1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/types.h>
6 #include <linux/seq_file.h>
7 #include <linux/compiler.h>
8 #include <linux/ctype.h>
9 #include <linux/errno.h>
10 #include <linux/slab.h>
11 #include <linux/anon_inodes.h>
12 #include <linux/file.h>
13 #include <linux/uaccess.h>
14 #include <linux/kernel.h>
15 #include <linux/idr.h>
16 #include <linux/sort.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/btf.h>
20 /* BTF (BPF Type Format) is the meta data format which describes
21 * the data types of BPF program/map. Hence, it basically focus
22 * on the C programming language which the modern BPF is primary
27 * The BTF data is stored under the ".BTF" ELF section
31 * Each 'struct btf_type' object describes a C data type.
32 * Depending on the type it is describing, a 'struct btf_type'
33 * object may be followed by more data. F.e.
34 * To describe an array, 'struct btf_type' is followed by
37 * 'struct btf_type' and any extra data following it are
42 * The BTF type section contains a list of 'struct btf_type' objects.
43 * Each one describes a C type. Recall from the above section
44 * that a 'struct btf_type' object could be immediately followed by extra
45 * data in order to desribe some particular C types.
49 * Each btf_type object is identified by a type_id. The type_id
50 * is implicitly implied by the location of the btf_type object in
51 * the BTF type section. The first one has type_id 1. The second
52 * one has type_id 2...etc. Hence, an earlier btf_type has
55 * A btf_type object may refer to another btf_type object by using
56 * type_id (i.e. the "type" in the "struct btf_type").
58 * NOTE that we cannot assume any reference-order.
59 * A btf_type object can refer to an earlier btf_type object
60 * but it can also refer to a later btf_type object.
62 * For example, to describe "const void *". A btf_type
63 * object describing "const" may refer to another btf_type
64 * object describing "void *". This type-reference is done
65 * by specifying type_id:
67 * [1] CONST (anon) type_id=2
68 * [2] PTR (anon) type_id=0
70 * The above is the btf_verifier debug log:
71 * - Each line started with "[?]" is a btf_type object
72 * - [?] is the type_id of the btf_type object.
73 * - CONST/PTR is the BTF_KIND_XXX
74 * - "(anon)" is the name of the type. It just
75 * happens that CONST and PTR has no name.
76 * - type_id=XXX is the 'u32 type' in btf_type
78 * NOTE: "void" has type_id 0
82 * The BTF string section contains the names used by the type section.
83 * Each string is referred by an "offset" from the beginning of the
86 * Each string is '\0' terminated.
88 * The first character in the string section must be '\0'
89 * which is used to mean 'anonymous'. Some btf_type may not
95 * To verify BTF data, two passes are needed.
99 * The first pass is to collect all btf_type objects to
100 * an array: "btf->types".
102 * Depending on the C type that a btf_type is describing,
103 * a btf_type may be followed by extra data. We don't know
104 * how many btf_type is there, and more importantly we don't
105 * know where each btf_type is located in the type section.
107 * Without knowing the location of each type_id, most verifications
108 * cannot be done. e.g. an earlier btf_type may refer to a later
109 * btf_type (recall the "const void *" above), so we cannot
110 * check this type-reference in the first pass.
112 * In the first pass, it still does some verifications (e.g.
113 * checking the name is a valid offset to the string section).
117 * The main focus is to resolve a btf_type that is referring
120 * We have to ensure the referring type:
121 * 1) does exist in the BTF (i.e. in btf->types[])
122 * 2) does not cause a loop:
131 * btf_type_needs_resolve() decides if a btf_type needs
134 * The needs_resolve type implements the "resolve()" ops which
135 * essentially does a DFS and detects backedge.
137 * During resolve (or DFS), different C types have different
138 * "RESOLVED" conditions.
140 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
141 * members because a member is always referring to another
142 * type. A struct's member can be treated as "RESOLVED" if
143 * it is referring to a BTF_KIND_PTR. Otherwise, the
144 * following valid C struct would be rejected:
151 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
152 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot
153 * detect a pointer loop, e.g.:
154 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
156 * +-----------------------------------------+
160 #define BITS_PER_U64 (sizeof(u64) * BITS_PER_BYTE)
161 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
162 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
163 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
164 #define BITS_ROUNDUP_BYTES(bits) \
165 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
167 #define BTF_INFO_MASK 0x0f00ffff
168 #define BTF_INT_MASK 0x0fffffff
169 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
170 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
172 /* 16MB for 64k structs and each has 16 members and
173 * a few MB spaces for the string section.
174 * The hard limit is S32_MAX.
176 #define BTF_MAX_SIZE (16 * 1024 * 1024)
178 #define for_each_member(i, struct_type, member) \
179 for (i = 0, member = btf_type_member(struct_type); \
180 i < btf_type_vlen(struct_type); \
183 #define for_each_member_from(i, from, struct_type, member) \
184 for (i = from, member = btf_type_member(struct_type) + from; \
185 i < btf_type_vlen(struct_type); \
188 static DEFINE_IDR(btf_idr);
189 static DEFINE_SPINLOCK(btf_idr_lock);
193 struct btf_type **types;
198 struct btf_header hdr;
207 enum verifier_phase {
212 struct resolve_vertex {
213 const struct btf_type *t;
225 RESOLVE_TBD, /* To Be Determined */
226 RESOLVE_PTR, /* Resolving for Pointer */
227 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
232 #define MAX_RESOLVE_DEPTH 32
234 struct btf_sec_info {
239 struct btf_verifier_env {
242 struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
243 struct bpf_verifier_log log;
246 enum verifier_phase phase;
247 enum resolve_mode resolve_mode;
250 static const char * const btf_kind_str[NR_BTF_KINDS] = {
251 [BTF_KIND_UNKN] = "UNKNOWN",
252 [BTF_KIND_INT] = "INT",
253 [BTF_KIND_PTR] = "PTR",
254 [BTF_KIND_ARRAY] = "ARRAY",
255 [BTF_KIND_STRUCT] = "STRUCT",
256 [BTF_KIND_UNION] = "UNION",
257 [BTF_KIND_ENUM] = "ENUM",
258 [BTF_KIND_FWD] = "FWD",
259 [BTF_KIND_TYPEDEF] = "TYPEDEF",
260 [BTF_KIND_VOLATILE] = "VOLATILE",
261 [BTF_KIND_CONST] = "CONST",
262 [BTF_KIND_RESTRICT] = "RESTRICT",
263 [BTF_KIND_FUNC] = "FUNC",
264 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
267 struct btf_kind_operations {
268 s32 (*check_meta)(struct btf_verifier_env *env,
269 const struct btf_type *t,
271 int (*resolve)(struct btf_verifier_env *env,
272 const struct resolve_vertex *v);
273 int (*check_member)(struct btf_verifier_env *env,
274 const struct btf_type *struct_type,
275 const struct btf_member *member,
276 const struct btf_type *member_type);
277 void (*log_details)(struct btf_verifier_env *env,
278 const struct btf_type *t);
279 void (*seq_show)(const struct btf *btf, const struct btf_type *t,
280 u32 type_id, void *data, u8 bits_offsets,
284 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
285 static struct btf_type btf_void;
287 static int btf_resolve(struct btf_verifier_env *env,
288 const struct btf_type *t, u32 type_id);
290 static bool btf_type_is_modifier(const struct btf_type *t)
292 /* Some of them is not strictly a C modifier
293 * but they are grouped into the same bucket
295 * A type (t) that refers to another
296 * type through t->type AND its size cannot
297 * be determined without following the t->type.
299 * ptr does not fall into this bucket
300 * because its size is always sizeof(void *).
