Paolo Bonzini [Thu, 18 Dec 2014 08:39:55 +0000 (09:39 +0100)]
Merge tag 'signed-kvm-ppc-next' of git://github.com/agraf/linux-2.6 into HEAD
Patch queue for ppc - 2014-12-18
Highights this time around:
- Removal of HV support for 970. It became a maintenance burden and received
practically no testing. POWER8 with HV is available now, so just grab one
of those boxes if PR isn't enough for you.
- Some bug fixes and performance improvements
- Tracepoints for book3s_hv
Currently the H_CONFER hcall is implemented in kernel virtual mode,
meaning that whenever a guest thread does an H_CONFER, all the threads
in that virtual core have to exit the guest. This is bad for
performance because it interrupts the other threads even if they
are doing useful work.
The H_CONFER hcall is called by a guest VCPU when it is spinning on a
spinlock and it detects that the spinlock is held by a guest VCPU that
is currently not running on a physical CPU. The idea is to give this
VCPU's time slice to the holder VCPU so that it can make progress
towards releasing the lock.
To avoid having the other threads exit the guest unnecessarily,
we add a real-mode implementation of H_CONFER that checks whether
the other threads are doing anything. If all the other threads
are idle (i.e. in H_CEDE) or trying to confer (i.e. in H_CONFER),
it returns H_TOO_HARD which causes a guest exit and allows the
H_CONFER to be handled in virtual mode.
Otherwise it spins for a short time (up to 10 microseconds) to give
other threads the chance to observe that this thread is trying to
confer. The spin loop also terminates when any thread exits the guest
or when all other threads are idle or trying to confer. If the
timeout is reached, the H_CONFER returns H_SUCCESS. In this case the
guest VCPU will recheck the spinlock word and most likely call
H_CONFER again.
This also improves the implementation of the H_CONFER virtual mode
handler. If the VCPU is part of a virtual core (vcore) which is
runnable, there will be a 'runner' VCPU which has taken responsibility
for running the vcore. In this case we yield to the runner VCPU
rather than the target VCPU.
We also introduce a check on the target VCPU's yield count: if it
differs from the yield count passed to H_CONFER, the target VCPU
has run since H_CONFER was called and may have already released
the lock. This check is required by PAPR.
Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
Paul Mackerras [Wed, 3 Dec 2014 02:30:39 +0000 (13:30 +1100)]
KVM: PPC: Book3S HV: Fix endianness of instruction obtained from HEIR register
There are two ways in which a guest instruction can be obtained from
the guest in the guest exit code in book3s_hv_rmhandlers.S. If the
exit was caused by a Hypervisor Emulation interrupt (i.e. an illegal
instruction), the offending instruction is in the HEIR register
(Hypervisor Emulation Instruction Register). If the exit was caused
by a load or store to an emulated MMIO device, we load the instruction
from the guest by turning data relocation on and loading the instruction
with an lwz instruction.
Unfortunately, in the case where the guest has opposite endianness to
the host, these two methods give results of different endianness, but
both get put into vcpu->arch.last_inst. The HEIR value has been loaded
using guest endianness, whereas the lwz will load the instruction using
host endianness. The rest of the code that uses vcpu->arch.last_inst
assumes it was loaded using host endianness.
To fix this, we define a new vcpu field to store the HEIR value. Then,
in kvmppc_handle_exit_hv(), we transfer the value from this new field to
vcpu->arch.last_inst, doing a byte-swap if the guest and host endianness
differ.
Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
Paul Mackerras [Wed, 3 Dec 2014 02:30:38 +0000 (13:30 +1100)]
KVM: PPC: Book3S HV: Remove code for PPC970 processors
This removes the code that was added to enable HV KVM to work
on PPC970 processors. The PPC970 is an old CPU that doesn't
support virtualizing guest memory. Removing PPC970 support also
lets us remove the code for allocating and managing contiguous
real-mode areas, the code for the !kvm->arch.using_mmu_notifiers
case, the code for pinning pages of guest memory when first
accessed and keeping track of which pages have been pinned, and
the code for handling H_ENTER hypercalls in virtual mode.
Book3S HV KVM is now supported only on POWER7 and POWER8 processors.
The KVM_CAP_PPC_RMA capability now always returns 0.
Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
KVM: PPC: Book3S HV: Tracepoints for KVM HV guest interactions
This patch adds trace points in the guest entry and exit code and also
for exceptions handled by the host in kernel mode - hypercalls and page
faults. The new events are added to /sys/kernel/debug/tracing/events
under a new subsystem called kvm_hv.
