]> git.proxmox.com Git - mirror_qemu.git/blame - block/io.c
qerror: Move #include out of qerror.h
[mirror_qemu.git] / block / io.c
CommitLineData
61007b31
SH
1/*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25#include "trace.h"
61007b31
SH
26#include "block/blockjob.h"
27#include "block/block_int.h"
76f4afb4 28#include "block/throttle-groups.h"
d49b6836 29#include "qemu/error-report.h"
61007b31
SH
30
31#define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
32
33static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
34 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
35 BlockCompletionFunc *cb, void *opaque);
36static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
37 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
38 BlockCompletionFunc *cb, void *opaque);
39static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
40 int64_t sector_num, int nb_sectors,
41 QEMUIOVector *iov);
42static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
43 int64_t sector_num, int nb_sectors,
44 QEMUIOVector *iov);
45static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
46 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
47 BdrvRequestFlags flags);
48static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
49 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
50 BdrvRequestFlags flags);
51static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
52 int64_t sector_num,
53 QEMUIOVector *qiov,
54 int nb_sectors,
55 BdrvRequestFlags flags,
56 BlockCompletionFunc *cb,
57 void *opaque,
58 bool is_write);
59static void coroutine_fn bdrv_co_do_rw(void *opaque);
60static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
61 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags);
62
63/* throttling disk I/O limits */
64void bdrv_set_io_limits(BlockDriverState *bs,
65 ThrottleConfig *cfg)
66{
67 int i;
68
76f4afb4 69 throttle_group_config(bs, cfg);
61007b31
SH
70
71 for (i = 0; i < 2; i++) {
72 qemu_co_enter_next(&bs->throttled_reqs[i]);
73 }
74}
75
76/* this function drain all the throttled IOs */
77static bool bdrv_start_throttled_reqs(BlockDriverState *bs)
78{
79 bool drained = false;
80 bool enabled = bs->io_limits_enabled;
81 int i;
82
83 bs->io_limits_enabled = false;
84
85 for (i = 0; i < 2; i++) {
86 while (qemu_co_enter_next(&bs->throttled_reqs[i])) {
87 drained = true;
88 }
89 }
90
91 bs->io_limits_enabled = enabled;
92
93 return drained;
94}
95
96void bdrv_io_limits_disable(BlockDriverState *bs)
97{
98 bs->io_limits_enabled = false;
61007b31 99 bdrv_start_throttled_reqs(bs);
76f4afb4 100 throttle_group_unregister_bs(bs);
61007b31
SH
101}
102
103/* should be called before bdrv_set_io_limits if a limit is set */
76f4afb4 104void bdrv_io_limits_enable(BlockDriverState *bs, const char *group)
61007b31 105{
61007b31 106 assert(!bs->io_limits_enabled);
76f4afb4 107 throttle_group_register_bs(bs, group);
61007b31
SH
108 bs->io_limits_enabled = true;
109}
110
76f4afb4 111void bdrv_io_limits_update_group(BlockDriverState *bs, const char *group)
61007b31 112{
76f4afb4
AG
113 /* this bs is not part of any group */
114 if (!bs->throttle_state) {
115 return;
61007b31
SH
116 }
117
76f4afb4
AG
118 /* this bs is a part of the same group than the one we want */
119 if (!g_strcmp0(throttle_group_get_name(bs), group)) {
61007b31
SH
120 return;
121 }
122
76f4afb4
AG
123 /* need to change the group this bs belong to */
124 bdrv_io_limits_disable(bs);
125 bdrv_io_limits_enable(bs, group);
61007b31
SH
126}
127
128void bdrv_setup_io_funcs(BlockDriver *bdrv)
129{
130 /* Block drivers without coroutine functions need emulation */
131 if (!bdrv->bdrv_co_readv) {
132 bdrv->bdrv_co_readv = bdrv_co_readv_em;
133 bdrv->bdrv_co_writev = bdrv_co_writev_em;
134
135 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
136 * the block driver lacks aio we need to emulate that too.