302 switch (BTF_INFO_KIND(t->info)) {
303 case BTF_KIND_TYPEDEF:
304 case BTF_KIND_VOLATILE:
306 case BTF_KIND_RESTRICT:
313 static bool btf_type_is_void(const struct btf_type *t)
315 return t == &btf_void;
318 static bool btf_type_is_fwd(const struct btf_type *t)
320 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
323 static bool btf_type_is_func(const struct btf_type *t)
325 return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC;
328 static bool btf_type_is_func_proto(const struct btf_type *t)
330 return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC_PROTO;
333 static bool btf_type_nosize(const struct btf_type *t)
335 return btf_type_is_void(t) || btf_type_is_fwd(t) ||
336 btf_type_is_func(t) || btf_type_is_func_proto(t);
339 static bool btf_type_nosize_or_null(const struct btf_type *t)
341 return !t || btf_type_nosize(t);
344 /* union is only a special case of struct:
345 * all its offsetof(member) == 0
347 static bool btf_type_is_struct(const struct btf_type *t)
349 u8 kind = BTF_INFO_KIND(t->info);
351 return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION;
354 static bool btf_type_is_array(const struct btf_type *t)
356 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
359 static bool btf_type_is_ptr(const struct btf_type *t)
361 return BTF_INFO_KIND(t->info) == BTF_KIND_PTR;
364 static bool btf_type_is_int(const struct btf_type *t)
366 return BTF_INFO_KIND(t->info) == BTF_KIND_INT;
369 /* What types need to be resolved?
371 * btf_type_is_modifier() is an obvious one.
373 * btf_type_is_struct() because its member refers to
374 * another type (through member->type).
376 * btf_type_is_array() because its element (array->type)
377 * refers to another type. Array can be thought of a
378 * special case of struct while array just has the same
379 * member-type repeated by array->nelems of times.
381 static bool btf_type_needs_resolve(const struct btf_type *t)
383 return btf_type_is_modifier(t) ||
384 btf_type_is_ptr(t) ||
385 btf_type_is_struct(t) ||
386 btf_type_is_array(t);
389 /* t->size can be used */
390 static bool btf_type_has_size(const struct btf_type *t)
392 switch (BTF_INFO_KIND(t->info)) {
394 case BTF_KIND_STRUCT:
403 static const char *btf_int_encoding_str(u8 encoding)
407 else if (encoding == BTF_INT_SIGNED)
409 else if (encoding == BTF_INT_CHAR)
411 else if (encoding == BTF_INT_BOOL)
417 static u16 btf_type_vlen(const struct btf_type *t)
419 return BTF_INFO_VLEN(t->info);
422 static u32 btf_type_int(const struct btf_type *t)
424 return *(u32 *)(t + 1);
427 static const struct btf_array *btf_type_array(const struct btf_type *t)
429 return (const struct btf_array *)(t + 1);
432 static const struct btf_member *btf_type_member(const struct btf_type *t)
434 return (const struct btf_member *)(t + 1);
437 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
439 return (const struct btf_enum *)(t + 1);
442 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
444 return kind_ops[BTF_INFO_KIND(t->info)];
447 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
449 return BTF_STR_OFFSET_VALID(offset) &&
450 offset < btf->hdr.str_len;
453 /* Only C-style identifier is permitted. This can be relaxed if
456 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
458 /* offset must be valid */
459 const char *src = &btf->strings[offset];
460 const char *src_limit;
462 if (!isalpha(*src) && *src != '_')
465 /* set a limit on identifier length */
466 src_limit = src + KSYM_NAME_LEN;
468 while (*src && src < src_limit) {
469 if (!isalnum(*src) && *src != '_')
477 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
481 else if (offset < btf->hdr.str_len)
482 return &btf->strings[offset];
484 return "(invalid-name-offset)";
487 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
489 if (type_id > btf->nr_types)
492 return btf->types[type_id];
496 * Regular int is not a bit field and it must be either
499 static bool btf_type_int_is_regular(const struct btf_type *t)
501 u8 nr_bits, nr_bytes;
504 int_data = btf_type_int(t);
505 nr_bits = BTF_INT_BITS(int_data);
506 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
507 if (BITS_PER_BYTE_MASKED(nr_bits) ||
508 BTF_INT_OFFSET(int_data) ||
509 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
510 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64))) {
517 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
518 const char *fmt, ...)
523 bpf_verifier_vlog(log, fmt, args);
527 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
528 const char *fmt, ...)
530 struct bpf_verifier_log *log = &env->log;
533 if (!bpf_verifier_log_needed(log))
537 bpf_verifier_vlog(log, fmt, args);
541 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
542 const struct btf_type *t,
544 const char *fmt, ...)
546 struct bpf_verifier_log *log = &env->log;
547 u8 kind = BTF_INFO_KIND(t->info);
548 struct btf *btf = env->btf;
551 if (!bpf_verifier_log_needed(log))
554 __btf_verifier_log(log, "[%u] %s %s%s",
557 btf_name_by_offset(btf, t->name_off),
558 log_details ? " " : "");
561 btf_type_ops(t)->log_details(env, t);
564 __btf_verifier_log(log, " ");
566 bpf_verifier_vlog(log, fmt, args);
570 __btf_verifier_log(log, "\n");
573 #define btf_verifier_log_type(env, t, ...) \
574 __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
575 #define btf_verifier_log_basic(env, t, ...) \
576 __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
579 static void btf_verifier_log_member(struct btf_verifier_env *env,
580 const struct btf_type *struct_type,
581 const struct btf_member *member,
582 const char *fmt, ...)
584 struct bpf_verifier_log *log = &env->log;
585 struct btf *btf = env->btf;
588 if (!bpf_verifier_log_needed(log))
591 /* The CHECK_META phase already did a btf dump.
593 * If member is logged again, it must hit an error in
594 * parsing this member. It is useful to print out which
595 * struct this member belongs to.
597 if (env->phase != CHECK_META)
598 btf_verifier_log_type(env, struct_type, NULL);
600 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
601 btf_name_by_offset(btf, member->name_off),
602 member->type, member->offset);
605 __btf_verifier_log(log, " ");
607 bpf_verifier_vlog(log, fmt, args);
611 __btf_verifier_log(log, "\n");
614 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
617 struct bpf_verifier_log *log = &env->log;
618 const struct btf *btf = env->btf;
619 const struct btf_header *hdr;
621 if (!bpf_verifier_log_needed(log))
625 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
626 __btf_verifier_log(log, "version: %u\n", hdr->version);
627 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
628 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
629 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
630 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
631 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
632 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
633 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
636 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
638 struct btf *btf = env->btf;
640 /* < 2 because +1 for btf_void which is always in btf->types[0].
641 * btf_void is not accounted in btf->nr_types because btf_void
642 * does not come from the BTF file.
644 if (btf->types_size - btf->nr_types < 2) {
645 /* Expand 'types' array */
647 struct btf_type **new_types;
648 u32 expand_by, new_size;
650 if (btf->types_size == BTF_MAX_TYPE) {
651 btf_verifier_log(env, "Exceeded max num of types");
655 expand_by = max_t(u32, btf->types_size >> 2, 16);
656 new_size = min_t(u32, BTF_MAX_TYPE,
657 btf->types_size + expand_by);
659 new_types = kvcalloc(new_size, sizeof(*new_types),
660 GFP_KERNEL | __GFP_NOWARN);
664 if (btf->nr_types == 0)
665 new_types[0] = &btf_void;
667 memcpy(new_types, btf->types,
668 sizeof(*btf->types) * (btf->nr_types + 1));
671 btf->types = new_types;
672 btf->types_size = new_size;
675 btf->types[++(btf->nr_types)] = t;
680 static int btf_alloc_id(struct btf *btf)
684 idr_preload(GFP_KERNEL);
685 spin_lock_bh(&btf_idr_lock);
686 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
689 spin_unlock_bh(&btf_idr_lock);
692 if (WARN_ON_ONCE(!id))
695 return id > 0 ? 0 : id;
698 static void btf_free_id(struct btf *btf)
703 * In map-in-map, calling map_delete_elem() on outer
704 * map will call bpf_map_put on the inner map.