Acked-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
Paul Mackerras [Thu, 4 Dec 2014 05:43:28 +0000 (16:43 +1100)]
KVM: PPC: Book3S HV: Simplify locking around stolen time calculations
Currently the calculations of stolen time for PPC Book3S HV guests
uses fields in both the vcpu struct and the kvmppc_vcore struct. The
fields in the kvmppc_vcore struct are protected by the
vcpu->arch.tbacct_lock of the vcpu that has taken responsibility for
running the virtual core. This works correctly but confuses lockdep,
because it sees that the code takes the tbacct_lock for a vcpu in
kvmppc_remove_runnable() and then takes another vcpu's tbacct_lock in
vcore_stolen_time(), and it thinks there is a possibility of deadlock,
causing it to print reports like this:
=============================================
[ INFO: possible recursive locking detected ] 3.18.0-rc7-kvm-00016-g8db4bc6 #89 Not tainted
---------------------------------------------
qemu-system-ppc/6188 is trying to acquire lock:
(&(&vcpu->arch.tbacct_lock)->rlock){......}, at: [<d00000000ecb1fe8>] .vcore_stolen_time+0x48/0xd0 [kvm_hv]
but task is already holding lock:
(&(&vcpu->arch.tbacct_lock)->rlock){......}, at: [<d00000000ecb25a0>] .kvmppc_remove_runnable.part.3+0x30/0xd0 [kvm_hv]
other info that might help us debug this:
Possible unsafe locking scenario:
In order to make the locking easier to analyse, we change the code to
use a spinlock in the kvmppc_vcore struct to protect the stolen_tb and
preempt_tb fields. This lock needs to be an irq-safe lock since it is
used in the kvmppc_core_vcpu_load_hv() and kvmppc_core_vcpu_put_hv()
functions, which are called with the scheduler rq lock held, which is
an irq-safe lock.
Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
KVM: PPC: Book3S HV: Check wait conditions before sleeping in kvmppc_vcore_blocked
The kvmppc_vcore_blocked() code does not check for the wait condition
after putting the process on the wait queue. This means that it is
possible for an external interrupt to become pending, but the vcpu to
remain asleep until the next decrementer interrupt. The fix is to
make one last check for pending exceptions and ceded state before
calling schedule().
Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
KVM: PPC: Book3S HV: Fix inaccuracies in ICP emulation for H_IPI
This fixes some inaccuracies in the state machine for the virtualized
ICP when implementing the H_IPI hcall (Set_MFFR and related states):
1. The old code wipes out any pending interrupts when the new MFRR is
more favored than the CPPR but less favored than a pending
interrupt (by always modifying xisr and the pending_pri). This can
cause us to lose a pending external interrupt.
The correct code here is to only modify the pending_pri and xisr in
the ICP if the MFRR is equal to or more favored than the current
pending pri (since in this case, it is guaranteed that that there
cannot be a pending external interrupt). The code changes are
required in both kvmppc_rm_h_ipi and kvmppc_h_ipi.
2. Again, in both kvmppc_rm_h_ipi and kvmppc_h_ipi, there is a check
for whether MFRR is being made less favored AND further if new MFFR
is also less favored than the current CPPR, we check for any
resends pending in the ICP. These checks look like they are
designed to cover the case where if the MFRR is being made less
favored, we opportunistically trigger a resend of any interrupts
that had been previously rejected. Although, this is not a state
described by PAPR, this is an action we actually need to do
especially if the CPPR is already at 0xFF. Because in this case,
the resend bit will stay on until another ICP state change which
may be a long time coming and the interrupt stays pending until
then. The current code which checks for MFRR < CPPR is broken when
CPPR is 0xFF since it will not get triggered in that case.
where pending interrupt is the one that was rejected. But we don't
have the priority of the pending interrupt state saved, so we
simply trigger a resend whenever the MFRR is made less favored.
3. In kvmppc_rm_h_ipi, where we save state to pass resends to the
virtual mode, we also need to save the ICP whose need_resend we
reset since this does not need to be my ICP (vcpu->arch.icp) as is
incorrectly assumed by the current code. A new field rm_resend_icp
is added to the kvmppc_icp structure for this purpose.
Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
Paul Mackerras [Mon, 3 Nov 2014 04:51:58 +0000 (15:51 +1100)]
KVM: PPC: Book3S HV: Fix KSM memory corruption
Testing with KSM active in the host showed occasional corruption of
guest memory. Typically a page that should have contained zeroes
would contain values that look like the contents of a user process
stack (values such as 0x0000_3fff_xxxx_xxx).
Code inspection in kvmppc_h_protect revealed that there was a race
condition with the possibility of granting write access to a page
which is read-only in the host page tables. The code attempts to keep
the host mapping read-only if the host userspace PTE is read-only, but
if that PTE had been temporarily made invalid for any reason, the
read-only check would not trigger and the host HPTE could end up
read-write. Examination of the guest HPT in the failure situation
revealed that there were indeed shared pages which should have been
read-only that were mapped read-write.
To close this race, we don't let a page go from being read-only to
being read-write, as far as the real HPTE mapping the page is
concerned (the guest view can go to read-write, but the actual mapping
stays read-only). When the guest tries to write to the page, we take
an HDSI and let kvmppc_book3s_hv_page_fault take care of providing a
writable HPTE for the page.
This eliminates the occasional corruption of shared pages
that was previously seen with KSM active.
Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
KVM: PPC: Book3S HV: Fix an issue where guest is paused on receiving HMI
When we get an HMI (hypervisor maintenance interrupt) while in a
guest, we see that guest enters into paused state. The reason is, in
kvmppc_handle_exit_hv it falls through default path and returns to
host instead of resuming guest. This causes guest to enter into
paused state. HMI is a hypervisor only interrupt and it is safe to
resume the guest since the host has handled it already. This patch
adds a switch case to resume the guest.
