]> git.proxmox.com Git - mirror_qemu.git/commitdiff
Merge tag 'pull-target-arm-20240111' of https://git.linaro.org/people/pmaydell/qemu...
authorPeter Maydell <peter.maydell@linaro.org>
Thu, 11 Jan 2024 11:05:44 +0000 (11:05 +0000)
committerPeter Maydell <peter.maydell@linaro.org>
Thu, 11 Jan 2024 11:05:44 +0000 (11:05 +0000)
target-arm queue:
 * Emulate FEAT_NV, FEAT_NV2
 * add cache controller for Freescale i.MX6
 * Add minimal support for the B-L475E-IOT01A board
 * Allow SoC models to configure M-profile CPUs with correct number
   of NVIC priority bits
 * Add missing QOM parent for v7-M SoCs
 * Set CTR_EL0.{IDC,DIC} for the 'max' CPU
 * hw/intc/arm_gicv3_cpuif: handle LPIs in in the list registers

# -----BEGIN PGP SIGNATURE-----
#
# iQJNBAABCAA3FiEE4aXFk81BneKOgxXPPCUl7RQ2DN4FAmWfypMZHHBldGVyLm1h
# eWRlbGxAbGluYXJvLm9yZwAKCRA8JSXtFDYM3sleD/4tQOMteba5BNMDns6R96E4
# kj5q0Iy9XyzQ486Q4cIZXI5N3BddCp2ks8WeS2W3w4IT/lms0U6UwXV4E98I4I/b
# KSfOoUd/cp8IvdvzfpWbmQcPMoauHZdCUN33pYYXOjfi1RkpzgNU5Qgh09Nl/xYU
# V3oaEvWhLtepT/fwJLYxoqVHDaEmyW+6zriF0+eGjZvkhgPyhllla9eti7AyHTfH
# T3A4Fyx/wudRE3NP6xsLfxldriJTxQeba+TqLSh3IXn/PMtK13/ARsY/hl72Q4ML
# Fgad8Zho4eXbuOQ9oiqb7gp4K3IKd9/8FbCzECoIAq7AnLAD4KwpLQR8GULRvYW3
# 0eQq2txTXQWNcmWpIyDRRME+qeNVwWSk+QJDs5WuhVqlVQ4hpqtgFf1EX+7ORdS1
# WG0fb8etvr8oCSkzCmP/o6xYGJ0EyTVMU5DmWviy3bxMrUMcmobjvCQr/n2gC713
# 1NDmEaYPbl+pX8EMu8byst7/No2PXRgIO0UVVb4KZybfhNy+BBs+LiMVlSRS5YH4
# 8NWtoYZlG9RcPnY+8Xrxz9VTi2cNAAcdbf5uK3snJxkFV2SmV3oBoMxWen3mee0f
# 2PNVEbt9zvPV8hViBVLsqRhVXd9wMq6motIRlkKge1u1TvwIxO21ibykI3tvYOGv
# BffIjhUdnYtX90JAtXtFDw==
# =yQwf
# -----END PGP SIGNATURE-----
# gpg: Signature made Thu 11 Jan 2024 11:01:39 GMT
# gpg:                using RSA key E1A5C593CD419DE28E8315CF3C2525ED14360CDE
# gpg:                issuer "peter.maydell@linaro.org"
# gpg: Good signature from "Peter Maydell <peter.maydell@linaro.org>" [ultimate]
# gpg:                 aka "Peter Maydell <pmaydell@gmail.com>" [ultimate]
# gpg:                 aka "Peter Maydell <pmaydell@chiark.greenend.org.uk>" [ultimate]
# gpg:                 aka "Peter Maydell <peter@archaic.org.uk>" [ultimate]
# Primary key fingerprint: E1A5 C593 CD41 9DE2 8E83  15CF 3C25 25ED 1436 0CDE

* tag 'pull-target-arm-20240111' of https://git.linaro.org/people/pmaydell/qemu-arm: (41 commits)
  target/arm: Add FEAT_NV2 to max, neoverse-n2, neoverse-v1 CPUs
  target/arm: Enhance CPU_LOG_INT to show SPSR on AArch64 exception-entry
  target/arm: Report HCR_EL2.{NV,NV1,NV2} in cpu dumps
  hw/intc/arm_gicv3_cpuif: Mark up VNCR offsets for GIC CPU registers
  target/arm: Mark up VNCR offsets (offsets >= 0x200, except GIC)
  target/arm: Mark up VNCR offsets (offsets 0x168..0x1f8)
  target/arm: Mark up VNCR offsets (offsets 0x100..0x160)
  target/arm: Mark up VNCR offsets (offsets 0x0..0xff)
  target/arm: Report VNCR_EL2 based faults correctly
  target/arm: Implement FEAT_NV2 redirection of sysregs to RAM
  target/arm: Handle FEAT_NV2 redirection of SPSR_EL2, ELR_EL2, ESR_EL2, FAR_EL2
  target/arm: Handle FEAT_NV2 changes to when SPSR_EL1.M reports EL2
  target/arm: Implement VNCR_EL2 register
  target/arm: Handle HCR_EL2 accesses for FEAT_NV2 bits
  target/arm: Add FEAT_NV to max, neoverse-n2, neoverse-v1 CPUs
  target/arm: Handle FEAT_NV page table attribute changes
  target/arm: Treat LDTR* and STTR* as LDR/STR when NV, NV1 is 1, 1
  target/arm: Don't honour PSTATE.PAN when HCR_EL2.{NV, NV1} == {1, 1}
  target/arm: Always use arm_pan_enabled() when checking if PAN is enabled
  target/arm: Trap registers when HCR_EL2.{NV, NV1} == {1, 1}
  ...

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
39 files changed:
MAINTAINERS
configs/devices/arm-softmmu/default.mak
docs/system/arm/b-l475e-iot01a.rst [new file with mode: 0644]
docs/system/arm/emulation.rst
docs/system/arm/stm32.rst
docs/system/target-arm.rst
hw/arm/Kconfig
hw/arm/armv7m.c
hw/arm/b-l475e-iot01a.c [new file with mode: 0644]
hw/arm/fsl-imx6.c
hw/arm/meson.build
hw/arm/msf2-som.c
hw/arm/netduino2.c
hw/arm/netduinoplus2.c
hw/arm/olimex-stm32-h405.c
hw/arm/stellaris.c
hw/arm/stm32f100_soc.c
hw/arm/stm32f205_soc.c
hw/arm/stm32f405_soc.c
hw/arm/stm32l4x5_soc.c [new file with mode: 0644]
hw/arm/stm32vldiscovery.c
hw/intc/arm_gicv3_cpuif.c
hw/intc/armv7m_nvic.c
include/hw/arm/armv7m.h
include/hw/arm/stm32l4x5_soc.h [new file with mode: 0644]
target/arm/cpregs.h
target/arm/cpu-features.h
target/arm/cpu.c
target/arm/cpu.h
target/arm/debug_helper.c
target/arm/helper.c
target/arm/ptw.c
target/arm/syndrome.h
target/arm/tcg/cpu64.c
target/arm/tcg/hflags.c
target/arm/tcg/op_helper.c
target/arm/tcg/tlb_helper.c
target/arm/tcg/translate-a64.c
target/arm/tcg/translate.h

index 00ec1f7ecaf779818d96a42679afc9c3d77c13c4..b406fb20c05934460067f8f92a69d7f6aee76200 100644 (file)
@@ -1122,6 +1122,21 @@ L: qemu-arm@nongnu.org
 S: Maintained
 F: hw/arm/olimex-stm32-h405.c
 
+STM32L4x5 SoC Family
+M: Arnaud Minier <arnaud.minier@telecom-paris.fr>
+M: Inès Varhol <ines.varhol@telecom-paris.fr>
+L: qemu-arm@nongnu.org
+S: Maintained
+F: hw/arm/stm32l4x5_soc.c
+F: include/hw/arm/stm32l4x5_soc.h
+
+B-L475E-IOT01A IoT Node
+M: Arnaud Minier <arnaud.minier@telecom-paris.fr>
+M: Inès Varhol <ines.varhol@telecom-paris.fr>
+L: qemu-arm@nongnu.org
+S: Maintained
+F: hw/arm/b-l475e-iot01a.c
+
 SmartFusion2
 M: Subbaraya Sundeep <sundeep.lkml@gmail.com>
 M: Peter Maydell <peter.maydell@linaro.org>
index 980c48a7d99573ae236cb4ab387d9bf09857bd9e..023faa2f750ef596c62d1d3963a21fd4f5ebaf78 100644 (file)
@@ -19,6 +19,7 @@ CONFIG_ARM_VIRT=y
 # CONFIG_NSERIES=n
 # CONFIG_STELLARIS=n
 # CONFIG_STM32VLDISCOVERY=n
+# CONFIG_B_L475E_IOT01A=n
 # CONFIG_REALVIEW=n
 # CONFIG_VERSATILE=n
 # CONFIG_VEXPRESS=n
diff --git a/docs/system/arm/b-l475e-iot01a.rst b/docs/system/arm/b-l475e-iot01a.rst
new file mode 100644 (file)
index 0000000..2b128e6
--- /dev/null
@@ -0,0 +1,46 @@
+B-L475E-IOT01A IoT Node (``b-l475e-iot01a``)
+============================================
+
+The B-L475E-IOT01A IoT Node uses the STM32L475VG SoC which is based on
+ARM Cortex-M4F core. It is part of STMicroelectronics
+:doc:`STM32 boards </system/arm/stm32>` and more specifically the STM32L4
+ultra-low power series. The STM32L4x5 chip runs at up to 80 MHz and
+integrates 128 KiB of SRAM and up to 1MiB of Flash. The B-L475E-IOT01A board
+namely features 64 Mibit QSPI Flash, BT, WiFi and RF connectivity,
+USART, I2C, SPI, CAN and USB OTG, as well as a variety of sensors.
+
+Supported devices
+"""""""""""""""""
+
+Currently, B-L475E-IOT01A machine's implementation is minimal,
+it only supports the following device:
+
+- Cortex-M4F based STM32L4x5 SoC
+
+Missing devices
+"""""""""""""""
+
+The B-L475E-IOT01A does *not* support the following devices:
+
+- Extended interrupts and events controller (EXTI)
+- Reset and clock control (RCC)
+- Serial ports (UART)
+- System configuration controller (SYSCFG)
+- General-purpose I/Os (GPIO)
+- Analog to Digital Converter (ADC)
+- SPI controller
+- Timer controller (TIMER)
+
+See the complete list of unimplemented peripheral devices
+in the STM32L4x5 module : ``./hw/arm/stm32l4x5_soc.c``
+
+Boot options
+""""""""""""
+
+The B-L475E-IOT01A machine can be started using the ``-kernel``
+option to load a firmware. Example:
+
+.. code-block:: bash
+
+  $ qemu-system-arm -M b-l475e-iot01a -kernel firmware.bin
+
index 0b604f90059a94fae26342767590fbd6dac40486..f67aea2d8364202e33aa31a1cf6764bf4fb33553 100644 (file)
@@ -63,6 +63,8 @@ the following architecture extensions:
 - FEAT_MTE (Memory Tagging Extension)
 - FEAT_MTE2 (Memory Tagging Extension)
 - FEAT_MTE3 (MTE Asymmetric Fault Handling)
+- FEAT_NV (Nested Virtualization)
+- FEAT_NV2 (Enhanced nested virtualization support)
 - FEAT_PACIMP (Pointer authentication - IMPLEMENTATION DEFINED algorithm)
 - FEAT_PACQARMA3 (Pointer authentication - QARMA3 algorithm)
 - FEAT_PACQARMA5 (Pointer authentication - QARMA5 algorithm)
index d7265b763d47abcf9fc6f1c6f9bfc4ee55e2466c..3b640f3ee07ea07927ba1587195af79e135884bb 100644 (file)
@@ -16,11 +16,13 @@ based on this chip :
 
 - ``netduino2``         Netduino 2 board with STM32F205RFT6 microcontroller
 
-The STM32F4 series is based on ARM Cortex-M4F core. This series is pin-to-pin
-compatible with STM32F2 series. The following machines are based on this chip :
+The STM32F4 series is based on ARM Cortex-M4F core, as well as the STM32L4
+ultra-low-power series. The STM32F4 series is pin-to-pin compatible with STM32F2 series.
+The following machines are based on this ARM Cortex-M4F chip :
 
 - ``netduinoplus2``     Netduino Plus 2 board with STM32F405RGT6 microcontroller
 - ``olimex-stm32-h405`` Olimex STM32 H405 board with STM32F405RGT6 microcontroller
+- ``b-l475e-iot01a``     :doc:`B-L475E-IOT01A IoT Node </system/arm/b-l475e-iot01a>` board with STM32L475VG microcontroller
 
 There are many other STM32 series that are currently not supported by QEMU.
 
index 790ac1b8a2b5aa3052cfc93e97e8bb2ac5a1772a..c9d7c0dda7e89f8ed3abf191ff1c7b4ecb332f91 100644 (file)
@@ -84,6 +84,7 @@ undocumented; you can get a complete list by running
    arm/vexpress
    arm/aspeed
    arm/bananapi_m2u.rst
+   arm/b-l475e-iot01a.rst
    arm/sabrelite
    arm/digic
    arm/cubieboard
index 660f49db49859115e1eaba8e798cee398e4cf14e..39d255425b1ad5d5c19a7af0866eda11fa8b4f0f 100644 (file)
@@ -449,6 +449,17 @@ config STM32F405_SOC
     select STM32F4XX_SYSCFG
     select STM32F4XX_EXTI
 
