Max Filippov [Thu, 3 Apr 2014 21:48:48 +0000 (14:48 -0700)]
MAINTAINERS: add xtensa irqchips to xtensa port entry
Now that irqchip drivers for xtensa live outside arch/xtensa we'd like
to add them to our maintenance list.
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Marc Gauthier <marc@cadence.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Jingoo Han [Thu, 3 Apr 2014 21:48:46 +0000 (14:48 -0700)]
MAINTAINERS: add backlight co-maintainers
Bryan Wu and Lee Jones volunteer to maintain backlight drivers and help
to setup git-tree for backlight subsystem. Thus, I add them as
backlight co-maintainers.
Signed-off-by: Jingoo Han <jg1.han@samsung.com> Acked-by: Bryan Wu <cooloney@gmail.com> Acked-by: Lee Jones <lee.jones@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
======================================================
[ INFO: possible circular locking dependency detected ]
3.10.0 #2 Tainted: G O
-------------------------------------------------------
sh/1271 is trying to acquire lock:
(console_lock){+.+.+.}, at: console_cpu_notify+0x20/0x2c
but task is already holding lock:
(cpu_hotplug.lock){+.+.+.}, at: cpu_hotplug_begin+0x2c/0x58
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #2 (cpu_hotplug.lock){+.+.+.}:
lock_acquire+0x98/0x12c
mutex_lock_nested+0x50/0x3d8
cpu_hotplug_begin+0x2c/0x58
_cpu_up+0x24/0x154
cpu_up+0x64/0x84
smp_init+0x9c/0xd4
kernel_init_freeable+0x78/0x1c8
kernel_init+0x8/0xe4
ret_from_fork+0x14/0x2c
There are three locks involved in two sequence:
a) pm suspend:
console_lock (@suspend_console())
cpu_add_remove_lock (@disable_nonboot_cpus())
cpu_hotplug.lock (@_cpu_down())
b) Plug-out CPUx:
cpu_add_remove_lock (@(cpu_down())
cpu_hotplug.lock (@_cpu_down())
console_lock (@console_cpu_notify()) => Lockdeps prints warning log.
There should be not real deadlock, as flag of console_suspended can
protect this.
Although console_suspend() releases console_sem, it doesn't tell lockdep
about it. That results in the lockdep warning about circular locking
when doing the following: enter suspend -> resume -> plug-out CPUx (echo
0 > cpux/online)
Fix the problem by telling lockdep we actually released the semaphore in
console_suspend() and acquired it again in console_resume().
Signed-off-by: Jane Li <jiel@marvell.com> Reviewed-by: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Petr Mladek [Thu, 3 Apr 2014 21:48:43 +0000 (14:48 -0700)]
printk: do not compute the size of the message twice
This is just a tiny optimization. It removes duplicate computation of
the message size.
Signed-off-by: Petr Mladek <pmladek@suse.cz> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jan Kara <jack@suse.cz> Cc: Michal Hocko <mhocko@suse.cz> Cc: Kay Sievers <kay@vrfy.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Petr Mladek [Thu, 3 Apr 2014 21:48:42 +0000 (14:48 -0700)]
printk: use also the last bytes in the ring buffer
It seems that we have newer used the last byte in the ring buffer. In
fact, we have newer used the last 4 bytes because of padding.
First problem is in the check for free space. The exact number of free
bytes is enough to store the length of data.
Second problem is in the check where the ring buffer is rotated. The
left side counts the first unused index. It is unused, so it might be
the same as the size of the buffer.
Note that the first problem has to be fixed together with the second
one. Otherwise, the buffer is rotated even when there is enough space
on the end of the buffer. Then the beginning of the buffer is rewritten
and valid entries get corrupted.
Signed-off-by: Petr Mladek <pmladek@suse.cz> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jan Kara <jack@suse.cz> Cc: Michal Hocko <mhocko@suse.cz> Cc: Kay Sievers <kay@vrfy.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Petr Mladek [Thu, 3 Apr 2014 21:48:41 +0000 (14:48 -0700)]
printk: add comment about tricky check for text buffer size
There is no check for potential "text_len" overflow. It is not needed
because only valid level is detected. It took me some time to
understand why. It would deserve a comment ;-)
Signed-off-by: Petr Mladek <pmladek@suse.cz> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jan Kara <jack@suse.cz> Cc: Michal Hocko <mhocko@suse.cz> Cc: Kay Sievers <kay@vrfy.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Petr Mladek [Thu, 3 Apr 2014 21:48:39 +0000 (14:48 -0700)]
printk: remove obsolete check for log level "c"
The kernel log level "c" was removed in commit 61e99ab8e35a ("printk:
remove the now unnecessary "C" annotation for KERN_CONT"). It is no
longer detected in printk_get_level(). Hence we do not need to check it
in vprintk_emit.
Signed-off-by: Petr Mladek <pmladek@suse.cz> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jan Kara <jack@suse.cz> Cc: Michal Hocko <mhocko@suse.cz> Cc: Kay Sievers <kay@vrfy.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Petr Mladek [Thu, 3 Apr 2014 21:48:38 +0000 (14:48 -0700)]
printk: remove duplicated check for log level
The check for the exact log level is already done in printk_get_level.
We do not need to duplicate it in printk_skip_level.
Signed-off-by: Petr Mladek <pmladek@suse.cz> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jan Kara <jack@suse.cz> Cc: Michal Hocko <mhocko@suse.cz> Cc: Kay Sievers <kay@vrfy.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ryan Mallon [Thu, 3 Apr 2014 21:48:37 +0000 (14:48 -0700)]
vsprintf: remove %n handling
All in-kernel users of %n in format strings have now been removed and
the %n directive is ignored. Remove the handling of %n so that it is
treated the same as any other invalid format string directive. Keep a
warning in place to deter new instances of %n in format strings.
Signed-off-by: Ryan Mallon <rmallon@gmail.com> Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Paul Gortmaker [Thu, 3 Apr 2014 21:48:35 +0000 (14:48 -0700)]
kernel: audit/fix non-modular users of module_init in core code
Code that is obj-y (always built-in) or dependent on a bool Kconfig
(built-in or absent) can never be modular. So using module_init as an
alias for __initcall can be somewhat misleading.
Fix these up now, so that we can relocate module_init from init.h into
module.h in the future. If we don't do this, we'd have to add module.h
to obviously non-modular code, and that would be a worse thing.
The audit targets the following module_init users for change:
kernel/user.c obj-y
kernel/kexec.c bool KEXEC (one instance per arch)
kernel/profile.c bool PROFILING
kernel/hung_task.c bool DETECT_HUNG_TASK
kernel/sched/stats.c bool SCHEDSTATS
kernel/user_namespace.c bool USER_NS
Note that direct use of __initcall is discouraged, vs. one of the
priority categorized subgroups. As __initcall gets mapped onto
device_initcall, our use of subsys_initcall (which makes sense for these
files) will thus change this registration from level 6-device to level
4-subsys (i.e. slightly earlier). However no observable impact of that
difference has been observed during testing.
