Under ARM64, PTEs can be broadly categorised as follows:
- Present and valid: Bit #0 is set. The PTE is valid and memory
access to the region may fault.
- Present and invalid: Bit #0 is clear and bit #1 is set.
Represents present memory with PROT_NONE protection. The PTE
is an invalid entry, and the user fault handler will raise a
SIGSEGV.
- Not present (file or swap): Bits #0 and #1 are clear.
Memory represented has been paged out. The PTE is an invalid
entry, and the fault handler will try and re-populate the
memory where necessary.
Huge PTEs are block descriptors that have bit #1 clear. If we wish
to represent PROT_NONE huge PTEs we then run into a problem as
there is no way to distinguish between regular and huge PTEs if we
set bit #1.
To resolve this ambiguity this patch moves PTE_PROT_NONE from
bit #1 to bit #2 and moves PTE_FILE from bit #2 to bit #3. The
number of swap/file bits is reduced by 1 as a consequence, leaving
60 bits for file and swap entries.
Signed-off-by: Steve Capper <steve.capper@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com>