+config B_L475E_IOT01A
+    bool
+    default y
+    depends on TCG && ARM
+    select STM32L4X5_SOC
+
+config STM32L4X5_SOC
+    bool
+    select ARM_V7M
+    select OR_IRQ
+
 config XLNX_ZYNQMP_ARM
     bool
     default y if PIXMAN
@@ -537,6 +548,7 @@ config FSL_IMX6
     select IMX_I2C
     select IMX_USBPHY
     select WDT_IMX2
+    select PL310  # cache controller
     select SDHCI
 
 config ASPEED_SOC
index e39b61bc1af3865b1ff53b4efca9f9ec10a8cce4..1f218277734b5bc71ca074c98f3634901faa85a4 100644 (file)
@@ -256,6 +256,8 @@ static void armv7m_instance_init(Object *obj)
     object_initialize_child(obj, "nvic", &s->nvic, TYPE_NVIC);
     object_property_add_alias(obj, "num-irq",
                               OBJECT(&s->nvic), "num-irq");
+    object_property_add_alias(obj, "num-prio-bits",
+                              OBJECT(&s->nvic), "num-prio-bits");
 
     object_initialize_child(obj, "systick-reg-ns", &s->systick[M_REG_NS],
                             TYPE_SYSTICK);
diff --git a/hw/arm/b-l475e-iot01a.c b/hw/arm/b-l475e-iot01a.c
new file mode 100644 (file)
index 0000000..6ecde2d
--- /dev/null
@@ -0,0 +1,72 @@
+/*
+ * B-L475E-IOT01A Discovery Kit machine
+ * (B-L475E-IOT01A IoT Node)
+ *
+ * Copyright (c) 2023 Arnaud Minier <arnaud.minier@telecom-paris.fr>
+ * Copyright (c) 2023 Inès Varhol <ines.varhol@telecom-paris.fr>
+ *
+ * SPDX-License-Identifier: GPL-2.0-or-later
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2 or later.
+ * See the COPYING file in the top-level directory.
+ *
+ * This work is heavily inspired by the netduinoplus2 by Alistair Francis.
+ * Original code is licensed under the MIT License:
+ *
+ * Copyright (c) 2014 Alistair Francis <alistair@alistair23.me>
+ */
+
+/*
+ * The reference used is the STMicroElectronics UM2153 User manual
+ * Discovery kit for IoT node, multi-channel communication with STM32L4.
+ * https://www.st.com/en/evaluation-tools/b-l475e-iot01a.html#documentation
+ */
+
+#include "qemu/osdep.h"
+#include "qapi/error.h"
+#include "hw/boards.h"
+#include "hw/qdev-properties.h"
+#include "hw/qdev-clock.h"
+#include "qemu/error-report.h"
+#include "hw/arm/stm32l4x5_soc.h"
+#include "hw/arm/boot.h"
+
+/* Main SYSCLK frequency in Hz (80MHz) */
+#define MAIN_SYSCLK_FREQ_HZ 80000000ULL
+
+static void b_l475e_iot01a_init(MachineState *machine)
+{
+    const Stm32l4x5SocClass *sc;
+    DeviceState *dev;
+    Clock *sysclk;
+
+    /* This clock doesn't need migration because it is fixed-frequency */
+    sysclk = clock_new(OBJECT(machine), "SYSCLK");
+    clock_set_hz(sysclk, MAIN_SYSCLK_FREQ_HZ);
+
+    dev = qdev_new(TYPE_STM32L4X5XG_SOC);
+    object_property_add_child(OBJECT(machine), "soc", OBJECT(dev));
+    qdev_connect_clock_in(dev, "sysclk", sysclk);
+    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
+
+    sc = STM32L4X5_SOC_GET_CLASS(dev);
+    armv7m_load_kernel(ARM_CPU(first_cpu),
+                       machine->kernel_filename,
+                       0, sc->flash_size);
+}
+
+static void b_l475e_iot01a_machine_init(MachineClass *mc)
+{
+    static const char *machine_valid_cpu_types[] = {
+        ARM_CPU_TYPE_NAME("cortex-m4"),
+        NULL
+    };
+    mc->desc = "B-L475E-IOT01A Discovery Kit (Cortex-M4)";
+    mc->init = b_l475e_iot01a_init;
+    mc->valid_cpu_types = machine_valid_cpu_types;
+
+    /* SRAM pre-allocated as part of the SoC instantiation */
+    mc->default_ram_size = 0;
+}
+
+DEFINE_MACHINE("b-l475e-iot01a", b_l475e_iot01a_machine_init)
index b2153022c04b1443eb52e7f0de074b9ea02e97dc..af2e982b0527539bc386b01d046a3ec4cdb60abc 100644 (file)
@@ -154,6 +154,9 @@ static void fsl_imx6_realize(DeviceState *dev, Error **errp)
                            qdev_get_gpio_in(DEVICE(&s->cpu[i]), ARM_CPU_FIQ));
     }
 
+    /* L2 cache controller */
+    sysbus_create_simple("l2x0", FSL_IMX6_PL310_ADDR, NULL);
+
     if (!sysbus_realize(SYS_BUS_DEVICE(&s->ccm), errp)) {
         return;
     }
index 68245d3ad10b5ca581d6ecc77e3375fe2792f952..bb92b27db3e6bb43d3b9aae3e8e69790ecd30619 100644 (file)
@@ -42,6 +42,8 @@ arm_ss.add(when: 'CONFIG_RASPI', if_true: files('bcm2836.c', 'raspi.c'))
 arm_ss.add(when: 'CONFIG_STM32F100_SOC', if_true: files('stm32f100_soc.c'))
 arm_ss.add(when: 'CONFIG_STM32F205_SOC', if_true: files('stm32f205_soc.c'))
 arm_ss.add(when: 'CONFIG_STM32F405_SOC', if_true: files('stm32f405_soc.c'))
+arm_ss.add(when: 'CONFIG_B_L475E_IOT01A', if_true: files('b-l475e-iot01a.c'))
+arm_ss.add(when: 'CONFIG_STM32L4X5_SOC', if_true: files('stm32l4x5_soc.c'))
 arm_ss.add(when: 'CONFIG_XLNX_ZYNQMP_ARM', if_true: files('xlnx-zynqmp.c', 'xlnx-zcu102.c'))
 arm_ss.add(when: 'CONFIG_XLNX_VERSAL', if_true: files('xlnx-versal.c', 'xlnx-versal-virt.c'))
 arm_ss.add(when: 'CONFIG_FSL_IMX25', if_true: files('fsl-imx25.c', 'imx25_pdk.c'))
index eb74b23797c59f45e5d88fbf4f908416ebc43af0..a269cf044b9df62575fae1dbb48fbba0733c302b 100644 (file)
@@ -60,6 +60,7 @@ static void emcraft_sf2_s2s010_init(MachineState *machine)
     memory_region_add_subregion(sysmem, DDR_BASE_ADDRESS, ddr);
 
     dev = qdev_new(TYPE_MSF2_SOC);
+    object_property_add_child(OBJECT(machine), "soc", OBJECT(dev));
     qdev_prop_set_string(dev, "part-name", "M2S010");
     qdev_prop_set_string(dev, "cpu-type", mc->default_cpu_type);
 
index 501f63a77f9a9f67f8d76c4145cdc1a34d1633fd..8b1a9a24379080f82e657d7ba84526df89356f6d 100644 (file)
@@ -44,6 +44,7 @@ static void netduino2_init(MachineState *machine)
     clock_set_hz(sysclk, SYSCLK_FRQ);
 
     dev = qdev_new(TYPE_STM32F205_SOC);
+    object_property_add_child(OBJECT(machine), "soc", OBJECT(dev));
     qdev_connect_clock_in(dev, "sysclk", sysclk);
     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 
index 2e589849478c84389124e21570fd2d964685dfd9..bccd1003549e33bd0034f77b7888f5c761846d7b 100644 (file)
@@ -44,6 +44,7 @@ static void netduinoplus2_init(MachineState *machine)
     clock_set_hz(sysclk, SYSCLK_FRQ);
 
     dev = qdev_new(TYPE_STM32F405_SOC);
+    object_property_add_child(OBJECT(machine), "soc", OBJECT(dev));
     qdev_connect_clock_in(dev, "sysclk", sysclk);
     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 
index d793de7c97f2547a3358cc0f79dae16afafb0224..4ad7b043be014b98ae87408704c1b2597e6d9b20 100644 (file)
@@ -47,6 +47,7 @@ static void olimex_stm32_h405_init(MachineState *machine)
     clock_set_hz(sysclk, SYSCLK_FRQ);
 
     dev = qdev_new(TYPE_STM32F405_SOC);
+    object_property_add_child(OBJECT(machine), "soc", OBJECT(dev));
     qdev_connect_clock_in(dev, "sysclk", sysclk);
     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 
index 729a8bf5695bde706d2b3fab0c17c87458f0daee..d18b1144af5006f4ffb3cffe11db822e9a2d8dc5 100644 (file)
@@ -47,6 +47,7 @@
 #define BP_GAMEPAD   0x04
 
 #define NUM_IRQ_LINES 64
+#define NUM_PRIO_BITS 3
 
 typedef const struct {
     const char *name;
@@ -1067,6 +1068,7 @@ static void stellaris_init(MachineState *ms, stellaris_board_info *board)
 
     nvic = qdev_new(TYPE_ARMV7M);
     qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES);
+    qdev_prop_set_uint8(nvic, "num-prio-bits", NUM_PRIO_BITS);
     qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type);
     qdev_prop_set_bit(nvic, "enable-bitband", true);
     qdev_connect_clock_in(nvic, "cpuclk",
index b90d440d7aa26b8216aa690173c0865e9bfa9030..808b783515d90e61d42cd776da4789a57b2c1e2e 100644 (file)
@@ -115,6 +115,7 @@ static void stm32f100_soc_realize(DeviceState *dev_soc, Error **errp)
     /* Init ARMv7m */
     armv7m = DEVICE(&s->armv7m);
     qdev_prop_set_uint32(armv7m, "num-irq", 61);
+    qdev_prop_set_uint8(armv7m, "num-prio-bits", 4);
     qdev_prop_set_string(armv7m, "cpu-type", ARM_CPU_TYPE_NAME("cortex-m3"));
     qdev_prop_set_bit(armv7m, "enable-bitband", true);
     qdev_connect_clock_in(armv7m, "cpuclk", s->sysclk);
index 1a548646f6ecd3c6a28cd0585a052abc946f9aba..a451e21f59c311b489176f1a7d7721c34525f6c7 100644 (file)
@@ -127,6 +127,7 @@ static void stm32f205_soc_realize(DeviceState *dev_soc, Error **errp)
 
     armv7m = DEVICE(&s->armv7m);
     qdev_prop_set_uint32(armv7m, "num-irq", 96);
+    qdev_prop_set_uint8(armv7m, "num-prio-bits", 4);
     qdev_prop_set_string(armv7m, "cpu-type", ARM_CPU_TYPE_NAME("cortex-m3"));
     qdev_prop_set_bit(armv7m, "enable-bitband", true);
     qdev_connect_clock_in(armv7m, "cpuclk", s->sysclk);
index a65bbe298d2bcd0446c911983db42e6158eb5bc4..2ad5b79a069f257c4e3a313c8ea30e9859de7253 100644 (file)
@@ -149,6 +149,7 @@ static void stm32f405_soc_realize(DeviceState *dev_soc, Error **errp)
 
