]> git.proxmox.com Git - libgit2.git/blobdiff - src/xdiff/xdiffi.c
Merge https://salsa.debian.org/debian/libgit2 into proxmox/bullseye
[libgit2.git] / src / xdiff / xdiffi.c
diff --git a/src/xdiff/xdiffi.c b/src/xdiff/xdiffi.c
deleted file mode 100644 (file)
index af31b7f..0000000
+++ /dev/null
@@ -1,1088 +0,0 @@
-/*
- *  LibXDiff by Davide Libenzi ( File Differential Library )
- *  Copyright (C) 2003 Davide Libenzi
- *
- *  This library is free software; you can redistribute it and/or
- *  modify it under the terms of the GNU Lesser General Public
- *  License as published by the Free Software Foundation; either
- *  version 2.1 of the License, or (at your option) any later version.
- *
- *  This library is distributed in the hope that it will be useful,
- *  but WITHOUT ANY WARRANTY; without even the implied warranty of
- *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
- *  Lesser General Public License for more details.
- *
- *  You should have received a copy of the GNU Lesser General Public
- *  License along with this library; if not, see
- *  <http://www.gnu.org/licenses/>.
- *
- *  Davide Libenzi <davidel@xmailserver.org>
- *
- */
-
-#include "xinclude.h"
-
-#define XDL_MAX_COST_MIN 256
-#define XDL_HEUR_MIN_COST 256
-#define XDL_LINE_MAX (long)((1UL << (CHAR_BIT * sizeof(long) - 1)) - 1)
-#define XDL_SNAKE_CNT 20
-#define XDL_K_HEUR 4
-
-typedef struct s_xdpsplit {
-       long i1, i2;
-       int min_lo, min_hi;
-} xdpsplit_t;
-
-/*
- * See "An O(ND) Difference Algorithm and its Variations", by Eugene Myers.
- * Basically considers a "box" (off1, off2, lim1, lim2) and scan from both
- * the forward diagonal starting from (off1, off2) and the backward diagonal
- * starting from (lim1, lim2). If the K values on the same diagonal crosses
- * returns the furthest point of reach. We might encounter expensive edge cases
- * using this algorithm, so a little bit of heuristic is needed to cut the
- * search and to return a suboptimal point.
- */
-static long xdl_split(unsigned long const *ha1, long off1, long lim1,
-                     unsigned long const *ha2, long off2, long lim2,
-                     long *kvdf, long *kvdb, int need_min, xdpsplit_t *spl,
-                     xdalgoenv_t *xenv) {
-       long dmin = off1 - lim2, dmax = lim1 - off2;
-       long fmid = off1 - off2, bmid = lim1 - lim2;
-       long odd = (fmid - bmid) & 1;
-       long fmin = fmid, fmax = fmid;
-       long bmin = bmid, bmax = bmid;
-       long ec, d, i1, i2, prev1, best, dd, v, k;
-
-       /*
-        * Set initial diagonal values for both forward and backward path.
-        */
-       kvdf[fmid] = off1;
-       kvdb[bmid] = lim1;
-
-       for (ec = 1;; ec++) {
-               int got_snake = 0;
-
-               /*
-                * We need to extend the diagonal "domain" by one. If the next
-                * values exits the box boundaries we need to change it in the
-                * opposite direction because (max - min) must be a power of
-                * two.
-                *
-                * Also we initialize the external K value to -1 so that we can
-                * avoid extra conditions in the check inside the core loop.
-                */
-               if (fmin > dmin)
-                       kvdf[--fmin - 1] = -1;
-               else
-                       ++fmin;
-               if (fmax < dmax)
-                       kvdf[++fmax + 1] = -1;
-               else
-                       --fmax;
-
-               for (d = fmax; d >= fmin; d -= 2) {
-                       if (kvdf[d - 1] >= kvdf[d + 1])
-                               i1 = kvdf[d - 1] + 1;
-                       else
-                               i1 = kvdf[d + 1];
-                       prev1 = i1;
-                       i2 = i1 - d;
-                       for (; i1 < lim1 && i2 < lim2 && ha1[i1] == ha2[i2]; i1++, i2++);
-                       if (i1 - prev1 > xenv->snake_cnt)
-                               got_snake = 1;
-                       kvdf[d] = i1;
-                       if (odd && bmin <= d && d <= bmax && kvdb[d] <= i1) {
-                               spl->i1 = i1;
-                               spl->i2 = i2;
-                               spl->min_lo = spl->min_hi = 1;
-                               return ec;
-                       }
-               }
-
-               /*
-                * We need to extend the diagonal "domain" by one. If the next
-                * values exits the box boundaries we need to change it in the
-                * opposite direction because (max - min) must be a power of
-                * two.
-                *
-                * Also we initialize the external K value to -1 so that we can
-                * avoid extra conditions in the check inside the core loop.