Without this patch we see guest entering into paused state with following
console messages:
Paul Mackerras [Mon, 3 Nov 2014 04:51:56 +0000 (15:51 +1100)]
KVM: PPC: Book3S HV: Fix computation of tlbie operand
The B (segment size) field in the RB operand for the tlbie
instruction is two bits, which we get from the top two bits of
the first doubleword of the HPT entry to be invalidated. These
bits go in bits 8 and 9 of the RB operand (bits 54 and 55 in IBM
bit numbering).
The compute_tlbie_rb() function gets these bits as v >> (62 - 8),
which is not correct as it will bring in the top 10 bits, not
just the top two. These extra bits could corrupt the AP, AVAL
and L fields in the RB value. To fix this we shift right 62 bits
and then shift left 8 bits, so we only get the two bits of the
B field.
The first doubleword of the HPT entry is under the control of the
guest kernel. In fact, Linux guests will always put zeroes in bits
54 -- 61 (IBM bits 2 -- 9), but we should not rely on guests doing
this.
Signed-off-by: Paul Mackerras <paulus@samba.org> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
In kvm_test_clear_dirty(), if we find an invalid HPTE we move on to the
next HPTE without unlocking the invalid one. In fact we should never
find an invalid and unlocked HPTE in the rmap chain, but for robustness
we should unlock it. This adds the missing unlock.
Reported-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
Alexander Graf [Mon, 10 Nov 2014 23:15:53 +0000 (00:15 +0100)]
KVM: PPC: BookE: Improve irq inject tracepoint
When injecting an IRQ, we only document which IRQ priority (which translates
to IRQ type) gets injected. However, when reading traces you don't necessarily
have all the numbers in your head to know which IRQ really is meant.
This patch converts the IRQ number field to a symbolic name that is in sync
with the respective define. That way it's a lot easier for readers to figure
out what interrupt gets injected.
Paolo Bonzini [Mon, 15 Dec 2014 12:06:40 +0000 (13:06 +0100)]
Merge tag 'kvm-arm-for-3.19-take2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
Second round of changes for KVM for arm/arm64 for v3.19; fixes reboot
problems, clarifies VCPU init, and fixes a regression concerning the
VGIC init flow.
Conflicts:
arch/ia64/kvm/kvm-ia64.c [deleted in HEAD and modified in kvmarm]
Christoffer Dall [Fri, 12 Dec 2014 20:19:23 +0000 (21:19 +0100)]
arm/arm64: KVM: Require in-kernel vgic for the arch timers
It is curently possible to run a VM with architected timers support
without creating an in-kernel VGIC, which will result in interrupts from
the virtual timer going nowhere.
To address this issue, move the architected timers initialization to the
time when we run a VCPU for the first time, and then only initialize
(and enable) the architected timers if we have a properly created and
initialized in-kernel VGIC.
When injecting interrupts from the virtual timer to the vgic, the
current setup should ensure that this never calls an on-demand init of
the VGIC, which is the only call path that could return an error from
kvm_vgic_inject_irq(), so capture the return value and raise a warning
if there's an error there.
We also change the kvm_timer_init() function from returning an int to be
a void function, since the function always succeeds.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
arm/arm64: KVM: Initialize the vgic on-demand when injecting IRQs
Userspace assumes that it can wire up IRQ injections after having
created all VCPUs and after having created the VGIC, but potentially
before starting the first VCPU. This can currently lead to lost IRQs
because the state of that IRQ injection is not stored anywhere and we
don't return an error to userspace.
We haven't seen this problem manifest itself yet, presumably because
guests reset the devices on boot, but this could cause issues with
migration and other non-standard startup configurations.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
arm/arm64: KVM: Don't allow creating VCPUs after vgic_initialized
When the vgic initializes its internal state it does so based on the
number of VCPUs available at the time. If we allow KVM to create more
VCPUs after the VGIC has been initialized, we are likely to error out in
unfortunate ways later, perform buffer overflows etc.
Acked-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Eric Auger <eric.auger@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Some code paths will need to check to see if the internal state of the
vgic has been initialized (such as when creating new VCPUs), so
introduce such a macro that checks the nr_cpus field which is set when
the vgic has been initialized.
Also set nr_cpus = 0 in kvm_vgic_destroy, because the error path in
vgic_init() will call this function, and code should never errornously
assume the vgic to be properly initialized after an error.
Acked-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Eric Auger <eric.auger@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
arm/arm64: KVM: Rename vgic_initialized to vgic_ready
The vgic_initialized() macro currently returns the state of the
vgic->ready flag, which indicates if the vgic is ready to be used when
running a VM, not specifically if its internal state has been
initialized.
Rename the macro accordingly in preparation for a more nuanced
initialization flow.