     armv7m = DEVICE(&s->armv7m);
     qdev_prop_set_uint32(armv7m, "num-irq", 96);
+    qdev_prop_set_uint8(armv7m, "num-prio-bits", 4);
     qdev_prop_set_string(armv7m, "cpu-type", ARM_CPU_TYPE_NAME("cortex-m4"));
     qdev_prop_set_bit(armv7m, "enable-bitband", true);
     qdev_connect_clock_in(armv7m, "cpuclk", s->sysclk);
diff --git a/hw/arm/stm32l4x5_soc.c b/hw/arm/stm32l4x5_soc.c
new file mode 100644 (file)
index 0000000..159d531
--- /dev/null
@@ -0,0 +1,266 @@
+/*
+ * STM32L4x5 SoC family
+ *
+ * Copyright (c) 2023 Arnaud Minier <arnaud.minier@telecom-paris.fr>
+ * Copyright (c) 2023 Inès Varhol <ines.varhol@telecom-paris.fr>
+ *
+ * SPDX-License-Identifier: GPL-2.0-or-later
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2 or later.
+ * See the COPYING file in the top-level directory.
+ *
+ * This work is heavily inspired by the stm32f405_soc by Alistair Francis.
+ * Original code is licensed under the MIT License:
+ *
+ * Copyright (c) 2014 Alistair Francis <alistair@alistair23.me>
+ */
+
+/*
+ * The reference used is the STMicroElectronics RM0351 Reference manual
+ * for STM32L4x5 and STM32L4x6 advanced Arm ® -based 32-bit MCUs.
+ * https://www.st.com/en/microcontrollers-microprocessors/stm32l4x5/documentation.html
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/units.h"
+#include "qapi/error.h"
+#include "exec/address-spaces.h"
+#include "sysemu/sysemu.h"
+#include "hw/arm/stm32l4x5_soc.h"
+#include "hw/qdev-clock.h"
+#include "hw/misc/unimp.h"
+
+#define FLASH_BASE_ADDRESS 0x08000000
+#define SRAM1_BASE_ADDRESS 0x20000000
+#define SRAM1_SIZE (96 * KiB)
+#define SRAM2_BASE_ADDRESS 0x10000000
+#define SRAM2_SIZE (32 * KiB)
+
+static void stm32l4x5_soc_initfn(Object *obj)
+{
+    Stm32l4x5SocState *s = STM32L4X5_SOC(obj);
+
+    s->sysclk = qdev_init_clock_in(DEVICE(s), "sysclk", NULL, NULL, 0);
+    s->refclk = qdev_init_clock_in(DEVICE(s), "refclk", NULL, NULL, 0);
+}
+
+static void stm32l4x5_soc_realize(DeviceState *dev_soc, Error **errp)
+{
+    ERRP_GUARD();
+    Stm32l4x5SocState *s = STM32L4X5_SOC(dev_soc);
+    const Stm32l4x5SocClass *sc = STM32L4X5_SOC_GET_CLASS(dev_soc);
+    MemoryRegion *system_memory = get_system_memory();
+    DeviceState *armv7m;
+
+    /*
+     * We use s->refclk internally and only define it with qdev_init_clock_in()
+     * so it is correctly parented and not leaked on an init/deinit; it is not
+     * intended as an externally exposed clock.
+     */
+    if (clock_has_source(s->refclk)) {
+        error_setg(errp, "refclk clock must not be wired up by the board code");
+        return;
+    }
+
+    if (!clock_has_source(s->sysclk)) {
+        error_setg(errp, "sysclk clock must be wired up by the board code");
+        return;
+    }
+
+    /*
+     * TODO: ideally we should model the SoC RCC and its ability to
+     * change the sysclk frequency and define different sysclk sources.
+     */
+
+    /* The refclk always runs at frequency HCLK / 8 */
+    clock_set_mul_div(s->refclk, 8, 1);
+    clock_set_source(s->refclk, s->sysclk);
+
+    if (!memory_region_init_rom(&s->flash, OBJECT(dev_soc), "flash",
+                                sc->flash_size, errp)) {
+        return;
+    }
+    memory_region_init_alias(&s->flash_alias, OBJECT(dev_soc),
+                             "flash_boot_alias", &s->flash, 0,
+                             sc->flash_size);
+
+    memory_region_add_subregion(system_memory, FLASH_BASE_ADDRESS, &s->flash);
+    memory_region_add_subregion(system_memory, 0, &s->flash_alias);
+
+    if (!memory_region_init_ram(&s->sram1, OBJECT(dev_soc), "SRAM1", SRAM1_SIZE,
+                                errp)) {
+        return;
+    }
+    memory_region_add_subregion(system_memory, SRAM1_BASE_ADDRESS, &s->sram1);
+
+    if (!memory_region_init_ram(&s->sram2, OBJECT(dev_soc), "SRAM2", SRAM2_SIZE,
+                                errp)) {
+        return;
+    }
+    memory_region_add_subregion(system_memory, SRAM2_BASE_ADDRESS, &s->sram2);
+
+    object_initialize_child(OBJECT(dev_soc), "armv7m", &s->armv7m, TYPE_ARMV7M);
+    armv7m = DEVICE(&s->armv7m);
+    qdev_prop_set_uint32(armv7m, "num-irq", 96);
+    qdev_prop_set_uint32(armv7m, "num-prio-bits", 4);
+    qdev_prop_set_string(armv7m, "cpu-type", ARM_CPU_TYPE_NAME("cortex-m4"));
+    qdev_prop_set_bit(armv7m, "enable-bitband", true);
+    qdev_connect_clock_in(armv7m, "cpuclk", s->sysclk);
+    qdev_connect_clock_in(armv7m, "refclk", s->refclk);
+    object_property_set_link(OBJECT(&s->armv7m), "memory",
+                             OBJECT(system_memory), &error_abort);
+    if (!sysbus_realize(SYS_BUS_DEVICE(&s->armv7m), errp)) {
+        return;
+    }
+
+    /* APB1 BUS */
+    create_unimplemented_device("TIM2",      0x40000000, 0x400);
+    create_unimplemented_device("TIM3",      0x40000400, 0x400);
+    create_unimplemented_device("TIM4",      0x40000800, 0x400);
+    create_unimplemented_device("TIM5",      0x40000C00, 0x400);
+    create_unimplemented_device("TIM6",      0x40001000, 0x400);
+    create_unimplemented_device("TIM7",      0x40001400, 0x400);
+    /* RESERVED:    0x40001800, 0x1000 */
+    create_unimplemented_device("RTC",       0x40002800, 0x400);
+    create_unimplemented_device("WWDG",      0x40002C00, 0x400);
+    create_unimplemented_device("IWDG",      0x40003000, 0x400);
+    /* RESERVED:    0x40001800, 0x400 */
+    create_unimplemented_device("SPI2",      0x40003800, 0x400);
+    create_unimplemented_device("SPI3",      0x40003C00, 0x400);
+    /* RESERVED:    0x40004000, 0x400 */
+    create_unimplemented_device("USART2",    0x40004400, 0x400);
+    create_unimplemented_device("USART3",    0x40004800, 0x400);
+    create_unimplemented_device("UART4",     0x40004C00, 0x400);
+    create_unimplemented_device("UART5",     0x40005000, 0x400);
+    create_unimplemented_device("I2C1",      0x40005400, 0x400);
+    create_unimplemented_device("I2C2",      0x40005800, 0x400);
+    create_unimplemented_device("I2C3",      0x40005C00, 0x400);
+    /* RESERVED:    0x40006000, 0x400 */
+    create_unimplemented_device("CAN1",      0x40006400, 0x400);
+    /* RESERVED:    0x40006800, 0x400 */
+    create_unimplemented_device("PWR",       0x40007000, 0x400);
+    create_unimplemented_device("DAC1",      0x40007400, 0x400);
+    create_unimplemented_device("OPAMP",     0x40007800, 0x400);
+    create_unimplemented_device("LPTIM1",    0x40007C00, 0x400);
+    create_unimplemented_device("LPUART1",   0x40008000, 0x400);
+    /* RESERVED:    0x40008400, 0x400 */
+    create_unimplemented_device("SWPMI1",    0x40008800, 0x400);
+    /* RESERVED:    0x40008C00, 0x800 */
+    create_unimplemented_device("LPTIM2",    0x40009400, 0x400);
+    /* RESERVED:    0x40009800, 0x6800 */
+
+    /* APB2 BUS */
+    create_unimplemented_device("SYSCFG",    0x40010000, 0x30);
+    create_unimplemented_device("VREFBUF",   0x40010030, 0x1D0);
+    create_unimplemented_device("COMP",      0x40010200, 0x200);
+    create_unimplemented_device("EXTI",      0x40010400, 0x400);
+    /* RESERVED:    0x40010800, 0x1400 */
+    create_unimplemented_device("FIREWALL",  0x40011C00, 0x400);
+    /* RESERVED:    0x40012000, 0x800 */
+    create_unimplemented_device("SDMMC1",    0x40012800, 0x400);
+    create_unimplemented_device("TIM1",      0x40012C00, 0x400);
+    create_unimplemented_device("SPI1",      0x40013000, 0x400);
+    create_unimplemented_device("TIM8",      0x40013400, 0x400);
+    create_unimplemented_device("USART1",    0x40013800, 0x400);
+    /* RESERVED:    0x40013C00, 0x400 */
+    create_unimplemented_device("TIM15",     0x40014000, 0x400);
+    create_unimplemented_device("TIM16",     0x40014400, 0x400);
+    create_unimplemented_device("TIM17",     0x40014800, 0x400);
+    /* RESERVED:    0x40014C00, 0x800 */
+    create_unimplemented_device("SAI1",      0x40015400, 0x400);
+    create_unimplemented_device("SAI2",      0x40015800, 0x400);
+    /* RESERVED:    0x40015C00, 0x400 */
+    create_unimplemented_device("DFSDM1",    0x40016000, 0x400);
+    /* RESERVED:    0x40016400, 0x9C00 */
+
+    /* AHB1 BUS */
+    create_unimplemented_device("DMA1",      0x40020000, 0x400);
+    create_unimplemented_device("DMA2",      0x40020400, 0x400);
+    /* RESERVED:    0x40020800, 0x800 */
+    create_unimplemented_device("RCC",       0x40021000, 0x400);
+    /* RESERVED:    0x40021400, 0xC00 */
+    create_unimplemented_device("FLASH",     0x40022000, 0x400);
+    /* RESERVED:    0x40022400, 0xC00 */
+    create_unimplemented_device("CRC",       0x40023000, 0x400);
+    /* RESERVED:    0x40023400, 0x400 */
+    create_unimplemented_device("TSC",       0x40024000, 0x400);
+
+    /* RESERVED:    0x40024400, 0x7FDBC00 */
+
+    /* AHB2 BUS */
+    create_unimplemented_device("GPIOA",     0x48000000, 0x400);
+    create_unimplemented_device("GPIOB",     0x48000400, 0x400);
+    create_unimplemented_device("GPIOC",     0x48000800, 0x400);
+    create_unimplemented_device("GPIOD",     0x48000C00, 0x400);
+    create_unimplemented_device("GPIOE",     0x48001000, 0x400);
+    create_unimplemented_device("GPIOF",     0x48001400, 0x400);
+    create_unimplemented_device("GPIOG",     0x48001800, 0x400);
+    create_unimplemented_device("GPIOH",     0x48001C00, 0x400);
+    /* RESERVED:    0x48002000, 0x7FDBC00 */
+    create_unimplemented_device("OTG_FS",    0x50000000, 0x40000);
+    create_unimplemented_device("ADC",       0x50040000, 0x400);
+    /* RESERVED:    0x50040400, 0x20400 */
+    create_unimplemented_device("RNG",       0x50060800, 0x400);
+
+    /* AHB3 BUS */
+    create_unimplemented_device("FMC",       0xA0000000, 0x1000);
+    create_unimplemented_device("QUADSPI",   0xA0001000, 0x400);
+}
+
+static void stm32l4x5_soc_class_init(ObjectClass *klass, void *data)
+{
+
+    DeviceClass *dc = DEVICE_CLASS(klass);
+
+    dc->realize = stm32l4x5_soc_realize;
+    /* Reason: Mapped at fixed location on the system bus */
+    dc->user_creatable = false;
+    /* No vmstate or reset required: device has no internal state */
+}
+
+static void stm32l4x5xc_soc_class_init(ObjectClass *oc, void *data)
+{
+    Stm32l4x5SocClass *ssc = STM32L4X5_SOC_CLASS(oc);
+
+    ssc->flash_size = 256 * KiB;
+}
+
+static void stm32l4x5xe_soc_class_init(ObjectClass *oc, void *data)
+{
+    Stm32l4x5SocClass *ssc = STM32L4X5_SOC_CLASS(oc);
+
+    ssc->flash_size = 512 * KiB;
+}
+
+static void stm32l4x5xg_soc_class_init(ObjectClass *oc, void *data)
+{
+    Stm32l4x5SocClass *ssc = STM32L4X5_SOC_CLASS(oc);
+
+    ssc->flash_size = 1 * MiB;
+}
+
+static const TypeInfo stm32l4x5_soc_types[] = {
+    {
+        .name           = TYPE_STM32L4X5XC_SOC,
+        .parent         = TYPE_STM32L4X5_SOC,
+        .class_init     = stm32l4x5xc_soc_class_init,
+    }, {
+        .name           = TYPE_STM32L4X5XE_SOC,
+        .parent         = TYPE_STM32L4X5_SOC,
+        .class_init     = stm32l4x5xe_soc_class_init,
+    }, {
+        .name           = TYPE_STM32L4X5XG_SOC,
+        .parent         = TYPE_STM32L4X5_SOC,
+        .class_init     = stm32l4x5xg_soc_class_init,
+    }, {
+        .name           = TYPE_STM32L4X5_SOC,
+        .parent         = TYPE_SYS_BUS_DEVICE,
+        .instance_size  = sizeof(Stm32l4x5SocState),
+        .instance_init  = stm32l4x5_soc_initfn,
+        .class_size     = sizeof(Stm32l4x5SocClass),
+        .class_init     = stm32l4x5_soc_class_init,
+        .abstract       = true,
+    }
+};
+
+DEFINE_TYPES(stm32l4x5_soc_types)
index 190db6118b9675f92ef1b7068f7fb47b987e6f1b..cc41935160536ae451a88892566bc080875ab32a 100644 (file)
@@ -47,6 +47,7 @@ static void stm32vldiscovery_init(MachineState *machine)
     clock_set_hz(sysclk, SYSCLK_FRQ);
 
     dev = qdev_new(TYPE_STM32F100_SOC);
+    object_property_add_child(OBJECT(machine), "soc", OBJECT(dev));
     qdev_connect_clock_in(dev, "sysclk", sysclk);
     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 
index 77c2a6dd3b6c5f640db5cf257368479cb49c0cf7..e1a60d8c15b0b83c4ca95d2a8d2fbba08113609a 100644 (file)
@@ -1434,16 +1434,25 @@ static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
     idx = icv_find_active(cs, irq);
 
