while (1) {
smp_mb();
- if (fs_info->closing > 1)
+ if (fs_info->closing)
goto out;
leaf = path->nodes[0];
slot = path->slots[0];
- if (path->slots[0] >= btrfs_header_nritems(leaf)) {
+ if (slot >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, path);
if (ret < 0)
goto out;
if (key.type != BTRFS_INODE_ITEM_KEY)
goto next;
- if (key.objectid >= BTRFS_LAST_FREE_OBJECTID)
+ if (key.objectid >= root->highest_objectid)
break;
if (last != (u64)-1 && last + 1 != key.objectid) {
path->slots[0]++;
}
- if (last < BTRFS_LAST_FREE_OBJECTID - 1) {
+ if (last < root->highest_objectid - 1) {
__btrfs_add_free_space(ctl, last + 1,
- BTRFS_LAST_FREE_OBJECTID - last - 1);
+ root->highest_objectid - last - 1);
}
spin_lock(&root->cache_lock);
static void start_caching(struct btrfs_root *root)
{
+ struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
struct task_struct *tsk;
int ret;
+ u64 objectid;
spin_lock(&root->cache_lock);
if (root->cached != BTRFS_CACHE_NO) {
return;
}
+ /*
+ * It can be quite time-consuming to fill the cache by searching
+ * through the extent tree, and this can keep ino allocation path
+ * waiting. Therefore at start we quickly find out the highest
+ * inode number and we know we can use inode numbers which fall in
+ * [highest_ino + 1, BTRFS_LAST_FREE_OBJECTID].
+ */
+ ret = btrfs_find_free_objectid(root, &objectid);
+ if (!ret && objectid <= BTRFS_LAST_FREE_OBJECTID) {
+ __btrfs_add_free_space(ctl, objectid,
+ BTRFS_LAST_FREE_OBJECTID - objectid + 1);
+ }
+
tsk = kthread_run(caching_kthread, root, "btrfs-ino-cache-%llu\n",
root->root_key.objectid);
BUG_ON(IS_ERR(tsk));
start_caching(root);
- if (objectid <= root->cache_progress)
+ if (objectid <= root->cache_progress ||
+ objectid > root->highest_objectid)
__btrfs_add_free_space(ctl, objectid, 1);
else
__btrfs_add_free_space(pinned, objectid, 1);