Acked-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Eric Auger <eric.auger@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Peter Maydell [Thu, 4 Dec 2014 15:02:24 +0000 (15:02 +0000)]
arm/arm64: KVM: vgic: move reset initialization into vgic_init_maps()
VGIC initialization currently happens in three phases:
(1) kvm_vgic_create() (triggered by userspace GIC creation)
(2) vgic_init_maps() (triggered by userspace GIC register read/write
requests, or from kvm_vgic_init() if not already run)
(3) kvm_vgic_init() (triggered by first VM run)
We were doing initialization of some state to correspond with the
state of a freshly-reset GIC in kvm_vgic_init(); this is too late,
since it will overwrite changes made by userspace using the
register access APIs before the VM is run. Move this initialization
earlier, into the vgic_init_maps() phase.
This fixes a bug where QEMU could successfully restore a saved
VM state snapshot into a VM that had already been run, but could
not restore it "from cold" using the -loadvm command line option
(the symptoms being that the restored VM would run but interrupts
were ignored).
Finally rename vgic_init_maps to vgic_init and renamed kvm_vgic_init to
kvm_vgic_map_resources.
[ This patch is originally written by Peter Maydell, but I have
modified it somewhat heavily, renaming various bits and moving code
around. If something is broken, I am to be blamed. - Christoffer ]
Acked-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Eric Auger <eric.auger@linaro.org> Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Christoffer Dall [Thu, 27 Nov 2014 09:35:03 +0000 (10:35 +0100)]
arm/arm64: KVM: Introduce stage2_unmap_vm
Introduce a new function to unmap user RAM regions in the stage2 page
tables. This is needed on reboot (or when the guest turns off the MMU)
to ensure we fault in pages again and make the dcache, RAM, and icache
coherent.
Using unmap_stage2_range for the whole guest physical range does not
work, because that unmaps IO regions (such as the GIC) which will not be
recreated or in the best case faulted in on a page-by-page basis.
Call this function on secondary and subsequent calls to the
KVM_ARM_VCPU_INIT ioctl so that a reset VCPU will detect the guest
Stage-1 MMU is off when faulting in pages and make the caches coherent.
Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Christoffer Dall [Thu, 16 Oct 2014 15:00:18 +0000 (17:00 +0200)]
arm/arm64: KVM: Turn off vcpus on PSCI shutdown/reboot
When a vcpu calls SYSTEM_OFF or SYSTEM_RESET with PSCI v0.2, the vcpus
should really be turned off for the VM adhering to the suggestions in
the PSCI spec, and it's the sane thing to do.
Also, clarify the behavior and expectations for exits to user space with
the KVM_EXIT_SYSTEM_EVENT case.
Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Christoffer Dall [Thu, 16 Oct 2014 14:40:53 +0000 (16:40 +0200)]
arm/arm64: KVM: Clarify KVM_ARM_VCPU_INIT ABI
It is not clear that this ioctl can be called multiple times for a given
vcpu. Userspace already does this, so clarify the ABI.
Also specify that userspace is expected to always make secondary and
subsequent calls to the ioctl with the same parameters for the VCPU as
the initial call (which userspace also already does).
Add code to check that userspace doesn't violate that ABI in the future,
and move the kvm_vcpu_set_target() function which is currently
duplicated between the 32-bit and 64-bit versions in guest.c to a common
static function in arm.c, shared between both architectures.
Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Christoffer Dall [Thu, 16 Oct 2014 15:21:16 +0000 (17:21 +0200)]
arm/arm64: KVM: Reset the HCR on each vcpu when resetting the vcpu
When userspace resets the vcpu using KVM_ARM_VCPU_INIT, we should also
reset the HCR, because we now modify the HCR dynamically to
enable/disable trapping of guest accesses to the VM registers.
This is crucial for reboot of VMs working since otherwise we will not be
doing the necessary cache maintenance operations when faulting in pages
with the guest MMU off.
Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Christoffer Dall [Thu, 16 Oct 2014 14:14:43 +0000 (16:14 +0200)]
arm/arm64: KVM: Correct KVM_ARM_VCPU_INIT power off option
The implementation of KVM_ARM_VCPU_INIT is currently not doing what
userspace expects, namely making sure that a vcpu which may have been
turned off using PSCI is returned to its initial state, which would be
powered on if userspace does not set the KVM_ARM_VCPU_POWER_OFF flag.
Implement the expected functionality and clarify the ABI.
Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
arm/arm64: KVM: Don't clear the VCPU_POWER_OFF flag
If a VCPU was originally started with power off (typically to be brought
up by PSCI in SMP configurations), there is no need to clear the
POWER_OFF flag in the kernel, as this flag is only tested during the
init ioctl itself.
Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Nadav Amit [Wed, 10 Dec 2014 09:19:04 +0000 (11:19 +0200)]
KVM: x86: Emulate should check #UD before #GP
Intel SDM table 6-2 ("Priority Among Simultaneous Exceptions and Interrupts")
shows that faults from decoding the next instruction got higher priority than
general protection. Moving the protected-mode check before the CPL check to
avoid wrong exception on vm86 mode.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Nadav Amit [Wed, 10 Dec 2014 09:19:03 +0000 (11:19 +0200)]
KVM: x86: Do not push eflags.vm on pushf
The pushf instruction does not push eflags.VM, so emulation should not do so as
well. Although eflags.RF should not be pushed as well, it is already cleared
by the time pushf is executed.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Andy Lutomirski [Sat, 6 Dec 2014 03:03:28 +0000 (19:03 -0800)]
x86, kvm: Clear paravirt_enabled on KVM guests for espfix32's benefit
paravirt_enabled has the following effects:
- Disables the F00F bug workaround warning. There is no F00F bug
workaround any more because Linux's standard IDT handling already
works around the F00F bug, but the warning still exists. This
is only cosmetic, and, in any event, there is no such thing as
KVM on a CPU with the F00F bug.
