}
}
-/*
- * See the comments on bfq_limit_depth for the purpose of
- * the depths set in the function.
- */
-static void bfq_update_depths(struct bfq_data *bfqd, struct sbitmap_queue *bt)
-{
- bfqd->sb_shift = bt->sb.shift;
-
- /*
- * In-word depths if no bfq_queue is being weight-raised:
- * leaving 25% of tags only for sync reads.
- *
- * In next formulas, right-shift the value
- * (1U<<bfqd->sb_shift), instead of computing directly
- * (1U<<(bfqd->sb_shift - something)), to be robust against
- * any possible value of bfqd->sb_shift, without having to
- * limit 'something'.
- */
- /* no more than 50% of tags for async I/O */
- bfqd->word_depths[0][0] = max((1U<<bfqd->sb_shift)>>1, 1U);
- /*
- * no more than 75% of tags for sync writes (25% extra tags
- * w.r.t. async I/O, to prevent async I/O from starving sync
- * writes)
- */
- bfqd->word_depths[0][1] = max(((1U<<bfqd->sb_shift) * 3)>>2, 1U);
-
- /*
- * In-word depths in case some bfq_queue is being weight-
- * raised: leaving ~63% of tags for sync reads. This is the
- * highest percentage for which, in our tests, application
- * start-up times didn't suffer from any regression due to tag
- * shortage.
- */
- /* no more than ~18% of tags for async I/O */
- bfqd->word_depths[1][0] = max(((1U<<bfqd->sb_shift) * 3)>>4, 1U);
- /* no more than ~37% of tags for sync writes (~20% extra tags) */
- bfqd->word_depths[1][1] = max(((1U<<bfqd->sb_shift) * 6)>>4, 1U);
-}
-
/*
* Async I/O can easily starve sync I/O (both sync reads and sync
* writes), by consuming all tags. Similarly, storms of sync writes,
*/
static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
{
- struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
struct bfq_data *bfqd = data->q->elevator->elevator_data;
- struct sbitmap_queue *bt;
if (op_is_sync(op) && !op_is_write(op))
return;
- bt = &tags->bitmap_tags;
-
- if (unlikely(bfqd->sb_shift != bt->sb.shift))
- bfq_update_depths(bfqd, bt);
-
data->shallow_depth =
bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
}
+/*
+ * See the comments on bfq_limit_depth for the purpose of
+ * the depths set in the function.
+ */
+static void bfq_update_depths(struct bfq_data *bfqd, struct sbitmap_queue *bt)
+{
+ bfqd->sb_shift = bt->sb.shift;
+
+ /*
+ * In-word depths if no bfq_queue is being weight-raised:
+ * leaving 25% of tags only for sync reads.
+ *
+ * In next formulas, right-shift the value
+ * (1U<<bfqd->sb_shift), instead of computing directly
+ * (1U<<(bfqd->sb_shift - something)), to be robust against
+ * any possible value of bfqd->sb_shift, without having to
+ * limit 'something'.
+ */
+ /* no more than 50% of tags for async I/O */
+ bfqd->word_depths[0][0] = max((1U<<bfqd->sb_shift)>>1, 1U);
+ /*
+ * no more than 75% of tags for sync writes (25% extra tags
+ * w.r.t. async I/O, to prevent async I/O from starving sync
+ * writes)
+ */
+ bfqd->word_depths[0][1] = max(((1U<<bfqd->sb_shift) * 3)>>2, 1U);
+
+ /*
+ * In-word depths in case some bfq_queue is being weight-
+ * raised: leaving ~63% of tags for sync reads. This is the
+ * highest percentage for which, in our tests, application
+ * start-up times didn't suffer from any regression due to tag
+ * shortage.
+ */
+ /* no more than ~18% of tags for async I/O */
+ bfqd->word_depths[1][0] = max(((1U<<bfqd->sb_shift) * 3)>>4, 1U);
+ /* no more than ~37% of tags for sync writes (~20% extra tags) */
+ bfqd->word_depths[1][1] = max(((1U<<bfqd->sb_shift) * 6)>>4, 1U);
+}
+
+static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
+{
+ struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
+ struct blk_mq_tags *tags = hctx->sched_tags;
+
+ bfq_update_depths(bfqd, &tags->bitmap_tags);
+ return 0;
+}
+
static void bfq_exit_queue(struct elevator_queue *e)
{
struct bfq_data *bfqd = e->elevator_data;
.requests_merged = bfq_requests_merged,
.request_merged = bfq_request_merged,
.has_work = bfq_has_work,
+ .init_hctx = bfq_init_hctx,
.init_sched = bfq_init_queue,
.exit_sched = bfq_exit_queue,
},