705 * It will then eventually call btf_free_id()
706 * on the inner map. Some of the map_delete_elem()
707 * implementation may have irq disabled, so
708 * we need to use the _irqsave() version instead
709 * of the _bh() version.
711 spin_lock_irqsave(&btf_idr_lock, flags);
712 idr_remove(&btf_idr, btf->id);
713 spin_unlock_irqrestore(&btf_idr_lock, flags);
716 static void btf_free(struct btf *btf)
719 kvfree(btf->resolved_sizes);
720 kvfree(btf->resolved_ids);
725 static void btf_free_rcu(struct rcu_head *rcu)
727 struct btf *btf = container_of(rcu, struct btf, rcu);
732 void btf_put(struct btf *btf)
734 if (btf && refcount_dec_and_test(&btf->refcnt)) {
736 call_rcu(&btf->rcu, btf_free_rcu);
740 static int env_resolve_init(struct btf_verifier_env *env)
742 struct btf *btf = env->btf;
743 u32 nr_types = btf->nr_types;
744 u32 *resolved_sizes = NULL;
745 u32 *resolved_ids = NULL;
746 u8 *visit_states = NULL;
748 /* +1 for btf_void */
749 resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes),
750 GFP_KERNEL | __GFP_NOWARN);
754 resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids),
755 GFP_KERNEL | __GFP_NOWARN);
759 visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states),
760 GFP_KERNEL | __GFP_NOWARN);
764 btf->resolved_sizes = resolved_sizes;
765 btf->resolved_ids = resolved_ids;
766 env->visit_states = visit_states;
771 kvfree(resolved_sizes);
772 kvfree(resolved_ids);
773 kvfree(visit_states);
777 static void btf_verifier_env_free(struct btf_verifier_env *env)
779 kvfree(env->visit_states);
783 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
784 const struct btf_type *next_type)
786 switch (env->resolve_mode) {
788 /* int, enum or void is a sink */
789 return !btf_type_needs_resolve(next_type);
791 /* int, enum, void, struct, array, func or func_proto is a sink
794 return !btf_type_is_modifier(next_type) &&
795 !btf_type_is_ptr(next_type);
796 case RESOLVE_STRUCT_OR_ARRAY:
797 /* int, enum, void, ptr, func or func_proto is a sink
798 * for struct and array
800 return !btf_type_is_modifier(next_type) &&
801 !btf_type_is_array(next_type) &&
802 !btf_type_is_struct(next_type);
808 static bool env_type_is_resolved(const struct btf_verifier_env *env,
811 return env->visit_states[type_id] == RESOLVED;
814 static int env_stack_push(struct btf_verifier_env *env,
815 const struct btf_type *t, u32 type_id)
817 struct resolve_vertex *v;
819 if (env->top_stack == MAX_RESOLVE_DEPTH)
822 if (env->visit_states[type_id] != NOT_VISITED)
825 env->visit_states[type_id] = VISITED;
827 v = &env->stack[env->top_stack++];
829 v->type_id = type_id;
832 if (env->resolve_mode == RESOLVE_TBD) {
833 if (btf_type_is_ptr(t))
834 env->resolve_mode = RESOLVE_PTR;
835 else if (btf_type_is_struct(t) || btf_type_is_array(t))
836 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
842 static void env_stack_set_next_member(struct btf_verifier_env *env,
845 env->stack[env->top_stack - 1].next_member = next_member;
848 static void env_stack_pop_resolved(struct btf_verifier_env *env,
849 u32 resolved_type_id,
852 u32 type_id = env->stack[--(env->top_stack)].type_id;
853 struct btf *btf = env->btf;
855 btf->resolved_sizes[type_id] = resolved_size;
856 btf->resolved_ids[type_id] = resolved_type_id;
857 env->visit_states[type_id] = RESOLVED;
860 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
862 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
865 /* The input param "type_id" must point to a needs_resolve type */
866 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
869 *type_id = btf->resolved_ids[*type_id];
870 return btf_type_by_id(btf, *type_id);
873 const struct btf_type *btf_type_id_size(const struct btf *btf,
874 u32 *type_id, u32 *ret_size)
876 const struct btf_type *size_type;
877 u32 size_type_id = *type_id;
880 size_type = btf_type_by_id(btf, size_type_id);
881 if (btf_type_nosize_or_null(size_type))
884 if (btf_type_has_size(size_type)) {
885 size = size_type->size;
886 } else if (btf_type_is_array(size_type)) {
887 size = btf->resolved_sizes[size_type_id];
888 } else if (btf_type_is_ptr(size_type)) {
889 size = sizeof(void *);
891 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type)))
894 size = btf->resolved_sizes[size_type_id];
895 size_type_id = btf->resolved_ids[size_type_id];
896 size_type = btf_type_by_id(btf, size_type_id);
897 if (btf_type_nosize_or_null(size_type))
901 *type_id = size_type_id;
908 static int btf_df_check_member(struct btf_verifier_env *env,
909 const struct btf_type *struct_type,
910 const struct btf_member *member,
911 const struct btf_type *member_type)
913 btf_verifier_log_basic(env, struct_type,
914 "Unsupported check_member");
918 static int btf_df_resolve(struct btf_verifier_env *env,
919 const struct resolve_vertex *v)
921 btf_verifier_log_basic(env, v->t, "Unsupported resolve");
925 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t,
926 u32 type_id, void *data, u8 bits_offsets,
929 seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
932 static int btf_int_check_member(struct btf_verifier_env *env,
933 const struct btf_type *struct_type,
934 const struct btf_member *member,
935 const struct btf_type *member_type)
937 u32 int_data = btf_type_int(member_type);
938 u32 struct_bits_off = member->offset;
939 u32 struct_size = struct_type->size;
943 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
944 btf_verifier_log_member(env, struct_type, member,
945 "bits_offset exceeds U32_MAX");
949 struct_bits_off += BTF_INT_OFFSET(int_data);
950 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
951 nr_copy_bits = BTF_INT_BITS(int_data) +
952 BITS_PER_BYTE_MASKED(struct_bits_off);
954 if (nr_copy_bits > BITS_PER_U64) {
955 btf_verifier_log_member(env, struct_type, member,
956 "nr_copy_bits exceeds 64");
960 if (struct_size < bytes_offset ||
961 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
962 btf_verifier_log_member(env, struct_type, member,
963 "Member exceeds struct_size");
970 static s32 btf_int_check_meta(struct btf_verifier_env *env,
971 const struct btf_type *t,
974 u32 int_data, nr_bits, meta_needed = sizeof(int_data);
977 if (meta_left < meta_needed) {
978 btf_verifier_log_basic(env, t,
979 "meta_left:%u meta_needed:%u",
980 meta_left, meta_needed);
984 if (btf_type_vlen(t)) {
985 btf_verifier_log_type(env, t, "vlen != 0");
989 int_data = btf_type_int(t);
990 if (int_data & ~BTF_INT_MASK) {
991 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
996 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
998 if (nr_bits > BITS_PER_U64) {
999 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
1004 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
1005 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
1010 * Only one of the encoding bits is allowed and it
1011 * should be sufficient for the pretty print purpose (i.e. decoding).
1012 * Multiple bits can be allowed later if it is found
1013 * to be insufficient.