Also, two instances of missing ";" at EOL are fixed in kexec.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
samples/seccomp/Makefile: do not build tests if cross-compiling for MIPS
The Makefile is designed to use the host toolchain so it may be unsafe
to build the tests if the kernel has been configured and built for
another architecture. This fixes a build problem when the kernel has
been configured and built for the MIPS architecture but the host is not
MIPS (cross-compiled). The MIPS syscalls are only defined if one of the
following is true:
Of course, none of these make sense on a non-MIPS toolchain and the
following build problem occurs when building on a non-MIPS host.
linux/usr/include/linux/kexec.h:50: userspace cannot reference function or variable defined in the kernel
samples/seccomp/bpf-direct.c: In function `emulator':
samples/seccomp/bpf-direct.c:76:17: error: `__NR_write' undeclared (first use in this function)
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com> Reported-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Most of the mechanical portions of SubmittingPatches exist to help patch
submitters replicate the output of git. Mention this explicitly, both
as a reminder that git will help with this process, and as signposting
to let git users know what they can safely skip.
Signed-off-by: Josh Triplett <josh@joshtriplett.org> Acked-by: Borislav Petkov <bp@suse.de> Cc: Rob Landley <rob@landley.net> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SubmittingPatches: add recommendation for mailing list references
SubmittingPatches already mentions referencing bugs fixed by a commit,
but doesn't mention citing relevant mailing list discussions. Add a
note to that effect, along with a recommendation to use the
https://lkml.kernel.org/ redirector.
Portions based on text from git's SubmittingPatches.
Signed-off-by: Josh Triplett <josh@joshtriplett.org> Acked-by: Borislav Petkov <bp@suse.de> Cc: Rob Landley <rob@landley.net> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SubmittingPatches: add style recommendation to use imperative descriptions
Most commit messages use this style, and the recommendation frequently
comes up in discussions (especially in response to patches that don't
use it), but that recommendation doesn't actually appear anywhere in
Documentation. Add this style guideline to SubmittingPatches, using the
description from git's SubmittingPatches.
Signed-off-by: Josh Triplett <josh@joshtriplett.org> Acked-by: Borislav Petkov <bp@suse.de> Cc: Rob Landley <rob@landley.net> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Wang YanQing [Thu, 3 Apr 2014 21:48:26 +0000 (14:48 -0700)]
kernel/groups.c: remove return value of set_groups
After commit 6307f8fee295 ("security: remove dead hook task_setgroups"),
set_groups will always return zero, so we could just remove return value
of set_groups.
This patch reduces code size, and simplfies code to use set_groups,
because we don't need to check its return value any more.
[akpm@linux-foundation.org: remove obsolete claims from set_groups() comment] Signed-off-by: Wang YanQing <udknight@gmail.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Serge Hallyn <serge.hallyn@canonical.com> Cc: Eric Paris <eparis@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Raghavendra K T [Thu, 3 Apr 2014 21:48:23 +0000 (14:48 -0700)]
mm/readahead.c: fix readahead failure for memoryless NUMA nodes and limit readahead pages
Currently max_sane_readahead() returns zero on the cpu whose NUMA node
has no local memory which leads to readahead failure. Fix this
readahead failure by returning minimum of (requested pages, 512). Users
running applications on a memory-less cpu which needs readahead such as
streaming application see considerable boost in the performance.
Result:
fadvise experiment with FADV_WILLNEED on a PPC machine having memoryless
CPU with 1GB testfile (12 iterations) yielded around 46.66% improvement.
fadvise experiment with FADV_WILLNEED on a x240 machine with 1GB
testfile 32GB* 4G RAM numa machine (12 iterations) showed no impact on
the normal NUMA cases w/ patch.
Kernel Avg Stddev
base 7.4975 3.92%
patched 7.4174 3.26%
[Andrew: making return value PAGE_SIZE independent] Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Acked-by: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We release the slab_mutex while calling sysfs_slab_add from
__kmem_cache_create since commit 66c4c35c6bc5 ("slub: Do not hold
slub_lock when calling sysfs_slab_add()"), because kobject_uevent called
by sysfs_slab_add might block waiting for the usermode helper to exec,
which would result in a deadlock if we took the slab_mutex while
executing it.
However, apart from complicating synchronization rules, releasing the
slab_mutex on kmem cache creation can result in a kmemcg-related race.
The point is that we check if the memcg cache exists before going to
__kmem_cache_create, but register the new cache in memcg subsys after
it. Since we can drop the mutex there, several threads can see that the
memcg cache does not exist and proceed to creating it, which is wrong.
Fortunately, recently kobject_uevent was patched to call the usermode
helper with the UMH_NO_WAIT flag, making the deadlock impossible.
Therefore there is no point in releasing the slab_mutex while calling
sysfs_slab_add, so let's simplify kmem_cache_create synchronization and
fix the kmemcg-race mentioned above by holding the slab_mutex during the
whole cache creation path.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Greg KH <greg@kroah.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently kobject_uevent has somewhat unpredictable semantics. The
point is, since it may call a usermode helper and wait for it to execute
(UMH_WAIT_EXEC), it is impossible to say for sure what lock dependencies
it will introduce for the caller - strictly speaking it depends on what
fs the binary is located on and the set of locks fork may take. There
are quite a few kobject_uevent's users that do not take this into
account and call it with various mutexes taken, e.g. rtnl_mutex,
net_mutex, which might potentially lead to a deadlock.
Since there is actually no reason to wait for the usermode helper to
execute there, let's make kobject_uevent start the helper asynchronously
with the aid of the UMH_NO_WAIT flag.
Personally, I'm interested in this, because I really want kobject_uevent
to be called under the slab_mutex in the slub implementation as it used
to be some time ago, because it greatly simplifies synchronization and
automatically fixes a kmemcg-related race. However, there was a
deadlock detected on an attempt to call kobject_uevent under the
slab_mutex (see https://lkml.org/lkml/2012/1/14/45), which was reported
to be fixed by releasing the slab_mutex for kobject_uevent.
Unfortunately, there was no information about who exactly blocked on the
slab_mutex causing the usermode helper to stall, neither have I managed
to find this out or reproduce the issue.
BTW, this is not the first attempt to make kobject_uevent use
UMH_NO_WAIT. Previous one was made by commit f520360d93cd ("kobject:
don't block for each kobject_uevent"), but it was wrong (it passed
arguments allocated on stack to async thread) so it was reverted in 05f54c13cd0c ("Revert "kobject: don't block for each kobject_uevent".").
It targeted on speeding up the boot process though.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Greg KH <greg@kroah.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dave Hansen [Thu, 3 Apr 2014 21:48:19 +0000 (14:48 -0700)]
drop_caches: add some documentation and info message
There is plenty of anecdotal evidence and a load of blog posts
suggesting that using "drop_caches" periodically keeps your system
running in "tip top shape". Perhaps adding some kernel documentation
will increase the amount of accurate data on its use.
If we are not shrinking caches effectively, then we have real bugs.
Using drop_caches will simply mask the bugs and make them harder to
find, but certainly does not fix them, nor is it an appropriate
"workaround" to limit the size of the caches. On the contrary, there
have been bug reports on issues that turned out to be misguided use of
cache dropping.
Dropping caches is a very drastic and disruptive operation that is good
for debugging and running tests, but if it creates bug reports from
production use, kernel developers should be aware of its use.
Add a bit more documentation about it, a syslog message to track down
abusers, and vmstat drop counters to help analyze problem reports.
[akpm@linux-foundation.org: checkpatch fixes]
[hannes@cmpxchg.org: add runtime suppression control] Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Michal Hocko <mhocko@suse.cz> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch removes read_cache_page_async() which wasn't really needed
anywhere and simplifies the code around it a bit.
read_cache_page_async() is useful when we want to read a page into the
cache without waiting for it to complete. This happens when the
appropriate callback 'filler' doesn't complete its read operation and
releases the page lock immediately, and instead queues a different
completion routine to do that. This never actually happened anywhere in
the code.
read_cache_page_async() had 3 different callers:
- read_cache_page() which is the sync version, it would just wait for
the requested read to complete using wait_on_page_read().
