Dave Hansen [Fri, 20 Aug 2010 01:11:05 +0000 (18:11 -0700)]
KVM: abstract kvm x86 mmu->n_free_mmu_pages
"free" is a poor name for this value. In this context, it means,
"the number of mmu pages which this kvm instance should be able to
allocate." But "free" implies much more that the objects are there
and ready for use. "available" is a much better description, especially
when you see how it is calculated.
In this patch, we abstract its use into a function. We'll soon
replace the function's contents by calculating the value in a
different way.
All of the reads of n_free_mmu_pages are taken care of in this
patch. The modification sites will be handled in a patch
later in the series.
Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Tim Pepper <lnxninja@linux.vnet.ibm.com> Signed-off-by: Avi Kivity <avi@redhat.com>
Avi Kivity [Mon, 16 Aug 2010 14:50:56 +0000 (17:50 +0300)]
KVM: x86 emulator: Use a register for ____emulate_2op() destination
Most x86 two operand instructions allow the destination to be a memory operand,
but IMUL (for example) requires that the destination be a register. Change
____emulate_2op() to take a register for both source and destination so we
can invoke IMUL.
Mohammed Gamal [Sun, 15 Aug 2010 21:47:01 +0000 (00:47 +0300)]
KVM: Separate emulation context initialization in a separate function
The code for initializing the emulation context is duplicated at two
locations (emulate_instruction() and kvm_task_switch()). Separate it
in a separate function and call it from there.
Signed-off-by: Mohammed Gamal <m.gamal005@gmail.com> Signed-off-by: Avi Kivity <avi@redhat.com>
Alexander Graf [Thu, 29 Jul 2010 13:04:22 +0000 (15:04 +0200)]
KVM: PPC: Move KVM trampolines before __end_interrupts
When using a relocatable kernel we need to make sure that the trampline code
and the interrupt handlers are both copied to low memory. The only way to do
this reliably is to put them in the copied section.
This patch should make relocated kernels work with KVM.
KVM-Stable-Tag Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Avi Kivity <avi@redhat.com>
Alexander Graf [Thu, 29 Jul 2010 13:04:20 +0000 (15:04 +0200)]
KVM: PPC: Use MSR_DR for external load_up
Book3S_32 requires MSR_DR to be disabled during load_up_xxx while on Book3S_64
it's supposed to be enabled. I misread the code and disabled it in both cases,
potentially breaking the PS3 which has a really small RMA.
This patch makes KVM work on the PS3 again.
Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Avi Kivity <avi@redhat.com>
Alexander Graf [Thu, 29 Jul 2010 13:04:19 +0000 (15:04 +0200)]
KVM: PPC: Add book3s_32 tlbie flush acceleration
On Book3s_32 the tlbie instruction flushed effective addresses by the mask
0x0ffff000. This is pretty hard to reflect with a hash that hashes ~0xfff, so
to speed up that target we should also keep a special hash around for it.
Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Avi Kivity <avi@redhat.com>
Alexander Graf [Thu, 29 Jul 2010 13:04:17 +0000 (15:04 +0200)]
KVM: PPC: RCU'ify the Book3s MMU
So far we've been running all code without locking of any sort. This wasn't
really an issue because I didn't see any parallel access to the shadow MMU
code coming.
But then I started to implement dirty bitmapping to MOL which has the video
code in its own thread, so suddenly we had the dirty bitmap code run in
parallel to the shadow mmu code. And with that came trouble.
So I went ahead and made the MMU modifying functions as parallelizable as
I could think of. I hope I didn't screw up too much RCU logic :-). If you
know your way around RCU and locking and what needs to be done when, please
take a look at this patch.
Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Avi Kivity <avi@redhat.com>
Alexander Graf [Thu, 29 Jul 2010 12:48:08 +0000 (14:48 +0200)]
KVM: PPC: Add get_pvinfo interface to query hypercall instructions
We need to tell the guest the opcodes that make up a hypercall through
interfaces that are controlled by userspace. So we need to add a call
for userspace to allow it to query those opcodes so it can pass them
on.
This is required because the hypercall opcodes can change based on
the hypervisor conditions. If we're running in hardware accelerated
hypervisor mode, a hypercall looks different from when we're running
without hardware acceleration.
Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Avi Kivity <avi@redhat.com>
Alexander Graf [Thu, 29 Jul 2010 12:48:07 +0000 (14:48 +0200)]
KVM: PPC: Add Documentation about PV interface
We just introduced a new PV interface that screams for documentation. So here
it is - a shiny new and awesome text file describing the internal works of
the PPC KVM paravirtual interface.
Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Avi Kivity <avi@redhat.com>
Alexander Graf [Thu, 29 Jul 2010 12:48:05 +0000 (14:48 +0200)]
KVM: PPC: PV mtmsrd L=0 and mtmsr
There is also a form of mtmsr where all bits need to be addressed. While the
PPC64 Linux kernel behaves resonably well here, on PPC32 we do not have an
L=1 form. It does mtmsr even for simple things like only changing EE.
So we need to hook into that one as well and check for a mask of bits that we
deem safe to change from within guest context.
Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Avi Kivity <avi@redhat.com>
Alexander Graf [Thu, 29 Jul 2010 12:48:04 +0000 (14:48 +0200)]
KVM: PPC: PV mtmsrd L=1
The PowerPC ISA has a special instruction for mtmsr that only changes the EE
and RI bits, namely the L=1 form.
Since that one is reasonably often occuring and simple to implement, let's
go with this first. Writing EE=0 is always just a store. Doing EE=1 also
requires us to check for pending interrupts and if necessary exit back to the
hypervisor.
Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Avi Kivity <avi@redhat.com>
Alexander Graf [Thu, 29 Jul 2010 12:48:03 +0000 (14:48 +0200)]
KVM: PPC: PV assembler helpers
When we hook an instruction we need to make sure we don't clobber any of
the registers at that point. So we write them out to scratch space in the
magic page. To make sure we don't fall into a race with another piece of
hooked code, we need to disable interrupts.
To make the later patches and code in general easier readable, let's introduce
a set of defines that save and restore r30, r31 and cr. Let's also define some
helpers to read the lower 32 bits of a 64 bit field on 32 bit systems.
Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Avi Kivity <avi@redhat.com>
Alexander Graf [Thu, 29 Jul 2010 12:48:02 +0000 (14:48 +0200)]
KVM: PPC: Introduce branch patching helper
We will need to patch several instruction streams over to a different
code path, so we need a way to patch a single instruction with a branch
somewhere else.
This patch adds a helper to facilitate this patching.
Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Avi Kivity <avi@redhat.com>
Alexander Graf [Thu, 29 Jul 2010 12:48:01 +0000 (14:48 +0200)]
KVM: PPC: Introduce kvm_tmp framework
We will soon require more sophisticated methods to replace single instructions
with multiple instructions. We do that by branching to a memory region where we
write replacement code for the instruction to.
This region needs to be within 32 MB of the patched instruction though, because
that's the furthest we can jump with immediate branches.
So we keep 1MB of free space around in bss. After we're done initing we can just
tell the mm system that the unused pages are free, but until then we have enough
space to fit all our code in.
Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Avi Kivity <avi@redhat.com>
Alexander Graf [Thu, 29 Jul 2010 12:47:58 +0000 (14:47 +0200)]
KVM: PPC: KVM PV guest stubs
We will soon start and replace instructions from the text section with
other, paravirtualized versions. To ease the readability of those patches
I split out the generic looping and magic page mapping code out.
This patch still only contains stubs. But at least it loops through the
text section :).
Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Avi Kivity <avi@redhat.com>
Alexander Graf [Thu, 29 Jul 2010 12:47:56 +0000 (14:47 +0200)]
KVM: Move kvm_guest_init out of generic code
Currently x86 is the only architecture that uses kvm_guest_init(). With
PowerPC we're getting a second user, but the signature is different there
and we don't need to export it, as it uses the normal kernel init framework.
So let's move the x86 specific definition of that function over to the x86
specfic header file.
Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Avi Kivity <avi@redhat.com>
Alexander Graf [Thu, 29 Jul 2010 12:47:53 +0000 (14:47 +0200)]
KVM: PPC: First magic page steps
We will be introducing a method to project the shared page in guest context.
As soon as we're talking about this coupling, the shared page is colled magic
page.
This patch introduces simple defines, so the follow-up patches are easier to
read.
Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Avi Kivity <avi@redhat.com>
Alexander Graf [Thu, 29 Jul 2010 12:47:52 +0000 (14:47 +0200)]
KVM: PPC: Make PAM a define
On PowerPC it's very normal to not support all of the physical RAM in real mode.
To check if we're matching on the shared page or not, we need to know the limits
so we can restrain ourselves to that range.