     if (idx < 0) {
-        /* No valid list register corresponding to EOI ID */
-        icv_increment_eoicount(cs);
+        /*
+         * No valid list register corresponding to EOI ID; if this is a vLPI
+         * not in the list regs then do nothing; otherwise increment EOI count
+         */
+        if (irq < GICV3_LPI_INTID_START) {
+            icv_increment_eoicount(cs);
+        }
     } else {
         uint64_t lr = cs->ich_lr_el2[idx];
         int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
         int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);
 
         if (thisgrp == grp && lr_gprio == dropprio) {
-            if (!icv_eoi_split(env, cs)) {
-                /* Priority drop and deactivate not split: deactivate irq now */
+            if (!icv_eoi_split(env, cs) || irq >= GICV3_LPI_INTID_START) {
+                /*
+                 * Priority drop and deactivate not split: deactivate irq now.
+                 * LPIs always get their active state cleared immediately
+                 * because no separate deactivate is expected.
+                 */
                 icv_deactivate_irq(cs, idx);
             }
         }
@@ -2675,6 +2684,7 @@ static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
     { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
       .type = ARM_CP_IO | ARM_CP_NO_RAW,
+      .nv2_redirect_offset = 0x480,
       .access = PL2_RW,
       .readfn = ich_ap_read,
       .writefn = ich_ap_write,
@@ -2682,6 +2692,7 @@ static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
     { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
       .type = ARM_CP_IO | ARM_CP_NO_RAW,
+      .nv2_redirect_offset = 0x4a0,
       .access = PL2_RW,
       .readfn = ich_ap_read,
       .writefn = ich_ap_write,
@@ -2689,6 +2700,7 @@ static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
     { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
       .type = ARM_CP_IO | ARM_CP_NO_RAW,
+      .nv2_redirect_offset = 0x4c0,
       .access = PL2_RW,
       .readfn = ich_hcr_read,
       .writefn = ich_hcr_write,
@@ -2720,6 +2732,7 @@ static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
     { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
       .type = ARM_CP_IO | ARM_CP_NO_RAW,
+      .nv2_redirect_offset = 0x4c8,
       .access = PL2_RW,
       .readfn = ich_vmcr_read,
       .writefn = ich_vmcr_write,
@@ -2730,6 +2743,7 @@ static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
     { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
       .type = ARM_CP_IO | ARM_CP_NO_RAW,
+      .nv2_redirect_offset = 0x488,
       .access = PL2_RW,
       .readfn = ich_ap_read,
       .writefn = ich_ap_write,
@@ -2737,6 +2751,7 @@ static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
     { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
       .type = ARM_CP_IO | ARM_CP_NO_RAW,
+      .nv2_redirect_offset = 0x4a8,
       .access = PL2_RW,
       .readfn = ich_ap_read,
       .writefn = ich_ap_write,
@@ -2747,6 +2762,7 @@ static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
     { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
       .type = ARM_CP_IO | ARM_CP_NO_RAW,
+      .nv2_redirect_offset = 0x490,
       .access = PL2_RW,
       .readfn = ich_ap_read,
       .writefn = ich_ap_write,
@@ -2754,6 +2770,7 @@ static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
     { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
       .type = ARM_CP_IO | ARM_CP_NO_RAW,
+      .nv2_redirect_offset = 0x498,
       .access = PL2_RW,
       .readfn = ich_ap_read,
       .writefn = ich_ap_write,
@@ -2761,6 +2778,7 @@ static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
     { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
       .type = ARM_CP_IO | ARM_CP_NO_RAW,
+      .nv2_redirect_offset = 0x4b0,
       .access = PL2_RW,
       .readfn = ich_ap_read,
       .writefn = ich_ap_write,
@@ -2768,6 +2786,7 @@ static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
     { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
       .type = ARM_CP_IO | ARM_CP_NO_RAW,
+      .nv2_redirect_offset = 0x4b8,
       .access = PL2_RW,
       .readfn = ich_ap_read,
       .writefn = ich_ap_write,
@@ -2889,6 +2908,7 @@ void gicv3_init_cpuif(GICv3State *s)
                       .opc0 = 3, .opc1 = 4, .crn = 12,
                       .crm = 12 + (j >> 3), .opc2 = j & 7,
                       .type = ARM_CP_IO | ARM_CP_NO_RAW,
+                      .nv2_redirect_offset = 0x400 + 8 * j,
                       .access = PL2_RW,
                       .readfn = ich_lr_read,
                       .writefn = ich_lr_write,
index 50f9a973a2e2e3b0ed42ec3be2014d88270762c9..404a445138a8217bfa3a8b38c6e4be250fb25f40 100644 (file)
@@ -2572,6 +2572,11 @@ static const VMStateDescription vmstate_nvic = {
 static Property props_nvic[] = {
     /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
     DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
+    /*
+     * Number of the maximum priority bits that can be used. 0 means
+     * to use a reasonable default.
+     */
+    DEFINE_PROP_UINT8("num-prio-bits", NVICState, num_prio_bits, 0),
     DEFINE_PROP_END_OF_LIST()
 };
 
@@ -2685,7 +2690,23 @@ static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
     /* include space for internal exception vectors */
     s->num_irq += NVIC_FIRST_IRQ;
 
-    s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
+    if (s->num_prio_bits == 0) {
+        /*
+         * If left unspecified, use 2 bits by default on Cortex-M0/M0+/M1
+         * and 8 bits otherwise.
+         */
+        s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
+    } else {
+        uint8_t min_prio_bits =
+            arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 3 : 2;
+        if (s->num_prio_bits < min_prio_bits || s->num_prio_bits > 8) {
+            error_setg(errp,
+                       "num-prio-bits %d is outside "
+                       "NVIC acceptable range [%d-8]",
+                       s->num_prio_bits, min_prio_bits);
+            return;
+        }
+    }
 
     /*
      * This device provides a single memory region which covers the
index e2cebbd15c024fa08127dc7af7a2073a41e6c6c3..5c057ab2ec9e2ddbeacdf8b993bbf4f4c65354b4 100644 (file)
@@ -43,6 +43,7 @@ OBJECT_DECLARE_SIMPLE_TYPE(ARMv7MState, ARMV7M)
  *   a qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET).
  * + Property "cpu-type": CPU type to instantiate
  * + Property "num-irq": number of external IRQ lines
+ * + Property "num-prio-bits": number of priority bits in the NVIC
  * + Property "memory": MemoryRegion defining the physical address space
  *   that CPU accesses see. (The NVIC, bitbanding and other CPU-internal
  *   devices will be automatically layered on top of this view.)
diff --git a/include/hw/arm/stm32l4x5_soc.h b/include/hw/arm/stm32l4x5_soc.h
new file mode 100644 (file)
index 0000000..2fd44a3
--- /dev/null
@@ -0,0 +1,57 @@
+/*
+ * STM32L4x5 SoC family
+ *
+ * Copyright (c) 2023 Arnaud Minier <arnaud.minier@telecom-paris.fr>
+ * Copyright (c) 2023 Inès Varhol <ines.varhol@telecom-paris.fr>
+ *
+ * SPDX-License-Identifier: GPL-2.0-or-later
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2 or later.
+ * See the COPYING file in the top-level directory.
+ *
+ * This work is heavily inspired by the stm32f405_soc by Alistair Francis.
+ * Original code is licensed under the MIT License:
+ *
+ * Copyright (c) 2014 Alistair Francis <alistair@alistair23.me>
+ */
+
+/*
+ * The reference used is the STMicroElectronics RM0351 Reference manual
+ * for STM32L4x5 and STM32L4x6 advanced Arm ® -based 32-bit MCUs.
+ * https://www.st.com/en/microcontrollers-microprocessors/stm32l4x5/documentation.html
+ */
+
+#ifndef HW_ARM_STM32L4x5_SOC_H
+#define HW_ARM_STM32L4x5_SOC_H
+
+#include "exec/memory.h"
+#include "hw/arm/armv7m.h"
+#include "qom/object.h"
+
+#define TYPE_STM32L4X5_SOC "stm32l4x5-soc"
+#define TYPE_STM32L4X5XC_SOC "stm32l4x5xc-soc"
+#define TYPE_STM32L4X5XE_SOC "stm32l4x5xe-soc"
+#define TYPE_STM32L4X5XG_SOC "stm32l4x5xg-soc"
+OBJECT_DECLARE_TYPE(Stm32l4x5SocState, Stm32l4x5SocClass, STM32L4X5_SOC)
+
+struct Stm32l4x5SocState {
+    SysBusDevice parent_obj;
+
+    ARMv7MState armv7m;
+
+    MemoryRegion sram1;
+    MemoryRegion sram2;
+    MemoryRegion flash;
+    MemoryRegion flash_alias;
+
+    Clock *sysclk;
+    Clock *refclk;
+};
+
+struct Stm32l4x5SocClass {
+    SysBusDeviceClass parent_class;
+
+    size_t flash_size;
+};
+
+#endif
index f1293d16c07a86812fb179e0e4e753b291b81596..b6fdd0f3eb434b316dffadca7f048b1ef5fcfa2d 100644 (file)
@@ -118,6 +118,11 @@ enum {
      * ARM pseudocode function CheckSMEAccess().
      */
     ARM_CP_SME                   = 1 << 19,
+    /*
+     * Flag: one of the four EL2 registers which redirect to the
+     * equivalent EL1 register when FEAT_NV2 is enabled.
+     */
+    ARM_CP_NV2_REDIRECT          = 1 << 20,
 };
 
 /*
@@ -821,6 +826,11 @@ typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
 
 #define CP_ANY 0xff
 
+/* Flags in the high bits of nv2_redirect_offset */
+#define NV2_REDIR_NV1 0x4000 /* Only redirect when HCR_EL2.NV1 == 1 */
+#define NV2_REDIR_NO_NV1 0x8000 /* Only redirect when HCR_EL2.NV1 == 0 */
+#define NV2_REDIR_FLAG_MASK 0xc000
+
 /* Definition of an ARM coprocessor register */
 struct ARMCPRegInfo {
     /* Name of register (useful mainly for debugging, need not be unique) */
@@ -862,6 +872,13 @@ struct ARMCPRegInfo {
      * value encodes both the trap register and bit within it.
      */
     FGTBit fgt;
+
+    /*
+     * Offset from VNCR_EL2 when FEAT_NV2 redirects access to memory;
+     * may include an NV2_REDIR_* flag.
+     */
+    uint32_t nv2_redirect_offset;
+
     /*
      * The opaque pointer passed to define_arm_cp_regs_with_opaque() when
      * this register was defined: can be used to hand data through to the
@@ -937,7 +954,7 @@ struct ARMCPRegInfo {
     CPResetFn *resetfn;
 
     /*
-     * "Original" writefn and readfn.
+     * "Original" readfn, writefn, accessfn.
      * For ARMv8.1-VHE register aliases, we overwrite the read/write
      * accessor functions of various EL1/EL0 to perform the runtime
      * check for which sysreg should actually be modified, and then
@@ -948,6 +965,7 @@ struct ARMCPRegInfo {
      */
     CPReadFn *orig_readfn;
     CPWriteFn *orig_writefn;
+    CPAccessFn *orig_accessfn;
 };
 
 /*
@@ -1079,4 +1097,38 @@ void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu);
 
 CPAccessResult access_tvm_trvm(CPUARMState *, const ARMCPRegInfo *, bool);
 
+/**
+ * arm_cpreg_trap_in_nv: Return true if cpreg traps in nested virtualization
+ *
+ * Return true if this cpreg is one which should be trapped to EL2 if
+ * it is executed at EL1 when nested virtualization is enabled via HCR_EL2.NV.
+ */
+static inline bool arm_cpreg_traps_in_nv(const ARMCPRegInfo *ri)
+{
+    /*
+     * The Arm ARM defines the registers to be trapped in terms of
+     * their names (I_TZTZL). However the underlying principle is "if
+     * it would UNDEF at EL1 but work at EL2 then it should trap", and
+     * the way the encoding of sysregs and system instructions is done
+     * means that the right set of registers is exactly those where
+     * the opc1 field is 4 or 5. (You can see this also in the assert
+     * we do that the opc1 field and the permissions mask line up in
+     * define_one_arm_cp_reg_with_opaque().)
+     * Checking the opc1 field is easier for us and avoids the problem
+     * that we do not consistently use the right architectural names
+     * for all sysregs, since we treat the name field as largely for debug.
+     *
+     * However we do this check, it is going to be at least potentially
+     * fragile to future new sysregs, but this seems the least likely
+     * to break.
+     *
+     * In particular, note that the released sysreg XML defines that
+     * the FEAT_MEC sysregs and instructions do not follow this FEAT_NV
+     * trapping rule, so we will need to add an ARM_CP_* flag to indicate
+     * "register does not trap on NV" to handle those if/when we implement
+     * FEAT_MEC.
+     */
+    return ri->opc1 == 4 || ri->opc1 == 5;
+}
+
 #endif /* TARGET_ARM_CPREGS_H */
index 954d3582685c44eb156809f013a520603d721d08..7a590c824cf5366bf5e35dae876d7e60dd604b67 100644 (file)
@@ -839,6 +839,16 @@ static inline bool isar_feature_aa64_e0pd(const ARMISARegisters *id)
     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, E0PD) != 0;
 }
 