- JFFS2 would call it from jffs2_gc_fetch_page(), but the filler
function it supplied doesn't do any async reads, and would complete
before the filler function returns - making it actually a sync read.
- CRAMFS would call it using the read_mapping_page_async() wrapper, with
a similar story to JFFS2 - the filler function doesn't do anything that
reminds async reads and would always complete before the filler function
returns.
To sum it up, the code in mm/filemap.c never took advantage of having
read_cache_page_async(). While there are filler callbacks that do async
reads (such as the block one), we always called it with the
read_cache_page().
This patch adds a mandatory wait for read to complete when adding a new
page to the cache, and removes read_cache_page_async() and its wrappers.
I've realized that there's no need for do_huge_pmd_wp_zero_page_fallback().
We can just split zero page with split_huge_page_pmd() and return
VM_FAULT_FALLBACK. handle_pte_fault() will handle write-protection
fault for us.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
linux/mm.h does not define a prototype, but mm/page_alloc.c defines
the function.
Hence, compiler reports the following warning:
mm/page_alloc.c:4300:15: warning: no previous prototype for `__early_pfn_to_nid' [-Wmissing-prototypes]
- defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
The architecture defines the function, and linux/mm.h has a
prototype.
Thus, join the conditions of Case 2 and 3 ie eliminate the ifdef
condition of CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID to eliminate the missing
prototype warning from file mm/page_alloc.c.
Signed-off-by: Rashika Kheria <rashika.kheria@gmail.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mark functions as static in page_cgroup.c because they are not used
outside this file.
This eliminates the following warning in mm/page_cgroup.c:
mm/page_cgroup.c:177:6: warning: no previous prototype for `__free_page_cgroup' [-Wmissing-prototypes]
mm/page_cgroup.c:190:15: warning: no previous prototype for `online_page_cgroup' [-Wmissing-prototypes]
mm/page_cgroup.c:225:15: warning: no previous prototype for `offline_page_cgroup' [-Wmissing-prototypes]
Signed-off-by: Rashika Kheria <rashika.kheria@gmail.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mark functions as static in memory.c because they are not used outside
this file.
This eliminates the following warnings in mm/memory.c:
mm/memory.c:3530:5: warning: no previous prototype for `numa_migrate_prep' [-Wmissing-prototypes]
mm/memory.c:3545:5: warning: no previous prototype for `do_numa_page' [-Wmissing-prototypes]
Signed-off-by: Rashika Kheria <rashika.kheria@gmail.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org> Reviewed-by: Rik van Riel <riel@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
David Rientjes [Thu, 3 Apr 2014 21:48:00 +0000 (14:48 -0700)]
mm, compaction: avoid isolating pinned pages
Page migration will fail for memory that is pinned in memory with, for
example, get_user_pages(). In this case, it is unnecessary to take
zone->lru_lock or isolating the page and passing it to page migration
which will ultimately fail.
This is a racy check, the page can still change from under us, but in
that case we'll just fail later when attempting to move the page.
This avoids very expensive memory compaction when faulting transparent
hugepages after pinning a lot of memory with a Mellanox driver.
On a 128GB machine and pinning ~120GB of memory, before this patch we
see the enormous disparity in the number of page migration failures
because of the pinning (from /proc/vmstat):
Johannes Weiner [Thu, 3 Apr 2014 21:47:56 +0000 (14:47 -0700)]
mm: keep page cache radix tree nodes in check
Previously, page cache radix tree nodes were freed after reclaim emptied
out their page pointers. But now reclaim stores shadow entries in their
place, which are only reclaimed when the inodes themselves are
reclaimed. This is problematic for bigger files that are still in use
after they have a significant amount of their cache reclaimed, without
any of those pages actually refaulting. The shadow entries will just
sit there and waste memory. In the worst case, the shadow entries will
accumulate until the machine runs out of memory.
To get this under control, the VM will track radix tree nodes
exclusively containing shadow entries on a per-NUMA node list. Per-NUMA
rather than global because we expect the radix tree nodes themselves to
be allocated node-locally and we want to reduce cross-node references of
otherwise independent cache workloads. A simple shrinker will then
reclaim these nodes on memory pressure.
A few things need to be stored in the radix tree node to implement the
shadow node LRU and allow tree deletions coming from the list:
1. There is no index available that would describe the reverse path
from the node up to the tree root, which is needed to perform a
deletion. To solve this, encode in each node its offset inside the
parent. This can be stored in the unused upper bits of the same
member that stores the node's height at no extra space cost.
2. The number of shadow entries needs to be counted in addition to the
regular entries, to quickly detect when the node is ready to go to
the shadow node LRU list. The current entry count is an unsigned
int but the maximum number of entries is 64, so a shadow counter
can easily be stored in the unused upper bits.
3. Tree modification needs tree lock and tree root, which are located
in the address space, so store an address_space backpointer in the
node. The parent pointer of the node is in a union with the 2-word
rcu_head, so the backpointer comes at no extra cost as well.
4. The node needs to be linked to an LRU list, which requires a list
head inside the node. This does increase the size of the node, but
it does not change the number of objects that fit into a slab page.
[akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Johannes Weiner [Thu, 3 Apr 2014 21:47:54 +0000 (14:47 -0700)]
lib: radix_tree: tree node interface
Make struct radix_tree_node part of the public interface and provide API
functions to create, look up, and delete whole nodes. Refactor the
existing insert, look up, delete functions on top of these new node
primitives.
This will allow the VM to track and garbage collect page cache radix
tree nodes.
[sasha.levin@oracle.com: return correct error code on insertion failure] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Johannes Weiner [Thu, 3 Apr 2014 21:47:51 +0000 (14:47 -0700)]
mm: thrash detection-based file cache sizing
The VM maintains cached filesystem pages on two types of lists. One
list holds the pages recently faulted into the cache, the other list
holds pages that have been referenced repeatedly on that first list.
The idea is to prefer reclaiming young pages over those that have shown
to benefit from caching in the past. We call the recently usedbut
ultimately was not significantly better than a FIFO policy and still
thrashed cache based on eviction speed, rather than actual demand for
cache.
This patch solves one half of the problem by decoupling the ability to
detect working set changes from the inactive list size. By maintaining
a history of recently evicted file pages it can detect frequently used
pages with an arbitrarily small inactive list size, and subsequently
apply pressure on the active list based on actual demand for cache, not
just overall eviction speed.
Every zone maintains a counter that tracks inactive list aging speed.
When a page is evicted, a snapshot of this counter is stored in the
now-empty page cache radix tree slot. On refault, the minimum access
distance of the page can be assessed, to evaluate whether the page
should be part of the active list or not.
This fixes the VM's blindness towards working set changes in excess of
the inactive list. And it's the foundation to further improve the
protection ability and reduce the minimum inactive list size of 50%.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Bob Liu <bob.liu@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Johannes Weiner [Thu, 3 Apr 2014 21:47:49 +0000 (14:47 -0700)]
mm + fs: store shadow entries in page cache
Reclaim will be leaving shadow entries in the page cache radix tree upon
evicting the real page. As those pages are found from the LRU, an
iput() can lead to the inode being freed concurrently. At this point,
reclaim must no longer install shadow pages because the inode freeing
code needs to ensure the page tree is really empty.