137 */
138 if (!bdrv->bdrv_aio_readv) {
139 /* add AIO emulation layer */
140 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
141 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
142 }
143 }
144}
145
146void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
147{
148 BlockDriver *drv = bs->drv;
149 Error *local_err = NULL;
150
151 memset(&bs->bl, 0, sizeof(bs->bl));
152
153 if (!drv) {
154 return;
155 }
156
157 /* Take some limits from the children as a default */
158 if (bs->file) {
159 bdrv_refresh_limits(bs->file, &local_err);
160 if (local_err) {
161 error_propagate(errp, local_err);
162 return;
163 }
164 bs->bl.opt_transfer_length = bs->file->bl.opt_transfer_length;
165 bs->bl.max_transfer_length = bs->file->bl.max_transfer_length;
4196d2f0 166 bs->bl.min_mem_alignment = bs->file->bl.min_mem_alignment;
61007b31
SH
167 bs->bl.opt_mem_alignment = bs->file->bl.opt_mem_alignment;
168 } else {
4196d2f0 169 bs->bl.min_mem_alignment = 512;
459b4e66 170 bs->bl.opt_mem_alignment = getpagesize();
61007b31
SH
171 }
172
173 if (bs->backing_hd) {
174 bdrv_refresh_limits(bs->backing_hd, &local_err);
175 if (local_err) {
176 error_propagate(errp, local_err);
177 return;
178 }
179 bs->bl.opt_transfer_length =
180 MAX(bs->bl.opt_transfer_length,
181 bs->backing_hd->bl.opt_transfer_length);
182 bs->bl.max_transfer_length =
183 MIN_NON_ZERO(bs->bl.max_transfer_length,
184 bs->backing_hd->bl.max_transfer_length);
185 bs->bl.opt_mem_alignment =
186 MAX(bs->bl.opt_mem_alignment,
187 bs->backing_hd->bl.opt_mem_alignment);
4196d2f0
DL
188 bs->bl.min_mem_alignment =
189 MAX(bs->bl.min_mem_alignment,
190 bs->backing_hd->bl.min_mem_alignment);
61007b31
SH
191 }
192
193 /* Then let the driver override it */
194 if (drv->bdrv_refresh_limits) {
195 drv->bdrv_refresh_limits(bs, errp);
196 }
197}
198
199/**
200 * The copy-on-read flag is actually a reference count so multiple users may
201 * use the feature without worrying about clobbering its previous state.
202 * Copy-on-read stays enabled until all users have called to disable it.
203 */
204void bdrv_enable_copy_on_read(BlockDriverState *bs)
205{
206 bs->copy_on_read++;
207}
208
209void bdrv_disable_copy_on_read(BlockDriverState *bs)
210{
211 assert(bs->copy_on_read > 0);
212 bs->copy_on_read--;
213}
214
215/* Check if any requests are in-flight (including throttled requests) */
216static bool bdrv_requests_pending(BlockDriverState *bs)
217{
218 if (!QLIST_EMPTY(&bs->tracked_requests)) {
219 return true;
220 }
221 if (!qemu_co_queue_empty(&bs->throttled_reqs[0])) {
222 return true;
223 }
224 if (!qemu_co_queue_empty(&bs->throttled_reqs[1])) {
225 return true;
226 }
227 if (bs->file && bdrv_requests_pending(bs->file)) {
228 return true;
229 }
230 if (bs->backing_hd && bdrv_requests_pending(bs->backing_hd)) {
231 return true;
232 }
233 return false;
234}
235
236static bool bdrv_drain_one(BlockDriverState *bs)
237{
238 bool bs_busy;
239
240 bdrv_flush_io_queue(bs);
241 bdrv_start_throttled_reqs(bs);
242 bs_busy = bdrv_requests_pending(bs);
243 bs_busy |= aio_poll(bdrv_get_aio_context(bs), bs_busy);
244 return bs_busy;
245}
246
247/*
248 * Wait for pending requests to complete on a single BlockDriverState subtree
249 *
250 * See the warning in bdrv_drain_all(). This function can only be called if
251 * you are sure nothing can generate I/O because you have op blockers
252 * installed.