-                */
-               if (bmin > dmin)
-                       kvdb[--bmin - 1] = XDL_LINE_MAX;
-               else
-                       ++bmin;
-               if (bmax < dmax)
-                       kvdb[++bmax + 1] = XDL_LINE_MAX;
-               else
-                       --bmax;
-
-               for (d = bmax; d >= bmin; d -= 2) {
-                       if (kvdb[d - 1] < kvdb[d + 1])
-                               i1 = kvdb[d - 1];
-                       else
-                               i1 = kvdb[d + 1] - 1;
-                       prev1 = i1;
-                       i2 = i1 - d;
-                       for (; i1 > off1 && i2 > off2 && ha1[i1 - 1] == ha2[i2 - 1]; i1--, i2--);
-                       if (prev1 - i1 > xenv->snake_cnt)
-                               got_snake = 1;
-                       kvdb[d] = i1;
-                       if (!odd && fmin <= d && d <= fmax && i1 <= kvdf[d]) {
-                               spl->i1 = i1;
-                               spl->i2 = i2;
-                               spl->min_lo = spl->min_hi = 1;
-                               return ec;
-                       }
-               }
-
-               if (need_min)
-                       continue;
-
-               /*
-                * If the edit cost is above the heuristic trigger and if
-                * we got a good snake, we sample current diagonals to see
-                * if some of them have reached an "interesting" path. Our
-                * measure is a function of the distance from the diagonal
-                * corner (i1 + i2) penalized with the distance from the
-                * mid diagonal itself. If this value is above the current
-                * edit cost times a magic factor (XDL_K_HEUR) we consider
-                * it interesting.
-                */
-               if (got_snake && ec > xenv->heur_min) {
-                       for (best = 0, d = fmax; d >= fmin; d -= 2) {
-                               dd = d > fmid ? d - fmid: fmid - d;
-                               i1 = kvdf[d];
-                               i2 = i1 - d;
-                               v = (i1 - off1) + (i2 - off2) - dd;
-
-                               if (v > XDL_K_HEUR * ec && v > best &&
-                                   off1 + xenv->snake_cnt <= i1 && i1 < lim1 &&
-                                   off2 + xenv->snake_cnt <= i2 && i2 < lim2) {
-                                       for (k = 1; ha1[i1 - k] == ha2[i2 - k]; k++)
-                                               if (k == xenv->snake_cnt) {
-                                                       best = v;
-                                                       spl->i1 = i1;
-                                                       spl->i2 = i2;
-                                                       break;
-                                               }
-                               }
-                       }
-                       if (best > 0) {
-                               spl->min_lo = 1;
-                               spl->min_hi = 0;
-                               return ec;
-                       }
-
-                       for (best = 0, d = bmax; d >= bmin; d -= 2) {
-                               dd = d > bmid ? d - bmid: bmid - d;
-                               i1 = kvdb[d];
-                               i2 = i1 - d;
-                               v = (lim1 - i1) + (lim2 - i2) - dd;
-
-                               if (v > XDL_K_HEUR * ec && v > best &&
-                                   off1 < i1 && i1 <= lim1 - xenv->snake_cnt &&
-                                   off2 < i2 && i2 <= lim2 - xenv->snake_cnt) {
-                                       for (k = 0; ha1[i1 + k] == ha2[i2 + k]; k++)
-                                               if (k == xenv->snake_cnt - 1) {
-                                                       best = v;
-                                                       spl->i1 = i1;
-                                                       spl->i2 = i2;
-                                                       break;
-                                               }
-                               }
-                       }
-                       if (best > 0) {
-                               spl->min_lo = 0;
-                               spl->min_hi = 1;
-                               return ec;
-                       }
-               }
-
-               /*
-                * Enough is enough. We spent too much time here and now we
-                * collect the furthest reaching path using the (i1 + i2)
-                * measure.
-                */
-               if (ec >= xenv->mxcost) {
-                       long fbest, fbest1, bbest, bbest1;
-
-                       fbest = fbest1 = -1;
-                       for (d = fmax; d >= fmin; d -= 2) {
-                               i1 = XDL_MIN(kvdf[d], lim1);
-                               i2 = i1 - d;
-                               if (lim2 < i2)
-                                       i1 = lim2 + d, i2 = lim2;
-                               if (fbest < i1 + i2) {
-                                       fbest = i1 + i2;
-                                       fbest1 = i1;
-                               }
-                       }
-
-                       bbest = bbest1 = XDL_LINE_MAX;
-                       for (d = bmax; d >= bmin; d -= 2) {
-                               i1 = XDL_MAX(off1, kvdb[d]);
-                               i2 = i1 - d;
-                               if (i2 < off2)
-                                       i1 = off2 + d, i2 = off2;
-                               if (i1 + i2 < bbest) {
-                                       bbest = i1 + i2;
-                                       bbest1 = i1;
-                               }
-                       }
-
-                       if ((lim1 + lim2) - bbest < fbest - (off1 + off2)) {
-                               spl->i1 = fbest1;
-                               spl->i2 = fbest - fbest1;
-                               spl->min_lo = 1;
-                               spl->min_hi = 0;
-                       } else {
-                               spl->i1 = bbest1;
-                               spl->i2 = bbest - bbest1;
-                               spl->min_lo = 0;
-                               spl->min_hi = 1;
-                       }
-                       return ec;
-               }
-       }
-}
-
-
-/*
- * Rule: "Divide et Impera" (divide & conquer). Recursively split the box in
- * sub-boxes by calling the box splitting function. Note that the real job
- * (marking changed lines) is done in the two boundary reaching checks.