1015 encoding = BTF_INT_ENCODING(int_data);
1017 encoding != BTF_INT_SIGNED &&
1018 encoding != BTF_INT_CHAR &&
1019 encoding != BTF_INT_BOOL) {
1020 btf_verifier_log_type(env, t, "Unsupported encoding");
1024 btf_verifier_log_type(env, t, NULL);
1029 static void btf_int_log(struct btf_verifier_env *env,
1030 const struct btf_type *t)
1032 int int_data = btf_type_int(t);
1034 btf_verifier_log(env,
1035 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
1036 t->size, BTF_INT_OFFSET(int_data),
1037 BTF_INT_BITS(int_data),
1038 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
1041 static void btf_int_bits_seq_show(const struct btf *btf,
1042 const struct btf_type *t,
1043 void *data, u8 bits_offset,
1046 u16 left_shift_bits, right_shift_bits;
1047 u32 int_data = btf_type_int(t);
1048 u8 nr_bits = BTF_INT_BITS(int_data);
1049 u8 total_bits_offset;
1055 * bits_offset is at most 7.
1056 * BTF_INT_OFFSET() cannot exceed 64 bits.
1058 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
1059 data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
1060 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
1061 nr_copy_bits = nr_bits + bits_offset;
1062 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
1065 memcpy(&print_num, data, nr_copy_bytes);
1067 #ifdef __BIG_ENDIAN_BITFIELD
1068 left_shift_bits = bits_offset;
1070 left_shift_bits = BITS_PER_U64 - nr_copy_bits;
1072 right_shift_bits = BITS_PER_U64 - nr_bits;
1074 print_num <<= left_shift_bits;
1075 print_num >>= right_shift_bits;
1077 seq_printf(m, "0x%llx", print_num);
1080 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t,
1081 u32 type_id, void *data, u8 bits_offset,
1084 u32 int_data = btf_type_int(t);
1085 u8 encoding = BTF_INT_ENCODING(int_data);
1086 bool sign = encoding & BTF_INT_SIGNED;
1087 u8 nr_bits = BTF_INT_BITS(int_data);
1089 if (bits_offset || BTF_INT_OFFSET(int_data) ||
1090 BITS_PER_BYTE_MASKED(nr_bits)) {
1091 btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1098 seq_printf(m, "%lld", *(s64 *)data);
1100 seq_printf(m, "%llu", *(u64 *)data);
1104 seq_printf(m, "%d", *(s32 *)data);
1106 seq_printf(m, "%u", *(u32 *)data);
1110 seq_printf(m, "%d", *(s16 *)data);
1112 seq_printf(m, "%u", *(u16 *)data);
1116 seq_printf(m, "%d", *(s8 *)data);
1118 seq_printf(m, "%u", *(u8 *)data);
1121 btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1125 static const struct btf_kind_operations int_ops = {
1126 .check_meta = btf_int_check_meta,
1127 .resolve = btf_df_resolve,
1128 .check_member = btf_int_check_member,
1129 .log_details = btf_int_log,
1130 .seq_show = btf_int_seq_show,
1133 static int btf_modifier_check_member(struct btf_verifier_env *env,
1134 const struct btf_type *struct_type,
1135 const struct btf_member *member,
1136 const struct btf_type *member_type)
1138 const struct btf_type *resolved_type;
1139 u32 resolved_type_id = member->type;
1140 struct btf_member resolved_member;
1141 struct btf *btf = env->btf;
1143 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1144 if (!resolved_type) {
1145 btf_verifier_log_member(env, struct_type, member,
1150 resolved_member = *member;
1151 resolved_member.type = resolved_type_id;
1153 return btf_type_ops(resolved_type)->check_member(env, struct_type,
1158 static int btf_ptr_check_member(struct btf_verifier_env *env,
1159 const struct btf_type *struct_type,
1160 const struct btf_member *member,
1161 const struct btf_type *member_type)
1163 u32 struct_size, struct_bits_off, bytes_offset;
1165 struct_size = struct_type->size;
1166 struct_bits_off = member->offset;
1167 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1169 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1170 btf_verifier_log_member(env, struct_type, member,
1171 "Member is not byte aligned");
1175 if (struct_size - bytes_offset < sizeof(void *)) {
1176 btf_verifier_log_member(env, struct_type, member,
1177 "Member exceeds struct_size");
1184 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
1185 const struct btf_type *t,
1188 if (btf_type_vlen(t)) {
1189 btf_verifier_log_type(env, t, "vlen != 0");
1193 if (!BTF_TYPE_ID_VALID(t->type)) {
1194 btf_verifier_log_type(env, t, "Invalid type_id");
1198 btf_verifier_log_type(env, t, NULL);
1203 static int btf_modifier_resolve(struct btf_verifier_env *env,
1204 const struct resolve_vertex *v)
1206 const struct btf_type *t = v->t;
1207 const struct btf_type *next_type;
1208 u32 next_type_id = t->type;
1209 struct btf *btf = env->btf;
1210 u32 next_type_size = 0;
1212 next_type = btf_type_by_id(btf, next_type_id);
1214 btf_verifier_log_type(env, v->t, "Invalid type_id");
1218 if (!env_type_is_resolve_sink(env, next_type) &&
1219 !env_type_is_resolved(env, next_type_id))
1220 return env_stack_push(env, next_type, next_type_id);
1222 /* Figure out the resolved next_type_id with size.
1223 * They will be stored in the current modifier's
1224 * resolved_ids and resolved_sizes such that it can
1225 * save us a few type-following when we use it later (e.g. in
1228 if (!btf_type_id_size(btf, &next_type_id, &next_type_size)) {
1229 if (env_type_is_resolved(env, next_type_id))
1230 next_type = btf_type_id_resolve(btf, &next_type_id);
1232 /* "typedef void new_void", "const void"...etc */
1233 if (!btf_type_is_void(next_type) &&
1234 !btf_type_is_fwd(next_type)) {
1235 btf_verifier_log_type(env, v->t, "Invalid type_id");
1240 env_stack_pop_resolved(env, next_type_id, next_type_size);
1245 static int btf_ptr_resolve(struct btf_verifier_env *env,
1246 const struct resolve_vertex *v)
1248 const struct btf_type *next_type;
1249 const struct btf_type *t = v->t;
1250 u32 next_type_id = t->type;
1251 struct btf *btf = env->btf;
1253 next_type = btf_type_by_id(btf, next_type_id);
1255 btf_verifier_log_type(env, v->t, "Invalid type_id");
1259 if (!env_type_is_resolve_sink(env, next_type) &&
1260 !env_type_is_resolved(env, next_type_id))
1261 return env_stack_push(env, next_type, next_type_id);
1263 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
1264 * the modifier may have stopped resolving when it was resolved
1265 * to a ptr (last-resolved-ptr).
1267 * We now need to continue from the last-resolved-ptr to
1268 * ensure the last-resolved-ptr will not referring back to
1269 * the currenct ptr (t).