+static inline bool isar_feature_aa64_nv(const ARMISARegisters *id)
+{
+    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, NV) != 0;
+}
+
+static inline bool isar_feature_aa64_nv2(const ARMISARegisters *id)
+{
+    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, NV) >= 2;
+}
+
 static inline bool isar_feature_aa64_pmuv3p1(const ARMISARegisters *id)
 {
     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
index 1c8b787482322f7c168ebb05fe51bfb703393b93..826ce842c09ba540d85a16a48d71712568efcd22 100644 (file)
@@ -1059,6 +1059,7 @@ static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
     uint32_t psr = pstate_read(env);
     int i, j;
     int el = arm_current_el(env);
+    uint64_t hcr = arm_hcr_el2_eff(env);
     const char *ns_status;
     bool sve;
 
@@ -1096,6 +1097,10 @@ static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
     if (cpu_isar_feature(aa64_bti, cpu)) {
         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
     }
+    qemu_fprintf(f, "%s%s%s",
+                 (hcr & HCR_NV) ? " NV" : "",
+                 (hcr & HCR_NV1) ? " NV1" : "",
+                 (hcr & HCR_NV2) ? " NV2" : "");
     if (!(flags & CPU_DUMP_FPU)) {
         qemu_fprintf(f, "\n");
         return;
@@ -2238,9 +2243,6 @@ static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
         /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */
         cpu->isar.id_aa64pfr0 =
             FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0);
-        /* FEAT_NV (Nested Virtualization) */
-        cpu->isar.id_aa64mmfr2 =
-            FIELD_DP64(cpu->isar.id_aa64mmfr2, ID_AA64MMFR2, NV, 0);
     }
 
     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
index 8c3ca2e2319500847376a4cda0fa00bdc1bfdf3e..ec276fcd57cd2d7100636e7efb87565f955de995 100644 (file)
@@ -120,12 +120,12 @@ enum {
 #define TARGET_INSN_START_EXTRA_WORDS 2
 
 /* The 2nd extra word holding syndrome info for data aborts does not use
- * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
+ * the upper 6 bits nor the lower 13 bits. We mask and shift it down to
  * help the sleb128 encoder do a better job.
  * When restoring the CPU state, we shift it back up.
  */
 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
-#define ARM_INSN_START_WORD2_SHIFT 14
+#define ARM_INSN_START_WORD2_SHIFT 13
 
 /* We currently assume float and double are IEEE single and double
    precision respectively.
@@ -547,6 +547,9 @@ typedef struct CPUArchState {
         uint64_t gpccr_el3;
         uint64_t gptbr_el3;
         uint64_t mfar_el3;
+
+        /* NV2 register */
+        uint64_t vncr_el2;
     } cp15;
 
     struct {
@@ -3232,17 +3235,26 @@ FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
 FIELD(TBFLAG_A64, SVL, 24, 4)
 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
-FIELD(TBFLAG_A64, FGT_ERET, 29, 1)
+FIELD(TBFLAG_A64, TRAP_ERET, 29, 1)
 FIELD(TBFLAG_A64, NAA, 30, 1)
 FIELD(TBFLAG_A64, ATA0, 31, 1)
+FIELD(TBFLAG_A64, NV, 32, 1)
+FIELD(TBFLAG_A64, NV1, 33, 1)
+FIELD(TBFLAG_A64, NV2, 34, 1)
+/* Set if FEAT_NV2 RAM accesses use the EL2&0 translation regime */
+FIELD(TBFLAG_A64, NV2_MEM_E20, 35, 1)
+/* Set if FEAT_NV2 RAM accesses are big-endian */
+FIELD(TBFLAG_A64, NV2_MEM_BE, 36, 1)
 
 /*
- * Helpers for using the above.
+ * Helpers for using the above. Note that only the A64 accessors use
+ * FIELD_DP64() and FIELD_EX64(), because in the other cases the flags
+ * word either is or might be 32 bits only.
  */
 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
-    (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
+    (DST.flags2 = FIELD_DP64(DST.flags2, TBFLAG_A64, WHICH, VAL))
 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
@@ -3251,7 +3263,7 @@ FIELD(TBFLAG_A64, ATA0, 31, 1)
     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
 
 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
-#define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
+#define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX64(IN.flags2, TBFLAG_A64, WHICH)
 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
index 83d2619080f1313bc832bdb390fa7c6b9c937322..7d856acddf2137e10602e279be1f5555ca49a956 100644 (file)
@@ -844,6 +844,16 @@ static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
     return CP_ACCESS_OK;
 }
 
+static CPAccessResult access_dbgvcr32(CPUARMState *env, const ARMCPRegInfo *ri,
+                                      bool isread)
+{
+    /* MCDR_EL3.TDMA doesn't apply for FEAT_NV traps */
+    if (arm_current_el(env) == 2 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
+        return CP_ACCESS_TRAP_EL3;
+    }
+    return CP_ACCESS_OK;
+}
+
 /*
  * Check for traps to Debug Comms Channel registers. If FEAT_FGT
  * is implemented then these are controlled by MDCR_EL2.TDCC for
@@ -950,6 +960,7 @@ static const ARMCPRegInfo debug_cp_reginfo[] = {
       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
       .access = PL1_RW, .accessfn = access_tda,
       .fgt = FGT_MDSCR_EL1,
+      .nv2_redirect_offset = 0x158,
       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
       .resetvalue = 0 },
     /*
@@ -1062,7 +1073,7 @@ static const ARMCPRegInfo debug_aa32_el1_reginfo[] = {
      */
     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
-      .access = PL2_RW, .accessfn = access_tda,
+      .access = PL2_RW, .accessfn = access_dbgvcr32,
       .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP },
 };
 
index 7889fd45d67c9ea0dcaeb6944e5f8b7333dd8a86..dc8f14f43316085ca427f02724b6a07fa1cab67e 100644 (file)
@@ -263,6 +263,18 @@ void init_cpreg_list(ARMCPU *cpu)
     g_list_free(keys);
 }
 
+static bool arm_pan_enabled(CPUARMState *env)
+{
+    if (is_a64(env)) {
+        if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) {
+            return false;
+        }
+        return env->pstate & PSTATE_PAN;
+    } else {
+        return env->uncached_cpsr & CPSR_PAN;
+    }
+}
+
 /*
  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
  */
@@ -635,6 +647,7 @@ static const ARMCPRegInfo cp_reginfo[] = {
       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
       .access = PL1_RW, .accessfn = access_tvm_trvm,
       .fgt = FGT_CONTEXTIDR_EL1,
+      .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1,
       .secure = ARM_CP_SECSTATE_NS,
       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
@@ -871,6 +884,7 @@ static const ARMCPRegInfo v6_cp_reginfo[] = {
     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
       .fgt = FGT_CPACR_EL1,
+      .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1,
       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
 };
@@ -2238,11 +2252,13 @@ static const ARMCPRegInfo v7_cp_reginfo[] = {
       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
       .access = PL1_RW, .accessfn = access_tvm_trvm,
       .fgt = FGT_AFSR0_EL1,
+      .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1,
       .type = ARM_CP_CONST, .resetvalue = 0 },
     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
       .access = PL1_RW, .accessfn = access_tvm_trvm,
       .fgt = FGT_AFSR1_EL1,
+      .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1,
       .type = ARM_CP_CONST, .resetvalue = 0 },
     /*
      * MAIR can just read-as-written because we don't implement caches
@@ -2252,6 +2268,7 @@ static const ARMCPRegInfo v7_cp_reginfo[] = {
       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
       .access = PL1_RW, .accessfn = access_tvm_trvm,
       .fgt = FGT_MAIR_EL1,
+      .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1,
       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
       .resetvalue = 0 },
     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
@@ -3174,6 +3191,7 @@ static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
       .type = ARM_CP_IO, .access = PL0_RW,
       .accessfn = gt_ptimer_access,
+      .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1,
       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
       .resetvalue = 0,
       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
@@ -3191,6 +3209,7 @@ static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
       .type = ARM_CP_IO, .access = PL0_RW,
       .accessfn = gt_vtimer_access,
+      .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1,
       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
       .resetvalue = 0,
       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
@@ -3270,6 +3289,7 @@ static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
       .access = PL0_RW,
       .type = ARM_CP_IO,
+      .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1,
       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
       .resetvalue = 0, .accessfn = gt_ptimer_access,
       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
@@ -3287,6 +3307,7 @@ static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
       .access = PL0_RW,
       .type = ARM_CP_IO,
+      .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1,
       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
       .resetvalue = 0, .accessfn = gt_vtimer_access,
       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
@@ -3324,6 +3345,11 @@ static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                  bool isread)
 {
+    if (arm_current_el(env) == 1) {
+        /* This must be a FEAT_NV access */
+        /* TODO: FEAT_ECV will need to check CNTHCTL_EL2 here */
+        return CP_ACCESS_OK;
+    }
     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
         return CP_ACCESS_TRAP;
     }
@@ -3609,7 +3635,7 @@ static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
             g_assert(ss != ARMSS_Secure);  /* ARMv8.4-SecEL2 is 64-bit only */
             /* fall through */
         case 1:
-            if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
+            if (ri->crm == 9 && arm_pan_enabled(env)) {
                 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
             } else {
                 mmu_idx = ARMMMUIdx_Stage1_E1;
@@ -3703,6 +3729,15 @@ static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
     return at_e012_access(env, ri, isread);
 }
 
+static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri,
+                                      bool isread)
+{
+    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) {
+        return CP_ACCESS_TRAP_EL2;
+    }
+    return at_e012_access(env, ri, isread);
+}
+
 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
 {
@@ -3716,7 +3751,7 @@ static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
     case 0:
         switch (ri->opc1) {
         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
-            if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
+            if (ri->crm == 9 && arm_pan_enabled(env)) {
                 mmu_idx = regime_e20 ?
                           ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
             } else {
@@ -4252,6 +4287,7 @@ static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
       .access = PL1_RW, .accessfn = access_tvm_trvm,
       .fgt = FGT_FAR_EL1,
+      .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1,
       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
       .resetvalue = 0, },
 };
@@ -4261,11 +4297,13 @@ static const ARMCPRegInfo vmsa_cp_reginfo[] = {
       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
       .access = PL1_RW, .accessfn = access_tvm_trvm,
       .fgt = FGT_ESR_EL1,
+      .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1,
       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
       .access = PL1_RW, .accessfn = access_tvm_trvm,
       .fgt = FGT_TTBR0_EL1,
+      .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1,
       .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
@@ -4273,6 +4311,7 @@ static const ARMCPRegInfo vmsa_cp_reginfo[] = {
       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
       .access = PL1_RW, .accessfn = access_tvm_trvm,
       .fgt = FGT_TTBR1_EL1,
+      .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1,
       .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
@@ -4280,6 +4319,7 @@ static const ARMCPRegInfo vmsa_cp_reginfo[] = {
       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
       .access = PL1_RW, .accessfn = access_tvm_trvm,
       .fgt = FGT_TCR_EL1,
+      .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1,
       .writefn = vmsa_tcr_el12_write,
       .raw_writefn = raw_write,
       .resetvalue = 0,
@@ -4519,6 +4559,7 @@ static const ARMCPRegInfo lpae_cp_reginfo[] = {
       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
       .access = PL1_RW, .accessfn = access_tvm_trvm,
       .fgt = FGT_AMAIR_EL1,
+      .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1,
       .type = ARM_CP_CONST, .resetvalue = 0 },
     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
@@ -5341,6 +5382,19 @@ static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
     }
 }
 