- */
-int xdl_recs_cmp(diffdata_t *dd1, long off1, long lim1,
-                diffdata_t *dd2, long off2, long lim2,
-                long *kvdf, long *kvdb, int need_min, xdalgoenv_t *xenv) {
-       unsigned long const *ha1 = dd1->ha, *ha2 = dd2->ha;
-
-       /*
-        * Shrink the box by walking through each diagonal snake (SW and NE).
-        */
-       for (; off1 < lim1 && off2 < lim2 && ha1[off1] == ha2[off2]; off1++, off2++);
-       for (; off1 < lim1 && off2 < lim2 && ha1[lim1 - 1] == ha2[lim2 - 1]; lim1--, lim2--);
-
-       /*
-        * If one dimension is empty, then all records on the other one must
-        * be obviously changed.
-        */
-       if (off1 == lim1) {
-               char *rchg2 = dd2->rchg;
-               long *rindex2 = dd2->rindex;
-
-               for (; off2 < lim2; off2++)
-                       rchg2[rindex2[off2]] = 1;
-       } else if (off2 == lim2) {
-               char *rchg1 = dd1->rchg;
-               long *rindex1 = dd1->rindex;
-
-               for (; off1 < lim1; off1++)
-                       rchg1[rindex1[off1]] = 1;
-       } else {
-               xdpsplit_t spl;
-               spl.i1 = spl.i2 = 0;
-
-               /*
-                * Divide ...
-                */
-               if (xdl_split(ha1, off1, lim1, ha2, off2, lim2, kvdf, kvdb,
-                             need_min, &spl, xenv) < 0) {
-
-                       return -1;
-               }
-
-               /*
-                * ... et Impera.
-                */
-               if (xdl_recs_cmp(dd1, off1, spl.i1, dd2, off2, spl.i2,
-                                kvdf, kvdb, spl.min_lo, xenv) < 0 ||
-                   xdl_recs_cmp(dd1, spl.i1, lim1, dd2, spl.i2, lim2,
-                                kvdf, kvdb, spl.min_hi, xenv) < 0) {
-
-                       return -1;
-               }
-       }
-
-       return 0;
-}
-
-
-int xdl_do_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp,
-               xdfenv_t *xe) {
-       long ndiags;
-       long *kvd, *kvdf, *kvdb;
-       xdalgoenv_t xenv;
-       diffdata_t dd1, dd2;
-
-       if (XDF_DIFF_ALG(xpp->flags) == XDF_PATIENCE_DIFF)
-               return xdl_do_patience_diff(mf1, mf2, xpp, xe);
-
-       if (XDF_DIFF_ALG(xpp->flags) == XDF_HISTOGRAM_DIFF)
-               return xdl_do_histogram_diff(mf1, mf2, xpp, xe);
-
-       if (xdl_prepare_env(mf1, mf2, xpp, xe) < 0) {
-
-               return -1;
-       }
-
-       /*
-        * Allocate and setup K vectors to be used by the differential
-        * algorithm.
-        *
-        * One is to store the forward path and one to store the backward path.