1271 if (btf_type_is_modifier(next_type)) {
1272 const struct btf_type *resolved_type;
1273 u32 resolved_type_id;
1275 resolved_type_id = next_type_id;
1276 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1278 if (btf_type_is_ptr(resolved_type) &&
1279 !env_type_is_resolve_sink(env, resolved_type) &&
1280 !env_type_is_resolved(env, resolved_type_id))
1281 return env_stack_push(env, resolved_type,
1285 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1286 if (env_type_is_resolved(env, next_type_id))
1287 next_type = btf_type_id_resolve(btf, &next_type_id);
1289 if (!btf_type_is_void(next_type) &&
1290 !btf_type_is_fwd(next_type) &&
1291 !btf_type_is_func_proto(next_type)) {
1292 btf_verifier_log_type(env, v->t, "Invalid type_id");
1297 env_stack_pop_resolved(env, next_type_id, 0);
1302 static void btf_modifier_seq_show(const struct btf *btf,
1303 const struct btf_type *t,
1304 u32 type_id, void *data,
1305 u8 bits_offset, struct seq_file *m)
1307 t = btf_type_id_resolve(btf, &type_id);
1309 btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1312 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t,
1313 u32 type_id, void *data, u8 bits_offset,
1316 /* It is a hashed value */
1317 seq_printf(m, "%p", *(void **)data);
1320 static void btf_ref_type_log(struct btf_verifier_env *env,
1321 const struct btf_type *t)
1323 btf_verifier_log(env, "type_id=%u", t->type);
1326 static struct btf_kind_operations modifier_ops = {
1327 .check_meta = btf_ref_type_check_meta,
1328 .resolve = btf_modifier_resolve,
1329 .check_member = btf_modifier_check_member,
1330 .log_details = btf_ref_type_log,
1331 .seq_show = btf_modifier_seq_show,
1334 static struct btf_kind_operations ptr_ops = {
1335 .check_meta = btf_ref_type_check_meta,
1336 .resolve = btf_ptr_resolve,
1337 .check_member = btf_ptr_check_member,
1338 .log_details = btf_ref_type_log,
1339 .seq_show = btf_ptr_seq_show,
1342 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
1343 const struct btf_type *t,
1346 if (btf_type_vlen(t)) {
1347 btf_verifier_log_type(env, t, "vlen != 0");
1352 btf_verifier_log_type(env, t, "type != 0");
1356 btf_verifier_log_type(env, t, NULL);
1361 static struct btf_kind_operations fwd_ops = {
1362 .check_meta = btf_fwd_check_meta,
1363 .resolve = btf_df_resolve,
1364 .check_member = btf_df_check_member,
1365 .log_details = btf_ref_type_log,
1366 .seq_show = btf_df_seq_show,
1369 static int btf_array_check_member(struct btf_verifier_env *env,
1370 const struct btf_type *struct_type,
1371 const struct btf_member *member,
1372 const struct btf_type *member_type)
1374 u32 struct_bits_off = member->offset;
1375 u32 struct_size, bytes_offset;
1376 u32 array_type_id, array_size;
1377 struct btf *btf = env->btf;
1379 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1380 btf_verifier_log_member(env, struct_type, member,
1381 "Member is not byte aligned");
1385 array_type_id = member->type;
1386 btf_type_id_size(btf, &array_type_id, &array_size);
1387 struct_size = struct_type->size;
1388 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1389 if (struct_size - bytes_offset < array_size) {
1390 btf_verifier_log_member(env, struct_type, member,
1391 "Member exceeds struct_size");
1398 static s32 btf_array_check_meta(struct btf_verifier_env *env,
1399 const struct btf_type *t,
1402 const struct btf_array *array = btf_type_array(t);
1403 u32 meta_needed = sizeof(*array);
1405 if (meta_left < meta_needed) {
1406 btf_verifier_log_basic(env, t,
1407 "meta_left:%u meta_needed:%u",
1408 meta_left, meta_needed);
1412 if (btf_type_vlen(t)) {
1413 btf_verifier_log_type(env, t, "vlen != 0");
1418 btf_verifier_log_type(env, t, "size != 0");
1422 /* Array elem type and index type cannot be in type void,
1423 * so !array->type and !array->index_type are not allowed.
1425 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
1426 btf_verifier_log_type(env, t, "Invalid elem");
1430 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
1431 btf_verifier_log_type(env, t, "Invalid index");
1435 btf_verifier_log_type(env, t, NULL);
1440 static int btf_array_resolve(struct btf_verifier_env *env,
1441 const struct resolve_vertex *v)
1443 const struct btf_array *array = btf_type_array(v->t);
1444 const struct btf_type *elem_type, *index_type;
1445 u32 elem_type_id, index_type_id;
1446 struct btf *btf = env->btf;
1449 /* Check array->index_type */
1450 index_type_id = array->index_type;
1451 index_type = btf_type_by_id(btf, index_type_id);
1452 if (btf_type_nosize_or_null(index_type)) {
1453 btf_verifier_log_type(env, v->t, "Invalid index");
1457 if (!env_type_is_resolve_sink(env, index_type) &&
1458 !env_type_is_resolved(env, index_type_id))
1459 return env_stack_push(env, index_type, index_type_id);
1461 index_type = btf_type_id_size(btf, &index_type_id, NULL);
1462 if (!index_type || !btf_type_is_int(index_type) ||
1463 !btf_type_int_is_regular(index_type)) {
1464 btf_verifier_log_type(env, v->t, "Invalid index");
1468 /* Check array->type */
1469 elem_type_id = array->type;
1470 elem_type = btf_type_by_id(btf, elem_type_id);
1471 if (btf_type_nosize_or_null(elem_type)) {
1472 btf_verifier_log_type(env, v->t,
1477 if (!env_type_is_resolve_sink(env, elem_type) &&
1478 !env_type_is_resolved(env, elem_type_id))
1479 return env_stack_push(env, elem_type, elem_type_id);
1481 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1483 btf_verifier_log_type(env, v->t, "Invalid elem");
1487 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
1488 btf_verifier_log_type(env, v->t, "Invalid array of int");
1492 if (array->nelems && elem_size > U32_MAX / array->nelems) {
1493 btf_verifier_log_type(env, v->t,
1494 "Array size overflows U32_MAX");
1498 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
1503 static void btf_array_log(struct btf_verifier_env *env,
1504 const struct btf_type *t)
1506 const struct btf_array *array = btf_type_array(t);
1508 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
1509 array->type, array->index_type, array->nelems);
1512 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t,
1513 u32 type_id, void *data, u8 bits_offset,
1516 const struct btf_array *array = btf_type_array(t);
1517 const struct btf_kind_operations *elem_ops;
1518 const struct btf_type *elem_type;
1519 u32 i, elem_size, elem_type_id;
1521 elem_type_id = array->type;
1522 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1523 elem_ops = btf_type_ops(elem_type);
1525 for (i = 0; i < array->nelems; i++) {
1529 elem_ops->seq_show(btf, elem_type, elem_type_id, data,
1536 static struct btf_kind_operations array_ops = {
1537 .check_meta = btf_array_check_meta,
1538 .resolve = btf_array_resolve,
1539 .check_member = btf_array_check_member,
1540 .log_details = btf_array_log,
1541 .seq_show = btf_array_seq_show,
1544 static int btf_struct_check_member(struct btf_verifier_env *env,
1545 const struct btf_type *struct_type,
1546 const struct btf_member *member,
1547 const struct btf_type *member_type)
1549 u32 struct_bits_off = member->offset;
1550 u32 struct_size, bytes_offset;
1552 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1553 btf_verifier_log_member(env, struct_type, member,
1554 "Member is not byte aligned");
1558 struct_size = struct_type->size;
1559 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1560 if (struct_size - bytes_offset < member_type->size) {
1561 btf_verifier_log_member(env, struct_type, member,
1562 "Member exceeds struct_size");
1569 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
1570 const struct btf_type *t,
1573 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
1574 const struct btf_member *member;
1575 u32 meta_needed, last_offset;
1576 struct btf *btf = env->btf;
1577 u32 struct_size = t->size;
1580 meta_needed = btf_type_vlen(t) * sizeof(*member);
1581 if (meta_left < meta_needed) {
1582 btf_verifier_log_basic(env, t,
1583 "meta_left:%u meta_needed:%u",
1584 meta_left, meta_needed);
1588 btf_verifier_log_type(env, t, NULL);
1591 for_each_member(i, t, member) {
1592 if (!btf_name_offset_valid(btf, member->name_off)) {
1593 btf_verifier_log_member(env, t, member,
1594 "Invalid member name_offset:%u",
1599 /* A member cannot be in type void */
1600 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
1601 btf_verifier_log_member(env, t, member,
1606 if (is_union && member->offset) {
1607 btf_verifier_log_member(env, t, member,
1608 "Invalid member bits_offset");
1613 * ">" instead of ">=" because the last member could be
1616 if (last_offset > member->offset) {
1617 btf_verifier_log_member(env, t, member,
1618 "Invalid member bits_offset");
1622 if (BITS_ROUNDUP_BYTES(member->offset) > struct_size) {
1623 btf_verifier_log_member(env, t, member,
1624 "Member bits_offset exceeds its struct size");
1628 btf_verifier_log_member(env, t, member, NULL);
1629 last_offset = member->offset;
1635 static int btf_struct_resolve(struct btf_verifier_env *env,
1636 const struct resolve_vertex *v)
1638 const struct btf_member *member;
1642 /* Before continue resolving the next_member,
1643 * ensure the last member is indeed resolved to a
1644 * type with size info.