So let's make it a define instead of open-coding it. And while at it, let's also
increase it.
Signed-off-by: Alexander Graf <agraf@suse.de>
v2 -> v3:
- RMO -> PAM (non-magic page) Signed-off-by: Avi Kivity <avi@redhat.com>
Alexander Graf [Thu, 29 Jul 2010 12:47:51 +0000 (14:47 +0200)]
KVM: PPC: Tell guest about pending interrupts
When the guest turns on interrupts again, it needs to know if we have an
interrupt pending for it. Because if so, it should rather get out of guest
context and get the interrupt.
So we introduce a new field in the shared page that we use to tell the guest
that there's a pending interrupt lying around.
Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Avi Kivity <avi@redhat.com>
Alexander Graf [Thu, 29 Jul 2010 12:47:49 +0000 (14:47 +0200)]
KVM: PPC: Add PV guest critical sections
When running in hooked code we need a way to disable interrupts without
clobbering any interrupts or exiting out to the hypervisor.
To achieve this, we have an additional critical field in the shared page. If
that field is equal to the r1 register of the guest, it tells the hypervisor
that we're in such a critical section and thus may not receive any interrupts.
Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Avi Kivity <avi@redhat.com>
Alexander Graf [Thu, 29 Jul 2010 12:47:47 +0000 (14:47 +0200)]
KVM: PPC: Convert SPRG[0-4] to shared page
When in kernel mode there are 4 additional registers available that are
simple data storage. Instead of exiting to the hypervisor to read and
write those, we can just share them with the guest using the page.
This patch converts all users of the current field to the shared page.
Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Avi Kivity <avi@redhat.com>
Alexander Graf [Thu, 29 Jul 2010 12:47:46 +0000 (14:47 +0200)]
KVM: PPC: Convert SRR0 and SRR1 to shared page
The SRR0 and SRR1 registers contain cached values of the PC and MSR
respectively. They get written to by the hypervisor when an interrupt
occurs or directly by the kernel. They are also used to tell the rfi(d)
instruction where to jump to.
Because it only gets touched on defined events that, it's very simple to
share with the guest. Hypervisor and guest both have full r/w access.
This patch converts all users of the current field to the shared page.
Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Avi Kivity <avi@redhat.com>
Alexander Graf [Thu, 29 Jul 2010 12:47:45 +0000 (14:47 +0200)]
KVM: PPC: Convert DAR to shared page.
The DAR register contains the address a data page fault occured at. This
register behaves pretty much like a simple data storage register that gets
written to on data faults. There is no hypervisor interaction required on
read or write.
This patch converts all users of the current field to the shared page.
Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Avi Kivity <avi@redhat.com>
Alexander Graf [Thu, 29 Jul 2010 12:47:44 +0000 (14:47 +0200)]
KVM: PPC: Convert DSISR to shared page
The DSISR register contains information about a data page fault. It is fully
read/write from inside the guest context and we don't need to worry about
interacting based on writes of this register.
This patch converts all users of the current field to the shared page.
Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Avi Kivity <avi@redhat.com>
Alexander Graf [Thu, 29 Jul 2010 12:47:43 +0000 (14:47 +0200)]
KVM: PPC: Convert MSR to shared page
One of the most obvious registers to share with the guest directly is the
MSR. The MSR contains the "interrupts enabled" flag which the guest has to
toggle in critical sections.
So in order to bring the overhead of interrupt en- and disabling down, let's
put msr into the shared page. Keep in mind that even though you can fully read
its contents, writing to it doesn't always update all state. There are a few
safe fields that don't require hypervisor interaction. See the documentation
for a list of MSR bits that are safe to be set from inside the guest.
Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Avi Kivity <avi@redhat.com>
Alexander Graf [Thu, 29 Jul 2010 12:47:42 +0000 (14:47 +0200)]
KVM: PPC: Introduce shared page
For transparent variable sharing between the hypervisor and guest, I introduce
a shared page. This shared page will contain all the registers the guest can
read and write safely without exiting guest context.
This patch only implements the stubs required for the basic structure of the
shared page. The actual register moving follows.
Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Avi Kivity <avi@redhat.com>
Avi Kivity [Sun, 1 Aug 2010 09:35:10 +0000 (12:35 +0300)]
KVM: x86 emulator: use correct type for memory address in operands
Currently we use a void pointer for memory addresses. That's wrong since
these are guest virtual addresses which are not directly dereferencable by
the host.