-        */
-       ndiags = xe->xdf1.nreff + xe->xdf2.nreff + 3;
-       if (!(kvd = (long *) xdl_malloc((2 * ndiags + 2) * sizeof(long)))) {
-
-               xdl_free_env(xe);
-               return -1;
-       }
-       kvdf = kvd;
-       kvdb = kvdf + ndiags;
-       kvdf += xe->xdf2.nreff + 1;
-       kvdb += xe->xdf2.nreff + 1;
-
-       xenv.mxcost = xdl_bogosqrt(ndiags);
-       if (xenv.mxcost < XDL_MAX_COST_MIN)
-               xenv.mxcost = XDL_MAX_COST_MIN;
-       xenv.snake_cnt = XDL_SNAKE_CNT;
-       xenv.heur_min = XDL_HEUR_MIN_COST;
-
-       dd1.nrec = xe->xdf1.nreff;
-       dd1.ha = xe->xdf1.ha;
-       dd1.rchg = xe->xdf1.rchg;
-       dd1.rindex = xe->xdf1.rindex;
-       dd2.nrec = xe->xdf2.nreff;
-       dd2.ha = xe->xdf2.ha;
-       dd2.rchg = xe->xdf2.rchg;
-       dd2.rindex = xe->xdf2.rindex;
-
-       if (xdl_recs_cmp(&dd1, 0, dd1.nrec, &dd2, 0, dd2.nrec,
-                        kvdf, kvdb, (xpp->flags & XDF_NEED_MINIMAL) != 0, &xenv) < 0) {
-
-               xdl_free(kvd);
-               xdl_free_env(xe);
-               return -1;
-       }
-
-       xdl_free(kvd);
-
-       return 0;
-}
-
-
-static xdchange_t *xdl_add_change(xdchange_t *xscr, long i1, long i2, long chg1, long chg2) {
-       xdchange_t *xch;
-
-       if (!(xch = (xdchange_t *) xdl_malloc(sizeof(xdchange_t))))
-               return NULL;
-
-       xch->next = xscr;
-       xch->i1 = i1;
-       xch->i2 = i2;
-       xch->chg1 = chg1;
-       xch->chg2 = chg2;
-       xch->ignore = 0;
-
-       return xch;
-}
-
-
-static int recs_match(xrecord_t *rec1, xrecord_t *rec2)
-{
-       return (rec1->ha == rec2->ha);
-}
-
-/*
- * If a line is indented more than this, get_indent() just returns this value.
- * This avoids having to do absurd amounts of work for data that are not
- * human-readable text, and also ensures that the output of get_indent fits
- * within an int.
- */
-#define MAX_INDENT 200
-
-/*
- * Return the amount of indentation of the specified line, treating TAB as 8
- * columns. Return -1 if line is empty or contains only whitespace. Clamp the
- * output value at MAX_INDENT.
- */
-static int get_indent(xrecord_t *rec)
-{
-       long i;
-       int ret = 0;
-
-       for (i = 0; i < rec->size; i++) {
-               char c = rec->ptr[i];
-
-               if (!XDL_ISSPACE(c))
-                       return ret;
-               else if (c == ' ')
-                       ret += 1;
-               else if (c == '\t')
-                       ret += 8 - ret % 8;
-               /* ignore other whitespace characters */
-
-               if (ret >= MAX_INDENT)
-                       return MAX_INDENT;
-       }
-
-       /* The line contains only whitespace. */
-       return -1;
-}
-
-/*
- * If more than this number of consecutive blank rows are found, just return
- * this value. This avoids requiring O(N^2) work for pathological cases, and
- * also ensures that the output of score_split fits in an int.
- */
-#define MAX_BLANKS 20
-
-/* Characteristics measured about a hypothetical split position. */
-struct split_measurement {
-       /*
-        * Is the split at the end of the file (aside from any blank lines)?
-        */
-       int end_of_file;
-
-       /*
-        * How much is the line immediately following the split indented (or -1
-        * if the line is blank):
-        */
-       int indent;
-
-       /*
-        * How many consecutive lines above the split are blank?
-        */
-       int pre_blank;
-
-       /*
-        * How much is the nearest non-blank line above the split indented (or
-        * -1 if there is no such line)?
-        */
-       int pre_indent;
-
-       /*
-        * How many lines after the line following the split are blank?
-        */
-       int post_blank;
-
-       /*
-        * How much is the nearest non-blank line after the line following the
-        * split indented (or -1 if there is no such line)?
-        */
-       int post_indent;
-};
-
-struct split_score {
-       /* The effective indent of this split (smaller is preferred). */
-       int effective_indent;
-
-       /* Penalty for this split (smaller is preferred). */
-       int penalty;
-};
-
-/*
- * Fill m with information about a hypothetical split of xdf above line split.
- */
-static void measure_split(const xdfile_t *xdf, long split,
-                         struct split_measurement *m)
-{
-       long i;
-
-       if (split >= xdf->nrec) {
-               m->end_of_file = 1;
-               m->indent = -1;
-       } else {
-               m->end_of_file = 0;
-               m->indent = get_indent(xdf->recs[split]);
-       }
-
-       m->pre_blank = 0;
-       m->pre_indent = -1;
-       for (i = split - 1; i >= 0; i--) {
-               m->pre_indent = get_indent(xdf->recs[i]);
-               if (m->pre_indent != -1)
-                       break;
-               m->pre_blank += 1;
-               if (m->pre_blank == MAX_BLANKS) {
-                       m->pre_indent = 0;
-                       break;
-               }
-       }
-
-       m->post_blank = 0;
-       m->post_indent = -1;
-       for (i = split + 1; i < xdf->nrec; i++) {
-               m->post_indent = get_indent(xdf->recs[i]);
-               if (m->post_indent != -1)
-                       break;
-               m->post_blank += 1;
-               if (m->post_blank == MAX_BLANKS) {
-                       m->post_indent = 0;
-                       break;
-               }
-       }
-}
-
-/*
- * The empirically-determined weight factors used by score_split() below.