+static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri,
+                                 bool isread)
+{
+    if (arm_current_el(env) == 1) {
+        uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2);
+
+        if (hcr_nv == (HCR_NV | HCR_NV1)) {
+            return CP_ACCESS_TRAP_EL2;
+        }
+    }
+    return CP_ACCESS_OK;
+}
+
 #ifdef CONFIG_USER_ONLY
 /*
  * `IC IVAU` is handled to improve compatibility with JITs that dual-map their
@@ -5568,22 +5622,22 @@ static const ARMCPRegInfo v8_cp_reginfo[] = {
       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
       .fgt = FGT_ATS1E1R,
-      .accessfn = at_e012_access, .writefn = ats_write64 },
+      .accessfn = at_s1e01_access, .writefn = ats_write64 },
     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
       .fgt = FGT_ATS1E1W,
-      .accessfn = at_e012_access, .writefn = ats_write64 },
+      .accessfn = at_s1e01_access, .writefn = ats_write64 },
     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
       .fgt = FGT_ATS1E0R,
-      .accessfn = at_e012_access, .writefn = ats_write64 },
+      .accessfn = at_s1e01_access, .writefn = ats_write64 },
     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
       .fgt = FGT_ATS1E0W,
-      .accessfn = at_e012_access, .writefn = ats_write64 },
+      .accessfn = at_s1e01_access, .writefn = ats_write64 },
     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
@@ -5689,12 +5743,14 @@ static const ARMCPRegInfo v8_cp_reginfo[] = {
     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
       .type = ARM_CP_ALIAS,
       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
-      .access = PL1_RW,
+      .access = PL1_RW, .accessfn = access_nv1,
+      .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1,
       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
       .type = ARM_CP_ALIAS,
       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
-      .access = PL1_RW,
+      .access = PL1_RW, .accessfn = access_nv1,
+      .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1,
       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
     /*
      * We rely on the access checks not allowing the guest to write to the
@@ -5708,6 +5764,7 @@ static const ARMCPRegInfo v8_cp_reginfo[] = {
       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
+      .nv2_redirect_offset = 0x240,
       .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
@@ -5815,6 +5872,12 @@ static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
         if (cpu_isar_feature(aa64_rme, cpu)) {
             valid_mask |= HCR_GPF;
         }
+        if (cpu_isar_feature(aa64_nv, cpu)) {
+            valid_mask |= HCR_NV | HCR_NV1 | HCR_AT;
+        }
+        if (cpu_isar_feature(aa64_nv2, cpu)) {
+            valid_mask |= HCR_NV2;
+        }
     }
 
     if (cpu_isar_feature(any_evt, cpu)) {
@@ -5833,9 +5896,10 @@ static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
      * HCR_DC disables stage1 and enables stage2 translation
      * HCR_DCT enables tagging on (disabled) stage1 translation
      * HCR_FWB changes the interpretation of stage2 descriptor bits
+     * HCR_NV and HCR_NV1 affect interpretation of descriptor bits
      */
     if ((env->cp15.hcr_el2 ^ value) &
-        (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
+        (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) {
         tlb_flush(CPU(cpu));
     }
     env->cp15.hcr_el2 = value;
@@ -6001,7 +6065,7 @@ static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
                                   bool isread)
 {
-    if (arm_current_el(env) < 3
+    if (arm_current_el(env) == 2
         && arm_feature(env, ARM_FEATURE_EL3)
         && !(env->cp15.scr_el3 & SCR_HXEN)) {
         return CP_ACCESS_TRAP_EL3;
@@ -6013,6 +6077,7 @@ static const ARMCPRegInfo hcrx_el2_reginfo = {
     .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
     .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
+    .nv2_redirect_offset = 0xa0,
     .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
 };
 
@@ -6079,6 +6144,7 @@ static const ARMCPRegInfo el2_cp_reginfo[] = {
       .type = ARM_CP_IO,
       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
+      .nv2_redirect_offset = 0x78,
       .writefn = hcr_write, .raw_writefn = raw_write },
     { .name = "HCR", .state = ARM_CP_STATE_AA32,
       .type = ARM_CP_ALIAS | ARM_CP_IO,
@@ -6089,14 +6155,16 @@ static const ARMCPRegInfo el2_cp_reginfo[] = {
       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
-      .type = ARM_CP_ALIAS,
+      .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
       .access = PL2_RW,
       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
+      .type = ARM_CP_NV2_REDIRECT,
       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
+      .type = ARM_CP_NV2_REDIRECT,
       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
@@ -6105,7 +6173,7 @@ static const ARMCPRegInfo el2_cp_reginfo[] = {
       .access = PL2_RW,
       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
-      .type = ARM_CP_ALIAS,
+      .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
       .access = PL2_RW,
       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
@@ -6161,6 +6229,7 @@ static const ARMCPRegInfo el2_cp_reginfo[] = {
     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
       .access = PL2_RW,
+      .nv2_redirect_offset = 0x40,
       /* no .writefn needed as this can't cause an ASID change */
       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
@@ -6172,6 +6241,7 @@ static const ARMCPRegInfo el2_cp_reginfo[] = {
     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
       .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
+      .nv2_redirect_offset = 0x20,
       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
@@ -6180,6 +6250,7 @@ static const ARMCPRegInfo el2_cp_reginfo[] = {
     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
       .access = PL2_RW, .resetvalue = 0,
+      .nv2_redirect_offset = 0x90,
       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
@@ -6275,6 +6346,7 @@ static const ARMCPRegInfo el2_cp_reginfo[] = {
       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
       .writefn = gt_cntvoff_write,
+      .nv2_redirect_offset = 0x60,
       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
@@ -6313,6 +6385,7 @@ static const ARMCPRegInfo el2_cp_reginfo[] = {
     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
       .access = PL2_RW,
+      .nv2_redirect_offset = 0x80,
       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
 };
 
@@ -6338,10 +6411,12 @@ static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
       .access = PL2_RW, .accessfn = sel2_access,
+      .nv2_redirect_offset = 0x30,
       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
       .access = PL2_RW, .accessfn = sel2_access,
+      .nv2_redirect_offset = 0x48,
       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
 };
 
@@ -6509,6 +6584,42 @@ static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
     writefn(env, ri, value);
 }
 
+static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
+    return ri->orig_readfn(env, ri->opaque);
+}
+
+static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                              uint64_t value)
+{
+    /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
+    return ri->orig_writefn(env, ri->opaque, value);
+}
+
+static CPAccessResult el2_e2h_e12_access(CPUARMState *env,
+                                         const ARMCPRegInfo *ri,
+                                         bool isread)
+{
+    if (arm_current_el(env) == 1) {
+        /*
+         * This must be a FEAT_NV access (will either trap or redirect
+         * to memory). None of the registers with _EL12 aliases want to
+         * apply their trap controls for this kind of access, so don't
+         * call the orig_accessfn or do the "UNDEF when E2H is 0" check.
+         */
+        return CP_ACCESS_OK;
+    }
+    /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */
+    if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
+        return CP_ACCESS_TRAP_UNCATEGORIZED;
+    }
+    if (ri->orig_accessfn) {
+        return ri->orig_accessfn(env, ri->opaque, isread);
+    }
+    return CP_ACCESS_OK;
+}
+
 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
 {
     struct E2HAlias {
@@ -6608,6 +6719,41 @@ static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
         new_reg->type |= ARM_CP_ALIAS;
         /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
         new_reg->access &= PL2_RW | PL3_RW;
+        /* The new_reg op fields are as per new_key, not the target reg */
+        new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK)
+            >> CP_REG_ARM64_SYSREG_CRN_SHIFT;
+        new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK)
+            >> CP_REG_ARM64_SYSREG_CRM_SHIFT;
+        new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK)
+            >> CP_REG_ARM64_SYSREG_OP0_SHIFT;
+        new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK)
+            >> CP_REG_ARM64_SYSREG_OP1_SHIFT;
+        new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK)
+            >> CP_REG_ARM64_SYSREG_OP2_SHIFT;
+        new_reg->opaque = src_reg;
+        new_reg->orig_readfn = src_reg->readfn ?: raw_read;
+        new_reg->orig_writefn = src_reg->writefn ?: raw_write;
+        new_reg->orig_accessfn = src_reg->accessfn;
+        if (!new_reg->raw_readfn) {
+            new_reg->raw_readfn = raw_read;
+        }
+        if (!new_reg->raw_writefn) {
+            new_reg->raw_writefn = raw_write;
+        }
+        new_reg->readfn = el2_e2h_e12_read;
+        new_reg->writefn = el2_e2h_e12_write;
+        new_reg->accessfn = el2_e2h_e12_access;
+
+        /*
+         * If the _EL1 register is redirected to memory by FEAT_NV2,
+         * then it shares the offset with the _EL12 register,
+         * and which one is redirected depends on HCR_EL2.NV1.
+         */
+        if (new_reg->nv2_redirect_offset) {
+            assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1);
+            new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1;
+            new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1;
+        }
 
         ok = g_hash_table_insert(cpu->cp_regs,
                                  (gpointer)(uintptr_t)a->new_key, new_reg);
@@ -6741,9 +6887,11 @@ static const ARMCPRegInfo minimal_ras_reginfo[] = {
       .type = ARM_CP_CONST, .resetvalue = 0 },
     { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
+      .nv2_redirect_offset = 0x500,
       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
     { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
+      .nv2_redirect_offset = 0x508,
       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
 };
 
@@ -6915,6 +7063,7 @@ static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 static const ARMCPRegInfo zcr_reginfo[] = {
     { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
+      .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1,
       .access = PL1_RW, .type = ARM_CP_SVE,
       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
       .writefn = zcr_write, .raw_writefn = raw_write },
@@ -6951,10 +7100,21 @@ static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
     return CP_ACCESS_OK;
 }
 
-static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
-                                 bool isread)
+static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri,
+                                      bool isread)
+{
+    /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */
+    if (arm_current_el(env) == 2
+        && arm_feature(env, ARM_FEATURE_EL3)
+        && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
+        return CP_ACCESS_TRAP_EL3;
+    }
+    return CP_ACCESS_OK;
+}
+
+static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri,
+                                   bool isread)
 {
-    /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
     if (arm_current_el(env) < 3
         && arm_feature(env, ARM_FEATURE_EL3)
         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
@@ -7045,6 +7205,7 @@ static const ARMCPRegInfo sme_reginfo[] = {
       .writefn = svcr_write, .raw_writefn = raw_write },
     { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
+      .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1,
       .access = PL1_RW, .type = ARM_CP_SME,
       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
       .writefn = smcr_write, .raw_writefn = raw_write },
@@ -7073,12 +7234,13 @@ static const ARMCPRegInfo sme_reginfo[] = {
      */
     { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
-      .access = PL1_RW, .accessfn = access_esm,
+      .access = PL1_RW, .accessfn = access_smpri,
       .fgt = FGT_NSMPRI_EL1,
       .type = ARM_CP_CONST, .resetvalue = 0 },
     { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
-      .access = PL2_RW, .accessfn = access_esm,
+      .nv2_redirect_offset = 0x1f8,
+      .access = PL2_RW, .accessfn = access_smprimap,
       .type = ARM_CP_CONST, .resetvalue = 0 },
 };
 
@@ -7728,7 +7890,46 @@ static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
                                  bool isread)
 {
     int el = arm_current_el(env);
+    if (el < 2 && arm_is_el2_enabled(env)) {
+        uint64_t hcr = arm_hcr_el2_eff(env);
+        if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
+            return CP_ACCESS_TRAP_EL2;
+        }
+    }
+    if (el < 3 &&
+        arm_feature(env, ARM_FEATURE_EL3) &&
+        !(env->cp15.scr_el3 & SCR_ATA)) {
+        return CP_ACCESS_TRAP_EL3;
+    }
+    return CP_ACCESS_OK;
+}
+
+static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri,
+                                      bool isread)
+{
+    CPAccessResult nv1 = access_nv1(env, ri, isread);
+
+    if (nv1 != CP_ACCESS_OK) {
+        return nv1;
+    }
+    return access_mte(env, ri, isread);
+}
+
+static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri,
+                                      bool isread)
+{
+    /*
+     * TFSR_EL2: similar to generic access_mte(), but we need to
+     * account for FEAT_NV. At EL1 this must be a FEAT_NV access;
+     * if NV2 is enabled then we will redirect this to TFSR_EL1
+     * after doing the HCR and SCR ATA traps; otherwise this will
+     * be a trap to EL2 and the HCR/SCR traps do not apply.
+     */
+    int el = arm_current_el(env);
 
+    if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) {
+        return CP_ACCESS_OK;
+    }
     if (el < 2 && arm_is_el2_enabled(env)) {
         uint64_t hcr = arm_hcr_el2_eff(env);
         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
@@ -7760,11 +7961,13 @@ static const ARMCPRegInfo mte_reginfo[] = {
       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
-      .access = PL1_RW, .accessfn = access_mte,
+      .access = PL1_RW, .accessfn = access_tfsr_el1,
+      .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1,
       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
+      .type = ARM_CP_NV2_REDIRECT,
       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
-      .access = PL2_RW, .accessfn = access_mte,
+      .access = PL2_RW, .accessfn = access_tfsr_el2,
       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
@@ -7912,6 +8115,18 @@ static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
     return CP_ACCESS_OK;
 }
 
+static CPAccessResult access_scxtnum_el1(CPUARMState *env,
+                                         const ARMCPRegInfo *ri,
+                                         bool isread)
+{
+    CPAccessResult nv1 = access_nv1(env, ri, isread);
+
+    if (nv1 != CP_ACCESS_OK) {
+        return nv1;
+    }
+    return access_scxtnum(env, ri, isread);
+}
+
 static const ARMCPRegInfo scxtnum_reginfo[] = {
     { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
@@ -7920,8 +8135,9 @@ static const ARMCPRegInfo scxtnum_reginfo[] = {
       .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
     { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
-      .access = PL1_RW, .accessfn = access_scxtnum,
+      .access = PL1_RW, .accessfn = access_scxtnum_el1,
       .fgt = FGT_SCXTNUM_EL1,
+      .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1,
       .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
     { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
@@ -7946,25 +8162,53 @@ static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
 static const ARMCPRegInfo fgt_reginfo[] = {
     { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
+      .nv2_redirect_offset = 0x1b8,
       .access = PL2_RW, .accessfn = access_fgt,
       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
     { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
+      .nv2_redirect_offset = 0x1c0,
       .access = PL2_RW, .accessfn = access_fgt,
       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
     { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
+      .nv2_redirect_offset = 0x1d0,
       .access = PL2_RW, .accessfn = access_fgt,
       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
     { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
+      .nv2_redirect_offset = 0x1d8,
       .access = PL2_RW, .accessfn = access_fgt,
       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
     { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
+      .nv2_redirect_offset = 0x1c8,
       .access = PL2_RW, .accessfn = access_fgt,
       .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
 };
+
+static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+                       uint64_t value)
+{
+    /*
+     * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee
+     * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything
+     * about the RESS bits at the top -- we choose the "generate an EL2
+     * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let
+     * the ptw.c code detect the resulting invalid address).
+     */
+    env->cp15.vncr_el2 = value & ~0xfffULL;
+}
+
+static const ARMCPRegInfo nv2_reginfo[] = {
+    { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0,
+      .access = PL2_RW,
+      .writefn = vncr_write,
+      .nv2_redirect_offset = 0xb0,
+      .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) },
+};
+
 #endif /* TARGET_AARCH64 */
 
