Weijie Yang [Thu, 9 Oct 2014 22:28:12 +0000 (15:28 -0700)]
mm: page_alloc: avoid wakeup kswapd on the unintended node
When entering the page_alloc slowpath, we wakeup kswapd on every pgdat
according to the zonelist and high_zoneidx. However, this doesn't take
nodemask into account, and could prematurely wakeup kswapd on some
unintended nodes.
This patch uses for_each_zone_zonelist_nodemask() instead of
for_each_zone_zonelist() in wake_all_kswapds() to avoid the above
situation.
Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sasha Levin [Thu, 9 Oct 2014 22:28:06 +0000 (15:28 -0700)]
mm: introduce dump_vma
Introduce a helper to dump information about a VMA, this also makes
dump_page_flags more generic and re-uses that so the output looks very
similar to dump_page:
Rob Jones [Thu, 9 Oct 2014 22:28:03 +0000 (15:28 -0700)]
mm/slab.c: use __seq_open_private() instead of seq_open()
Using __seq_open_private() removes boilerplate code from slabstats_open()
The resultant code is shorter and easier to follow.
This patch does not change any functionality.
Signed-off-by: Rob Jones <rob.jones@codethink.co.uk> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rob Jones [Thu, 9 Oct 2014 22:28:01 +0000 (15:28 -0700)]
mm/vmalloc.c: use seq_open_private() instead of seq_open()
Using seq_open_private() removes boilerplate code from vmalloc_open().
The resultant code is shorter and easier to follow.
However, please note that seq_open_private() call kzalloc() rather than
kmalloc() which may affect timing due to the memory initialisation
overhead.
Signed-off-by: Rob Jones <rob.jones@codethink.co.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is designed to avoid a few ifdefs in .c files but it's obnoxious
because it can cause unsuspecting "migrate_page" symbols to get turned into
"NULL".
Just nuke it and use the ifdefs.
Cc: Konstantin Khlebnikov <k.khlebnikov@samsung.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Oleg Nesterov [Thu, 9 Oct 2014 22:27:52 +0000 (15:27 -0700)]
mempolicy: fix show_numa_map() vs exec() + do_set_mempolicy() race
9e7814404b77 "hold task->mempolicy while numa_maps scans." fixed the
race with the exiting task but this is not enough.
The current code assumes that get_vma_policy(task) should either see
task->mempolicy == NULL or it should be equal to ->task_mempolicy saved
by hold_task_mempolicy(), so we can never race with __mpol_put(). But
this can only work if we can't race with do_set_mempolicy(), and thus
we can't race with another do_set_mempolicy() or do_exit() after that.
However, do_set_mempolicy()->down_write(mmap_sem) can not prevent this
race. This task can exec, change it's ->mm, and call do_set_mempolicy()
after that; in this case they take 2 different locks.
Change hold_task_mempolicy() to use get_task_policy(), it never returns
NULL, and change show_numa_map() to use __get_vma_policy() or fall back
to proc_priv->task_mempolicy.
Note: this is the minimal fix, we will cleanup this code later. I think
hold_task_mempolicy() and release_task_mempolicy() should die, we can
move this logic into show_numa_map(). Or we can move get_task_policy()
outside of ->mmap_sem and !CONFIG_NUMA code at least.
Signed-off-by: Oleg Nesterov <oleg@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Oleg Nesterov [Thu, 9 Oct 2014 22:27:48 +0000 (15:27 -0700)]
mempolicy: remove the "task" arg of vma_policy_mof() and simplify it
1. vma_policy_mof(task) is simply not safe unless task == current,
it can race with do_exit()->mpol_put(). Remove this arg and update
its single caller.
2. vma can not be NULL, remove this check and simplify the code.
Signed-off-by: Oleg Nesterov <oleg@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Oleg Nesterov [Thu, 9 Oct 2014 22:27:45 +0000 (15:27 -0700)]
mempolicy: sanitize the usage of get_task_policy()
Cleanup + preparation. Every user of get_task_policy() calls it
unconditionally, even if it is not going to use the result.
get_task_policy() is cheap but still this does not look clean, plus
the code looks simpler if get_task_policy() is called only when this
is really needed.
Note: I hope this is correct, but it is not clear why vma_policy_mof()
doesn't fall back to get_task_policy() if ->get_policy() returns NULL.
Signed-off-by: Oleg Nesterov <oleg@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Johannes Weiner [Thu, 9 Oct 2014 22:27:39 +0000 (15:27 -0700)]
mm: remove noisy remainder of the scan_unevictable interface
The deprecation warnings for the scan_unevictable interface triggers by
scripts doing `sysctl -a | grep something else'. This is annoying and not
helpful.
The interface has been defunct since 264e56d8247e ("mm: disable user
interface to manually rescue unevictable pages"), which was in 2011, and
there haven't been any reports of usecases for it, only reports that the
deprecation warnings are annying. It's unlikely that anybody is using
this interface specifically at this point, so remove it.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During development of c/r we've noticed that in case if we need to support
user namespaces we face a problem with capabilities in prctl(PR_SET_MM,
...) call, in particular once new user namespace is created
capable(CAP_SYS_RESOURCE) no longer passes.
A approach is to eliminate CAP_SYS_RESOURCE check but pass all new values
in one bundle, which would allow the kernel to make more intensive test
for sanity of values and same time allow us to support checkpoint/restore
of user namespaces.
Thus a new command PR_SET_MM_MAP introduced. It takes a pointer of
prctl_mm_map structure which carries all the members to be updated.
All members except @exe_fd correspond ones of struct mm_struct. To figure
out which available values these members may take here are meanings of the
members.
- start_code, end_code: represent bounds of executable code area
- start_data, end_data: represent bounds of data area
- start_brk, brk: used to calculate bounds for brk() syscall
- start_stack: used when accounting space needed for command
line arguments, environment and shmat() syscall
- arg_start, arg_end, env_start, env_end: represent memory area
supplied for command line arguments and environment variables
- auxv, auxv_size: carries auxiliary vector, Elf format specifics
- exe_fd: file descriptor number for executable link (/proc/self/exe)
Thus we apply the following requirements to the values
1) Any member except @auxv, @auxv_size, @exe_fd is rather an address
in user space thus it must be laying inside [mmap_min_addr, mmap_max_addr)
interval.
2) While @[start|end]_code and @[start|end]_data may point to an nonexisting
VMAs (say a program maps own new .text and .data segments during execution)
the rest of members should belong to VMA which must exist.
3) Addresses must be ordered, ie @start_ member must not be greater or
equal to appropriate @end_ member.
4) As in regular Elf loading procedure we require that @start_brk and
@brk be greater than @end_data.
5) If RLIMIT_DATA rlimit is set to non-infinity new values should not
exceed existing limit. Same applies to RLIMIT_STACK.
6) Auxiliary vector size must not exceed existing one (which is
predefined as AT_VECTOR_SIZE and depends on architecture).
7) File descriptor passed in @exe_file should be pointing
to executable file (because we use existing prctl_set_mm_exe_file_locked
helper it ensures that the file we are going to use as exe link has all
required permission granted).
Now about where these members are involved inside kernel code:
- @start_code and @end_code are used in /proc/$pid/[stat|statm] output;
- @start_data and @end_data are used in /proc/$pid/[stat|statm] output,
also they are considered if there enough space for brk() syscall
result if RLIMIT_DATA is set;
- @start_brk shown in /proc/$pid/stat output and accounted in brk()
syscall if RLIMIT_DATA is set; also this member is tested to
find a symbolic name of mmap event for perf system (we choose
if event is generated for "heap" area); one more aplication is
selinux -- we test if a process has PROCESS__EXECHEAP permission
if trying to make heap area being executable with mprotect() syscall;
- @brk is a current value for brk() syscall which lays inside heap
area, it's shown in /proc/$pid/stat. When syscall brk() succesfully
provides new memory area to a user space upon brk() completion the
mm::brk is updated to carry new value;
Both @start_brk and @brk are actively used in /proc/$pid/maps
and /proc/$pid/smaps output to find a symbolic name "heap" for
VMA being scanned;
- @start_stack is printed out in /proc/$pid/stat and used to
find a symbolic name "stack" for task and threads in
/proc/$pid/maps and /proc/$pid/smaps output, and as the same
as with @start_brk -- perf system uses it for event naming.