- * Larger values means that the position is a less favorable place to split.
- *
- * Note that scores are only ever compared against each other, so multiplying
- * all of these weight/penalty values by the same factor wouldn't change the
- * heuristic's behavior. Still, we need to set that arbitrary scale *somehow*.
- * In practice, these numbers are chosen to be large enough that they can be
- * adjusted relative to each other with sufficient precision despite using
- * integer math.
- */
-
-/* Penalty if there are no non-blank lines before the split */
-#define START_OF_FILE_PENALTY 1
-
-/* Penalty if there are no non-blank lines after the split */
-#define END_OF_FILE_PENALTY 21
-
-/* Multiplier for the number of blank lines around the split */
-#define TOTAL_BLANK_WEIGHT (-30)
-
-/* Multiplier for the number of blank lines after the split */
-#define POST_BLANK_WEIGHT 6
-
-/*
- * Penalties applied if the line is indented more than its predecessor
- */
-#define RELATIVE_INDENT_PENALTY (-4)
-#define RELATIVE_INDENT_WITH_BLANK_PENALTY 10
-
-/*
- * Penalties applied if the line is indented less than both its predecessor and
- * its successor
- */
-#define RELATIVE_OUTDENT_PENALTY 24
-#define RELATIVE_OUTDENT_WITH_BLANK_PENALTY 17
-
-/*
- * Penalties applied if the line is indented less than its predecessor but not
- * less than its successor
- */
-#define RELATIVE_DEDENT_PENALTY 23
-#define RELATIVE_DEDENT_WITH_BLANK_PENALTY 17
-
-/*
- * We only consider whether the sum of the effective indents for splits are
- * less than (-1), equal to (0), or greater than (+1) each other. The resulting
- * value is multiplied by the following weight and combined with the penalty to
- * determine the better of two scores.
- */
-#define INDENT_WEIGHT 60
-
-/*
- * How far do we slide a hunk at most?
- */
-#define INDENT_HEURISTIC_MAX_SLIDING 100
-
-/*
- * Compute a badness score for the hypothetical split whose measurements are
- * stored in m. The weight factors were determined empirically using the tools
- * and corpus described in
- *
- *     https://github.com/mhagger/diff-slider-tools
- *
- * Also see that project if you want to improve the weights based on, for
- * example, a larger or more diverse corpus.
- */
-static void score_add_split(const struct split_measurement *m, struct split_score *s)
-{
-       /*
-        * A place to accumulate penalty factors (positive makes this index more
-        * favored):
-        */
-       int post_blank, total_blank, indent, any_blanks;
-
-       if (m->pre_indent == -1 && m->pre_blank == 0)
-               s->penalty += START_OF_FILE_PENALTY;
-
-       if (m->end_of_file)
-               s->penalty += END_OF_FILE_PENALTY;
-
-       /*
-        * Set post_blank to the number of blank lines following the split,
-        * including the line immediately after the split:
-        */
-       post_blank = (m->indent == -1) ? 1 + m->post_blank : 0;
-       total_blank = m->pre_blank + post_blank;
-
-       /* Penalties based on nearby blank lines: */
-       s->penalty += TOTAL_BLANK_WEIGHT * total_blank;
-       s->penalty += POST_BLANK_WEIGHT * post_blank;
-
-       if (m->indent != -1)
-               indent = m->indent;
-       else
-               indent = m->post_indent;
-
-       any_blanks = (total_blank != 0);
-
-       /* Note that the effective indent is -1 at the end of the file: */
-       s->effective_indent += indent;
-
-       if (indent == -1) {
-               /* No additional adjustments needed. */
-       } else if (m->pre_indent == -1) {
-               /* No additional adjustments needed. */
-       } else if (indent > m->pre_indent) {
-               /*
-                * The line is indented more than its predecessor.
-                */
-               s->penalty += any_blanks ?
-                       RELATIVE_INDENT_WITH_BLANK_PENALTY :
-                       RELATIVE_INDENT_PENALTY;
-       } else if (indent == m->pre_indent) {
-               /*
-                * The line has the same indentation level as its predecessor.
-                * No additional adjustments needed.
-                */
-       } else {
-               /*
-                * The line is indented less than its predecessor. It could be
-                * the block terminator of the previous block, but it could
-                * also be the start of a new block (e.g., an "else" block, or
-                * maybe the previous block didn't have a block terminator).
-                * Try to distinguish those cases based on what comes next:
-                */
-               if (m->post_indent != -1 && m->post_indent > indent) {
-                       /*
-                        * The following line is indented more. So it is likely
-                        * that this line is the start of a block.
-                        */
-                       s->penalty += any_blanks ?
-                               RELATIVE_OUTDENT_WITH_BLANK_PENALTY :
-                               RELATIVE_OUTDENT_PENALTY;
-               } else {
-                       /*
-                        * That was probably the end of a block.