Add an address_space flag, AS_EXITING, that the inode freeing code sets
under the tree lock before doing the final truncate. Reclaim will check
for this flag before installing shadow pages.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Johannes Weiner [Thu, 3 Apr 2014 21:47:46 +0000 (14:47 -0700)]
mm + fs: prepare for non-page entries in page cache radix trees
shmem mappings already contain exceptional entries where swap slot
information is remembered.
To be able to store eviction information for regular page cache, prepare
every site dealing with the radix trees directly to handle entries other
than pages.
The common lookup functions will filter out non-page entries and return
NULL for page cache holes, just as before. But provide a raw version of
the API which returns non-page entries as well, and switch shmem over to
use it.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Johannes Weiner [Thu, 3 Apr 2014 21:47:44 +0000 (14:47 -0700)]
mm: filemap: move radix tree hole searching here
The radix tree hole searching code is only used for page cache, for
example the readahead code trying to get a a picture of the area
surrounding a fault.
It sufficed to rely on the radix tree definition of holes, which is
"empty tree slot". But this is about to change, though, as shadow page
descriptors will be stored in the page cache after the actual pages get
evicted from memory.
Move the functions over to mm/filemap.c and make them native page cache
operations, where they can later be adapted to handle the new definition
of "page cache hole".
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Johannes Weiner [Thu, 3 Apr 2014 21:47:41 +0000 (14:47 -0700)]
mm: shmem: save one radix tree lookup when truncating swapped pages
Page cache radix tree slots are usually stabilized by the page lock, but
shmem's swap cookies have no such thing. Because the overall truncation
loop is lockless, the swap entry is currently confirmed by a tree lookup
and then deleted by another tree lookup under the same tree lock region.
Use radix_tree_delete_item() instead, which does the verification and
deletion with only one lookup. This also allows removing the
delete-only special case from shmem_radix_tree_replace().
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Johannes Weiner [Thu, 3 Apr 2014 21:47:39 +0000 (14:47 -0700)]
lib: radix-tree: add radix_tree_delete_item()
Provide a function that does not just delete an entry at a given index,
but also allows passing in an expected item. Delete only if that item
is still located at the specified index.
This is handy when lockless tree traversals want to delete entries as
well because they don't have to do an second, locked lookup to verify
the slot has not changed under them before deleting the entry.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Johannes Weiner [Thu, 3 Apr 2014 21:47:36 +0000 (14:47 -0700)]
fs: cachefiles: use add_to_page_cache_lru()
This code used to have its own lru cache pagevec up until a0b8cab3 ("mm:
remove lru parameter from __pagevec_lru_add and remove parts of pagevec
API"). Now it's just add_to_page_cache() followed by lru_cache_add(),
might as well use add_to_page_cache_lru() directly.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Johannes Weiner [Thu, 3 Apr 2014 21:47:34 +0000 (14:47 -0700)]
mm: vmstat: fix UP zone state accounting
Summary:
The VM maintains cached filesystem pages on two types of lists. One
list holds the pages recently faulted into the cache, the other list
holds pages that have been referenced repeatedly on that first list.
The idea is to prefer reclaiming young pages over those that have shown
to benefit from caching in the past. We call the recently used list
"inactive list" and the frequently used list "active list".
Currently, the VM aims for a 1:1 ratio between the lists, which is the
"perfect" trade-off between the ability to *protect* frequently used
pages and the ability to *detect* frequently used pages. This means
that working set changes bigger than half of cache memory go undetected
and thrash indefinitely, whereas working sets bigger than half of cache
memory are unprotected against used-once streams that don't even need
caching.
This happens on file servers and media streaming servers, where the
popular files and file sections change over time. Even though the
individual files might be smaller than half of memory, concurrent access
to many of them may still result in their inter-reference distance being
greater than half of memory. It's also been reported as a problem on
database workloads that switch back and forth between tables that are
bigger than half of memory. In these cases the VM never recognizes the
new working set and will for the remainder of the workload thrash disk
data which could easily live in memory.
Historically, every reclaim scan of the inactive list also took a
smaller number of pages from the tail of the active list and moved them
to the head of the inactive list. This model gave established working
sets more gracetime in the face of temporary use-once streams, but
ultimately was not significantly better than a FIFO policy and still
thrashed cache based on eviction speed, rather than actual demand for
cache.
This series solves the problem by maintaining a history of pages evicted
from the inactive list, enabling the VM to detect frequently used pages
regardless of inactive list size and facilitate working set transitions.
Tests:
The reported database workload is easily demonstrated on a 8G machine
with two filesets a 6G. This fio workload operates on one set first,
then switches to the other. The VM should obviously always cache the
set that the workload is currently using.
This test is based on a problem encountered by Citus Data customers:
http://citusdata.com/blog/72-linux-memory-manager-and-your-big-data
As can be seen, the unpatched kernel simply never adapts to the
workingset change and db2 is stuck indefinitely with secondary storage
speed. The patched kernel needs 2-3 iterations over db2 before it
replaces db1 and reaches full memory speed. Given the unbounded
negative affect of the existing VM behavior, these patches should be
considered correctness fixes rather than performance optimizations.
Another test resembles a fileserver or streaming server workload, where
data in excess of memory size is accessed at different frequencies.
There is very hot data accessed at a high frequency. Machines should be
fitted so that the hot set of such a workload can be fully cached or all
bets are off. Then there is a very big (compared to available memory)
set of data that is used-once or at a very low frequency; this is what
drives the inactive list and does not really benefit from caching.
Lastly, there is a big set of warm data in between that is accessed at
medium frequencies and benefits from caching the pages between the first
and last streamer of each burst.
In both kernels, the hot set is propagated to the active list and then
served from cache.
In both kernels, the beginning of the warm set is propagated to the
active list as well, but in the unpatched case the active list
eventually takes up half of memory and no new pages from the warm set
get activated, despite repeated access, and despite most of the active
list soon being stale. The patched kernel on the other hand detects the
thrashing and manages to keep this cache window rolling through the data
set. This frees up enough IO bandwidth that the cold set is served at
full speed as well and disk utilization even drops by 20%.
For reference, this same test was performed with the traditional
demotion mechanism, where deactivation is coupled to inactive list
reclaim. However, this had the same outcome as the unpatched kernel:
while the warm set does indeed get activated continuously, it is forced
out of the active list by inactive list pressure, which is dictated
primarily by the unrelated cold set. The warm set is evicted before
subsequent streamers can benefit from it, even though there would be
enough space available to cache the pages of interest.
Costs:
Page reclaim used to shrink the radix trees but now the tree nodes are
reused for shadow entries, where the cost depends heavily on the page
cache access patterns. However, with workloads that maintain spatial or
temporal locality, the shadow entries are either refaulted quickly or
reclaimed along with the inode object itself. Workloads that will
experience a memory cost increase are those that don't really benefit
from caching in the first place.
A more predictable alternative would be a fixed-cost separate pool of
shadow entries, but this would incur relatively higher memory cost for
well-behaved workloads at the benefit of cornercases. It would also
make the shadow entry lookup more costly compared to storing them
directly in the cache structure.
Future:
To simplify the merging process, this patch set is implementing thrash
detection on a global per-zone level only for now, but the design is
such that it can be extended to memory cgroups as well. All we need to
do is store the unique cgroup ID along the node and zone identifier
inside the eviction cookie to identify the lruvec.
Right now we have a fixed ratio (50:50) between inactive and active list
but we already have complaints about working sets exceeding half of
memory being pushed out of the cache by simple streaming in the
background. Ultimately, we want to adjust this ratio and allow for a
much smaller inactive list. These patches are an essential step in this
direction because they decouple the VMs ability to detect working set
changes from the inactive list size. This would allow us to base the
inactive list size on the combined readahead window size for example and
potentially protect a much bigger working set.
