);
break;
case Threefish512:
- threefish_encrypt_512(keyCtx, in, out);
+ threefish_encrypt_512(key_ctx, in, out);
break;
case Threefish1024:
- threefish_encrypt_1024(keyCtx, in, out);
+ threefish_encrypt_1024(key_ctx, in, out);
break;
}
}
-void threefish_decrypt_block_bytes(struct threefish_key *keyCtx, u8 *in,
+void threefish_decrypt_block_bytes(struct threefish_key *key_ctx, u8 *in,
u8 *out)
{
u64 plain[SKEIN_MAX_STATE_WORDS]; /* max number of words*/
u64 cipher[SKEIN_MAX_STATE_WORDS];
- Skein_Get64_LSB_First(cipher, in, keyCtx->stateSize / 64);
- threefish_decrypt_block_words(keyCtx, cipher, plain);
- Skein_Put64_LSB_First(out, plain, keyCtx->stateSize / 8);
+ Skein_Get64_LSB_First(cipher, in, key_ctx->state_size / 64);
+ threefish_decrypt_block_words(key_ctx, cipher, plain);
+ Skein_Put64_LSB_First(out, plain, key_ctx->state_size / 8);
}
-void threefish_decrypt_block_words(struct threefish_key *keyCtx, u64 *in,
+void threefish_decrypt_block_words(struct threefish_key *key_ctx, u64 *in,
u64 *out)
{
- switch (keyCtx->stateSize) {
+ switch (key_ctx->state_size) {
case Threefish256:
- threefish_decrypt_256(keyCtx, in, out);
+ threefish_decrypt_256(key_ctx, in, out);
break;
case Threefish512:
- threefish_decrypt_512(keyCtx, in, out);
+ threefish_decrypt_512(key_ctx, in, out);
break;
case Threefish1024:
- threefish_decrypt_1024(keyCtx, in, out);
+ threefish_decrypt_1024(key_ctx, in, out);
break;
}
}