- Disables 32-bit APM BIOS detection. On a KVM paravirt system,
there should be no APM BIOS anyway.
- Disables tboot. I think that the tboot code should check the
CPUID hypervisor bit directly if it matters.
- paravirt_enabled disables espfix32. espfix32 should *not* be
disabled under KVM paravirt.
The last point is the purpose of this patch. It fixes a leak of the
high 16 bits of the kernel stack address on 32-bit KVM paravirt
guests. Fixes CVE-2014-8134.
Cc: stable@vger.kernel.org Suggested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Radim Krčmář [Thu, 4 Dec 2014 17:30:41 +0000 (18:30 +0100)]
KVM: cpuid: recompute CPUID 0xD.0:EBX,ECX
We reused host EBX and ECX, but KVM might not support all features;
emulated XSAVE size should be smaller.
EBX depends on unknown XCR0, so we default to ECX.
SDM CPUID (EAX = 0DH, ECX = 0):
EBX Bits 31-00: Maximum size (bytes, from the beginning of the
XSAVE/XRSTOR save area) required by enabled features in XCR0. May
be different than ECX if some features at the end of the XSAVE save
area are not enabled.
ECX Bit 31-00: Maximum size (bytes, from the beginning of the
XSAVE/XRSTOR save area) of the XSAVE/XRSTOR save area required by
all supported features in the processor, i.e all the valid bit
fields in XCR0.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Tested-by: Wanpeng Li <wanpeng.li@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Paolo Bonzini [Thu, 4 Dec 2014 14:11:11 +0000 (15:11 +0100)]
KVM: cpuid: mask more bits in leaf 0xd and subleaves
- EAX=0Dh, ECX=1: output registers EBX/ECX/EDX are reserved.
- EAX=0Dh, ECX>1: output register ECX bit 0 is clear for all the CPUID
leaves we support, because variable "supported" comes from XCR0 and not
XSS. Bits above 0 are reserved, so ECX is overall zero. Output register
EDX is reserved.
Source: Intel Architecture Instruction Set Extensions Programming
Reference, ref. number 319433-022
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com> Tested-by: Wanpeng Li <wanpeng.li@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Paolo Bonzini [Wed, 3 Dec 2014 13:38:01 +0000 (14:38 +0100)]
KVM: cpuid: set CPUID(EAX=0xd,ECX=1).EBX correctly
This is the size of the XSAVES area. This starts providing guest support
for XSAVES (with no support yet for supervisor states, i.e. XSS == 0
always in guests for now).
Wanpeng Li suggested testing XSAVEC as well as XSAVES, since in practice
no real processor exists that only has one of them, and there is no
other way for userspace programs to compute the area of the XSAVEC
save area. CPUID(EAX=0xd,ECX=1).EBX provides an upper bound.
Suggested-by: Radim Krčmář <rkrcmar@redhat.com> Reviewed-by: Radim Krčmář <rkrcmar@redhat.com> Tested-by: Wanpeng Li <wanpeng.li@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Paolo Bonzini [Fri, 21 Nov 2014 18:05:07 +0000 (19:05 +0100)]
KVM: x86: support XSAVES usage in the host
Userspace is expecting non-compacted format for KVM_GET_XSAVE, but
struct xsave_struct might be using the compacted format. Convert
in order to preserve userspace ABI.
Likewise, userspace is passing non-compacted format for KVM_SET_XSAVE
but the kernel will pass it to XRSTORS, and we need to convert back.
Fixes: f31a9f7c71691569359fa7fb8b0acaa44bce0324 Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: stable@vger.kernel.org Cc: H. Peter Anvin <hpa@linux.intel.com> Tested-by: Nadav Amit <namit@cs.technion.ac.il> Reviewed-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Paolo Bonzini [Mon, 24 Nov 2014 09:57:42 +0000 (10:57 +0100)]
x86: export get_xsave_addr
get_xsave_addr is the API to access XSAVE states, and KVM would
like to use it. Export it.
Cc: stable@vger.kernel.org Cc: x86@kernel.org Cc: H. Peter Anvin <hpa@linux.intel.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Jens Freimann [Mon, 1 Dec 2014 15:43:40 +0000 (16:43 +0100)]
KVM: s390: use atomic bitops to access pending_irqs bitmap
Currently we use a mixture of atomic/non-atomic bitops
and the local_int spin lock to protect the pending_irqs bitmap
and interrupt payload data.
We need to use atomic bitops for the pending_irqs bitmap everywhere
and in addition acquire the local_int lock where interrupt data needs
to be protected.
Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com> Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
KVM: s390: some ext irqs have to clear the ext cpu addr
The cpu address of a source cpu (responsible for an external irq) is only to
be stored if bit 6 of the ext irq code is set.
If bit 6 is not set, it is to be zeroed out.