It's also a big step towards activating pages with a reuse distance
larger than memory, as long as they are the most frequently used pages
in the workload. This will require knowing more about the access
frequency of active pages than what we measure right now, so it's also
deferred in this series.
Another possibility of having thrashing information would be to revisit
the idea of local reclaim in the form of zero-config memory control
groups. Instead of having allocating tasks go straight to global
reclaim, they could try to reclaim the pages in the memcg they are part
of first as long as the group is not thrashing. This would allow a user
to drop e.g. a back-up job in an otherwise unconfigured memcg and it
would only inflate (and possibly do global reclaim) until it has enough
memory to do proper readahead. But once it reaches that point and stops
thrashing it would just recycle its own used-once pages without kicking
out the cache of any other tasks in the system more than necessary.
This patch (of 10):
Fengguang Wu's build testing spotted problems with inc_zone_state() and
dec_zone_state() on UP configurations in out-of-tree patches.
inc_zone_state() is declared but not defined, dec_zone_state() is
missing entirely.
Just like with *_zone_page_state(), they can be defined like their
preemption-unsafe counterparts on UP.
[akpm@linux-foundation.org: make it build] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The name `max_pass' is misleading, because this variable actually keeps
the estimate number of freeable objects, not the maximal number of
objects we can scan in this pass, which can be twice that. Rename it to
reflect its actual meaning.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kernel can currently only handle a single hugetlb page fault at a
time. This is due to a single mutex that serializes the entire path.
This lock protects from spurious OOM errors under conditions of low
availability of free hugepages. This problem is specific to hugepages,
because it is normal to want to use every single hugepage in the system
- with normal pages we simply assume there will always be a few spare
pages which can be used temporarily until the race is resolved.
Address this problem by using a table of mutexes, allowing a better
chance of parallelization, where each hugepage is individually
serialized. The hash key is selected depending on the mapping type.
For shared ones it consists of the address space and file offset being
faulted; while for private ones the mm and virtual address are used.
The size of the table is selected based on a compromise of collisions
and memory footprint of a series of database workloads.
Large database workloads that make heavy use of hugepages can be
particularly exposed to this issue, causing start-up times to be
painfully slow. This patch reduces the startup time of a 10 Gb Oracle
DB (with ~5000 faults) from 37.5 secs to 25.7 secs. Larger workloads
will naturally benefit even more.
NOTE:
The only downside to this patch, detected by Joonsoo Kim, is that a
small race is possible in private mappings: A child process (with its
own mm, after cow) can instantiate a page that is already being handled
by the parent in a cow fault. When low on pages, can trigger spurious
OOMs. I have not been able to think of a efficient way of handling
this... but do we really care about such a tiny window? We already
maintain another theoretical race with normal pages. If not, one
possible way to is to maintain the single hash for private mappings --
any workloads that *really* suffer from this scaling problem should
already use shared mappings.
[akpm@linux-foundation.org: remove stray + characters, go BUG if hugetlb_init() kmalloc fails] Signed-off-by: Davidlohr Bueso <davidlohr@hp.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Joonsoo Kim [Thu, 3 Apr 2014 21:47:28 +0000 (14:47 -0700)]
mm, hugetlb: remove resv_map_put
This is a preparation patch to unify the use of vma_resv_map()
regardless of the map type. This patch prepares it by removing
resv_map_put(), which only works for HPAGE_RESV_OWNER's resv_map, not
for all resv_maps.
There is a race condition if we map a same file on different processes.
Region tracking is protected by mmap_sem and hugetlb_instantiation_mutex.
When we do mmap, we don't grab a hugetlb_instantiation_mutex, but only
mmap_sem (exclusively). This doesn't prevent other tasks from modifying
the region structure, so it can be modified by two processes
concurrently.
To solve this, introduce a spinlock to resv_map and make region
manipulation function grab it before they do actual work.
[davidlohr@hp.com: updated changelog] Signed-off-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Suggested-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: David Gibson <david@gibson.dropbear.id.au> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Joonsoo Kim [Thu, 3 Apr 2014 21:47:25 +0000 (14:47 -0700)]
mm, hugetlb: unify region structure handling
Currently, to track reserved and allocated regions, we use two different
ways, depending on the mapping. For MAP_SHARED, we use
address_mapping's private_list and, while for MAP_PRIVATE, we use a
resv_map.
Now, we are preparing to change a coarse grained lock which protect a
region structure to fine grained lock, and this difference hinder it.
So, before changing it, unify region structure handling, consistently
using a resv_map regardless of the kind of mapping.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Davidlohr Bueso <davidlohr@hp.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since put_mems_allowed() is strictly optional, its a seqcount retry, we
don't need to evaluate the function if the allocation was in fact
successful, saving a smp_rmb some loads and comparisons on some relative
fast-paths.
Since the naming, get/put_mems_allowed() does suggest a mandatory
pairing, rename the interface, as suggested by Mel, to resemble the
seqcount interface.
This gives us: read_mems_allowed_begin() and read_mems_allowed_retry(),
where it is important to note that the return value of the latter call
is inverted from its previous incarnation.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
David Rientjes [Thu, 3 Apr 2014 21:47:23 +0000 (14:47 -0700)]
mm, compaction: ignore pageblock skip when manually invoking compaction
The cached pageblock hint should be ignored when triggering compaction
through /proc/sys/vm/compact_memory so all eligible memory is isolated.
Manually invoking compaction is known to be expensive, there's no need
to skip pageblocks based on heuristics (mainly for debugging).
Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mm: vmscan: remove shrink_control arg from do_try_to_free_pages()
There is no need passing on a shrink_control struct from
try_to_free_pages() and friends to do_try_to_free_pages() and then to
shrink_zones(), because it is only used in shrink_zones() and the only
field initialized on the top level is gfp_mask, which is always equal to
scan_control.gfp_mask. So let's move shrink_control initialization to
shrink_zones().
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Cc: Dave Chinner <dchinner@redhat.com> Cc: Glauber Costa <glommer@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mm: vmscan: respect NUMA policy mask when shrinking slab on direct reclaim
When direct reclaim is executed by a process bound to a set of NUMA
nodes, we should scan only those nodes when possible, but currently we
will scan kmem from all online nodes even if the kmem shrinker is NUMA
aware. That said, binding a process to a particular NUMA node won't
prevent it from shrinking inode/dentry caches from other nodes, which is
not good. Fix this.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Cc: Dave Chinner <dchinner@redhat.com> Cc: Glauber Costa <glommer@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ben Zhang [Thu, 3 Apr 2014 21:47:18 +0000 (14:47 -0700)]
kernel/watchdog.c: touch_nmi_watchdog should only touch local cpu not every one
I ran into a scenario where while one cpu was stuck and should have
panic'd because of the NMI watchdog, it didn't. The reason was another
cpu was spewing stack dumps on to the console. Upon investigation, I
noticed that when writing to the console and also when dumping the
stack, the watchdog is touched.
This causes all the cpus to reset their NMI watchdog flags and the
'stuck' cpu just spins forever.
This change causes the semantics of touch_nmi_watchdog to be changed
slightly. Previously, I accidentally changed the semantics and we
noticed there was a codepath in which touch_nmi_watchdog could be
touched from a preemtible area. That caused a BUG() to happen when
CONFIG_DEBUG_PREEMPT was enabled. I believe it was the acpi code.
