/*
- * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.3 $)
+ * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.4 $)
*
* Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
* Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
+ * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
+#include <linux/smp.h>
+#include <linux/sched.h>
#include <linux/cpufreq.h>
-#include <linux/proc_fs.h>
-#include <linux/seq_file.h>
#include <linux/compiler.h>
#include <linux/sched.h> /* current */
#include <linux/dmi.h>
-#include <asm/io.h>
-#include <asm/delay.h>
-#include <asm/uaccess.h>
#include <linux/acpi.h>
#include <acpi/processor.h>
+#include <asm/io.h>
+#include <asm/processor.h>
+#include <asm/cpufeature.h>
+#include <asm/delay.h>
+#include <asm/uaccess.h>
+
#define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
MODULE_LICENSE("GPL");
-struct cpufreq_acpi_io {
+struct acpi_cpufreq_data {
struct acpi_processor_performance *acpi_data;
struct cpufreq_frequency_table *freq_table;
unsigned int resume;
};
-static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS];
+static struct acpi_cpufreq_data *drv_data[NR_CPUS];
static struct acpi_processor_performance *acpi_perf_data[NR_CPUS];
static struct cpufreq_driver acpi_cpufreq_driver;
static unsigned int acpi_pstate_strict;
-static int
-acpi_processor_write_port(
- u16 port,
- u8 bit_width,
- u32 value)
+static unsigned extract_freq(u32 value, struct acpi_cpufreq_data *data)
+{
+ struct acpi_processor_performance *perf;
+ int i;
+
+ perf = data->acpi_data;
+
+ for (i = 0; i < perf->state_count; i++) {
+ if (value == perf->states[i].status)
+ return data->freq_table[i].frequency;
+ }
+ return 0;
+}
+
+
+static void wrport(u16 port, u8 bit_width, u32 value)
{
if (bit_width <= 8) {
outb(value, port);
outw(value, port);
} else if (bit_width <= 32) {
outl(value, port);
- } else {
- return -ENODEV;
}
- return 0;
}
-static int
-acpi_processor_read_port(
- u16 port,
- u8 bit_width,
- u32 *ret)
+static void rdport(u16 port, u8 bit_width, u32 *ret)
{
*ret = 0;
if (bit_width <= 8) {
*ret = inw(port);
} else if (bit_width <= 32) {
*ret = inl(port);
- } else {
- return -ENODEV;
}
- return 0;
}
-static int
-acpi_processor_set_performance (
- struct cpufreq_acpi_io *data,
- unsigned int cpu,
- int state)
+struct io_addr {
+ u16 port;
+ u8 bit_width;
+};
+
+struct drv_cmd {
+ cpumask_t mask;
+ struct io_addr addr;
+ u32 val;
+};
+
+static void do_drv_read(struct drv_cmd *cmd)
{
- u16 port = 0;
- u8 bit_width = 0;
- int i = 0;
- int ret = 0;
- u32 value = 0;
- int retval;
- struct acpi_processor_performance *perf;
+ rdport(cmd->addr.port, cmd->addr.bit_width, &cmd->val);
+ return;
+}
- dprintk("acpi_processor_set_performance\n");
+static void do_drv_write(struct drv_cmd *cmd)
+{
+ wrport(cmd->addr.port, cmd->addr.bit_width, cmd->val);
+ return;
+}
- retval = 0;
- perf = data->acpi_data;
- if (state == perf->state) {
- if (unlikely(data->resume)) {
- dprintk("Called after resume, resetting to P%d\n", state);
- data->resume = 0;
- } else {
- dprintk("Already at target state (P%d)\n", state);
- return (retval);
- }
+static inline void drv_read(struct drv_cmd *cmd)
+{
+ cpumask_t saved_mask = current->cpus_allowed;
+ cmd->val = 0;
+
+ set_cpus_allowed(current, cmd->mask);
+ do_drv_read(cmd);
+ set_cpus_allowed(current, saved_mask);
+
+}
+
+static void drv_write(struct drv_cmd *cmd)
+{
+ cpumask_t saved_mask = current->cpus_allowed;
+ unsigned int i;
+
+ for_each_cpu_mask(i, cmd->mask) {
+ set_cpus_allowed(current, cpumask_of_cpu(i));
+ do_drv_write(cmd);
}
- dprintk("Transitioning from P%d to P%d\n", perf->state, state);
+ set_cpus_allowed(current, saved_mask);
+ return;
+}
- /*
- * First we write the target state's 'control' value to the
- * control_register.