1646 if (v->next_member) {
1647 const struct btf_type *last_member_type;
1648 const struct btf_member *last_member;
1649 u16 last_member_type_id;
1651 last_member = btf_type_member(v->t) + v->next_member - 1;
1652 last_member_type_id = last_member->type;
1653 if (WARN_ON_ONCE(!env_type_is_resolved(env,
1654 last_member_type_id)))
1657 last_member_type = btf_type_by_id(env->btf,
1658 last_member_type_id);
1659 err = btf_type_ops(last_member_type)->check_member(env, v->t,
1666 for_each_member_from(i, v->next_member, v->t, member) {
1667 u32 member_type_id = member->type;
1668 const struct btf_type *member_type = btf_type_by_id(env->btf,
1671 if (btf_type_nosize_or_null(member_type)) {
1672 btf_verifier_log_member(env, v->t, member,
1677 if (!env_type_is_resolve_sink(env, member_type) &&
1678 !env_type_is_resolved(env, member_type_id)) {
1679 env_stack_set_next_member(env, i + 1);
1680 return env_stack_push(env, member_type, member_type_id);
1683 err = btf_type_ops(member_type)->check_member(env, v->t,
1690 env_stack_pop_resolved(env, 0, 0);
1695 static void btf_struct_log(struct btf_verifier_env *env,
1696 const struct btf_type *t)
1698 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
1701 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t,
1702 u32 type_id, void *data, u8 bits_offset,
1705 const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ",";
1706 const struct btf_member *member;
1710 for_each_member(i, t, member) {
1711 const struct btf_type *member_type = btf_type_by_id(btf,
1713 u32 member_offset = member->offset;
1714 u32 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
1715 u8 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
1716 const struct btf_kind_operations *ops;
1721 ops = btf_type_ops(member_type);
1722 ops->seq_show(btf, member_type, member->type,
1723 data + bytes_offset, bits8_offset, m);
1728 static struct btf_kind_operations struct_ops = {
1729 .check_meta = btf_struct_check_meta,
1730 .resolve = btf_struct_resolve,
1731 .check_member = btf_struct_check_member,
1732 .log_details = btf_struct_log,
1733 .seq_show = btf_struct_seq_show,
1736 static int btf_enum_check_member(struct btf_verifier_env *env,
1737 const struct btf_type *struct_type,
1738 const struct btf_member *member,
1739 const struct btf_type *member_type)
1741 u32 struct_bits_off = member->offset;
1742 u32 struct_size, bytes_offset;
1744 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1745 btf_verifier_log_member(env, struct_type, member,
1746 "Member is not byte aligned");
1750 struct_size = struct_type->size;
1751 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1752 if (struct_size - bytes_offset < sizeof(int)) {
1753 btf_verifier_log_member(env, struct_type, member,
1754 "Member exceeds struct_size");
1761 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
1762 const struct btf_type *t,
1765 const struct btf_enum *enums = btf_type_enum(t);
1766 struct btf *btf = env->btf;
1770 nr_enums = btf_type_vlen(t);
1771 meta_needed = nr_enums * sizeof(*enums);
1773 if (meta_left < meta_needed) {
1774 btf_verifier_log_basic(env, t,
1775 "meta_left:%u meta_needed:%u",
1776 meta_left, meta_needed);
1780 if (t->size != sizeof(int)) {
1781 btf_verifier_log_type(env, t, "Expected size:%zu",
1786 btf_verifier_log_type(env, t, NULL);
1788 for (i = 0; i < nr_enums; i++) {
1789 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
1790 btf_verifier_log(env, "\tInvalid name_offset:%u",
1795 btf_verifier_log(env, "\t%s val=%d\n",
1796 btf_name_by_offset(btf, enums[i].name_off),
1803 static void btf_enum_log(struct btf_verifier_env *env,
1804 const struct btf_type *t)
1806 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
1809 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t,
1810 u32 type_id, void *data, u8 bits_offset,
1813 const struct btf_enum *enums = btf_type_enum(t);
1814 u32 i, nr_enums = btf_type_vlen(t);
1815 int v = *(int *)data;
1817 for (i = 0; i < nr_enums; i++) {
1818 if (v == enums[i].val) {
1820 btf_name_by_offset(btf, enums[i].name_off));
1825 seq_printf(m, "%d", v);
1828 static struct btf_kind_operations enum_ops = {
1829 .check_meta = btf_enum_check_meta,
1830 .resolve = btf_df_resolve,
1831 .check_member = btf_enum_check_member,
1832 .log_details = btf_enum_log,
1833 .seq_show = btf_enum_seq_show,
1836 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
1837 const struct btf_type *t,
1840 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
1842 if (meta_left < meta_needed) {
1843 btf_verifier_log_basic(env, t,
1844 "meta_left:%u meta_needed:%u",
1845 meta_left, meta_needed);
1850 btf_verifier_log_type(env, t, "Invalid name");
1854 btf_verifier_log_type(env, t, NULL);
1859 static void btf_func_proto_log(struct btf_verifier_env *env,
1860 const struct btf_type *t)
1862 const struct btf_param *args = (const struct btf_param *)(t + 1);
1863 u16 nr_args = btf_type_vlen(t), i;
1865 btf_verifier_log(env, "return=%u args=(", t->type);
1867 btf_verifier_log(env, "void");
1871 if (nr_args == 1 && !args[0].type) {
1872 /* Only one vararg */
1873 btf_verifier_log(env, "vararg");
1877 btf_verifier_log(env, "%u %s", args[0].type,
1878 btf_name_by_offset(env->btf,
1880 for (i = 1; i < nr_args - 1; i++)
1881 btf_verifier_log(env, ", %u %s", args[i].type,
1882 btf_name_by_offset(env->btf,
1886 const struct btf_param *last_arg = &args[nr_args - 1];
1889 btf_verifier_log(env, ", %u %s", last_arg->type,
1890 btf_name_by_offset(env->btf,
1891 last_arg->name_off));
1893 btf_verifier_log(env, ", vararg");
1897 btf_verifier_log(env, ")");
1900 static struct btf_kind_operations func_proto_ops = {
1901 .check_meta = btf_func_proto_check_meta,
1902 .resolve = btf_df_resolve,
1904 * BTF_KIND_FUNC_PROTO cannot be directly referred by
1905 * a struct's member.
1907 * It should be a funciton pointer instead.
1908 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
1910 * Hence, there is no btf_func_check_member().