My attempt here re-introduces the change to have the
touch_nmi_watchdog() code only touch the local cpu instead of all of the
cpus. But instead of using __get_cpu_var(), I use the
__raw_get_cpu_var() version.
This avoids the preemption problem. However my reasoning wasn't because
I was trying to be lazy. Instead I rationalized it as, well if
preemption is enabled then interrupts should be enabled to and the NMI
watchdog will have no reason to trigger. So it won't matter if the
wrong cpu is touched because the percpu interrupt counters the NMI
watchdog uses should still be incrementing.
Don said:
: I'm ok with this patch, though it does alter the behaviour of how
: touch_nmi_watchdog works. For the most part I don't think most callers
: need to touch all of the watchdogs (on each cpu). Perhaps a corner case
: will pop up (the scheduler?? to mimic touch_all_softlockup_watchdogs() ).
:
: But this does address an issue where if a system is locked up and one cpu
: is spewing out useful debug messages (or error messages), the hard lockup
: will fail to go off. We have seen this on RHEL also.
Signed-off-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Ben Zhang <benzh@chromium.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dan Carpenter [Thu, 3 Apr 2014 21:47:17 +0000 (14:47 -0700)]
fs/direct-io.c: remove some left over checks
We know that "ret > 0" is true here. These tests were left over from
commit 02afc27faec9 ('direct-io: Handle O_(D)SYNC AIO') and aren't
needed any more.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The return value of bio_get_nr_vecs() cannot be bigger than
BIO_MAX_PAGES, so we can remove redundant the comparison between
nr_pages and BIO_MAX_PAGES.
Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Reviewed-by: Jeff Moyer <jmoyer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We cached a block, but the buffer_head got reused. When we are to pick
up this block again, a new buffer_head created with UPTODATE flag
cleared. ocfs2_buffer_uptodate() returned false since no UPTODATE is
set on the buffer_head. so we set this block to cache as a NEW block,
then it failed at asserting block is not in cache.
The fix is to add a new parameter indicating the bucket is a new
allocated or not to ocfs2_init_xattr_bucket().
ocfs2_init_xattr_bucket() assert block not cached accordingly.
Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Cc: Joel Becker <jlbec@evilplan.org> Reviewed-by: Mark Fasheh <mfasheh@suse.de> Cc: Joe Jin <joe.jin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ocfs2: avoid system inode ref confusion by adding mutex lock
The following case may lead to the same system inode ref in confusion.
A thread B thread
ocfs2_get_system_file_inode
->get_local_system_inode
->_ocfs2_get_system_file_inode
because of *arr == NULL,
ocfs2_get_system_file_inode
->get_local_system_inode
->_ocfs2_get_system_file_inode
gets first ref thru
_ocfs2_get_system_file_inode,
gets second ref thru igrab and
set *arr = inode
at the moment, B thread also gets
two refs, so lead to one more
inode ref.
So add mutex lock to avoid multi thread set two inode ref once at the
same time.
Signed-off-by: jiangyiwen <jiangyiwen@huawei.com> Reviewed-by: Joseph Qi <joseph.qi@huawei.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Mark Fasheh <mfasheh@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In ocfs2_info_handle_freeinode() and ocfs2_test_inode_bit() func, after
calls ocfs2_get_system_file_inode() to get inode ref, if calls
ocfs2_info_scan_inode_alloc() or ocfs2_inode_lock() failed, we should
iput inode alloc to avoid leaking the inode.
Signed-off-by: jiangyiwen <jiangyiwen@huawei.com> Reviewed-by: Joseph Qi <joseph.qi@huawei.com> Cc: Mark Fasheh <mfasheh@suse.de> Cc: Joel Becker <jlbec@evilplan.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When accepting an incomming connection o2net_accept_one clones a child
data socket from the parent listening socket. It then proceeds to setup
the child with callback o2net_data_ready() and sk_user_data to NULL. If
data arrives in this window, o2net_listen_data_ready will be called with
some non-deterministic value in sk_user_data (not inherited). We panic
when we page fault on sk_user_data -- in parent it is
sock_def_readable().
The fix is to recognize that this is a data socket being set up by
looking at the socket state and do nothing.
Signed-off-by: Tariq Saseed <tariq.x.saeed@oracle.com> Signed-off-by: Srinivas Eeda <srinivas.eeda@oracle.com> Reviewed-by: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Younger Liu [Thu, 3 Apr 2014 21:47:10 +0000 (14:47 -0700)]
ocfs2: rollback alloc_dinode counts when ocfs2_block_group_set_bits() failed
After updating alloc_dinode counts in ocfs2_alloc_dinode_update_counts(),
if ocfs2_alloc_dinode_update_bitmap() failed, there is a rare case that
some space may be lost.
So, roll back alloc_dinode counts when ocfs2_block_group_set_bits()
failed.
[akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Younger Liu <younger.liucn@gmail.com> Reviewed-by: Mark Fasheh <mfasheh@suse.de> Cc: Joel Becker <jlbec@evilplan.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Wengang Wang [Thu, 3 Apr 2014 21:47:09 +0000 (14:47 -0700)]
ocfs2: flock: drop cross-node lock when failed locally
ocfs2_do_flock() calls ocfs2_file_lock() to get the cross-node clock and
then call flock_lock_file_wait() to compete with local processes. In
case flock_lock_file_wait() failed, say -ENOMEM, clean up work is not
done. This patch adds the cleanup --drop the cross-node lock which was
just granted.
[akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Cc: Joel Becker <jlbec@evilplan.org> Reviewed-by: Mark Fasheh <mfasheh@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Darrick J. Wong [Thu, 3 Apr 2014 21:47:08 +0000 (14:47 -0700)]
ocfs2: call ocfs2_update_inode_fsync_trans when updating any inode
Ensure that ocfs2_update_inode_fsync_trans() is called any time we touch
an inode in a given transaction. This is a follow-on to the previous
patch to reduce lock contention and deadlocking during an fsync
operation.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Cc: Mark Fasheh <mfasheh@suse.de> Cc: Joel Becker <jlbec@evilplan.org> Cc: Wengang <wen.gang.wang@oracle.com> Cc: Greg Marsden <greg.marsden@oracle.com> Cc: Srinivas Eeda <srinivas.eeda@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 9548906b2bb7 ('xattr: Constify ->name member of "struct xattr"')
missed that ocfs2 is calling kfree(xattr->name). As a result, kernel
panic occurs upon calling kfree(xattr->name) because xattr->name refers
static constant names. This patch removes kfree(xattr->name) from
ocfs2_mknod() and ocfs2_symlink().
alex chen [Thu, 3 Apr 2014 21:47:05 +0000 (14:47 -0700)]
ocfs2: do not put bh when buffer_uptodate failed
Do not put bh when buffer_uptodate failed in ocfs2_write_block and
ocfs2_write_super_or_backup, because it will put bh in b_end_io.
Otherwise it will hit a warning "VFS: brelse: Trying to free free
buffer".
Signed-off-by: Alex Chen <alex.chen@huawei.com> Reviewed-by: Joseph Qi <joseph.qi@huawei.com> Reviewed-by: Srinivas Eeda <srinivas.eeda@oracle.com> Cc: Mark Fasheh <mfasheh@suse.com> Acked-by: Joel Becker <jlbec@evilplan.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ocfs2: __ocfs2_mknod_locked should return error when ocfs2_create_new_inode_locks() failed
When ocfs2_create_new_inode_locks() return error, inode open lock may
not be obtainted for this inode. So other nodes can remove this file
and free dinode when inode still remain in memory on this node, which is
not correct and may trigger BUG. So __ocfs2_mknod_locked should return
error when ocfs2_create_new_inode_locks() failed.
unlink fileA
try open lock succeed,
and free dinodeA
create another file, call ocfs2_mknod()
-> ocfs2_get_init_inode(), allocate inodeB
-> ocfs2_claim_new_inode(), as Node_2 had freed dinodeA,
so claim dinodeA and update generation for dinodeA
call __ocfs2_drop_dl_inodes()->ocfs2_delete_inode()
to free inodeA, and finally triggers BUG
on(inode->i_generation != le32_to_cpu(fe->i_generation))
in function ocfs2_inode_lock_update().