 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
@@ -8125,12 +8369,14 @@ static const ARMCPRegInfo vhe_reginfo[] = {
       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
       .type = ARM_CP_IO | ARM_CP_ALIAS,
       .access = PL2_RW, .accessfn = e2h_access,
+      .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1,
       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
       .type = ARM_CP_IO | ARM_CP_ALIAS,
       .access = PL2_RW, .accessfn = e2h_access,
+      .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1,
       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
@@ -8147,11 +8393,13 @@ static const ARMCPRegInfo vhe_reginfo[] = {
       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
       .type = ARM_CP_IO | ARM_CP_ALIAS,
       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
+      .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1,
       .access = PL2_RW, .accessfn = e2h_access,
       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
       .type = ARM_CP_IO | ARM_CP_ALIAS,
+      .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1,
       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
       .access = PL2_RW, .accessfn = e2h_access,
       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
@@ -8164,12 +8412,12 @@ static const ARMCPRegInfo ats1e1_reginfo[] = {
       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
       .fgt = FGT_ATS1E1RP,
-      .accessfn = at_e012_access, .writefn = ats_write64 },
+      .accessfn = at_s1e01_access, .writefn = ats_write64 },
     { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
       .fgt = FGT_ATS1E1WP,
-      .accessfn = at_e012_access, .writefn = ats_write64 },
+      .accessfn = at_s1e01_access, .writefn = ats_write64 },
 };
 
 static const ARMCPRegInfo ats1cp_reginfo[] = {
@@ -8793,6 +9041,7 @@ void register_cp_regs_for_features(ARMCPU *cpu)
               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
               .access = PL2_RW, .resetvalue = cpu->midr,
               .type = ARM_CP_EL3_NO_EL2_C_NZ,
+              .nv2_redirect_offset = 0x88,
               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
@@ -8804,6 +9053,7 @@ void register_cp_regs_for_features(ARMCPU *cpu)
               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
               .access = PL2_RW, .resetvalue = vmpidr_def,
               .type = ARM_CP_EL3_NO_EL2_C_NZ,
+              .nv2_redirect_offset = 0x50,
               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
         };
         /*
@@ -9233,6 +9483,7 @@ void register_cp_regs_for_features(ARMCPU *cpu)
             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
               .access = PL1_RW, .accessfn = access_tacr,
+              .nv2_redirect_offset = 0x118,
               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
@@ -9302,7 +9553,9 @@ void register_cp_regs_for_features(ARMCPU *cpu)
             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
               .access = PL1_RW, .writefn = vbar_write,
+              .accessfn = access_nv1,
               .fgt = FGT_VBAR_EL1,
+              .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1,
               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
                                      offsetof(CPUARMState, cp15.vbar_ns) },
               .resetvalue = 0 },
@@ -9317,6 +9570,7 @@ void register_cp_regs_for_features(ARMCPU *cpu)
             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
             .access = PL1_RW, .accessfn = access_tvm_trvm,
             .fgt = FGT_SCTLR_EL1,
+            .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1,
             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
                                    offsetof(CPUARMState, cp15.sctlr_ns) },
             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
@@ -9447,6 +9701,10 @@ void register_cp_regs_for_features(ARMCPU *cpu)
             define_arm_cp_regs(cpu, rme_mte_reginfo);
         }
     }
+
+    if (cpu_isar_feature(aa64_nv2, cpu)) {
+        define_arm_cp_regs(cpu, nv2_reginfo);
+    }
 #endif
 
     if (cpu_isar_feature(any_predinv, cpu)) {
@@ -11134,6 +11392,20 @@ static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
         old_mode = pstate_read(env);
         aarch64_save_sp(env, arm_current_el(env));
         env->elr_el[new_el] = env->pc;
+
+        if (cur_el == 1 && new_el == 1) {
+            uint64_t hcr = arm_hcr_el2_eff(env);
+            if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV ||
+                (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) {
+                /*
+                 * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR
+                 * by setting M[3:2] to 0b10.
+                 * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN)
+                 * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM)
+                 */
+                old_mode = deposit32(old_mode, 2, 2, 2);
+            }
+        }
     } else {
         old_mode = cpsr_read_for_spsr_elx(env);
         env->elr_el[new_el] = env->regs[15];
@@ -11144,6 +11416,7 @@ static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
     }
     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
 
+    qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode);
     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
                   env->elr_el[new_el]);
 
@@ -11987,15 +12260,6 @@ ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
 }
 #endif
 
-static bool arm_pan_enabled(CPUARMState *env)
-{
-    if (is_a64(env)) {
-        return env->pstate & PSTATE_PAN;
-    } else {
-        return env->uncached_cpsr & CPSR_PAN;
-    }
-}
-
 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
 {
     ARMMMUIdx idx;
index 0ecd3a36dad47d12a90fb9bcfd287347c3812182..2d4fa8dbcaf99a7301626725831952971b1415ea 100644 (file)
@@ -1581,6 +1581,12 @@ static bool lpae_block_desc_valid(ARMCPU *cpu, bool ds,
     }
 }
 
+static bool nv_nv1_enabled(CPUARMState *env, S1Translate *ptw)
+{
+    uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
+    return (hcr & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1);
+}
+
 /**
  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
  *
@@ -1989,6 +1995,21 @@ static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
         xn = extract64(attrs, 54, 1);
         pxn = extract64(attrs, 53, 1);
 
+        if (el == 1 && nv_nv1_enabled(env, ptw)) {
+            /*
+             * With FEAT_NV, when HCR_EL2.{NV,NV1} == {1,1}, the block/page
+             * descriptor bit 54 holds PXN, 53 is RES0, and the effective value
+             * of UXN is 0. Similarly for bits 59 and 60 in table descriptors
+             * (which we have already folded into bits 53 and 54 of attrs).
+             * AP[1] (descriptor bit 6, our ap bit 0) is treated as 0.
+             * Similarly, APTable[0] from the table descriptor is treated as 0;
+             * we already folded this into AP[1] and squashing that to 0 does
+             * the right thing.
+             */
+            pxn = xn;
+            xn = 0;
+            ap &= ~1;
+        }
         /*
          * Note that we modified ptw->in_space earlier for NSTable, but
          * result->f.attrs retains a copy of the original security space.
index 95454b5b3bb01be2800f0933da43635c9f6fcde5..1a49767479fef03cbf295bc24d4e86f3ba13f761 100644 (file)
@@ -86,6 +86,9 @@ typedef enum {
 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
 #define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
 
+/* In the Data Abort syndrome */
+#define ARM_EL_VNCR (1 << 13)
+
 static inline uint32_t syn_get_ec(uint32_t syn)
 {
     return syn >> ARM_EL_EC_SHIFT;
@@ -256,13 +259,12 @@ static inline uint32_t syn_bxjtrap(int cv, int cond, int rm)
         (cv << 24) | (cond << 20) | rm;
 }
 
-static inline uint32_t syn_gpc(int s2ptw, int ind, int gpcsc,
+static inline uint32_t syn_gpc(int s2ptw, int ind, int gpcsc, int vncr,
                                int cm, int s1ptw, int wnr, int fsc)
 {
-    /* TODO: FEAT_NV2 adds VNCR */
     return (EC_GPC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (s2ptw << 21)
-            | (ind << 20) | (gpcsc << 14) | (cm << 8) | (s1ptw << 7)
-            | (wnr << 6) | fsc;
+        | (ind << 20) | (gpcsc << 14) | (vncr << 13) | (cm << 8)
+        | (s1ptw << 7) | (wnr << 6) | fsc;
 }
 
 static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
@@ -295,6 +297,16 @@ static inline uint32_t syn_data_abort_with_iss(int same_el,
            | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
 }
 
+/*
+ * Faults due to FEAT_NV2 VNCR_EL2-based accesses report as same-EL
+ * Data Aborts with the VNCR bit set.
+ */
+static inline uint32_t syn_data_abort_vncr(int ea, int wnr, int fsc)
+{
+    return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (1 << ARM_EL_EC_SHIFT)
+        | ARM_EL_IL | ARM_EL_VNCR | (wnr << 6) | fsc;
+}
+
 static inline uint32_t syn_swstep(int same_el, int isv, int ex)
 {
     return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
index fcda99e1583d5e4916b7b1fb4a61cdd017b12ed6..5fba2c0f04084b59480ce7637181b1c856aac687 100644 (file)
@@ -1105,6 +1105,16 @@ void aarch64_max_tcg_initfn(Object *obj)
     u = FIELD_DP32(u, CLIDR_EL1, LOUU, 0);
     cpu->clidr = u;
 
+    /*
+     * Set CTR_EL0.DIC and IDC to tell the guest it doesnt' need to
+     * do any cache maintenance for data-to-instruction or
+     * instruction-to-guest coherence. (Our cache ops are nops.)
+     */
+    t = cpu->ctr;
+    t = FIELD_DP64(t, CTR_EL0, IDC, 1);
+    t = FIELD_DP64(t, CTR_EL0, DIC, 1);
+    cpu->ctr = t;
+
     t = cpu->isar.id_aa64isar0;
     t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2);      /* FEAT_PMULL */
     t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);     /* FEAT_SHA1 */
@@ -1194,6 +1204,7 @@ void aarch64_max_tcg_initfn(Object *obj)
     t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1);      /* FEAT_UAO */
     t = FIELD_DP64(t, ID_AA64MMFR2, IESB, 1);     /* FEAT_IESB */
     t = FIELD_DP64(t, ID_AA64MMFR2, VARANGE, 1);  /* FEAT_LVA */
+    t = FIELD_DP64(t, ID_AA64MMFR2, NV, 2);       /* FEAT_NV2 */
     t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1);       /* FEAT_TTST */
     t = FIELD_DP64(t, ID_AA64MMFR2, AT, 1);       /* FEAT_LSE2 */
     t = FIELD_DP64(t, ID_AA64MMFR2, IDS, 1);      /* FEAT_IDST */
index a6ebd7571a32f8448de12382d2cbba98561d379a..8e5d35d92275ec59c18c9186562d817f6ec232e8 100644 (file)
@@ -169,6 +169,7 @@ static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
     CPUARMTBFlags flags = {};
     ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
     uint64_t tcr = regime_tcr(env, mmu_idx);
+    uint64_t hcr = arm_hcr_el2_eff(env);
     uint64_t sctlr;
     int tbii, tbid;
 
@@ -260,8 +261,10 @@ static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
         switch (mmu_idx) {
         case ARMMMUIdx_E10_1:
         case ARMMMUIdx_E10_1_PAN:
-            /* TODO: ARMv8.3-NV */
-            DP_TBFLAG_A64(flags, UNPRIV, 1);
+            /* FEAT_NV: NV,NV1 == 1,1 means we don't do UNPRIV accesses */
+            if ((hcr & (HCR_NV | HCR_NV1)) != (HCR_NV | HCR_NV1)) {
+                DP_TBFLAG_A64(flags, UNPRIV, 1);
+            }
             break;
         case ARMMMUIdx_E20_2:
         case ARMMMUIdx_E20_2_PAN:
@@ -285,13 +288,34 @@ static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
     if (arm_fgt_active(env, el)) {
         DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1);
         if (FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, ERET)) {
-            DP_TBFLAG_A64(flags, FGT_ERET, 1);
+            DP_TBFLAG_A64(flags, TRAP_ERET, 1);
         }
         if (fgt_svc(env, el)) {
             DP_TBFLAG_ANY(flags, FGT_SVC, 1);
         }
     }
 
+    /*
+     * ERET can also be trapped for FEAT_NV. arm_hcr_el2_eff() takes care
+     * of "is EL2 enabled" and the NV bit can only be set if FEAT_NV is present.
+     */
+    if (el == 1 && (hcr & HCR_NV)) {
+        DP_TBFLAG_A64(flags, TRAP_ERET, 1);
+        DP_TBFLAG_A64(flags, NV, 1);
+        if (hcr & HCR_NV1) {
+            DP_TBFLAG_A64(flags, NV1, 1);
+        }
+        if (hcr & HCR_NV2) {
+            DP_TBFLAG_A64(flags, NV2, 1);
+            if (hcr & HCR_E2H) {
+                DP_TBFLAG_A64(flags, NV2_MEM_E20, 1);
+            }
+            if (env->cp15.sctlr_el[2] & SCTLR_EE) {
+                DP_TBFLAG_A64(flags, NV2_MEM_BE, 1);
+            }
+        }
+    }
+
     if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
         /*
          * Set MTE_ACTIVE if any access may be Checked, and leave clear
index 105ab63ed758ccc6c2cd3afe953c6f40e6d9bd14..b5ac26061c785969e98a6f49f8c99caa910de632 100644 (file)
@@ -985,7 +985,14 @@ void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
      *
      *  Conduit SMC, valid call  Trap to EL2         PSCI Call
      *  Conduit SMC, inval call  Trap to EL2         Undef insn
-     *  Conduit not SMC          Undef insn          Undef insn
+     *  Conduit not SMC          Undef or trap[1]    Undef insn
+     *
+     * [1] In this case:
+     *  - if HCR_EL2.NV == 1 we must trap to EL2
+     *  - if HCR_EL2.NV == 0 then newer architecture revisions permit
+     *    AArch64 (but not AArch32) to trap to EL2 as an IMPDEF choice
+     *  - otherwise we must UNDEF
+     * We take the IMPDEF choice to always UNDEF if HCR_EL2.NV == 0.
      */
 