Also kernel treat this member as a start address of where
to map vDSO pages and to check if there is enough space
for shmat() syscall;
- @arg_start, @arg_end, @env_start and @env_end are printed out
in /proc/$pid/stat. Another access to the data these members
represent is to read /proc/$pid/environ or /proc/$pid/cmdline.
Any attempt to read these areas kernel tests with access_process_vm
helper so a user must have enough rights for this action;
- @auxv and @auxv_size may be read from /proc/$pid/auxv. Strictly
speaking kernel doesn't care much about which exactly data is
sitting there because it is solely for userspace;
- @exe_fd is referred from /proc/$pid/exe and when generating
coredump. We uses prctl_set_mm_exe_file_locked helper to update
this member, so exe-file link modification remains one-shot
action.
Still note that updating exe-file link now doesn't require sys-resource
capability anymore, after all there is no much profit in preventing setup
own file link (there are a number of ways to execute own code -- ptrace,
ld-preload, so that the only reliable way to find which exactly code is
executed is to inspect running program memory). Still we require the
caller to be at least user-namespace root user.
I believe the old interface should be deprecated and ripped off in a
couple of kernel releases if no one against.
To test if new interface is implemented in the kernel one can pass
PR_SET_MM_MAP_SIZE opcode and the kernel returns the size of currently
supported struct prctl_mm_map.
[akpm@linux-foundation.org: fix 80-col wordwrap in macro definitions] Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Kees Cook <keescook@chromium.org> Cc: Tejun Heo <tj@kernel.org> Acked-by: Andrew Vagin <avagin@openvz.org> Tested-by: Andrew Vagin <avagin@openvz.org> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: H. Peter Anvin <hpa@zytor.com> Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Vasiliy Kulikov <segoon@openwall.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Julien Tinnes <jln@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cyrill Gorcunov [Thu, 9 Oct 2014 22:27:34 +0000 (15:27 -0700)]
prctl: PR_SET_MM -- factor out mmap_sem when updating mm::exe_file
Instead of taking mm->mmap_sem inside prctl_set_mm_exe_file() move it out
and rename the helper to prctl_set_mm_exe_file_locked(). This will allow
to reuse this function in a next patch.
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Kees Cook <keescook@chromium.org> Cc: Tejun Heo <tj@kernel.org> Cc: Andrew Vagin <avagin@openvz.org> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: H. Peter Anvin <hpa@zytor.com> Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Vasiliy Kulikov <segoon@openwall.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Julien Tinnes <jln@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Vlastimil Babka [Thu, 9 Oct 2014 22:27:23 +0000 (15:27 -0700)]
mm, compaction: skip buddy pages by their order in the migrate scanner
The migration scanner skips PageBuddy pages, but does not consider their
order as checking page_order() is generally unsafe without holding the
zone->lock, and acquiring the lock just for the check wouldn't be a good
tradeoff.
Still, this could avoid some iterations over the rest of the buddy page,
and if we are careful, the race window between PageBuddy() check and
page_order() is small, and the worst thing that can happen is that we skip
too much and miss some isolation candidates. This is not that bad, as
compaction can already fail for many other reasons like parallel
allocations, and those have much larger race window.
This patch therefore makes the migration scanner obtain the buddy page
order and use it to skip the whole buddy page, if the order appears to be
in the valid range.
It's important that the page_order() is read only once, so that the value
used in the checks and in the pfn calculation is the same. But in theory
the compiler can replace the local variable by multiple inlines of
page_order(). Therefore, the patch introduces page_order_unsafe() that
uses ACCESS_ONCE to prevent this.
Testing with stress-highalloc from mmtests shows a 15% reduction in number
of pages scanned by migration scanner. The reduction is >60% with
__GFP_NO_KSWAPD allocations, along with success rates better by few
percent.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rik van Riel <riel@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Vlastimil Babka [Thu, 9 Oct 2014 22:27:20 +0000 (15:27 -0700)]
mm, compaction: remember position within pageblock in free pages scanner
Unlike the migration scanner, the free scanner remembers the beginning of
the last scanned pageblock in cc->free_pfn. It might be therefore
rescanning pages uselessly when called several times during single
compaction. This might have been useful when pages were returned to the
buddy allocator after a failed migration, but this is no longer the case.
This patch changes the meaning of cc->free_pfn so that if it points to a
middle of a pageblock, that pageblock is scanned only from cc->free_pfn to
the end. isolate_freepages_block() will record the pfn of the last page
it looked at, which is then used to update cc->free_pfn.
In the mmtests stress-highalloc benchmark, this has resulted in lowering
the ratio between pages scanned by both scanners, from 2.5 free pages per
migrate page, to 2.25 free pages per migrate page, without affecting
success rates.
With __GFP_NO_KSWAPD allocations, this appears to result in a worse ratio
(2.1 instead of 1.8), but page migration successes increased by 10%, so
this could mean that more useful work can be done until need_resched()
aborts this kind of compaction.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rik van Riel <riel@redhat.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Vlastimil Babka [Thu, 9 Oct 2014 22:27:18 +0000 (15:27 -0700)]
mm, compaction: skip rechecks when lock was already held
Compaction scanners try to lock zone locks as late as possible by checking
many page or pageblock properties opportunistically without lock and
skipping them if not unsuitable. For pages that pass the initial checks,
some properties have to be checked again safely under lock. However, if
the lock was already held from a previous iteration in the initial checks,
the rechecks are unnecessary.
This patch therefore skips the rechecks when the lock was already held.
This is now possible to do, since we don't (potentially) drop and
reacquire the lock between the initial checks and the safe rechecks
anymore.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rik van Riel <riel@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Vlastimil Babka [Thu, 9 Oct 2014 22:27:16 +0000 (15:27 -0700)]
mm, compaction: periodically drop lock and restore IRQs in scanners
Compaction scanners regularly check for lock contention and need_resched()
through the compact_checklock_irqsave() function. However, if there is no
contention, the lock can be held and IRQ disabled for potentially long
time.
This has been addressed by commit b2eef8c0d091 ("mm: compaction: minimise
the time IRQs are disabled while isolating pages for migration") for the
migration scanner. However, the refactoring done by commit 2a1402aa044b
("mm: compaction: acquire the zone->lru_lock as late as possible") has
changed the conditions so that the lock is dropped only when there's
contention on the lock or need_resched() is true. Also, need_resched() is
checked only when the lock is already held. The comment "give a chance to
irqs before checking need_resched" is therefore misleading, as IRQs remain
disabled when the check is done.
This patch restores the behavior intended by commit b2eef8c0d091 and also
tries to better balance and make more deterministic the time spent by
checking for contention vs the time the scanners might run between the
checks. It also avoids situations where checking has not been done often
enough before. The result should be avoiding both too frequent and too
infrequent contention checking, and especially the potentially
long-running scans with IRQs disabled and no checking of need_resched() or
for fatal signal pending, which can happen when many consecutive pages or
pageblocks fail the preliminary tests and do not reach the later call site
to compact_checklock_irqsave(), as explained below.
Before the patch:
In the migration scanner, compact_checklock_irqsave() was called each
loop, if reached. If not reached, some lower-frequency checking could
still be done if the lock was already held, but this would not result in
aborting contended async compaction until reaching
compact_checklock_irqsave() or end of pageblock. In the free scanner, it
was similar but completely without the periodical checking, so lock can be
potentially held until reaching the end of pageblock.