The special external irq code used for virtio and pfault uses the cpu addr as a
parameter field. As bit 6 is set, this implementation is correct.
Reviewed-by: Thomas Huth <thuth@linux.vnet.ibm.com> Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We currently track the pid of the task that runs the VCPU in vcpu_load.
If a yield to that VCPU is triggered while the PID of the wrong thread
is active, the wrong thread might receive a yield, but this will most
likely not help the executing thread at all. Instead, if we only track
the pid on the KVM_RUN ioctl, there are two possibilities:
1) the thread that did a non-KVM_RUN ioctl is holding a mutex that
the VCPU thread is waiting for. In this case, the VCPU thread is not
runnable, but we also do not do a wrong yield.
2) the thread that did a non-KVM_RUN ioctl is sleeping, or doing
something that does not block the VCPU thread. In this case, the
VCPU thread can receive the directed yield correctly.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> CC: Rik van Riel <riel@redhat.com> CC: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> CC: Michael Mueller <mimu@linux.vnet.ibm.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_enter_guest() has to be called with preemption disabled and will
set PF_VCPU. Current code takes PF_VCPU as a hint that the VCPU thread
is running and therefore needs no yield.
However, the check on PF_VCPU is wrong on s390, where preemption has
to stay enabled in order to correctly process page faults. Thus,
s390 reenables preemption and starts to execute the guest. The thread
might be scheduled out between kvm_enter_guest() and kvm_exit_guest(),
resulting in PF_VCPU being set but not being run. When this happens,
the opportunity for directed yield is missed.
However, this check is done already in kvm_vcpu_on_spin before calling
kvm_vcpu_yield_loop:
if (!ACCESS_ONCE(vcpu->preempted))
continue;
so the check on PF_VCPU is superfluous in general, and this patch
removes it.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Igor Mammedov [Mon, 1 Dec 2014 17:29:27 +0000 (17:29 +0000)]
kvm: optimize GFN to memslot lookup with large slots amount
Current linear search doesn't scale well when
large amount of memslots is used and looked up slot
is not in the beginning memslots array.
Taking in account that memslots don't overlap, it's
possible to switch sorting order of memslots array from
'npages' to 'base_gfn' and use binary search for
memslot lookup by GFN.
As result of switching to binary search lookup times
are reduced with large amount of memslots.
Following is a table of search_memslot() cycles
during WS2008R2 guest boot.
boot, boot + ~10 min
mostly same of using it,
slot lookup randomized lookup
max average average
cycles cycles cycles
13 slots : 1450 28 30
13 slots : 1400 30 40
binary search
117 slots : 13000 30 460
117 slots : 2000 35 180
binary search
Signed-off-by: Igor Mammedov <imammedo@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Radim Krčmář [Thu, 27 Nov 2014 19:03:13 +0000 (20:03 +0100)]
KVM: x86: allow 256 logical x2APICs again
While fixing an x2apic bug, 17d68b7 KVM: x86: fix guest-initiated crash with x2apic (CVE-2013-6376)
we've made only one cluster available. This means that the amount of
logically addressible x2APICs was reduced to 16 and VCPUs kept
overwriting themselves in that region, so even the first cluster wasn't
set up correctly.
This patch extends x2APIC support back to the logical_map's limit, and
keeps the CVE fixed as messages for non-present APICs are dropped.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Radim Krčmář [Thu, 27 Nov 2014 19:03:11 +0000 (20:03 +0100)]
KVM: x86: deliver phys lowest-prio
Physical mode can't address more than one APIC, but lowest-prio is
allowed, so we just reuse our paths.
SDM 10.6.2.1 Physical Destination:
Also, for any non-broadcast IPI or I/O subsystem initiated interrupt
with lowest priority delivery mode, software must ensure that APICs
defined in the interrupt address are present and enabled to receive
interrupts.
We could warn on top of that.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Radim Krčmář [Thu, 27 Nov 2014 19:03:14 +0000 (20:03 +0100)]
KVM: x86: don't retry hopeless APIC delivery
False from kvm_irq_delivery_to_apic_fast() means that we don't handle it
in the fast path, but we still return false in cases that were perfectly
handled, fix that.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Nadav Amit [Wed, 26 Nov 2014 13:47:18 +0000 (15:47 +0200)]
KVM: x86: Generate #UD when memory operand is required
Certain x86 instructions that use modrm operands only allow memory operand
(i.e., mod012), and cause a #UD exception otherwise. KVM ignores this fact.
Currently, the instructions that are such and are emulated by KVM are MOVBE,
MOVNTPS, MOVNTPD and MOVNTI. MOVBE is the most blunt example, since it may be
emulated by the host regardless of MMIO.
The fix introduces a new group for handling such instructions, marking mod3 as
illegal instruction.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Reviewed-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM: s390: handle pending local interrupts via bitmap
This patch adapts handling of local interrupts to be more compliant with
the z/Architecture Principles of Operation and introduces a data
structure
which allows more efficient handling of interrupts.
* get rid of li->active flag, use bitmap instead
* Keep interrupts in a bitmap instead of a list
* Deliver interrupts in the order of their priority as defined in the
PoP
* Use a second bitmap for sigp emergency requests, as a CPU can have
one request pending from every other CPU in the system.
Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com> Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com> Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
KVM: s390: add bitmap for handling cpu-local interrupts
Adds a bitmap to the vcpu structure which is used to keep track
of local pending interrupts. Also add enum with all interrupt
types sorted in order of priority (highest to lowest)
Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com> Reviewed-by: Thomas Huth <thuth@linux.vnet.ibm.com> Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com> Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Jason J. Herne [Tue, 23 Sep 2014 13:18:57 +0000 (09:18 -0400)]
KVM: S390: Create helper function get_guest_storage_key
Define get_guest_storage_key which can be used to get the value of a guest
storage key. This compliments the functionality provided by the helper function
set_guest_storage_key. Both functions are needed for live migration of s390
guests that use storage keys.
Signed-off-by: Jason J. Herne <jjherne@linux.vnet.ibm.com> Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
KVM: s390: trigger the right CPU exit for floating interrupts
When injecting a floating interrupt and no CPU is idle we
kick one CPU to do an external exit. In case of I/O we
should trigger an I/O exit instead. This does not matter
for Linux guests as external and I/O interrupts are
enabled/disabled at the same time, but play safe anyway.
The same holds true for machine checks. Since there is no
special exit, just reuse the generic stop exit. The injection
code inside the VCPU loop will recheck anyway and rearm the
proper exits (e.g. control registers) if necessary.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Reviewed-by: Thomas Huth <thuth@linux.vnet.ibm.com> Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Thomas Huth [Wed, 12 Nov 2014 16:13:29 +0000 (17:13 +0100)]
KVM: s390: Fix rewinding of the PSW pointing to an EXECUTE instruction
A couple of our interception handlers rewind the PSW to the beginning
of the instruction to run the intercepted instruction again during the
next SIE entry. This normally works fine, but there is also the
possibility that the instruction did not get run directly but via an
EXECUTE instruction.
In this case, the PSW does not point to the instruction that caused the
interception, but to the EXECUTE instruction! So we've got to rewind the
PSW to the beginning of the EXECUTE instruction instead.
This is now accomplished with a new helper function kvm_s390_rewind_psw().
Signed-off-by: Thomas Huth <thuth@linux.vnet.ibm.com> Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Thomas Huth [Mon, 10 Nov 2014 14:59:32 +0000 (15:59 +0100)]
KVM: s390: Small fixes for the PFMF handler
This patch includes two small fixes for the PFMF handler: First, the
start address for PFMF has to be masked according to the current
addressing mode, which is now done with kvm_s390_logical_to_effective().
Second, the protection exceptions have a lower priority than the
specification exceptions, so the check for low-address protection
has to be moved after the last spot where we inject a specification
exception.
Signed-off-by: Thomas Huth <thuth@linux.vnet.ibm.com> Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Shannon Zhao [Wed, 19 Nov 2014 10:11:25 +0000 (10:11 +0000)]
arm/arm64: KVM: vgic: kick the specific vcpu instead of iterating through all
When call kvm_vgic_inject_irq to inject interrupt, we can known which
vcpu the interrupt for by the irq_num and the cpuid. So we should just
kick this vcpu to avoid iterating through all.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Shannon Zhao <zhaoshenglong@huawei.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
When 'injecting' an edge-triggered interrupt with a falling edge we
shouldn't clear the pending state on the distributor. In fact, we
don't, because the check in vgic_validate_injection would prevent us
from ever reaching this bit of code.
Remove the unreachable snippet.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Andre Przywara [Thu, 6 Nov 2014 12:11:45 +0000 (12:11 +0000)]
arm/arm64: KVM: avoid unnecessary guest register mangling on MMIO read
Currently we mangle the endianness of the guest's register even on an
MMIO _read_, where it is completely useless, because we will not use
the value of that register.
Rework the io_mem_abort() function to clearly separate between reads
and writes and only do the endianness mangling on MMIO writes.
Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Ard Biesheuvel [Mon, 17 Nov 2014 14:58:53 +0000 (14:58 +0000)]
arm, arm64: KVM: handle potential incoherency of readonly memslots
Readonly memslots are often used to implement emulation of ROMs and
NOR flashes, in which case the guest may legally map these regions as
uncached.
To deal with the incoherency associated with uncached guest mappings,
treat all readonly memslots as incoherent, and ensure that pages that
belong to regions tagged as such are flushed to DRAM before being passed
to the guest.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Laszlo Ersek [Mon, 17 Nov 2014 14:58:52 +0000 (14:58 +0000)]
arm, arm64: KVM: allow forced dcache flush on page faults
To allow handling of incoherent memslots in a subsequent patch, this
patch adds a paramater 'ipa_uncached' to cache_coherent_guest_page()
so that we can instruct it to flush the page's contents to DRAM even
if the guest has caching globally enabled.
Ard Biesheuvel [Mon, 17 Nov 2014 14:58:51 +0000 (14:58 +0000)]
kvm: add a memslot flag for incoherent memory regions
Memory regions may be incoherent with the caches, typically when the
guest has mapped a host system RAM backed memory region as uncached.