     /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
@@ -999,9 +1006,12 @@ void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
                                                      : smd_flag && !secure;
 
     if (!arm_feature(env, ARM_FEATURE_EL3) &&
+        !(arm_hcr_el2_eff(env) & HCR_NV) &&
         cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
-        /* If we have no EL3 then SMC always UNDEFs and can't be
-         * trapped to EL2. PSCI-via-SMC is a sort of ersatz EL3
+        /*
+         * If we have no EL3 then traditionally SMC always UNDEFs and can't be
+         * trapped to EL2. For nested virtualization, SMC can be trapped to
+         * the outer hypervisor. PSCI-via-SMC is a sort of ersatz EL3
          * firmware within QEMU, and we want an EL2 guest to be able
          * to forbid its EL1 from making PSCI calls into QEMU's
          * "firmware" via HCR.TSC, so for these purposes treat
index 4fdd85359e15b005170d97aecbd441290ad58e44..dd5de74ffb792e234f04cd8b488785bb5329b114 100644 (file)
@@ -50,7 +50,15 @@ static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
      * ST64BV, or ST64BV0 insns report syndrome info even for stage-1
      * faults and regardless of the target EL.
      */
-    if (!(template_syn & ARM_EL_ISV) || target_el != 2
+    if (template_syn & ARM_EL_VNCR) {
+        /*
+         * FEAT_NV2 faults on accesses via VNCR_EL2 are a special case:
+         * they are always reported as "same EL", even though we are going
+         * from EL1 to EL2.
+         */
+        assert(!fi->stage2);
+        syn = syn_data_abort_vncr(fi->ea, is_write, fsc);
+    } else if (!(template_syn & ARM_EL_ISV) || target_el != 2
         || fi->s1ptw || !fi->stage2) {
         syn = syn_data_abort_no_iss(same_el, 0,
                                     fi->ea, 0, fi->s1ptw, is_write, fsc);
@@ -169,6 +177,20 @@ void arm_deliver_fault(ARMCPU *cpu, vaddr addr,
     int current_el = arm_current_el(env);
     bool same_el;
     uint32_t syn, exc, fsr, fsc;
+    /*
+     * We know this must be a data or insn abort, and that
+     * env->exception.syndrome contains the template syndrome set
+     * up at translate time. So we can check only the VNCR bit
+     * (and indeed syndrome does not have the EC field in it,
+     * because we masked that out in disas_set_insn_syndrome())
+     */
+    bool is_vncr = (mmu_idx != MMU_INST_FETCH) &&
+        (env->exception.syndrome & ARM_EL_VNCR);
+
+    if (is_vncr) {
+        /* FEAT_NV2 faults on accesses via VNCR_EL2 go to EL2 */
+        target_el = 2;
+    }
 
     if (report_as_gpc_exception(cpu, current_el, fi)) {
         target_el = 3;
@@ -177,7 +199,8 @@ void arm_deliver_fault(ARMCPU *cpu, vaddr addr,
 
         syn = syn_gpc(fi->stage2 && fi->type == ARMFault_GPCFOnWalk,
                       access_type == MMU_INST_FETCH,
-                      encode_gpcsc(fi), 0, fi->s1ptw,
+                      encode_gpcsc(fi), is_vncr,
+                      0, fi->s1ptw,
                       access_type == MMU_DATA_STORE, fsc);
 
         env->cp15.mfar_el3 = fi->paddr;
index f3b5b9124d09067c2760667dd172e18a6f4313cb..27335e8540793af0831ee6bc0da9edef29839d94 100644 (file)
@@ -1606,7 +1606,7 @@ static bool trans_ERET(DisasContext *s, arg_ERET *a)
     if (s->current_el == 0) {
         return false;
     }
-    if (s->fgt_eret) {
+    if (s->trap_eret) {
         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
         return true;
     }
@@ -1633,7 +1633,7 @@ static bool trans_ERETA(DisasContext *s, arg_reta *a)
         return false;
     }
     /* The FGT trap takes precedence over an auth trap. */
-    if (s->fgt_eret) {
+    if (s->trap_eret) {
         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
         return true;
     }
@@ -2132,16 +2132,19 @@ static void handle_sys(DisasContext *s, bool isread,
                                       crn, crm, op0, op1, op2);
     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
     bool need_exit_tb = false;
+    bool nv_trap_to_el2 = false;
+    bool nv_redirect_reg = false;
+    bool skip_fp_access_checks = false;
+    bool nv2_mem_redirect = false;
     TCGv_ptr tcg_ri = NULL;
     TCGv_i64 tcg_rt;
-    uint32_t syndrome;
+    uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
 
     if (crn == 11 || crn == 15) {
         /*
          * Check for TIDCP trap, which must take precedence over
          * the UNDEF for "no such register" etc.
          */
-        syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
         switch (s->current_el) {
         case 0:
             if (dc_isar_feature(aa64_tidcp1, s)) {
@@ -2165,17 +2168,65 @@ static void handle_sys(DisasContext *s, bool isread,
         return;
     }
 
+    if (s->nv2 && ri->nv2_redirect_offset) {
+        /*
+         * Some registers always redirect to memory; some only do so if
+         * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
+         * pairs which share an offset; see the table in R_CSRPQ).
+         */
+        if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
+            nv2_mem_redirect = s->nv1;
+        } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
+            nv2_mem_redirect = !s->nv1;
+        } else {
+            nv2_mem_redirect = true;
+        }
+    }
+
     /* Check access permissions */
     if (!cp_access_ok(s->current_el, ri, isread)) {
-        gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
-        return;
+        /*
+         * FEAT_NV/NV2 handling does not do the usual FP access checks
+         * for registers only accessible at EL2 (though it *does* do them
+         * for registers accessible at EL1).
+         */
+        skip_fp_access_checks = true;
+        if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
+            /*
+             * This is one of the few EL2 registers which should redirect
+             * to the equivalent EL1 register. We do that after running
+             * the EL2 register's accessfn.
+             */
+            nv_redirect_reg = true;
+            assert(!nv2_mem_redirect);
+        } else if (nv2_mem_redirect) {
+            /*
+             * NV2 redirect-to-memory takes precedence over trap to EL2 or
+             * UNDEF to EL1.
+             */
+        } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
+            /*
+             * This register / instruction exists and is an EL2 register, so
+             * we must trap to EL2 if accessed in nested virtualization EL1
+             * instead of UNDEFing. We'll do that after the usual access checks.
+             * (This makes a difference only for a couple of registers like
+             * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
+             * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
+             * an accessfn which does nothing when called from EL1, because
+             * the trap-to-EL3 controls which would apply to that register
+             * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
+             */
+            nv_trap_to_el2 = true;
+        } else {
+            gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
+            return;
+        }
     }
 
     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
         /* Emit code to perform further access permissions checks at
          * runtime; this may result in an exception.
          */
-        syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
         gen_a64_update_pc(s, 0);
         tcg_ri = tcg_temp_new_ptr();
         gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
@@ -2190,6 +2241,78 @@ static void handle_sys(DisasContext *s, bool isread,
         gen_a64_update_pc(s, 0);
     }
 
+    if (!skip_fp_access_checks) {
+        if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
+            return;
+        } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
+            return;
+        } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
+            return;
+        }
+    }
+
+    if (nv_trap_to_el2) {
+        gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
+        return;
+    }
+
+    if (nv_redirect_reg) {
+        /*
+         * FEAT_NV2 redirection of an EL2 register to an EL1 register.
+         * Conveniently in all cases the encoding of the EL1 register is
+         * identical to the EL2 register except that opc1 is 0.
+         * Get the reginfo for the EL1 register to use for the actual access.
+         * We don't use the EL1 register's access function, and
+         * fine-grained-traps on EL1 also do not apply here.
+         */
+        key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
+                                 crn, crm, op0, 0, op2);
+        ri = get_arm_cp_reginfo(s->cp_regs, key);
+        assert(ri);
+        assert(cp_access_ok(s->current_el, ri, isread));
+        /*
+         * We might not have done an update_pc earlier, so check we don't
+         * need it. We could support this in future if necessary.
+         */
+        assert(!(ri->type & ARM_CP_RAISES_EXC));
+    }
+
+    if (nv2_mem_redirect) {
+        /*
+         * This system register is being redirected into an EL2 memory access.
+         * This means it is not an IO operation, doesn't change hflags,
+         * and need not end the TB, because it has no side effects.
+         *
+         * The access is 64-bit single copy atomic, guaranteed aligned because
+         * of the definition of VCNR_EL2. Its endianness depends on
+         * SCTLR_EL2.EE, not on the data endianness of EL1.
+         * It is done under either the EL2 translation regime or the EL2&0
+         * translation regime, depending on HCR_EL2.E2H. It behaves as if
+         * PSTATE.PAN is 0.
+         */
+        TCGv_i64 ptr = tcg_temp_new_i64();
+        MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
+        ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
+        int memidx = arm_to_core_mmu_idx(armmemidx);
+        uint32_t syn;
+
+        mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
+
+        tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
+        tcg_gen_addi_i64(ptr, ptr,
+                         (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
+        tcg_rt = cpu_reg(s, rt);
+
+        syn = syn_data_abort_vncr(0, !isread, 0);
+        disas_set_insn_syndrome(s, syn);
+        if (isread) {
+            tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
+        } else {
+            tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
+        }
+        return;
+    }
+
     /* Handle special cases first */
     switch (ri->type & ARM_CP_SPECIAL_MASK) {
     case 0:
@@ -2205,12 +2328,17 @@ static void handle_sys(DisasContext *s, bool isread,
         }
         return;
     case ARM_CP_CURRENTEL:
-        /* Reads as current EL value from pstate, which is
+    {
+        /*
+         * Reads as current EL value from pstate, which is
          * guaranteed to be constant by the tb flags.
+         * For nested virt we should report EL2.
          */
+        int el = s->nv ? 2 : s->current_el;
         tcg_rt = cpu_reg(s, rt);
-        tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
+        tcg_gen_movi_i64(tcg_rt, el << 2);
         return;
+    }
     case ARM_CP_DC_ZVA:
         /* Writes clear the aligned block of memory which rt points into. */
         if (s->mte_active[0]) {
@@ -2268,13 +2396,6 @@ static void handle_sys(DisasContext *s, bool isread,
     default:
         g_assert_not_reached();
     }
-    if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
-        return;
-    } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
-        return;
-    } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
-        return;
-    }
 
     if (ri->type & ARM_CP_IO) {
         /* I/O operations must end the TB here (whether read or write) */
@@ -13980,7 +14101,7 @@ static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
-    dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET);
+    dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
@@ -13997,6 +14118,11 @@ static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
+    dc->nv = EX_TBFLAG_A64(tb_flags, NV);
+    dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
+    dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
+    dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
+    dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
     dc->vec_len = 0;
     dc->vec_stride = 0;
     dc->cp_regs = arm_cpu->cp_regs;
index 3c3bb3431ada27cecb6d5159e32c0bf0600f01d9..93be745cf33103f4acb0519fe4be050ee4d6b575 100644 (file)
@@ -138,12 +138,22 @@ typedef struct DisasContext {
     bool mve_no_pred;
     /* True if fine-grained traps are active */
     bool fgt_active;
-    /* True if fine-grained trap on ERET is enabled */
-    bool fgt_eret;
     /* True if fine-grained trap on SVC is enabled */
     bool fgt_svc;
+    /* True if a trap on ERET is enabled (FGT or NV) */
+    bool trap_eret;
     /* True if FEAT_LSE2 SCTLR_ELx.nAA is set */
     bool naa;
+    /* True if FEAT_NV HCR_EL2.NV is enabled */
+    bool nv;
+    /* True if NV enabled and HCR_EL2.NV1 is set */
+    bool nv1;
+    /* True if NV enabled and HCR_EL2.NV2 is set */
+    bool nv2;
+    /* True if NV2 enabled and NV2 RAM accesses use EL2&0 translation regime */
+    bool nv2_mem_e20;
+    /* True if NV2 enabled and NV2 RAM accesses are big-endian */
+    bool nv2_mem_be;
     /*
      * >= 0, a copy of PSTATE.BTYPE, which will be 0 without v8.5-BTI.
      *  < 0, set by the current instruction.
@@ -159,6 +169,8 @@ typedef struct DisasContext {
     int c15_cpar;
     /* TCG op of the current insn_start.  */
     TCGOp *insn_start;
+    /* Offset from VNCR_EL2 when FEAT_NV2 redirects this reg to memory */
+    uint32_t nv2_redirect_offset;
 } DisasContext;
 
 typedef struct DisasCompare {