-                        */
-                       s->penalty += any_blanks ?
-                               RELATIVE_DEDENT_WITH_BLANK_PENALTY :
-                               RELATIVE_DEDENT_PENALTY;
-               }
-       }
-}
-
-static int score_cmp(struct split_score *s1, struct split_score *s2)
-{
-       /* -1 if s1.effective_indent < s2->effective_indent, etc. */
-       int cmp_indents = ((s1->effective_indent > s2->effective_indent) -
-                          (s1->effective_indent < s2->effective_indent));
-
-       return INDENT_WEIGHT * cmp_indents + (s1->penalty - s2->penalty);
-}
-
-/*
- * Represent a group of changed lines in an xdfile_t (i.e., a contiguous group
- * of lines that was inserted or deleted from the corresponding version of the
- * file). We consider there to be such a group at the beginning of the file, at
- * the end of the file, and between any two unchanged lines, though most such
- * groups will usually be empty.
- *
- * If the first line in a group is equal to the line following the group, then
- * the group can be slid down. Similarly, if the last line in a group is equal
- * to the line preceding the group, then the group can be slid up. See
- * group_slide_down() and group_slide_up().
- *
- * Note that loops that are testing for changed lines in xdf->rchg do not need
- * index bounding since the array is prepared with a zero at position -1 and N.
- */
-struct xdlgroup {
-       /*
-        * The index of the first changed line in the group, or the index of
-        * the unchanged line above which the (empty) group is located.
-        */
-       long start;
-
-       /*
-        * The index of the first unchanged line after the group. For an empty
-        * group, end is equal to start.
-        */
-       long end;
-};
-
-/*
- * Initialize g to point at the first group in xdf.
- */
-static void group_init(xdfile_t *xdf, struct xdlgroup *g)
-{
-       g->start = g->end = 0;
-       while (xdf->rchg[g->end])
-               g->end++;
-}
-
-/*
- * Move g to describe the next (possibly empty) group in xdf and return 0. If g
- * is already at the end of the file, do nothing and return -1.
- */
-static inline int group_next(xdfile_t *xdf, struct xdlgroup *g)
-{
-       if (g->end == xdf->nrec)
-               return -1;
-
-       g->start = g->end + 1;
-       for (g->end = g->start; xdf->rchg[g->end]; g->end++)
-               ;
-
-       return 0;
-}
-
-/*
- * Move g to describe the previous (possibly empty) group in xdf and return 0.
- * If g is already at the beginning of the file, do nothing and return -1.
- */
-static inline int group_previous(xdfile_t *xdf, struct xdlgroup *g)
-{
-       if (g->start == 0)
-               return -1;
-
-       g->end = g->start - 1;
-       for (g->start = g->end; xdf->rchg[g->start - 1]; g->start--)
-               ;
-
-       return 0;
-}
-
-/*
- * If g can be slid toward the end of the file, do so, and if it bumps into a
- * following group, expand this group to include it. Return 0 on success or -1
- * if g cannot be slid down.
- */
-static int group_slide_down(xdfile_t *xdf, struct xdlgroup *g)
-{
-       if (g->end < xdf->nrec &&
-           recs_match(xdf->recs[g->start], xdf->recs[g->end])) {
-               xdf->rchg[g->start++] = 0;
-               xdf->rchg[g->end++] = 1;
-
-               while (xdf->rchg[g->end])
-                       g->end++;
-
-               return 0;
-       } else {
-               return -1;
-       }
-}
-
-/*
- * If g can be slid toward the beginning of the file, do so, and if it bumps
- * into a previous group, expand this group to include it. Return 0 on success
- * or -1 if g cannot be slid up.
- */
-static int group_slide_up(xdfile_t *xdf, struct xdlgroup *g)
-{
-       if (g->start > 0 &&
-           recs_match(xdf->recs[g->start - 1], xdf->recs[g->end - 1])) {
-               xdf->rchg[--g->start] = 1;
-               xdf->rchg[--g->end] = 0;
-
-               while (xdf->rchg[g->start - 1])
-                       g->start--;
-
-               return 0;
-       } else {
-               return -1;
-       }
-}
-
-/*
- * Move back and forward change groups for a consistent and pretty diff output.
- * This also helps in finding joinable change groups and reducing the diff
- * size.
- */
-int xdl_change_compact(xdfile_t *xdf, xdfile_t *xdfo, long flags) {
-       struct xdlgroup g, go;
-       long earliest_end, end_matching_other;
-       long groupsize;
-
-       group_init(xdf, &g);
-       group_init(xdfo, &go);
-
-       while (1) {
-               /*
-                * If the group is empty in the to-be-compacted file, skip it:
-                */
-               if (g.end == g.start)
-                       goto next;
-
-               /*
-                * Now shift the change up and then down as far as possible in
-                * each direction. If it bumps into any other changes, merge
-                * them.