Add a flag KVM_MEMSLOT_INCOHERENT so that we can tag these memslots
and handle them appropriately when mapping them.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Ard Biesheuvel [Mon, 10 Nov 2014 08:33:56 +0000 (08:33 +0000)]
kvm: fix kvm_is_mmio_pfn() and rename to kvm_is_reserved_pfn()
This reverts commit 85c8555ff0 ("KVM: check for !is_zero_pfn() in
kvm_is_mmio_pfn()") and renames the function to kvm_is_reserved_pfn.
The problem being addressed by the patch above was that some ARM code
based the memory mapping attributes of a pfn on the return value of
kvm_is_mmio_pfn(), whose name indeed suggests that such pfns should
be mapped as device memory.
However, kvm_is_mmio_pfn() doesn't do quite what it says on the tin,
and the existing non-ARM users were already using it in a way which
suggests that its name should probably have been 'kvm_is_reserved_pfn'
from the beginning, e.g., whether or not to call get_page/put_page on
it etc. This means that returning false for the zero page is a mistake
and the patch above should be reverted.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Ard Biesheuvel [Mon, 10 Nov 2014 08:33:55 +0000 (08:33 +0000)]
arm/arm64: kvm: drop inappropriate use of kvm_is_mmio_pfn()
Instead of using kvm_is_mmio_pfn() to decide whether a host region
should be stage 2 mapped with device attributes, add a new static
function kvm_is_device_pfn() that disregards RAM pages with the
reserved bit set, as those should usually not be mapped as device
memory.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
wanghaibin [Mon, 17 Nov 2014 09:27:37 +0000 (09:27 +0000)]
KVM: ARM: VGIC: Optimize the vGIC vgic_update_irq_pending function.
When vgic_update_irq_pending with level-sensitive false, it is need to
deactivates an interrupt, and, it can go to out directly.
Here return a false value, because it will be not need to kick.
Signed-off-by: wanghaibin <wanghaibin.wang@huawei.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Paolo Bonzini [Mon, 24 Nov 2014 13:35:24 +0000 (14:35 +0100)]
kvm: x86: avoid warning about potential shift wrapping bug
cs.base is declared as a __u64 variable and vector is a u32 so this
causes a static checker warning. The user indeed can set "sipi_vector"
to any u32 value in kvm_vcpu_ioctl_x86_set_vcpu_events(), but the
value should really have 8-bit precision only.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Paolo Bonzini [Mon, 24 Nov 2014 14:27:17 +0000 (15:27 +0100)]
KVM: x86: move device assignment out of kvm_host.h
Create a new header, and hide the device assignment functions there.
Move struct kvm_assigned_dev_kernel to assigned-dev.c by modifying
arch/x86/kvm/iommu.c to take a PCI device struct.
Based on a patch by Radim Krcmar <rkrcmark@redhat.com>.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Radim Krčmář [Fri, 21 Nov 2014 21:21:50 +0000 (22:21 +0100)]
kvm: x86: move assigned-dev.c and iommu.c to arch/x86/
Now that ia64 is gone, we can hide deprecated device assignment in x86.
Notable changes:
- kvm_vm_ioctl_assigned_device() was moved to x86/kvm_arch_vm_ioctl()
The easy parts were removed from generic kvm code, remaining
- kvm_iommu_(un)map_pages() would require new code to be moved
- struct kvm_assigned_dev_kernel depends on struct kvm_irq_ack_notifier
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Radim Krčmář [Thu, 20 Nov 2014 13:43:18 +0000 (14:43 +0100)]
kvm: remove IA64 ioctls
KVM ia64 is no longer present so new applications shouldn't use them.
The main problem is that they most likely didn't work even before,
because of a conflict in the #defines:
meaning that sizeof(struct kvm_guest_debug) == sizeof(void *) == 8
and KVM_SET_GUEST_DEBUG == KVM_IA64_VCPU_SET_STACK.
KVM_SET_GUEST_DEBUG is handled in virt/kvm/kvm_main.c before even calling
kvm_arch_vcpu_ioctl (which would have handled KVM_IA64_VCPU_SET_STACK),
so KVM_IA64_VCPU_SET_STACK would just return -EINVAL.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Paolo Bonzini [Wed, 19 Nov 2014 15:22:52 +0000 (16:22 +0100)]
KVM: ia64: remove
KVM for ia64 has been marked as broken not just once, but twice even,
and the last patch from the maintainer is now roughly 5 years old.
Time for it to rest in peace.
Acked-by: Gleb Natapov <gleb@kernel.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Nicholas Krause [Wed, 19 Nov 2014 12:48:18 +0000 (07:48 -0500)]
KVM: x86: Remove FIXMEs in emulate.c
Remove FIXME comments about needing fault addresses to be returned. These
are propaagated from walk_addr_generic to gva_to_gpa and from there to
ops->read_std and ops->write_std.
Signed-off-by: Nicholas Krause <xerofoify@gmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Paolo Bonzini [Wed, 19 Nov 2014 17:33:38 +0000 (18:33 +0100)]
KVM: emulator: remove duplicated limit check
The check on the higher limit of the segment, and the check on the
maximum accessible size, is the same for both expand-up and
expand-down segments. Only the computation of "lim" varies.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>