- */
+static u32 get_cur_val(cpumask_t mask)
+{
+ struct acpi_processor_performance *perf;
+ struct drv_cmd cmd;
- port = perf->control_register.address;
- bit_width = perf->control_register.bit_width;
- value = (u32) perf->states[state].control;
+ if (unlikely(cpus_empty(mask)))
+ return 0;
- dprintk("Writing 0x%08x to port 0x%04x\n", value, port);
+ perf = drv_data[first_cpu(mask)]->acpi_data;
+ cmd.addr.port = perf->control_register.address;
+ cmd.addr.bit_width = perf->control_register.bit_width;
+ cmd.mask = mask;
- ret = acpi_processor_write_port(port, bit_width, value);
- if (ret) {
- dprintk("Invalid port width 0x%04x\n", bit_width);
- return (ret);
- }
+ drv_read(&cmd);
- /*
- * Assume the write went through when acpi_pstate_strict is not used.
- * As read status_register is an expensive operation and there
- * are no specific error cases where an IO port write will fail.
- */
- if (acpi_pstate_strict) {
- /* Then we read the 'status_register' and compare the value
- * with the target state's 'status' to make sure the
- * transition was successful.
- * Note that we'll poll for up to 1ms (100 cycles of 10us)
- * before giving up.
- */
-
- port = perf->status_register.address;
- bit_width = perf->status_register.bit_width;
-
- dprintk("Looking for 0x%08x from port 0x%04x\n",
- (u32) perf->states[state].status, port);
-
- for (i = 0; i < 100; i++) {
- ret = acpi_processor_read_port(port, bit_width, &value);
- if (ret) {
- dprintk("Invalid port width 0x%04x\n", bit_width);
- return (ret);
- }
- if (value == (u32) perf->states[state].status)
- break;
- udelay(10);
- }
- } else {
- value = (u32) perf->states[state].status;
- }
+ dprintk("get_cur_val = %u\n", cmd.val);
+
+ return cmd.val;
+}
- if (unlikely(value != (u32) perf->states[state].status)) {
- printk(KERN_WARNING "acpi-cpufreq: Transition failed\n");
- retval = -ENODEV;
- return (retval);
+static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
+{
+ struct acpi_cpufreq_data *data = drv_data[cpu];
+ unsigned int freq;
+
+ dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
+
+ if (unlikely(data == NULL ||
+ data->acpi_data == NULL ||
+ data->freq_table == NULL)) {
+ return 0;
}
- dprintk("Transition successful after %d microseconds\n", i * 10);
+ freq = extract_freq(get_cur_val(cpumask_of_cpu(cpu)), data);
+ dprintk("cur freq = %u\n", freq);
- perf->state = state;
- return (retval);
+ return freq;
}
+static unsigned int check_freqs(cpumask_t mask, unsigned int freq,
+ struct acpi_cpufreq_data *data)
+{
+ unsigned int cur_freq;
+ unsigned int i;
-static int
-acpi_cpufreq_target (
- struct cpufreq_policy *policy,
- unsigned int target_freq,
- unsigned int relation)
+ for (i = 0; i < 100; i++) {
+ cur_freq = extract_freq(get_cur_val(mask), data);
+ if (cur_freq == freq)
+ return 1;
+ udelay(10);
+ }
+ return 0;
+}
+
+static int acpi_cpufreq_target(struct cpufreq_policy *policy,
+ unsigned int target_freq,
+ unsigned int relation)
{
- struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
- struct cpufreq_acpi_io *cpudata;
- struct acpi_processor_performance *perf;
- struct cpufreq_freqs freqs;
- cpumask_t online_policy_cpus;
- cpumask_t saved_mask;
- cpumask_t set_mask;
- cpumask_t covered_cpus;
- unsigned int cur_state = 0;
- unsigned int next_state = 0;