Signed-off-by: joyce.xue <xuejiufei@huawei.com> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ocfs2_xattr_extend_allocation() hits panic when creating xattr during
data extent alloc phase. The problem occurs if due to local alloc
fragmentation, clusters are spread over multiple extents. In this case
ocfs2_add_clusters_in_btree() finds no space to store more than one
extent record and therefore fails returning RESTART_META. The situation
is anticipated for xattr update case but not xattr create case. This
fix simply ports that code to create case.
Signed-off-by: Tariq Saeed <tariq.x.saeed@oracle.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Mark Fasheh <mfasheh@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ocfs2: llseek requires ocfs2 inode lock for the file in SEEK_END
llseek requires ocfs2 inode lock for updating the file size in SEEK_END.
because the file size maybe update on another node.
This bug can be reproduce the following scenario: at first, we dd a test
fileA, the file size is 10k.
on NodeA:
---------
1) open the test fileA, lseek the end of file. and print the position.
2) close the test fileA
on NodeB:
1) open the test fileA, append the 5k data to test FileA.
2) lseek the end of file. and print the position.
3) close file.
At first we run the test program1 on NodeA , the result is 10k. And
then run the test program2 on NodeB, the result is 15k. At last, we run
the test program1 on NodeA again, the result is 10k.
After applying this patch the three step result is 15k.
Joseph Qi [Thu, 3 Apr 2014 21:47:00 +0000 (14:47 -0700)]
ocfs2: fix type conversion risk when get cluster attributes
In o2nm_cluster, cl_idle_timeout_ms, cl_keepalive_delay_ms, as well as
cl_reconnect_delay_ms, are defined as type of unsigned int. So we
should also use unsigned int in the helper functions.
Signed-off-by: Joseph Qi <joseph.qi@huawei.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Mark Fasheh <mfasheh@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ocfs2: revert iput deferring code in ocfs2_drop_dentry_lock
The following patches are reverted in this patch because these patches
caused performance regression in the remote unlink() calls.
ea455f8ab683 - ocfs2: Push out dropping of dentry lock to ocfs2_wq f7b1aa69be13 - ocfs2: Fix deadlock on umount 5fd131893793 - ocfs2: Don't oops in ocfs2_kill_sb on a failed mount
Previous patches in this series removed the possible deadlocks from
downconvert thread so the above patches shouldn't be needed anymore.
The regression is caused because these patches delay the iput() in case
of dentry unlocks. This also delays the unlocking of the open lockres.
The open lockresource is required to test if the inode can be wiped from
disk or not. When the deleting node does not get the open lock, it
marks it as orphan (even though it is not in use by another
node/process) and causes a journal checkpoint. This delays operations
following the inode eviction. This also moves the inode to the orphaned
inode which further causes more I/O and a lot of unneccessary orphans.
The following script can be used to generate the load causing issues:
declare -a create
declare -a remove
declare -a iterations=(1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384)
unique="`mktemp -u XXXXX`"
script="/tmp/idontknow-${unique}.sh"
cat <<EOF > "${script}"
for n in {1..8}; do mkdir -p test/dir\${n}
eval touch test/dir\${n}/foo{1.."\$1"}
done
EOF
chmod 700 "${script}"
Jan Kara [Thu, 3 Apr 2014 21:46:57 +0000 (14:46 -0700)]
ocfs2: avoid blocking in ocfs2_mark_lockres_freeing() in downconvert thread
If we are dropping last inode reference from downconvert thread, we will
end up calling ocfs2_mark_lockres_freeing() which can block if the lock
we are freeing is queued thus creating an A-A deadlock. Luckily, since
we are the downconvert thread, we can immediately dequeue the lock and
thus avoid waiting in this case.
Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Mark Fasheh <mfasheh@suse.de> Reviewed-by: Srinivas Eeda <srinivas.eeda@oracle.com> Cc: Joel Becker <jlbec@evilplan.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Jan Kara [Thu, 3 Apr 2014 21:46:56 +0000 (14:46 -0700)]
ocfs2: implement delayed dropping of last dquot reference
We cannot drop last dquot reference from downconvert thread as that
creates the following deadlock:
NODE 1 NODE2
holds dentry lock for 'foo'
holds inode lock for GLOBAL_BITMAP_SYSTEM_INODE
dquot_initialize(bar)
ocfs2_dquot_acquire()
ocfs2_inode_lock(USER_QUOTA_SYSTEM_INODE)
...
downconvert thread (triggered from another
node or a different process from NODE2)
ocfs2_dentry_post_unlock()
...
iput(foo)
ocfs2_evict_inode(foo)
ocfs2_clear_inode(foo)
dquot_drop(inode)
...
ocfs2_dquot_release()
ocfs2_inode_lock(USER_QUOTA_SYSTEM_INODE)
- blocks
finds we need more space in
quota file
...
ocfs2_extend_no_holes()
ocfs2_inode_lock(GLOBAL_BITMAP_SYSTEM_INODE)
- deadlocks waiting for
downconvert thread
We solve the problem by postponing dropping of the last dquot reference to
a workqueue if it happens from the downconvert thread.
Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Mark Fasheh <mfasheh@suse.de> Reviewed-by: Srinivas Eeda <srinivas.eeda@oracle.com> Cc: Joel Becker <jlbec@evilplan.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Jan Kara [Thu, 3 Apr 2014 21:46:55 +0000 (14:46 -0700)]
quota: provide function to grab quota structure reference
Provide dqgrab() function to get quota structure reference when we are
sure it already has at least one active reference. Make use of this
function inside quota code.
Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Mark Fasheh <mfasheh@suse.de> Reviewed-by: Srinivas Eeda <srinivas.eeda@oracle.com> Cc: Joel Becker <jlbec@evilplan.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Jan Kara [Thu, 3 Apr 2014 21:46:54 +0000 (14:46 -0700)]
ocfs2: move dquot_initialize() in ocfs2_delete_inode() somewhat later
Move dquot_initalize() call in ocfs2_delete_inode() after the moment we
verify inode is actually a sane one to delete. We certainly don't want
to initialize quota for system inodes etc. This also avoids calling
into quota code from downconvert thread.
Add more details into the comment why bailing out from
ocfs2_delete_inode() when we are in downconvert thread is OK.
Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Mark Fasheh <mfasheh@suse.de> Reviewed-by: Srinivas Eeda <srinivas.eeda@oracle.com> Cc: Joel Becker <jlbec@evilplan.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Jan Kara [Thu, 3 Apr 2014 21:46:53 +0000 (14:46 -0700)]
ocfs2: remove OCFS2_INODE_SKIP_DELETE flag
The flag was never set, delete it.
Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Mark Fasheh <mfasheh@suse.de> Reviewed-by: Srinivas Eeda <srinivas.eeda@oracle.com> Cc: Joel Becker <jlbec@evilplan.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a part of the nocontrold feature which was incorporated sometime
back.