-                */
-               do {
-                       groupsize = g.end - g.start;
-
-                       /*
-                        * Keep track of the last "end" index that causes this
-                        * group to align with a group of changed lines in the
-                        * other file. -1 indicates that we haven't found such
-                        * a match yet:
-                        */
-                       end_matching_other = -1;
-
-                       /* Shift the group backward as much as possible: */
-                       while (!group_slide_up(xdf, &g))
-                               if (group_previous(xdfo, &go))
-                                       XDL_BUG("group sync broken sliding up");
-
-                       /*
-                        * This is this highest that this group can be shifted.
-                        * Record its end index:
-                        */
-                       earliest_end = g.end;
-
-                       if (go.end > go.start)
-                               end_matching_other = g.end;
-
-                       /* Now shift the group forward as far as possible: */
-                       while (1) {
-                               if (group_slide_down(xdf, &g))
-                                       break;
-                               if (group_next(xdfo, &go))
-                                       XDL_BUG("group sync broken sliding down");
-
-                               if (go.end > go.start)
-                                       end_matching_other = g.end;
-                       }
-               } while (groupsize != g.end - g.start);
-
-               /*
-                * If the group can be shifted, then we can possibly use this
-                * freedom to produce a more intuitive diff.
-                *
-                * The group is currently shifted as far down as possible, so
-                * the heuristics below only have to handle upwards shifts.
-                */
-
-               if (g.end == earliest_end) {
-                       /* no shifting was possible */
-               } else if (end_matching_other != -1) {
-                       /*
-                        * Move the possibly merged group of changes back to
-                        * line up with the last group of changes from the
-                        * other file that it can align with.
-                        */
-                       while (go.end == go.start) {
-                               if (group_slide_up(xdf, &g))
-                                       XDL_BUG("match disappeared");
-                               if (group_previous(xdfo, &go))
-                                       XDL_BUG("group sync broken sliding to match");
-                       }
-               } else if (flags & XDF_INDENT_HEURISTIC) {
-                       /*
-                        * Indent heuristic: a group of pure add/delete lines
-                        * implies two splits, one between the end of the
-                        * "before" context and the start of the group, and
-                        * another between the end of the group and the
-                        * beginning of the "after" context. Some splits are
-                        * aesthetically better and some are worse. We compute
-                        * a badness "score" for each split, and add the scores
-                        * for the two splits to define a "score" for each
-                        * position that the group can be shifted to. Then we
-                        * pick the shift with the lowest score.
-                        */
-                       long shift, best_shift = -1;
-                       struct split_score best_score;
-
-                       shift = earliest_end;
-                       if (g.end - groupsize - 1 > shift)
-                               shift = g.end - groupsize - 1;
-                       if (g.end - INDENT_HEURISTIC_MAX_SLIDING > shift)
-                               shift = g.end - INDENT_HEURISTIC_MAX_SLIDING;
-                       for (; shift <= g.end; shift++) {
-                               struct split_measurement m;
-                               struct split_score score = {0, 0};
-
-                               measure_split(xdf, shift, &m);
-                               score_add_split(&m, &score);
-                               measure_split(xdf, shift - groupsize, &m);
-                               score_add_split(&m, &score);
-                               if (best_shift == -1 ||
-                                   score_cmp(&score, &best_score) <= 0) {
-                                       best_score.effective_indent = score.effective_indent;
-                                       best_score.penalty = score.penalty;
-                                       best_shift = shift;
-                               }
-                       }
-
-                       while (g.end > best_shift) {
-                               if (group_slide_up(xdf, &g))
-                                       XDL_BUG("best shift unreached");
-                               if (group_previous(xdfo, &go))
-                                       XDL_BUG("group sync broken sliding to blank line");
-                       }
-               }
-
-       next:
-               /* Move past the just-processed group: */
-               if (group_next(xdf, &g))
-                       break;
-               if (group_next(xdfo, &go))
-                       XDL_BUG("group sync broken moving to next group");
-       }
-
-       if (!group_next(xdfo, &go))
-               XDL_BUG("group sync broken at end of file");
-
-       return 0;
-}
-
-
-int xdl_build_script(xdfenv_t *xe, xdchange_t **xscr) {
-       xdchange_t *cscr = NULL, *xch;
-       char *rchg1 = xe->xdf1.rchg, *rchg2 = xe->xdf2.rchg;
-       long i1, i2, l1, l2;
-
-       /*
-        * Trivial. Collects "groups" of changes and creates an edit script.