After the patch, in both scanners:
The periodical check is done as the first thing in the loop on each
SWAP_CLUSTER_MAX aligned pfn, using the new compact_unlock_should_abort()
function, which always unlocks the lock (if locked) and aborts async
compaction if scheduling is needed. It also aborts any type of compaction
when a fatal signal is pending.
The compact_checklock_irqsave() function is replaced with a slightly
different compact_trylock_irqsave(). The biggest difference is that the
function is not called at all if the lock is already held. The periodical
need_resched() checking is left solely to compact_unlock_should_abort().
The lock contention avoidance for async compaction is achieved by the
periodical unlock by compact_unlock_should_abort() and by using trylock in
compact_trylock_irqsave() and aborting when trylock fails. Sync
compaction does not use trylock.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rik van Riel <riel@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Vlastimil Babka [Thu, 9 Oct 2014 22:27:14 +0000 (15:27 -0700)]
mm, compaction: khugepaged should not give up due to need_resched()
Async compaction aborts when it detects zone lock contention or
need_resched() is true. David Rientjes has reported that in practice,
most direct async compactions for THP allocation abort due to
need_resched(). This means that a second direct compaction is never
attempted, which might be OK for a page fault, but khugepaged is intended
to attempt a sync compaction in such case and in these cases it won't.
This patch replaces "bool contended" in compact_control with an int that
distinguishes between aborting due to need_resched() and aborting due to
lock contention. This allows propagating the abort through all compaction
functions as before, but passing the abort reason up to
__alloc_pages_slowpath() which decides when to continue with direct
reclaim and another compaction attempt.
Another problem is that try_to_compact_pages() did not act upon the
reported contention (both need_resched() or lock contention) immediately
and would proceed with another zone from the zonelist. When
need_resched() is true, that means initializing another zone compaction,
only to check again need_resched() in isolate_migratepages() and aborting.
For zone lock contention, the unintended consequence is that the lock
contended status reported back to the allocator is detrmined from the last
zone where compaction was attempted, which is rather arbitrary.
This patch fixes the problem in the following way:
- async compaction of a zone aborting due to need_resched() or fatal signal
pending means that further zones should not be tried. We report
COMPACT_CONTENDED_SCHED to the allocator.
- aborting zone compaction due to lock contention means we can still try
another zone, since it has different set of locks. We report back
COMPACT_CONTENDED_LOCK only if *all* zones where compaction was attempted,
it was aborted due to lock contention.
As a result of these fixes, khugepaged will proceed with second sync
compaction as intended, when the preceding async compaction aborted due to
need_resched(). Page fault compactions aborting due to need_resched()
will spare some cycles previously wasted by initializing another zone
compaction only to abort again. Lock contention will be reported only
when compaction in all zones aborted due to lock contention, and therefore
it's not a good idea to try again after reclaim.
In stress-highalloc from mmtests configured to use __GFP_NO_KSWAPD, this
has improved number of THP collapse allocations by 10%, which shows
positive effect on khugepaged. The benchmark's success rates are
unchanged as it is not recognized as khugepaged. Numbers of compact_stall
and compact_fail events have however decreased by 20%, with
compact_success still a bit improved, which is good. With benchmark
configured not to use __GFP_NO_KSWAPD, there is 6% improvement in THP
collapse allocations, and only slight improvement in stalls and failures.
[akpm@linux-foundation.org: fix warnings] Reported-by: David Rientjes <rientjes@google.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Vlastimil Babka [Thu, 9 Oct 2014 22:27:11 +0000 (15:27 -0700)]
mm, compaction: reduce zone checking frequency in the migration scanner
The unification of the migrate and free scanner families of function has
highlighted a difference in how the scanners ensure they only isolate
pages of the intended zone. This is important for taking zone lock or lru
lock of the correct zone. Due to nodes overlapping, it is however
possible to encounter a different zone within the range of the zone being
compacted.
The free scanner, since its inception by commit 748446bb6b5a ("mm:
compaction: memory compaction core"), has been checking the zone of the
first valid page in a pageblock, and skipping the whole pageblock if the
zone does not match.
This checking was completely missing from the migration scanner at first,
and later added by commit dc9086004b3d ("mm: compaction: check for
overlapping nodes during isolation for migration") in a reaction to a bug
report. But the zone comparison in migration scanner is done once per a
single scanned page, which is more defensive and thus more costly than a
check per pageblock.
This patch unifies the checking done in both scanners to once per
pageblock, through a new pageblock_pfn_to_page() function, which also
includes pfn_valid() checks. It is more defensive than the current free
scanner checks, as it checks both the first and last page of the
pageblock, but less defensive by the migration scanner per-page checks.
It assumes that node overlapping may result (on some architecture) in a
boundary between two nodes falling into the middle of a pageblock, but
that there cannot be a node0 node1 node0 interleaving within a single
pageblock.
The result is more code being shared and a bit less per-page CPU cost in
the migration scanner.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rik van Riel <riel@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Vlastimil Babka [Thu, 9 Oct 2014 22:27:09 +0000 (15:27 -0700)]
mm, compaction: move pageblock checks up from isolate_migratepages_range()
isolate_migratepages_range() is the main function of the compaction
scanner, called either on a single pageblock by isolate_migratepages()
during regular compaction, or on an arbitrary range by CMA's
__alloc_contig_migrate_range(). It currently perfoms two pageblock-wide
compaction suitability checks, and because of the CMA callpath, it tracks
if it crossed a pageblock boundary in order to repeat those checks.
However, closer inspection shows that those checks are always true for CMA:
- isolation_suitable() is true because CMA sets cc->ignore_skip_hint to true
- migrate_async_suitable() check is skipped because CMA uses sync compaction
We can therefore move the compaction-specific checks to
isolate_migratepages() and simplify isolate_migratepages_range().
Furthermore, we can mimic the freepage scanner family of functions, which
has isolate_freepages_block() function called both by compaction from
isolate_freepages() and by CMA from isolate_freepages_range(), where each
use-case adds own specific glue code. This allows further code
simplification.
Thus, we rename isolate_migratepages_range() to
isolate_migratepages_block() and limit its functionality to a single
pageblock (or its subset). For CMA, a new different
isolate_migratepages_range() is created as a CMA-specific wrapper for the
_block() function. The checks specific to compaction are moved to
isolate_migratepages(). As part of the unification of these two families
of functions, we remove the redundant zone parameter where applicable,
since zone pointer is already passed in cc->zone.
Furthermore, going back to compact_zone() and compact_finished() when
pageblock is found unsuitable (now by isolate_migratepages()) is wasteful
- the checks are meant to skip pageblocks quickly. The patch therefore
also introduces a simple loop into isolate_migratepages() so that it does
not return immediately on failed pageblock checks, but keeps going until
isolate_migratepages_range() gets called once. Similarily to
isolate_freepages(), the function periodically checks if it needs to
reschedule or abort async compaction.
[iamjoonsoo.kim@lge.com: fix isolated page counting bug in compaction] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Vlastimil Babka [Thu, 9 Oct 2014 22:27:07 +0000 (15:27 -0700)]
mm, compaction: do not recheck suitable_migration_target under lock
isolate_freepages_block() rechecks if the pageblock is suitable to be a
target for migration after it has taken the zone->lock. However, the
check has been optimized to occur only once per pageblock, and
compact_checklock_irqsave() might be dropping and reacquiring lock, which
means somebody else might have changed the pageblock's migratetype
meanwhile.
Furthermore, nothing prevents the migratetype to change right after
isolate_freepages_block() has finished isolating. Given how imperfect
this is, it's simpler to just rely on the check done in
isolate_freepages() without lock, and not pretend that the recheck under
lock guarantees anything. It is just a heuristic after all.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rik van Riel <riel@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Vlastimil Babka [Thu, 9 Oct 2014 22:27:04 +0000 (15:27 -0700)]
mm, compaction: do not count compact_stall if all zones skipped compaction
The compact_stall vmstat counter counts the number of allocations stalled
by direct compaction. It does not count when all attempted zones had
deferred compaction, but it does count when all zones skipped compaction.