1912 .check_member = btf_df_check_member,
1913 .log_details = btf_func_proto_log,
1914 .seq_show = btf_df_seq_show,
1917 static s32 btf_func_check_meta(struct btf_verifier_env *env,
1918 const struct btf_type *t,
1922 !btf_name_valid_identifier(env->btf, t->name_off)) {
1923 btf_verifier_log_type(env, t, "Invalid name");
1927 if (btf_type_vlen(t)) {
1928 btf_verifier_log_type(env, t, "vlen != 0");
1932 btf_verifier_log_type(env, t, NULL);
1937 static struct btf_kind_operations func_ops = {
1938 .check_meta = btf_func_check_meta,
1939 .resolve = btf_df_resolve,
1940 .check_member = btf_df_check_member,
1941 .log_details = btf_ref_type_log,
1942 .seq_show = btf_df_seq_show,
1945 static int btf_func_proto_check(struct btf_verifier_env *env,
1946 const struct btf_type *t)
1948 const struct btf_type *ret_type;
1949 const struct btf_param *args;
1950 const struct btf *btf;
1955 args = (const struct btf_param *)(t + 1);
1956 nr_args = btf_type_vlen(t);
1958 /* Check func return type which could be "void" (t->type == 0) */
1960 u32 ret_type_id = t->type;
1962 ret_type = btf_type_by_id(btf, ret_type_id);
1964 btf_verifier_log_type(env, t, "Invalid return type");
1968 if (btf_type_needs_resolve(ret_type) &&
1969 !env_type_is_resolved(env, ret_type_id)) {
1970 err = btf_resolve(env, ret_type, ret_type_id);
1975 /* Ensure the return type is a type that has a size */
1976 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
1977 btf_verifier_log_type(env, t, "Invalid return type");
1985 /* Last func arg type_id could be 0 if it is a vararg */
1986 if (!args[nr_args - 1].type) {
1987 if (args[nr_args - 1].name_off) {
1988 btf_verifier_log_type(env, t, "Invalid arg#%u",
1996 for (i = 0; i < nr_args; i++) {
1997 const struct btf_type *arg_type;
2000 arg_type_id = args[i].type;
2001 arg_type = btf_type_by_id(btf, arg_type_id);
2003 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2008 if (args[i].name_off &&
2009 (!btf_name_offset_valid(btf, args[i].name_off) ||
2010 !btf_name_valid_identifier(btf, args[i].name_off))) {
2011 btf_verifier_log_type(env, t,
2012 "Invalid arg#%u", i + 1);
2017 if (btf_type_needs_resolve(arg_type) &&
2018 !env_type_is_resolved(env, arg_type_id)) {
2019 err = btf_resolve(env, arg_type, arg_type_id);
2024 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
2025 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2034 static int btf_func_check(struct btf_verifier_env *env,
2035 const struct btf_type *t)
2037 const struct btf_type *proto_type;
2038 const struct btf_param *args;
2039 const struct btf *btf;
2043 proto_type = btf_type_by_id(btf, t->type);
2045 if (!proto_type || !btf_type_is_func_proto(proto_type)) {
2046 btf_verifier_log_type(env, t, "Invalid type_id");
2050 args = (const struct btf_param *)(proto_type + 1);
2051 nr_args = btf_type_vlen(proto_type);
2052 for (i = 0; i < nr_args; i++) {
2053 if (!args[i].name_off && args[i].type) {
2054 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2062 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
2063 [BTF_KIND_INT] = &int_ops,
2064 [BTF_KIND_PTR] = &ptr_ops,
2065 [BTF_KIND_ARRAY] = &array_ops,
2066 [BTF_KIND_STRUCT] = &struct_ops,
2067 [BTF_KIND_UNION] = &struct_ops,
2068 [BTF_KIND_ENUM] = &enum_ops,
2069 [BTF_KIND_FWD] = &fwd_ops,
2070 [BTF_KIND_TYPEDEF] = &modifier_ops,
2071 [BTF_KIND_VOLATILE] = &modifier_ops,
2072 [BTF_KIND_CONST] = &modifier_ops,
2073 [BTF_KIND_RESTRICT] = &modifier_ops,
2074 [BTF_KIND_FUNC] = &func_ops,
2075 [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
2078 static s32 btf_check_meta(struct btf_verifier_env *env,
2079 const struct btf_type *t,
2082 u32 saved_meta_left = meta_left;
2085 if (meta_left < sizeof(*t)) {
2086 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
2087 env->log_type_id, meta_left, sizeof(*t));
2090 meta_left -= sizeof(*t);
2092 if (t->info & ~BTF_INFO_MASK) {
2093 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
2094 env->log_type_id, t->info);
2098 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
2099 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
2100 btf_verifier_log(env, "[%u] Invalid kind:%u",
2101 env->log_type_id, BTF_INFO_KIND(t->info));
2105 if (!btf_name_offset_valid(env->btf, t->name_off)) {
2106 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
2107 env->log_type_id, t->name_off);
2111 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
2112 if (var_meta_size < 0)
2113 return var_meta_size;
2115 meta_left -= var_meta_size;
2117 return saved_meta_left - meta_left;
2120 static int btf_check_all_metas(struct btf_verifier_env *env)
2122 struct btf *btf = env->btf;
2123 struct btf_header *hdr;
2127 cur = btf->nohdr_data + hdr->type_off;
2128 end = cur + hdr->type_len;
2130 env->log_type_id = 1;
2132 struct btf_type *t = cur;
2135 meta_size = btf_check_meta(env, t, end - cur);
2139 btf_add_type(env, t);
2147 static bool btf_resolve_valid(struct btf_verifier_env *env,
2148 const struct btf_type *t,
2151 struct btf *btf = env->btf;
2153 if (!env_type_is_resolved(env, type_id))
2156 if (btf_type_is_struct(t))
2157 return !btf->resolved_ids[type_id] &&
2158 !btf->resolved_sizes[type_id];
2160 if (btf_type_is_modifier(t) || btf_type_is_ptr(t)) {
2161 t = btf_type_id_resolve(btf, &type_id);
2162 return t && !btf_type_is_modifier(t);
2165 if (btf_type_is_array(t)) {
2166 const struct btf_array *array = btf_type_array(t);
2167 const struct btf_type *elem_type;
2168 u32 elem_type_id = array->type;
2171 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2172 return elem_type && !btf_type_is_modifier(elem_type) &&
2173 (array->nelems * elem_size ==
2174 btf->resolved_sizes[type_id]);
2180 static int btf_resolve(struct btf_verifier_env *env,
2181 const struct btf_type *t, u32 type_id)
2183 u32 save_log_type_id = env->log_type_id;
2184 const struct resolve_vertex *v;
2187 env->resolve_mode = RESOLVE_TBD;
2188 env_stack_push(env, t, type_id);
2189 while (!err && (v = env_stack_peak(env))) {
2190 env->log_type_id = v->type_id;
2191 err = btf_type_ops(v->t)->resolve(env, v);
2194 env->log_type_id = type_id;
2195 if (err == -E2BIG) {
2196 btf_verifier_log_type(env, t,
2197 "Exceeded max resolving depth:%u",
2199 } else if (err == -EEXIST) {
2200 btf_verifier_log_type(env, t, "Loop detected");
2203 /* Final sanity check */
2204 if (!err && !btf_resolve_valid(env, t, type_id)) {
2205 btf_verifier_log_type(env, t, "Invalid resolve state");
2209 env->log_type_id = save_log_type_id;
2213 static int btf_check_all_types(struct btf_verifier_env *env)
2215 struct btf *btf = env->btf;
2219 err = env_resolve_init(env);
2224 for (type_id = 1; type_id <= btf->nr_types; type_id++) {
2225 const struct btf_type *t = btf_type_by_id(btf, type_id);
2227 env->log_type_id = type_id;
2228 if (btf_type_needs_resolve(t) &&
2229 !env_type_is_resolved(env, type_id)) {
2230 err = btf_resolve(env, t, type_id);
2235 if (btf_type_is_func_proto(t)) {
2236 err = btf_func_proto_check(env, t);
2241 if (btf_type_is_func(t)) {
2242 err = btf_func_check(env, t);
2251 static int btf_parse_type_sec(struct btf_verifier_env *env)