This is required for backward compatibility of the tools, specifically
the scenario where the tools with recovery callback is used with a
kernel not using the recovery callbacks (older kernel + newer tools).
The tools look for this file to understand if the kernel supports DLM
recovery callbacks.
For kernels which support recovery callbacks but will miss this patch,
ocfs2 will continue to use the older API and would still be able to
mount the filesystem.
[akpm@linux-foundation.org: simplify]
[sfr@canb.auug.org.au: VERIFY_OCTAL_PERMISSIONS fix up] Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Junxiao Bi [Thu, 3 Apr 2014 21:46:51 +0000 (14:46 -0700)]
ocfs2: dlm: fix recovery hung
There is a race window in dlm_do_recovery() between dlm_remaster_locks()
and dlm_reset_recovery() when the recovery master nearly finish the
recovery process for a dead node. After the master sends FINALIZE_RECO
message in dlm_remaster_locks(), another node may become the recovery
master for another dead node, and then send the BEGIN_RECO message to
all the nodes included the old master, in the handler of this message
dlm_begin_reco_handler() of old master, dlm->reco.dead_node and
dlm->reco.new_master will be set to the second dead node and the new
master, then in dlm_reset_recovery(), these two variables will be reset
to default value. This will cause new recovery master can not finish
the recovery process and hung, at last the whole cluster will hung for
recovery.
old recovery master: new recovery master:
dlm_remaster_locks()
become recovery master for
another dead node.
dlm_send_begin_reco_message()
dlm_begin_reco_handler()
{
if (dlm->reco.state & DLM_RECO_STATE_FINALIZE) {
return -EAGAIN;
}
dlm_set_reco_master(dlm, br->node_idx);
dlm_set_reco_dead_node(dlm, br->dead_node);
}
dlm_reset_recovery()
{
dlm_set_reco_dead_node(dlm, O2NM_INVALID_NODE_NUM);
dlm_set_reco_master(dlm, O2NM_INVALID_NODE_NUM);
}
will hang in dlm_remaster_locks() for
request dlm locks info
Before send FINALIZE_RECO message, recovery master should set
DLM_RECO_STATE_FINALIZE for itself and clear it after the recovery done,
this can break the race windows as the BEGIN_RECO messages will not be
handled before DLM_RECO_STATE_FINALIZE flag is cleared.
A similar race may happen between new recovery master and normal node
which is in dlm_finalize_reco_handler(), also fix it.
Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com> Reviewed-by: Srinivas Eeda <srinivas.eeda@oracle.com> Reviewed-by: Wengang Wang <wen.gang.wang@oracle.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Mark Fasheh <mfasheh@suse.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Junxiao Bi [Thu, 3 Apr 2014 21:46:49 +0000 (14:46 -0700)]
ocfs2: dlm: fix lock migration crash
This issue was introduced by commit 800deef3f6f8 ("ocfs2: use
list_for_each_entry where benefical") in 2007 where it replaced
list_for_each with list_for_each_entry. The variable "lock" will point
to invalid data if "tmpq" list is empty and a panic will be triggered
due to this. Sunil advised reverting it back, but the old version was
also not right. At the end of the outer for loop, that
list_for_each_entry will also set "lock" to an invalid data, then in the
next loop, if the "tmpq" list is empty, "lock" will be an stale invalid
data and cause the panic. So reverting the list_for_each back and reset
"lock" to NULL to fix this issue.
Another concern is that this seemes can not happen because the "tmpq"
list should not be empty. Let me describe how.
old lock resource owner(node 1): migratation target(node 2):
image there's lockres with a EX lock from node 2 in
granted list, a NR lock from node x with convert_type
EX in converting list.
dlm_empty_lockres() {
dlm_pick_migration_target() {
pick node 2 as target as its lock is the first one
in granted list.
}
dlm_migrate_lockres() {
dlm_mark_lockres_migrating() {
res->state |= DLM_LOCK_RES_BLOCK_DIRTY;
wait_event(dlm->ast_wq, !dlm_lockres_is_dirty(dlm, res));
//after the above code, we can not dirty lockres any more,
// so dlm_thread shuffle list will not run
downconvert lock from EX to NR
upconvert lock from NR to EX
<<< migration may schedule out here, then
<<< node 2 send down convert request to convert type from EX to
<<< NR, then send up convert request to convert type from NR to
<<< EX, at this time, lockres granted list is empty, and two locks
<<< in the converting list, node x up convert lock followed by
<<< node 2 up convert lock.
// will set lockres RES_MIGRATING flag, the following
// lock/unlock can not run
dlm_lockres_release_ast(dlm, res);
}
dlm_send_one_lockres()
dlm_process_recovery_data()
for (i=0; i<mres->num_locks; i++)
if (ml->node == dlm->node_num)
for (j = DLM_GRANTED_LIST; j <= DLM_BLOCKED_LIST; j++) {
list_for_each_entry(lock, tmpq, list)
if (lock) break; <<< lock is invalid as grant list is empty.
}
if (lock->ml.node != ml->node)
BUG() >>> crash here
}
I see the above locks status from a vmcore of our internal bug.
Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com> Reviewed-by: Wengang Wang <wen.gang.wang@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Reviewed-by: Srinivas Eeda <srinivas.eeda@oracle.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Mark Fasheh <mfasheh@suse.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Darrick J. Wong [Thu, 3 Apr 2014 21:46:48 +0000 (14:46 -0700)]
ocfs2: improve fsync efficiency and fix deadlock between aio_write and sync_file
Currently, ocfs2_sync_file grabs i_mutex and forces the current journal
transaction to complete. This isn't terribly efficient, since sync_file
really only needs to wait for the last transaction involving that inode
to complete, and this doesn't require i_mutex.
Therefore, implement the necessary bits to track the newest tid
associated with an inode, and teach sync_file to wait for that instead
of waiting for everything in the journal to commit. Furthermore, only
issue the flush request to the drive if jbd2 hasn't already done so.
This also eliminates the deadlock between ocfs2_file_aio_write() and
ocfs2_sync_file(). aio_write takes i_mutex then calls
ocfs2_aiodio_wait() to wait for unaligned dio writes to finish.
However, if that dio completion involves calling fsync, then we can get
into trouble when some ocfs2_sync_file tries to take i_mutex.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Mark Fasheh <mfasheh@suse.de> Cc: Joel Becker <jlbec@evilplan.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Wengang Wang [Thu, 3 Apr 2014 21:46:46 +0000 (14:46 -0700)]
ocfs2: change ip_unaligned_aio to of type mutex from atomit_t
There is a problem that waitqueue_active() may check stale data thus miss
a wakeup of threads waiting on ip_unaligned_aio.
The valid value of ip_unaligned_aio is only 0 and 1 so we can change it to
be of type mutex thus the above prolem is avoid. Another benifit is that
mutex which works as FIFO is fairer than wake_up_all().
Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Zongxun Wang [Thu, 3 Apr 2014 21:46:45 +0000 (14:46 -0700)]
ocfs2: fix null pointer dereference when access dlm_state before launching dlm thread
When mounting an ocfs2 volume, it will firstly generate a file
/sys/kernel/debug/o2dlm/<uuid>/dlm_state, and then launch the dlm thread.
So the following situation will cause a null pointer dereference.
dlm_debug_init -> access file dlm_state which will call dlm_state_print ->
dlm_launch_thread
Move dlm_debug_init after dlm_launch_thread and dlm_launch_recovery_thread
can fix this issue.
Signed-off-by: Zongxun Wang <wangzongxun@huawei.com> Signed-off-by: Joseph Qi <joseph.qi@huawei.com> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>