The skipping is decided based on very early check of
compaction_suitable(), based on watermarks and memory fragmentation.
Therefore it makes sense not to count skipped compactions as stalls.
Moreover, compact_success or compact_fail is also already not being
counted when compaction was skipped, so this patch changes the
compact_stall counting to match the other two.
Additionally, restructure __alloc_pages_direct_compact() code for better
readability.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rik van Riel <riel@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Vlastimil Babka [Thu, 9 Oct 2014 22:27:02 +0000 (15:27 -0700)]
mm, compaction: defer each zone individually instead of preferred zone
When direct sync compaction is often unsuccessful, it may become deferred
for some time to avoid further useless attempts, both sync and async.
Successful high-order allocations un-defer compaction, while further
unsuccessful compaction attempts prolong the compaction deferred period.
Currently the checking and setting deferred status is performed only on
the preferred zone of the allocation that invoked direct compaction. But
compaction itself is attempted on all eligible zones in the zonelist, so
the behavior is suboptimal and may lead both to scenarios where 1)
compaction is attempted uselessly, or 2) where it's not attempted despite
good chances of succeeding, as shown on the examples below:
1) A direct compaction with Normal preferred zone failed and set
deferred compaction for the Normal zone. Another unrelated direct
compaction with DMA32 as preferred zone will attempt to compact DMA32
zone even though the first compaction attempt also included DMA32 zone.
In another scenario, compaction with Normal preferred zone failed to
compact Normal zone, but succeeded in the DMA32 zone, so it will not
defer compaction. In the next attempt, it will try Normal zone which
will fail again, instead of skipping Normal zone and trying DMA32
directly.
2) Kswapd will balance DMA32 zone and reset defer status based on
watermarks looking good. A direct compaction with preferred Normal
zone will skip compaction of all zones including DMA32 because Normal
was still deferred. The allocation might have succeeded in DMA32, but
won't.
This patch makes compaction deferring work on individual zone basis
instead of preferred zone. For each zone, it checks compaction_deferred()
to decide if the zone should be skipped. If watermarks fail after
compacting the zone, defer_compaction() is called. The zone where
watermarks passed can still be deferred when the allocation attempt is
unsuccessful. When allocation is successful, compaction_defer_reset() is
called for the zone containing the allocated page. This approach should
approximate calling defer_compaction() only on zones where compaction was
attempted and did not yield allocated page. There might be corner cases
but that is inevitable as long as the decision to stop compacting dues not
guarantee that a page will be allocated.
Due to a new COMPACT_DEFERRED return value, some functions relying
implicitly on COMPACT_SKIPPED = 0 had to be updated, with comments made
more accurate. The did_some_progress output parameter of
__alloc_pages_direct_compact() is removed completely, as the caller
actually does not use it after compaction sets it - it is only considered
when direct reclaim sets it.
During testing on a two-node machine with a single very small Normal zone
on node 1, this patch has improved success rates in stress-highalloc
mmtests benchmark. The success here were previously made worse by commit 3a025760fc15 ("mm: page_alloc: spill to remote nodes before waking
kswapd") as kswapd was no longer resetting often enough the deferred
compaction for the Normal zone, and DMA32 zones on both nodes were thus
not considered for compaction. On different machine, success rates were
improved with __GFP_NO_KSWAPD allocations.
[akpm@linux-foundation.org: fix CONFIG_COMPACTION=n build] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Vlastimil Babka [Thu, 9 Oct 2014 22:27:00 +0000 (15:27 -0700)]
mm, THP: don't hold mmap_sem in khugepaged when allocating THP
When allocating huge page for collapsing, khugepaged currently holds
mmap_sem for reading on the mm where collapsing occurs. Afterwards the
read lock is dropped before write lock is taken on the same mmap_sem.
Holding mmap_sem during whole huge page allocation is therefore useless,
the vma needs to be rechecked after taking the write lock anyway.
Furthemore, huge page allocation might involve a rather long sync
compaction, and thus block any mmap_sem writers and i.e. affect workloads
that perform frequent m(un)map or mprotect oterations.
This patch simply releases the read lock before allocating a huge page.
It also deletes an outdated comment that assumed vma must be stable, as it
was using alloc_hugepage_vma(). This is no longer true since commit 9f1b868a13ac ("mm: thp: khugepaged: add policy for finding target node").
Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rik van Riel <riel@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Akinobu Mita [Thu, 9 Oct 2014 22:26:58 +0000 (15:26 -0700)]
block_dev: implement readpages() to optimize sequential read
Sequential read from a block device is expected to be equal or faster than
from the file on a filesystem. But it is not correct due to the lack of
effective readpages() in the address space operations for block device.
This implements readpages() operation for block device by using
mpage_readpages() which can create multipage BIOs instead of BIOs for each
page and reduce system CPU time consumption.
Akinobu Mita [Thu, 9 Oct 2014 22:26:55 +0000 (15:26 -0700)]
vfs: guard end of device for mpage interface
Add guard_bio_eod() check for mpage code in order to allow us to do IO
even on the odd last sectors of a device, even if the block size is some
multiple of the physical sector size.
Using mpage_readpages() for block device requires this guard check.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Jeff Moyer <jmoyer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Akinobu Mita [Thu, 9 Oct 2014 22:26:53 +0000 (15:26 -0700)]
vfs: make guard_bh_eod() more generic
This patchset implements readpages() operation for block device by using
mpage_readpages() which can create multipage BIOs instead of BIOs for each
page and reduce system CPU time consumption.
This patch (of 3):
guard_bh_eod() is used in submit_bh() to allow us to do IO even on the odd
last sectors of a device, even if the block size is some multiple of the
physical sector size. This makes guard_bh_eod() more generic and renames
it guard_bio_eod() so that we can use it without struct buffer_head
argument.
The reason for this change is that using mpage_readpages() for block
device requires to add this guard check in mpage code.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Jeff Moyer <jmoyer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Vlastimil Babka [Thu, 9 Oct 2014 22:26:51 +0000 (15:26 -0700)]
mm: page_alloc: determine migratetype only once
The check for ALLOC_CMA in __alloc_pages_nodemask() derives migratetype
from gfp_mask in each retry pass, although the migratetype variable
already has the value determined and it does not change. Use the variable
and perform the check only once. Also convert #ifdef CONFIG_CMA to
IS_ENABLED.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Srivatsa S. Bhat" <srivatsa.bhat@linux.vnet.ibm.com> Cc: Hugh Dickins <hughd@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ARM: mm: don't limit default CMA region only to low memory
DMA-mapping supports CMA regions places either in low or high memory, so
there is no longer needed to limit default CMA regions only to low memory.
The real limit is still defined by architecture specific DMA limit.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> Reported-by: Russell King - ARM Linux <linux@arm.linux.org.uk> Acked-by: Michal Nazarewicz <mina86@mina86.com> Cc: Daniel Drake <drake@endlessm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Russell King recently noticed that limiting default CMA region only to low
memory on ARM architecture causes serious memory management issues with
machines having a lot of memory (which is mainly available as high
memory). More information can be found the following thread:
http://thread.gmane.org/gmane.linux.ports.arm.kernel/348441/
Those two patches removes this limit letting kernel to put default CMA
region into high memory when this is possible (there is enough high memory
available and architecture specific DMA limit fits).
This should solve strange OOM issues on systems with lots of RAM (i.e.
>1GiB) and large (>256M) CMA area.
This patch (of 2):
Automatically allocated regions should not cross low/high memory boundary,
because such regions cannot be later correctly initialized due to spanning
across two memory zones. This patch adds a check for this case and a
simple code for moving region to low memory if automatically selected
address might not fit completely into high memory.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> Acked-by: Michal Nazarewicz <mina86@mina86.com> Cc: Daniel Drake <drake@endlessm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Laura Abbott [Thu, 9 Oct 2014 22:26:42 +0000 (15:26 -0700)]
arm: use genalloc for the atomic pool
ARM currently uses a bitmap for tracking atomic allocations. genalloc
already handles this type of memory pool allocation so switch to using
that instead.
