is formed.
At mount time, the two directories given as mount options "lowerdir" and
-"upperdir" are combined into a merged directory:
+"upperdir" are combined into a merged directory::
mount -t overlay overlay -olowerdir=/lower,upperdir=/upper,\
workdir=/work /merged
programs.
seek offsets are assigned sequentially when the directories are read.
-Thus if
+Thus if:
- - read part of a directory
- - remember an offset, and close the directory
- - re-open the directory some time later
- - seek to the remembered offset
+ - read part of a directory
+ - remember an offset, and close the directory
+ - re-open the directory some time later
+ - seek to the remembered offset
there may be little correlation between the old and new locations in
the list of filenames, particularly if anything has changed in the
2) task creating the overlay mount MUST NOT gain additional privileges
3) non-mounting task MAY gain additional privileges through the overlay,
- compared to direct access on underlying lower or upper filesystems
+ compared to direct access on underlying lower or upper filesystems
-This is achieved by performing two permission checks on each access
+This is achieved by performing two permission checks on each access:
a) check if current task is allowed access based on local DAC (owner,
group, mode and posix acl), as well as MAC checks
however, the mounting task will have sufficient privileges to perform all
operations.
-Another way to demonstrate this model is drawing parallels between
+Another way to demonstrate this model is drawing parallels between::
mount -t overlay overlay -olowerdir=/lower,upperdir=/upper,... /merged
-and
+and::
cp -a /lower /upper
mount --bind /upper /merged
---------------------
Multiple lower layers can now be given using the colon (":") as a
-separator character between the directory names. For example:
+separator character between the directory names. For example::
mount -t overlay overlay -olowerdir=/lower1:/lower2:/lower3 /merged
top, lower2 the middle and lower3 the bottom layer.
Note: directory names containing colons can be provided as lower layer by
-escaping the colons with a single backslash. For example:
+escaping the colons with a single backslash. For example::
mount -t overlay overlay -olowerdir=/a\:lower\:\:dir /merged
Since kernel version v6.8, directory names containing colons can also
be configured as lower layer using the "lowerdir+" mount options and the
-fsconfig syscall from new mount api. For example:
+fsconfig syscall from new mount api. For example::
fsconfig(fs_fd, FSCONFIG_SET_STRING, "lowerdir+", "/a:lower::dir", 0);
colon separators are not allowed to the right of double colon ("::") separators.
-For example:
+For example::
mount -t overlay overlay -olowerdir=/l1:/l2:/l3::/do1::/do2 /merged
Since kernel version v6.8, "data-only" lower layers can also be added using
the "datadir+" mount options and the fsconfig syscall from new mount api.
-For example:
+For example::
fsconfig(fs_fd, FSCONFIG_SET_STRING, "lowerdir+", "/l1", 0);
fsconfig(fs_fd, FSCONFIG_SET_STRING, "lowerdir+", "/l2", 0);
fs-verity support
-----------------------
+-----------------
During metadata copy up of a lower file, if the source file has
fs-verity enabled and overlay verity support is enabled, then the
This is the list of cases that overlayfs doesn't currently handle:
-a) POSIX mandates updating st_atime for reads. This is currently not
-done in the case when the file resides on a lower layer.
+ a) POSIX mandates updating st_atime for reads. This is currently not
+ done in the case when the file resides on a lower layer.
-b) If a file residing on a lower layer is opened for read-only and then
-memory mapped with MAP_SHARED, then subsequent changes to the file are not
-reflected in the memory mapping.
+ b) If a file residing on a lower layer is opened for read-only and then
+ memory mapped with MAP_SHARED, then subsequent changes to the file are not
+ reflected in the memory mapping.
-c) If a file residing on a lower layer is being executed, then opening that
-file for write or truncating the file will not be denied with ETXTBSY.
+ c) If a file residing on a lower layer is being executed, then opening that
+ file for write or truncating the file will not be denied with ETXTBSY.
The following options allow overlayfs to act more like a standards
compliant filesystem:
When encoding a file handle from an overlay filesystem object, the
following rules apply:
-1. For a non-upper object, encode a lower file handle from lower inode
-2. For an indexed object, encode a lower file handle from copy_up origin
-3. For a pure-upper object and for an existing non-indexed upper object,
- encode an upper file handle from upper inode
+ 1. For a non-upper object, encode a lower file handle from lower inode
+ 2. For an indexed object, encode a lower file handle from copy_up origin
+ 3. For a pure-upper object and for an existing non-indexed upper object,
+ encode an upper file handle from upper inode
The encoded overlay file handle includes:
+
- Header including path type information (e.g. lower/upper)
- UUID of the underlying filesystem
- Underlying filesystem encoding of underlying inode
When decoding an overlay file handle, the following steps are followed:
-1. Find underlying layer by UUID and path type information.
-2. Decode the underlying filesystem file handle to underlying dentry.
-3. For a lower file handle, lookup the handle in index directory by name.
-4. If a whiteout is found in index, return ESTALE. This represents an
- overlay object that was deleted after its file handle was encoded.
-5. For a non-directory, instantiate a disconnected overlay dentry from the
- decoded underlying dentry, the path type and index inode, if found.
-6. For a directory, use the connected underlying decoded dentry, path type
- and index, to lookup a connected overlay dentry.
+ 1. Find underlying layer by UUID and path type information.
+ 2. Decode the underlying filesystem file handle to underlying dentry.
+ 3. For a lower file handle, lookup the handle in index directory by name.
+ 4. If a whiteout is found in index, return ESTALE. This represents an
+ overlay object that was deleted after its file handle was encoded.
+ 5. For a non-directory, instantiate a disconnected overlay dentry from the
+ decoded underlying dentry, the path type and index inode, if found.
+ 6. For a directory, use the connected underlying decoded dentry, path type
+ and index, to lookup a connected overlay dentry.
Decoding a non-directory file handle may return a disconnected dentry.
copy_up of that disconnected dentry will create an upper index entry with
There's a testsuite originally developed by David Howells and currently
maintained by Amir Goldstein at:
- https://github.com/amir73il/unionmount-testsuite.git
+https://github.com/amir73il/unionmount-testsuite.git
-Run as root:
+Run as root::
# cd unionmount-testsuite
# ./run --ov --verify