- unsigned int result = 0;
- unsigned int j;
- unsigned int tmp;
-
- dprintk("acpi_cpufreq_setpolicy\n");
+ struct acpi_cpufreq_data *data = drv_data[policy->cpu];
+ struct acpi_processor_performance *perf;
+ struct cpufreq_freqs freqs;
+ cpumask_t online_policy_cpus;
+ struct drv_cmd cmd;
+ unsigned int next_state = 0;
+ unsigned int next_perf_state = 0;
+ unsigned int i;
+ int result = 0;
+
+ dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
+
+ if (unlikely(data == NULL ||
+ data->acpi_data == NULL ||
+ data->freq_table == NULL)) {
+ return -ENODEV;
+ }
+ perf = data->acpi_data;
result = cpufreq_frequency_table_target(policy,
- data->freq_table,
- target_freq,
- relation,
- &next_state);
+ data->freq_table,
+ target_freq,
+ relation,
+ &next_state);
if (unlikely(result))
- return (result);
-
- perf = data->acpi_data;
- cur_state = perf->state;
- freqs.old = data->freq_table[cur_state].frequency;
- freqs.new = data->freq_table[next_state].frequency;
+ return -ENODEV;
#ifdef CONFIG_HOTPLUG_CPU
/* cpufreq holds the hotplug lock, so we are safe from here on */
online_policy_cpus = policy->cpus;
#endif
- for_each_cpu_mask(j, online_policy_cpus) {
- freqs.cpu = j;
- cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
+ cmd.val = get_cur_val(online_policy_cpus);
+ freqs.old = extract_freq(cmd.val, data);
+ freqs.new = data->freq_table[next_state].frequency;
+ next_perf_state = data->freq_table[next_state].index;
+ if (freqs.new == freqs.old) {
+ if (unlikely(data->resume)) {
+ dprintk("Called after resume, resetting to P%d\n", next_perf_state);
+ data->resume = 0;
+ } else {
+ dprintk("Already at target state (P%d)\n", next_perf_state);
+ return 0;
+ }
}
- /*
- * We need to call driver->target() on all or any CPU in
- * policy->cpus, depending on policy->shared_type.
- */
- saved_mask = current->cpus_allowed;
- cpus_clear(covered_cpus);
- for_each_cpu_mask(j, online_policy_cpus) {
- /*
- * Support for SMP systems.
- * Make sure we are running on CPU that wants to change freq
- */
- cpus_clear(set_mask);
- if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
- cpus_or(set_mask, set_mask, online_policy_cpus);
- else
- cpu_set(j, set_mask);
-
- set_cpus_allowed(current, set_mask);
- if (unlikely(!cpu_isset(smp_processor_id(), set_mask))) {
- dprintk("couldn't limit to CPUs in this domain\n");
- result = -EAGAIN;
- break;
- }
+ cmd.addr.port = perf->control_register.address;
+ cmd.addr.bit_width = perf->control_register.bit_width;
+ cmd.val = (u32) perf->states[next_perf_state].control;
- cpudata = acpi_io_data[j];
- result = acpi_processor_set_performance(cpudata, j, next_state);
- if (result) {
- result = -EAGAIN;
- break;
- }
+ cpus_clear(cmd.mask);
- if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
- break;
-
- cpu_set(j, covered_cpus);
- }
+ if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
+ cmd.mask = online_policy_cpus;
+ else
+ cpu_set(policy->cpu, cmd.mask);
- for_each_cpu_mask(j, online_policy_cpus) {
- freqs.cpu = j;
- cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
+ for_each_cpu_mask(i, cmd.mask) {
+ freqs.cpu = i;
+ cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
}
- if (unlikely(result)) {
- /*
- * We have failed halfway through the frequency change.