Signed-off-by: Laura Abbott <lauraa@codeaurora.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: David Riley <davidriley@chromium.org> Cc: Olof Johansson <olof@lixom.net> Cc: Ritesh Harjain <ritesh.harjani@gmail.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Thierry Reding <thierry.reding@gmail.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Laura Abbott [Thu, 9 Oct 2014 22:26:40 +0000 (15:26 -0700)]
common: dma-mapping: introduce common remapping functions
For architectures without coherent DMA, memory for DMA may need to be
remapped with coherent attributes. Factor out the the remapping code from
arm and put it in a common location to reduce code duplication.
As part of this, the arm APIs are now migrated away from
ioremap_page_range to the common APIs which use map_vm_area for remapping.
This should be an equivalent change and using map_vm_area is more correct
as ioremap_page_range is intended to bring in io addresses into the cpu
space and not regular kernel managed memory.
Signed-off-by: Laura Abbott <lauraa@codeaurora.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: David Riley <davidriley@chromium.org> Cc: Olof Johansson <olof@lixom.net> Cc: Ritesh Harjain <ritesh.harjani@gmail.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Thierry Reding <thierry.reding@gmail.com> Cc: Will Deacon <will.deacon@arm.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: Laura Abbott <lauraa@codeaurora.org> Cc: Mitchel Humpherys <mitchelh@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Laura Abbott [Thu, 9 Oct 2014 22:26:38 +0000 (15:26 -0700)]
lib/genalloc.c: add genpool range check function
After allocating an address from a particular genpool, there is no good
way to verify if that address actually belongs to a genpool. Introduce
addr_in_gen_pool which will return if an address plus size falls
completely within the genpool range.
Signed-off-by: Laura Abbott <lauraa@codeaurora.org> Acked-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Olof Johansson <olof@lixom.net> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: David Riley <davidriley@chromium.org> Cc: Ritesh Harjain <ritesh.harjani@gmail.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Thierry Reding <thierry.reding@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Laura Abbott [Thu, 9 Oct 2014 22:26:35 +0000 (15:26 -0700)]
lib/genalloc.c: add power aligned algorithm
One of the more common algorithms used for allocation is to align the
start address of the allocation to the order of size requested. Add this
as an algorithm option for genalloc.
Signed-off-by: Laura Abbott <lauraa@codeaurora.org> Acked-by: Will Deacon <will.deacon@arm.com> Acked-by: Olof Johansson <olof@lixom.net> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: David Riley <davidriley@chromium.org> Cc: Ritesh Harjain <ritesh.harjani@gmail.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Thierry Reding <thierry.reding@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Thu, 9 Oct 2014 22:26:33 +0000 (15:26 -0700)]
mm: remove misleading ARCH_USES_NUMA_PROT_NONE
ARCH_USES_NUMA_PROT_NONE was defined for architectures that implemented
_PAGE_NUMA using _PROT_NONE. This saved using an additional PTE bit and
relied on the fact that PROT_NONE vmas were skipped by the NUMA hinting
fault scanner. This was found to be conceptually confusing with a lot of
implicit assumptions and it was asked that an alternative be found.
Commit c46a7c81 "x86: define _PAGE_NUMA by reusing software bits on the
PMD and PTE levels" redefined _PAGE_NUMA on x86 to be one of the swap PTE
bits and shrunk the maximum possible swap size but it did not go far
enough. There are no architectures that reuse _PROT_NONE as _PROT_NUMA
but the relics still exist.
This patch removes ARCH_USES_NUMA_PROT_NONE and removes some unnecessary
duplication in powerpc vs the generic implementation by defining the types
the core NUMA helpers expected to exist from x86 with their ppc64
equivalent. This necessitated that a PTE bit mask be created that
identified the bits that distinguish present from NUMA pte entries but it
is expected this will only differ between arches based on _PAGE_PROTNONE.
The naming for the generic helpers was taken from x86 originally but ppc64
has types that are equivalent for the purposes of the helper so they are
mapped instead of duplicating code.
Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Joonsoo Kim [Thu, 9 Oct 2014 22:26:27 +0000 (15:26 -0700)]
mm/slab: use percpu allocator for cpu cache
Because of chicken and egg problem, initialization of SLAB is really
complicated. We need to allocate cpu cache through SLAB to make the
kmem_cache work, but before initialization of kmem_cache, allocation
through SLAB is impossible.
On the other hand, SLUB does initialization in a more simple way. It uses
percpu allocator to allocate cpu cache so there is no chicken and egg
problem.
So, this patch try to use percpu allocator in SLAB. This simplifies the
initialization step in SLAB so that we could maintain SLAB code more
easily.
In my testing there is no performance difference.
This implementation relies on percpu allocator. Because percpu allocator
uses vmalloc address space, vmalloc address space could be exhausted by
this change on many cpu system with *32 bit* kernel. This implementation
can cover 1024 cpus in worst case by following calculation.
Worst: 1024 cpus * 4 bytes for pointer * 300 kmem_caches *
120 objects per cpu_cache = 140 MB
Normal: 1024 cpus * 4 bytes for pointer * 150 kmem_caches(slab merge) *
80 objects per cpu_cache = 46 MB
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Jeremiah Mahler <jmmahler@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Joonsoo Kim [Thu, 9 Oct 2014 22:26:24 +0000 (15:26 -0700)]
mm/slab: support slab merge
Slab merge is good feature to reduce fragmentation. If new creating slab
have similar size and property with exsitent slab, this feature reuse it
rather than creating new one. As a result, objects are packed into fewer
slabs so that fragmentation is reduced.
Below is result of my testing.
* After boot, sleep 20; cat /proc/meminfo | grep Slab
<Before>
Slab: 25136 kB
<After>
Slab: 24364 kB
We can save 3% memory used by slab.
For supporting this feature in SLAB, we need to implement SLAB specific
kmem_cache_flag() and __kmem_cache_alias(), because SLUB implements some
SLUB specific processing related to debug flag and object size change on
these functions.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Joonsoo Kim [Thu, 9 Oct 2014 22:26:22 +0000 (15:26 -0700)]
mm/slab_common: commonize slab merge logic
Slab merge is good feature to reduce fragmentation. Now, it is only
applied to SLUB, but, it would be good to apply it to SLAB. This patch is
preparation step to apply slab merge to SLAB by commonizing slab merge
logic.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mikulas Patocka [Thu, 9 Oct 2014 22:26:20 +0000 (15:26 -0700)]
slab: fix for_each_kmem_cache_node()
Fix a bug (discovered with kmemcheck) in for_each_kmem_cache_node(). The
for loop reads the array "node" before verifying that the index is within
the range. This results in kmemcheck warning.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Reviewed-by: Pekka Enberg <penberg@kernel.org> Acked-by: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kernel/kthread.c: partial revert of 81c98869faa5 ("kthread: ensure locality of task_struct allocations")
After discussions with Tejun, we don't want to spread the use of
cpu_to_mem() (and thus knowledge of allocators/NUMA topology details) into
callers, but would rather ensure the callees correctly handle memoryless
nodes. With the previous patches ("topology: add support for
node_to_mem_node() to determine the fallback node" and "slub: fallback to
node_to_mem_node() node if allocating on memoryless node") adding and
using node_to_mem_node(), we can safely undo part of the change to the
kthread logic from 81c98869faa5.
Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Han Pingtian <hanpt@linux.vnet.ibm.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Anton Blanchard <anton@samba.org> Cc: Christoph Lameter <cl@linux.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Joonsoo Kim [Thu, 9 Oct 2014 22:26:15 +0000 (15:26 -0700)]
slub: fall back to node_to_mem_node() node if allocating on memoryless node
Update the SLUB code to search for partial slabs on the nearest node with
memory in the presence of memoryless nodes. Additionally, do not consider
it to be an ALLOC_NODE_MISMATCH (and deactivate the slab) when a
memoryless-node specified allocation goes off-node.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Han Pingtian <hanpt@linux.vnet.ibm.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Anton Blanchard <anton@samba.org> Cc: Christoph Lameter <cl@linux.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Joonsoo Kim [Thu, 9 Oct 2014 22:26:13 +0000 (15:26 -0700)]
topology: add support for node_to_mem_node() to determine the fallback node
Anton noticed (http://www.spinics.net/lists/linux-mm/msg67489.html) that
on ppc LPARs with memoryless nodes, a large amount of memory was consumed
by slabs and was marked unreclaimable. He tracked it down to slab
deactivations in the SLUB core when we allocate remotely, leading to poor
efficiency always when memoryless nodes are present.
After much discussion, Joonsoo provided a few patches that help
significantly. They don't resolve the problem altogether:
- memory hotplug still needs testing, that is when a memoryless node
becomes memory-ful, we want to dtrt
- there are other reasons for going off-node than memoryless nodes,
e.g., fully exhausted local nodes
Neither case is resolved with this series, but I don't think that should
block their acceptance, as they can be explored/resolved with follow-on
patches.
The series consists of:
[1/3] topology: add support for node_to_mem_node() to determine the
fallback node
[2/3] slub: fallback to node_to_mem_node() node if allocating on
memoryless node
- Joonsoo's patches to cache the nearest node with memory for each
NUMA node
[3/3] Partial revert of 81c98869faa5 (""kthread: ensure locality of
task_struct allocations")
- At Tejun's request, keep the knowledge of memoryless node fallback
to the allocator core.
This patch (of 3):
We need to determine the fallback node in slub allocator if the allocation
target node is memoryless node. Without it, the SLUB wrongly select the
node which has no memory and can't use a partial slab, because of node
mismatch. Introduced function, node_to_mem_node(X), will return a node Y
with memory that has the nearest distance. If X is memoryless node, it
will return nearest distance node, but, if X is normal node, it will
return itself.
We will use this function in following patch to determine the fallback
node.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Han Pingtian <hanpt@linux.vnet.ibm.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Anton Blanchard <anton@samba.org> Cc: Christoph Lameter <cl@linux.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
slub: disable tracing and failslab for merged slabs
Tracing of mergeable slabs as well as uses of failslab are confusing since
the objects of multiple slab caches will be affected. Moreover this
creates a situation where a mergeable slab will become unmergeable.
If tracing or failslab testing is desired then it may be best to switch
merging off for starters.
Signed-off-by: Christoph Lameter <cl@linux.com> Tested-by: WANG Chao <chaowang@redhat.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Joonsoo Kim [Thu, 9 Oct 2014 22:26:09 +0000 (15:26 -0700)]
mm/slab: factor out unlikely part of cache_free_alien()
cache_free_alien() is rarely used function when node mismatch. But, it is
defined with inline attribute so it is inlined to __cache_free() which is
core free function of slab allocator. It uselessly makes
kmem_cache_free()/kfree() functions large. What we really need to inline
is just checking node match so this patch factor out other parts of
cache_free_alien() to reduce code size of kmem_cache_free()/ kfree().
Joonsoo Kim [Thu, 9 Oct 2014 22:26:06 +0000 (15:26 -0700)]
mm/slab: noinline __ac_put_obj()
Our intention of __ac_put_obj() is that it doesn't affect anything if
sk_memalloc_socks() is disabled. But, because __ac_put_obj() is too
small, compiler inline it to ac_put_obj() and affect code size of free
path. This patch add noinline keyword for __ac_put_obj() not to distrupt
normal free path at all.
Joonsoo Kim [Thu, 9 Oct 2014 22:26:04 +0000 (15:26 -0700)]
mm/slab: move cache_flusharray() out of unlikely.text section
Now, due to likely keyword, compiled code of cache_flusharray() is on
unlikely.text section. Although it is uncommon case compared to free to
cpu cache case, it is common case than free_block(). But, free_block() is
on normal text section. This patch fix this odd situation to remove
likely keyword.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Joonsoo Kim [Thu, 9 Oct 2014 22:26:02 +0000 (15:26 -0700)]
mm/sl[ao]b: always track caller in kmalloc_(node_)track_caller()
Now, we track caller if tracing or slab debugging is enabled. If they are
disabled, we could save one argument passing overhead by calling
__kmalloc(_node)(). But, I think that it would be marginal. Furthermore,
default slab allocator, SLUB, doesn't use this technique so I think that
it's okay to change this situation.
After this change, we can turn on/off CONFIG_DEBUG_SLAB without full
kernel build and remove some complicated '#if' defintion. It looks more
benefitial to me.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Joonsoo Kim [Thu, 9 Oct 2014 22:26:00 +0000 (15:26 -0700)]
mm/slab_common: move kmem_cache definition to internal header
We don't need to keep kmem_cache definition in include/linux/slab.h if we
don't need to inline kmem_cache_size(). According to my code inspection,
this function is only called at lc_create() in lib/lru_cache.c which may
be called at initialization phase of something, so we don't need to inline
it. Therfore, move it to slab_common.c and move kmem_cache definition to
internal header.
After this change, we can change kmem_cache definition easily without full
kernel build. For instance, we can turn on/off CONFIG_SLUB_STATS without
full kernel build.
[akpm@linux-foundation.org: export kmem_cache_size() to modules]
[rdunlap@infradead.org: add header files to fix kmemcheck.c build errors] Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Andrew Morton [Thu, 9 Oct 2014 22:25:58 +0000 (15:25 -0700)]
mm/slab_common.c: suppress warning
False positive:
mm/slab_common.c: In function 'kmem_cache_create':
mm/slab_common.c:204: warning: 's' may be used uninitialized in this function
Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This will cause 2 duplicate program segments in /proc/kcore, and no flag
to indicate they are different. This is confusing. And usually people
who need check the elf header or read the content of kcore will check
memory ranges. Two program segments which are the same are unnecessary.
So check if the modules range is equal to vmalloc range. If so, just skip
adding the modules range.
[akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Baoquan He <bhe@redhat.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Oleg Nesterov [Thu, 9 Oct 2014 22:25:54 +0000 (15:25 -0700)]
proc/maps: make vm_is_stack() logic namespace-friendly
- Rename vm_is_stack() to task_of_stack() and change it to return
"struct task_struct *" rather than the global (and thus wrong in
general) pid_t.
- Add the new pid_of_stack() helper which calls task_of_stack() and
uses the right namespace to report the correct pid_t.
Unfortunately we need to define this helper twice, in task_mmu.c
and in task_nommu.c. perhaps it makes sense to add fs/proc/util.c
and move at least pid_of_stack/task_of_stack there to avoid the
code duplication.
- Change show_map_vma() and show_numa_map() to use the new helper.
Signed-off-by: Oleg Nesterov <oleg@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Greg Ungerer <gerg@uclinux.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Oleg Nesterov [Thu, 9 Oct 2014 22:25:49 +0000 (15:25 -0700)]
fs/proc/task_nommu.c: don't use priv->task->mm
I do not know if CONFIG_PREEMPT/SMP is possible without CONFIG_MMU
but the usage of task->mm in m_stop(). The task can exit/exec before
we take mmap_sem, in this case m_stop() can hit NULL or unlock the
wrong rw_semaphore.
Also, this code uses priv->task != NULL to decide whether we need
up_read/mmput. This is correct, but we will probably kill priv->task.
Change m_start/m_stop to rely on IS_ERR_OR_NULL() like task_mmu.c does.
Signed-off-by: Oleg Nesterov <oleg@redhat.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: Greg Ungerer <gerg@uclinux.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Oleg Nesterov [Thu, 9 Oct 2014 22:25:43 +0000 (15:25 -0700)]
fs/proc/task_mmu.c: update m->version in the main loop in m_start()
Change the main loop in m_start() to update m->version. Mostly for
consistency, but this can help to avoid the same loop if the very
1st ->show() fails due to seq_overflow().