-        */
-       for (i1 = xe->xdf1.nrec, i2 = xe->xdf2.nrec; i1 >= 0 || i2 >= 0; i1--, i2--)
-               if (rchg1[i1 - 1] || rchg2[i2 - 1]) {
-                       for (l1 = i1; rchg1[i1 - 1]; i1--);
-                       for (l2 = i2; rchg2[i2 - 1]; i2--);
-
-                       if (!(xch = xdl_add_change(cscr, i1, i2, l1 - i1, l2 - i2))) {
-                               xdl_free_script(cscr);
-                               return -1;
-                       }
-                       cscr = xch;
-               }
-
-       *xscr = cscr;
-
-       return 0;
-}
-
-
-void xdl_free_script(xdchange_t *xscr) {
-       xdchange_t *xch;
-
-       while ((xch = xscr) != NULL) {
-               xscr = xscr->next;
-               xdl_free(xch);
-       }
-}
-
-static int xdl_call_hunk_func(xdfenv_t *xe, xdchange_t *xscr, xdemitcb_t *ecb,
-                             xdemitconf_t const *xecfg)
-{
-       xdchange_t *xch, *xche;
-
-       for (xch = xscr; xch; xch = xche->next) {
-               xche = xdl_get_hunk(&xch, xecfg);
-               if (!xch)
-                       break;
-               if (xecfg->hunk_func(xch->i1, xche->i1 + xche->chg1 - xch->i1,
-                                    xch->i2, xche->i2 + xche->chg2 - xch->i2,
-                                    ecb->priv) < 0)
-                       return -1;
-       }
-       return 0;
-}
-
-static void xdl_mark_ignorable_lines(xdchange_t *xscr, xdfenv_t *xe, long flags)
-{
-       xdchange_t *xch;
-
-       for (xch = xscr; xch; xch = xch->next) {
-               int ignore = 1;
-               xrecord_t **rec;
-               long i;
-
-               rec = &xe->xdf1.recs[xch->i1];
-               for (i = 0; i < xch->chg1 && ignore; i++)
-                       ignore = xdl_blankline(rec[i]->ptr, rec[i]->size, flags);
-
-               rec = &xe->xdf2.recs[xch->i2];
-               for (i = 0; i < xch->chg2 && ignore; i++)
-                       ignore = xdl_blankline(rec[i]->ptr, rec[i]->size, flags);
-
-               xch->ignore = ignore;
-       }
-}
-
-static int record_matches_regex(xrecord_t *rec, xpparam_t const *xpp) {
-       xdl_regmatch_t regmatch;
-       int i;
-
-       for (i = 0; i < xpp->ignore_regex_nr; i++)
-               if (!xdl_regexec_buf(xpp->ignore_regex[i], rec->ptr, rec->size, 1,
-                                &regmatch, 0))
-                       return 1;
-
-       return 0;
-}
-
-static void xdl_mark_ignorable_regex(xdchange_t *xscr, const xdfenv_t *xe,
-                                    xpparam_t const *xpp)
-{
-       xdchange_t *xch;
-
-       for (xch = xscr; xch; xch = xch->next) {
-               xrecord_t **rec;
-               int ignore = 1;
-               long i;
-
-               /*
-                * Do not override --ignore-blank-lines.
-                */
-               if (xch->ignore)
-                       continue;
-
-               rec = &xe->xdf1.recs[xch->i1];
-               for (i = 0; i < xch->chg1 && ignore; i++)
-                       ignore = record_matches_regex(rec[i], xpp);
-
-               rec = &xe->xdf2.recs[xch->i2];
-               for (i = 0; i < xch->chg2 && ignore; i++)
-                       ignore = record_matches_regex(rec[i], xpp);
-
-               xch->ignore = ignore;
-       }
-}
-
-int xdl_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp,
-            xdemitconf_t const *xecfg, xdemitcb_t *ecb) {
-       xdchange_t *xscr;
-       xdfenv_t xe;
-       emit_func_t ef = xecfg->hunk_func ? xdl_call_hunk_func : xdl_emit_diff;
-
-       if (xdl_do_diff(mf1, mf2, xpp, &xe) < 0) {
-
-               return -1;
-       }
-       if (xdl_change_compact(&xe.xdf1, &xe.xdf2, xpp->flags) < 0 ||
-           xdl_change_compact(&xe.xdf2, &xe.xdf1, xpp->flags) < 0 ||
-           xdl_build_script(&xe, &xscr) < 0) {
-
-               xdl_free_env(&xe);
-               return -1;
-       }
-       if (xscr) {
-               if (xpp->flags & XDF_IGNORE_BLANK_LINES)
-                       xdl_mark_ignorable_lines(xscr, &xe, xpp->flags);
-
-               if (xpp->ignore_regex)
-                       xdl_mark_ignorable_regex(xscr, &xe, xpp);
-
-               if (ef(&xe, xscr, ecb, xecfg) < 0) {
-
-                       xdl_free_script(xscr);
-                       xdl_free_env(&xe);
-                       return -1;
-               }
-               xdl_free_script(xscr);
-       }
-       xdl_free_env(&xe);
-
-       return 0;
-}