- * We have sent callbacks to online_policy_cpus and
- * acpi_processor_set_performance() has been called on
- * coverd_cpus. Best effort undo..
- */
-
- if (!cpus_empty(covered_cpus)) {
- for_each_cpu_mask(j, covered_cpus) {
- cpus_clear(set_mask);
- cpu_set(j, set_mask);
- set_cpus_allowed(current, set_mask);
- cpudata = acpi_io_data[j];
- acpi_processor_set_performance(cpudata,
- j,
- cur_state);
- }
- }
+ drv_write(&cmd);
- tmp = freqs.new;
- freqs.new = freqs.old;
- freqs.old = tmp;
- for_each_cpu_mask(j, online_policy_cpus) {
- freqs.cpu = j;
- cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
- cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
+ if (acpi_pstate_strict) {
+ if (!check_freqs(cmd.mask, freqs.new, data)) {
+ dprintk("acpi_cpufreq_target failed (%d)\n",
+ policy->cpu);
+ return -EAGAIN;
}
}
- set_cpus_allowed(current, saved_mask);
- return (result);
+ for_each_cpu_mask(i, cmd.mask) {
+ freqs.cpu = i;
+ cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
+ }
+ perf->state = next_perf_state;
+
+ return result;
}
acpi_cpufreq_verify (
struct cpufreq_policy *policy)
{
- unsigned int result = 0;
- struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
+ struct acpi_cpufreq_data *data = drv_data[policy->cpu];
dprintk("acpi_cpufreq_verify\n");
- result = cpufreq_frequency_table_verify(policy,
- data->freq_table);
-
- return (result);
+ return cpufreq_frequency_table_verify(policy, data->freq_table);
}
static unsigned long
acpi_cpufreq_guess_freq (
- struct cpufreq_acpi_io *data,
+ struct acpi_cpufreq_data *data,
unsigned int cpu)
{
struct acpi_processor_performance *perf = data->acpi_data;
* do _PDC and _PSD and find out the processor dependency for the
* actual init that will happen later...
*/
-static int acpi_cpufreq_early_init_acpi(void)
+static int acpi_cpufreq_early_init(void)
{
struct acpi_processor_performance *data;
+ cpumask_t covered;
unsigned int i, j;
dprintk("acpi_cpufreq_early_init\n");
data = kzalloc(sizeof(struct acpi_processor_performance),
GFP_KERNEL);
if (!data) {
- for_each_possible_cpu(j) {
+ for_each_cpu_mask(j, covered) {
kfree(acpi_perf_data[j]);
acpi_perf_data[j] = NULL;
}
return (-ENOMEM);
}
acpi_perf_data[i] = data;
+ cpu_set(i, covered);
}
/* Do initialization in ACPI core */
- return acpi_processor_preregister_performance(acpi_perf_data);
+ acpi_processor_preregister_performance(acpi_perf_data);
+ return 0;
}
/*
acpi_cpufreq_cpu_init (
struct cpufreq_policy *policy)
{
- unsigned int i;
- unsigned int cpu = policy->cpu;
- struct cpufreq_acpi_io *data;
- unsigned int result = 0;
- struct cpuinfo_x86 *c = &cpu_data[policy->cpu];
+ unsigned int i;
+ unsigned int valid_states = 0;
+ unsigned int cpu = policy->cpu;
+ struct acpi_cpufreq_data *data;
+ unsigned int result = 0;
+ struct cpuinfo_x86 *c = &cpu_data[policy->cpu];
struct acpi_processor_performance *perf;
dprintk("acpi_cpufreq_cpu_init\n");
if (!acpi_perf_data[cpu])
return (-ENODEV);
- data = kzalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL);
+ data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
if (!data)
return (-ENOMEM);
data->acpi_data = acpi_perf_data[cpu];
- acpi_io_data[cpu] = data;
+ drv_data[cpu] = data;
- result = acpi_processor_register_performance(data->acpi_data, cpu);
+ if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
+ acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
+ }
+ result = acpi_processor_register_performance(data->acpi_data, cpu);