Signed-off-by: Oleg Nesterov <oleg@redhat.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Oleg Nesterov [Thu, 9 Oct 2014 22:25:41 +0000 (15:25 -0700)]
fs/proc/task_mmu.c: reintroduce m->version logic
Add the "last_addr" optimization back. Like before, every ->show()
method checks !seq_overflow() and sets m->version = vma->vm_start.
However, it also checks that m_next_vma(vma) != NULL, otherwise it
sets m->version = -1 for the lockless "EOF" fast-path in m_start().
m_start() can simply do find_vma() + m_next_vma() if last_addr is
not zero, the code looks clear and simple and this case is clearly
separated from "scan vmas" path.
Signed-off-by: Oleg Nesterov <oleg@redhat.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Oleg Nesterov [Thu, 9 Oct 2014 22:25:36 +0000 (15:25 -0700)]
fs/proc/task_mmu.c: simplify m_start() to make it readable
Now that m->version is gone we can cleanup m_start(). In particular,
- Remove the "unsigned long" typecast, m->index can't be negative
or exceed ->map_count. But lets use "unsigned int pos" to make
it clear that "pos < map_count" is safe.
- Remove the unnecessary "vma != NULL" check in the main loop. It
can't be NULL unless we have a vm bug.
- This also means that "pos < map_count" case can simply return the
valid vma and avoid "goto" and subsequent checks.
Signed-off-by: Oleg Nesterov <oleg@redhat.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Oleg Nesterov [Thu, 9 Oct 2014 22:25:34 +0000 (15:25 -0700)]
fs/proc/task_mmu.c: kill the suboptimal and confusing m->version logic
m_start() carefully documents, checks, and sets "m->version = -1" if
we are going to return NULL. The only problem is that we will be never
called again if m_start() returns NULL, so this is simply pointless
and misleading.
Otoh, ->show() methods m->version = 0 if vma == tail_vma and this is
just wrong, we want -1 in this case. And in fact we also want -1 if
->vm_next == NULL and ->tail_vma == NULL.
And it is not used consistently, the "scan vmas" loop in m_start()
should update last_addr too.
Finally, imo the whole "last_addr" logic in m_start() looks horrible.
find_vma(last_addr) is called unconditionally even if we are not going
to use the result. But the main problem is that this code participates
in tail_vma-or-NULL mess, and this looks simply unfixable.
Remove this optimization. We will add it back after some cleanups.
Signed-off-by: Oleg Nesterov <oleg@redhat.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Oleg Nesterov [Thu, 9 Oct 2014 22:25:32 +0000 (15:25 -0700)]
fs/proc/task_mmu.c: shift "priv->task = NULL" from m_start() to m_stop()
1. There is no reason to reset ->tail_vma in m_start(), if we return
IS_ERR_OR_NULL() it won't be used.
2. m_start() also clears priv->task to ensure that m_stop() won't use
the stale pointer if we fail before get_task_struct(). But this is
ugly and confusing, move this initialization in m_stop().
Signed-off-by: Oleg Nesterov <oleg@redhat.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Cyrill Gorcunov <gorcunov@openvz.org> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Oleg Nesterov [Thu, 9 Oct 2014 22:25:28 +0000 (15:25 -0700)]
fs/proc/task_mmu.c: simplify the vma_stop() logic
m_start() drops ->mmap_sem and does mmput() if it retuns vsyscall
vma. This is because in this case m_stop()->vma_stop() obviously
can't use gate_vma->vm_mm.
Now that we have proc_maps_private->mm we can simplify this logic:
- Change m_start() to return with ->mmap_sem held unless it returns
IS_ERR_OR_NULL().
- Change vma_stop() to use priv->mm and avoid the ugly vma checks,
this makes "vm_area_struct *vma" unnecessary.
- This also allows m_start() to use vm_stop().
- Cleanup m_next() to follow the new locking rule.
Note: m_stop() looks very ugly, and this temporary uglifies it
even more. Fixed by the next change.
[akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Oleg Nesterov <oleg@redhat.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Cyrill Gorcunov <gorcunov@openvz.org> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
makes lockdep unhappy, cat/exec take seq_file->lock + cred_guard_mutex in
the opposite order.
It's a false positive and probably we should not allow "chmod +x" on proc
files. Still I think that we should avoid mm_access() and cred_guard_mutex
in sys_read() paths, security checking should happen at open time. Besides,
this doesn't even look right if the task changes its ->mm between m_stop()
and m_start().
Add the new "mm_struct *mm" member into struct proc_maps_private and change
proc_maps_open() to initialize it using proc_mem_open(). Change m_start() to
use priv->mm if atomic_inc_not_zero(mm_users) succeeds or return NULL (eof)
otherwise.
The only complication is that proc_maps_open() users should additionally do
mmdrop() in fop->release(), add the new proc_map_release() helper for that.
Note: this is the user-visible change, if the task execs after open("maps")
the new ->mm won't be visible via this file. I hope this is fine, and this
matches /proc/pid/mem bahaviour.
[akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Oleg Nesterov <oleg@redhat.com> Reported-by: "Kirill A. Shutemov" <kirill@shutemov.name> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Cyrill Gorcunov <gorcunov@openvz.org> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Oleg Nesterov [Thu, 9 Oct 2014 22:25:19 +0000 (15:25 -0700)]
fs/proc/task_mmu.c: don't use task->mm in m_start() and show_*map()
get_gate_vma(priv->task->mm) looks ugly and wrong, task->mm can be NULL or
it can changed by exec right after mm_access().
And in theory this race is not harmless, the task can exec and then later
exit and free the new mm_struct. In this case get_task_mm(oldmm) can't
help, get_gate_vma(task->mm) can read the freed/unmapped memory.
I think that priv->task should simply die and hold_task_mempolicy() logic
can be simplified. tail_vma logic asks for cleanups too.
Signed-off-by: Oleg Nesterov <oleg@redhat.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Cyrill Gorcunov <gorcunov@openvz.org> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
chai wen [Thu, 9 Oct 2014 22:25:17 +0000 (15:25 -0700)]
softlockup: make detector be aware of task switch of processes hogging cpu
For now, soft lockup detector warns once for each case of process
softlockup. But the thread 'watchdog/n' may not always get the cpu at the
time slot between the task switch of two processes hogging that cpu to
reset soft_watchdog_warn.
An example would be two processes hogging the cpu. Process A causes the
softlockup warning and is killed manually by a user. Process B
immediately becomes the new process hogging the cpu preventing the
softlockup code from resetting the soft_watchdog_warn variable.
This case is a false negative of "warn only once for a process", as there
may be a different process that is going to hog the cpu. Resolve this by
saving/checking the task pointer of the hogging process and use that to
reset soft_watchdog_warn too.
Junxiao Bi [Thu, 9 Oct 2014 22:25:15 +0000 (15:25 -0700)]
ocfs2: fix deadlock due to wrong locking order
For commit ocfs2 journal, ocfs2 journal thread will acquire the mutex
osb->journal->j_trans_barrier and wake up jbd2 commit thread, then it
will wait until jbd2 commit thread done. In order journal mode, jbd2
needs flushing dirty data pages first, and this needs get page lock.
So osb->journal->j_trans_barrier should be got before page lock.
But ocfs2_write_zero_page() and ocfs2_write_begin_inline() obey this
locking order, and this will cause deadlock and hung the whole cluster.
Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Alex Chen <alex.chen@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Joseph Qi [Thu, 9 Oct 2014 22:25:13 +0000 (15:25 -0700)]
ocfs2: fix deadlock between o2hb thread and o2net_wq
The following case may lead to o2net_wq and o2hb thread deadlock on
o2hb_callback_sem.