2253 const struct btf_header *hdr = &env->btf->hdr;
2256 /* Type section must align to 4 bytes */
2257 if (hdr->type_off & (sizeof(u32) - 1)) {
2258 btf_verifier_log(env, "Unaligned type_off");
2262 if (!hdr->type_len) {
2263 btf_verifier_log(env, "No type found");
2267 err = btf_check_all_metas(env);
2271 return btf_check_all_types(env);
2274 static int btf_parse_str_sec(struct btf_verifier_env *env)
2276 const struct btf_header *hdr;
2277 struct btf *btf = env->btf;
2278 const char *start, *end;
2281 start = btf->nohdr_data + hdr->str_off;
2282 end = start + hdr->str_len;
2284 if (end != btf->data + btf->data_size) {
2285 btf_verifier_log(env, "String section is not at the end");
2289 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET ||
2290 start[0] || end[-1]) {
2291 btf_verifier_log(env, "Invalid string section");
2295 btf->strings = start;
2300 static const size_t btf_sec_info_offset[] = {
2301 offsetof(struct btf_header, type_off),
2302 offsetof(struct btf_header, str_off),
2305 static int btf_sec_info_cmp(const void *a, const void *b)
2307 const struct btf_sec_info *x = a;
2308 const struct btf_sec_info *y = b;
2310 return (int)(x->off - y->off) ? : (int)(x->len - y->len);
2313 static int btf_check_sec_info(struct btf_verifier_env *env,
2316 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
2317 u32 total, expected_total, i;
2318 const struct btf_header *hdr;
2319 const struct btf *btf;
2324 /* Populate the secs from hdr */
2325 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
2326 secs[i] = *(struct btf_sec_info *)((void *)hdr +
2327 btf_sec_info_offset[i]);
2329 sort(secs, ARRAY_SIZE(btf_sec_info_offset),
2330 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
2332 /* Check for gaps and overlap among sections */
2334 expected_total = btf_data_size - hdr->hdr_len;
2335 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
2336 if (expected_total < secs[i].off) {
2337 btf_verifier_log(env, "Invalid section offset");
2340 if (total < secs[i].off) {
2342 btf_verifier_log(env, "Unsupported section found");
2345 if (total > secs[i].off) {
2346 btf_verifier_log(env, "Section overlap found");
2349 if (expected_total - total < secs[i].len) {
2350 btf_verifier_log(env,
2351 "Total section length too long");
2354 total += secs[i].len;
2357 /* There is data other than hdr and known sections */
2358 if (expected_total != total) {
2359 btf_verifier_log(env, "Unsupported section found");
2366 static int btf_parse_hdr(struct btf_verifier_env *env)
2368 u32 hdr_len, hdr_copy, btf_data_size;
2369 const struct btf_header *hdr;
2374 btf_data_size = btf->data_size;
2377 offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
2378 btf_verifier_log(env, "hdr_len not found");
2383 hdr_len = hdr->hdr_len;
2384 if (btf_data_size < hdr_len) {
2385 btf_verifier_log(env, "btf_header not found");
2389 /* Ensure the unsupported header fields are zero */
2390 if (hdr_len > sizeof(btf->hdr)) {
2391 u8 *expected_zero = btf->data + sizeof(btf->hdr);
2392 u8 *end = btf->data + hdr_len;
2394 for (; expected_zero < end; expected_zero++) {
2395 if (*expected_zero) {
2396 btf_verifier_log(env, "Unsupported btf_header");
2402 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
2403 memcpy(&btf->hdr, btf->data, hdr_copy);
2407 btf_verifier_log_hdr(env, btf_data_size);
2409 if (hdr->magic != BTF_MAGIC) {
2410 btf_verifier_log(env, "Invalid magic");
2414 if (hdr->version != BTF_VERSION) {
2415 btf_verifier_log(env, "Unsupported version");
2420 btf_verifier_log(env, "Unsupported flags");
2424 if (btf_data_size == hdr->hdr_len) {
2425 btf_verifier_log(env, "No data");
2429 err = btf_check_sec_info(env, btf_data_size);
2436 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
2437 u32 log_level, char __user *log_ubuf, u32 log_size)
2439 struct btf_verifier_env *env = NULL;
2440 struct bpf_verifier_log *log;
2441 struct btf *btf = NULL;
2445 if (btf_data_size > BTF_MAX_SIZE)
2446 return ERR_PTR(-E2BIG);
2448 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
2450 return ERR_PTR(-ENOMEM);
2453 if (log_level || log_ubuf || log_size) {
2454 /* user requested verbose verifier output
2455 * and supplied buffer to store the verification trace
2457 log->level = log_level;
2458 log->ubuf = log_ubuf;
2459 log->len_total = log_size;
2461 /* log attributes have to be sane */
2462 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
2463 !log->level || !log->ubuf) {
2469 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
2476 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
2483 btf->data_size = btf_data_size;
2485 if (copy_from_user(data, btf_data, btf_data_size)) {
2490 err = btf_parse_hdr(env);
2494 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
2496 err = btf_parse_str_sec(env);
2500 err = btf_parse_type_sec(env);
2504 if (log->level && bpf_verifier_log_full(log)) {
2509 btf_verifier_env_free(env);
2510 refcount_set(&btf->refcnt, 1);
2514 btf_verifier_env_free(env);
2517 return ERR_PTR(err);
2520 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
2523 const struct btf_type *t = btf_type_by_id(btf, type_id);
2525 btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m);
2528 static int btf_release(struct inode *inode, struct file *filp)
2530 btf_put(filp->private_data);
2534 const struct file_operations btf_fops = {
2535 .release = btf_release,
2538 static int __btf_new_fd(struct btf *btf)
2540 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
2543 int btf_new_fd(const union bpf_attr *attr)
2548 btf = btf_parse(u64_to_user_ptr(attr->btf),
2549 attr->btf_size, attr->btf_log_level,
2550 u64_to_user_ptr(attr->btf_log_buf),
2551 attr->btf_log_size);
2553 return PTR_ERR(btf);
2555 ret = btf_alloc_id(btf);
2562 * The BTF ID is published to the userspace.
2563 * All BTF free must go through call_rcu() from
2564 * now on (i.e. free by calling btf_put()).
2567 ret = __btf_new_fd(btf);
2574 struct btf *btf_get_by_fd(int fd)
2582 return ERR_PTR(-EBADF);
2584 if (f.file->f_op != &btf_fops) {
2586 return ERR_PTR(-EINVAL);
2589 btf = f.file->private_data;
2590 refcount_inc(&btf->refcnt);
2596 int btf_get_info_by_fd(const struct btf *btf,
2597 const union bpf_attr *attr,
2598 union bpf_attr __user *uattr)
2600 struct bpf_btf_info __user *uinfo;
2601 struct bpf_btf_info info = {};
2602 u32 info_copy, btf_copy;
2606 uinfo = u64_to_user_ptr(attr->info.info);
2607 uinfo_len = attr->info.info_len;
2609 info_copy = min_t(u32, uinfo_len, sizeof(info));
2610 if (copy_from_user(&info, uinfo, info_copy))
2614 ubtf = u64_to_user_ptr(info.btf);
2615 btf_copy = min_t(u32, btf->data_size, info.btf_size);
2616 if (copy_to_user(ubtf, btf->data, btf_copy))
2618 info.btf_size = btf->data_size;
2620 if (copy_to_user(uinfo, &info, info_copy) ||
2621 put_user(info_copy, &uattr->info.info_len))
2627 int btf_get_fd_by_id(u32 id)
2633 btf = idr_find(&btf_idr, id);
2634 if (!btf || !refcount_inc_not_zero(&btf->refcnt))
2635 btf = ERR_PTR(-ENOENT);
2639 return PTR_ERR(btf);
2641 fd = __btf_new_fd(btf);
2648 u32 btf_id(const struct btf *btf)