if (result)
goto err_free;
}
#endif
- if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
- acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
- }
-
/* capability check */
if (perf->state_count <= 1) {
dprintk("No P-States\n");
goto err_unreg;
}
- if ((perf->control_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO) ||
- (perf->status_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO)) {
- dprintk("Unsupported address space [%d, %d]\n",
- (u32) (perf->control_register.space_id),
- (u32) (perf->status_register.space_id));
+ if (perf->control_register.space_id != perf->status_register.space_id) {
+ result = -ENODEV;
+ goto err_unreg;
+ }
+
+ switch (perf->control_register.space_id) {
+ case ACPI_ADR_SPACE_SYSTEM_IO:
+ dprintk("SYSTEM IO addr space\n");
+ break;
+ default:
+ dprintk("Unknown addr space %d\n",
+ (u32) (perf->control_register.space_id));
result = -ENODEV;
goto err_unreg;
}
- /* alloc freq_table */
data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * (perf->state_count + 1), GFP_KERNEL);
if (!data->freq_table) {
result = -ENOMEM;
policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
/* table init */
- for (i=0; i<=perf->state_count; i++)
+ for (i=0; i<perf->state_count; i++)
{
- data->freq_table[i].index = i;
- if (i<perf->state_count)
- data->freq_table[i].frequency = perf->states[i].core_frequency * 1000;
- else
- data->freq_table[i].frequency = CPUFREQ_TABLE_END;
+ if ( i > 0 && perf->states[i].core_frequency ==
+ perf->states[i - 1].core_frequency)
+ continue;
+
+ data->freq_table[valid_states].index = i;
+ data->freq_table[valid_states].frequency =
+ perf->states[i].core_frequency * 1000;
+ valid_states++;
}
+ data->freq_table[perf->state_count].frequency = CPUFREQ_TABLE_END;
result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
if (result) {
/* notify BIOS that we exist */
acpi_processor_notify_smm(THIS_MODULE);
- printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management activated.\n",
- cpu);
+ dprintk("CPU%u - ACPI performance management activated.\n", cpu);
for (i = 0; i < perf->state_count; i++)
dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
(i == perf->state?'*':' '), i,
*/
data->resume = 1;
- return (result);
+ return result;
err_freqfree:
kfree(data->freq_table);
acpi_processor_unregister_performance(perf, cpu);
err_free:
kfree(data);
- acpi_io_data[cpu] = NULL;
+ drv_data[cpu] = NULL;
return (result);
}
acpi_cpufreq_cpu_exit (
struct cpufreq_policy *policy)
{
- struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
+ struct acpi_cpufreq_data *data = drv_data[policy->cpu];
dprintk("acpi_cpufreq_cpu_exit\n");
if (data) {
cpufreq_frequency_table_put_attr(policy->cpu);
- acpi_io_data[policy->cpu] = NULL;
+ drv_data[policy->cpu] = NULL;
acpi_processor_unregister_performance(data->acpi_data, policy->cpu);
kfree(data);
}
acpi_cpufreq_resume (
struct cpufreq_policy *policy)
{
- struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
+ struct acpi_cpufreq_data *data = drv_data[policy->cpu];
dprintk("acpi_cpufreq_resume\n");
static struct cpufreq_driver acpi_cpufreq_driver = {
.verify = acpi_cpufreq_verify,
.target = acpi_cpufreq_target,
+ .get = get_cur_freq_on_cpu,
.init = acpi_cpufreq_cpu_init,
.exit = acpi_cpufreq_cpu_exit,
.resume = acpi_cpufreq_resume,
{
dprintk("acpi_cpufreq_init\n");
- acpi_cpufreq_early_init_acpi();
+ acpi_cpufreq_early_init();
return cpufreq_register_driver(&acpi_cpufreq_driver);
}