Currently there are 2 nodes say N1, N2 in the cluster. And N2 down, at
the same time, N3 tries to join the cluster. So N1 will handle node
down (N2) and join (N3) simultaneously.
o2hb o2net_wq
->o2hb_do_disk_heartbeat
->o2hb_check_slot
->o2hb_run_event_list
->o2hb_fire_callbacks
->down_write(&o2hb_callback_sem)
->o2net_hb_node_down_cb
->flush_workqueue(o2net_wq)
->o2net_process_message
->dlm_query_join_handler
->o2hb_check_node_heartbeating
->o2hb_fill_node_map
->down_read(&o2hb_callback_sem)
No need to take o2hb_callback_sem in dlm_query_join_handler,
o2hb_live_lock is enough to protect live node map.
Signed-off-by: Joseph Qi <joseph.qi@huawei.com> Cc: xMark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: jiangyiwen <jiangyiwen@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Junxiao Bi [Thu, 9 Oct 2014 22:25:11 +0000 (15:25 -0700)]
ocfs2: don't fire quorum before connection established
Firing quorum before connection established can cause unexpected node to
reboot.
Assume there are 3 nodes in the cluster, Node 1, 2, 3. Node 2 and 3 have
wrong ip address of Node 1 in cluster.conf and global heartbeat is enabled
in the cluster. After the heatbeats are started on these three nodes,
Node 1 will reboot due to quorum fencing. It is similar case if Node 1's
networking is not ready when starting the global heartbeat.
The reboot is not friendly as customer is not fully ready for ocfs2 to
work. Fix it by not allowing firing quorum before the connection is
established. In this case, ocfs2 will wait until the wrong configuration
is fixed or networking is up to continue. Also update the log to guide
the user where to check when connection is not built for a long time.
Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com> Reviewed-by: Srinivas Eeda <srinivas.eeda@oracle.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Mark Fasheh <mfasheh@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rob Jones [Thu, 9 Oct 2014 22:25:09 +0000 (15:25 -0700)]
fs/ocfs2/dlmglue.c: use __seq_open_private() not seq_open()
Reduce boilerplate code by using seq_open_private() instead of seq_open()
Signed-off-by: Rob Jones <rob.jones@codethink.co.uk> Cc: Joel Becker <jlbec@evilplan.org> Cc: Mark Fasheh <mfasheh@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rob Jones [Thu, 9 Oct 2014 22:25:07 +0000 (15:25 -0700)]
fs/ocfs2/cluster/netdebug.c: use seq_open_private() not seq_open()
Reduce boilerplate code by using seq_open_private() instead of seq_open()
Note that the code in and using sc_common_open() has been quite
extensively changed. Not least because there was a latent memory leak in
the code as was: if sc_common_open() failed, the previously allocated
buffer was not freed.
Signed-off-by: Rob Jones <rob.jones@codethink.co.uk> Cc: Joel Becker <jlbec@evilplan.org> Cc: Mark Fasheh <mfasheh@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rob Jones [Thu, 9 Oct 2014 22:25:05 +0000 (15:25 -0700)]
fs/ocfs2/dlm/dlmdebug.c: use seq_open_private() not seq_open()
Reduce boilerplate code by using seq_open_private() instead of seq_open()
Signed-off-by: Rob Jones <rob.jones@codethink.co.uk> Cc: Joel Becker <jlbec@evilplan.org> Cc: Mark Fasheh <mfasheh@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Alex Chen <alex.chen@huawei.com> Reviewed-by: Joseph Qi <joseph.qi@huawei.com> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Joseph Qi [Thu, 9 Oct 2014 22:24:56 +0000 (15:24 -0700)]
ocfs2: fix shift left operations overflow
ocfs2_inode_info->ip_clusters and ocfs2_dinode->id1.bitmap1.i_total are
defined as type u32, so the shift left operations may overflow if volume
size is large, for example, 2TB and cluster size is 1MB.
Signed-off-by: Joseph Qi <joseph.qi@huawei.com> Reviewed-by: Alex Chen <alex.chen@huawei.com> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Joseph Qi [Thu, 9 Oct 2014 22:24:54 +0000 (15:24 -0700)]
ocfs2/dlm: refactor error handling in dlm_alloc_ctxt
Refactoring error handling in dlm_alloc_ctxt to simplify code.
Signed-off-by: Joseph Qi <joseph.qi@huawei.com> Reviewed-by: Alex Chen <alex.chen@huawei.com> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ntfs: use find_get_page_flags() to mark page accessed as it is no longer marked later on
Mel Gorman's commit 2457aec63745 ("mm: non-atomically mark page accessed
during page cache allocation where possible") removed mark_page_accessed()
calls from NTFS without updating the matching find_lock_page() to
find_get_page_flags(GFP_LOCK | FGP_ACCESSED) thus causing the page to
never be marked accessed.
This patch fixes that.
Signed-off-by: Anton Altaparmakov <anton@tuxera.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Yann Droneaud [Thu, 9 Oct 2014 22:24:40 +0000 (15:24 -0700)]
fanotify: enable close-on-exec on events' fd when requested in fanotify_init()
According to commit 80af258867648 ("fanotify: groups can specify their
f_flags for new fd"), file descriptors created as part of file access
notification events inherit flags from the event_f_flags argument passed
to syscall fanotify_init(2)[1].
Unfortunately O_CLOEXEC is currently silently ignored.
Indeed, event_f_flags are only given to dentry_open(), which only seems to
care about O_ACCMODE and O_PATH in do_dentry_open(), O_DIRECT in
open_check_o_direct() and O_LARGEFILE in generic_file_open().
It's a pity, since, according to some lookup on various search engines and
http://codesearch.debian.net/, there's already some userspace code which
use O_CLOEXEC:
Additionally, since commit 48149e9d3a7e ("fanotify: check file flags
passed in fanotify_init"). having O_CLOEXEC as part of fanotify_init()
second argument is expressly allowed.
So it seems expected to set close-on-exec flag on the file descriptors if
userspace is allowed to request it with O_CLOEXEC.
But Andrew Morton raised[6] the concern that enabling now close-on-exec
might break existing applications which ask for O_CLOEXEC but expect the
file descriptor to be inherited across exec().
In the other hand, as reported by Mihai Dontu[7] close-on-exec on the file
descriptor returned as part of file access notify can break applications
due to deadlock. So close-on-exec is needed for most applications.
More, applications asking for close-on-exec are likely expecting it to be
enabled, relying on O_CLOEXEC being effective. If not, it might weaken
their security, as noted by Jan Kara[8].
So this patch replaces call to macro get_unused_fd() by a call to function
get_unused_fd_flags() with event_f_flags value as argument. This way
O_CLOEXEC flag in the second argument of fanotify_init(2) syscall is
interpreted and close-on-exec get enabled when requested.
Link: http://lkml.kernel.org/r/cover.1411562410.git.ydroneaud@opteya.com Signed-off-by: Yann Droneaud <ydroneaud@opteya.com> Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed by: Heinrich Schuchardt <xypron.glpk@gmx.de> Tested-by: Heinrich Schuchardt <xypron.glpk@gmx.de> Cc: Mihai Don\u021bu <mihai.dontu@gmail.com> Cc: Pádraig Brady <P@draigBrady.com> Cc: Heinrich Schuchardt <xypron.glpk@gmx.de> Cc: Jan Kara <jack@suse.cz> Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Cc: Michael Kerrisk-manpages <mtk.manpages@gmail.com> Cc: Lino Sanfilippo <LinoSanfilippo@gmx.de> Cc: Richard Guy Briggs <rgb@redhat.com> Cc: Eric Paris <eparis@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
fsnotify_destroy_group() would get called here, but
group->inotify_data.user is only getting assigned later:
group->inotify_data.user = get_current_user();
Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: John McCutchan <john@johnmccutchan.com> Cc: Robert Love <rlove@rlove.org> Cc: Eric Paris <eparis@parisplace.org> Reviewed-by: Heinrich Schuchardt <xypron.glpk@gmx.de> Reviewed-by: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>