253 *
254 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
255 * AioContext.
256 */
257void bdrv_drain(BlockDriverState *bs)
258{
259 while (bdrv_drain_one(bs)) {
260 /* Keep iterating */
261 }
262}
263
264/*
265 * Wait for pending requests to complete across all BlockDriverStates
266 *
267 * This function does not flush data to disk, use bdrv_flush_all() for that
268 * after calling this function.
269 *
270 * Note that completion of an asynchronous I/O operation can trigger any
271 * number of other I/O operations on other devices---for example a coroutine
272 * can be arbitrarily complex and a constant flow of I/O can come until the
273 * coroutine is complete. Because of this, it is not possible to have a
274 * function to drain a single device's I/O queue.
275 */
276void bdrv_drain_all(void)
277{
278 /* Always run first iteration so any pending completion BHs run */
279 bool busy = true;
280 BlockDriverState *bs = NULL;
281
282 while ((bs = bdrv_next(bs))) {
283 AioContext *aio_context = bdrv_get_aio_context(bs);
284
285 aio_context_acquire(aio_context);
286 if (bs->job) {
287 block_job_pause(bs->job);
288 }
289 aio_context_release(aio_context);
290 }
291
292 while (busy) {
293 busy = false;
294 bs = NULL;
295
296 while ((bs = bdrv_next(bs))) {
297 AioContext *aio_context = bdrv_get_aio_context(bs);
298
299 aio_context_acquire(aio_context);
300 busy |= bdrv_drain_one(bs);
301 aio_context_release(aio_context);
302 }
303 }
304
305 bs = NULL;
306 while ((bs = bdrv_next(bs))) {
307 AioContext *aio_context = bdrv_get_aio_context(bs);
308
309 aio_context_acquire(aio_context);
310 if (bs->job) {
311 block_job_resume(bs->job);
312 }
313 aio_context_release(aio_context);
314 }
315}
316
317/**
318 * Remove an active request from the tracked requests list
319 *
320 * This function should be called when a tracked request is completing.
321 */
322static void tracked_request_end(BdrvTrackedRequest *req)
323{
324 if (req->serialising) {
325 req->bs->serialising_in_flight--;
326 }
327
328 QLIST_REMOVE(req, list);
329 qemu_co_queue_restart_all(&req->wait_queue);
330}
331
332/**
333 * Add an active request to the tracked requests list
334 */
335static void tracked_request_begin(BdrvTrackedRequest *req,
336 BlockDriverState *bs,
337 int64_t offset,
338 unsigned int bytes, bool is_write)
339{
340 *req = (BdrvTrackedRequest){
341 .bs = bs,
342 .offset = offset,
343 .bytes = bytes,
344 .is_write = is_write,
345 .co = qemu_coroutine_self(),
346 .serialising = false,
347 .overlap_offset = offset,
348 .overlap_bytes = bytes,
349 };
350
351 qemu_co_queue_init(&req->wait_queue);
352
353 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
354}
355
356static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
357{
358 int64_t overlap_offset = req->offset & ~(align - 1);
359 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
360 - overlap_offset;
361
362 if (!req->serialising) {
363 req->bs->serialising_in_flight++;
364 req->serialising = true;
365 }
366
367 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
368 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
369}
370
371/**
372 * Round a region to cluster boundaries
373 */
374void bdrv_round_to_clusters(BlockDriverState *bs,
375 int64_t sector_num, int nb_sectors,
376 int64_t *cluster_sector_num,
377 int *cluster_nb_sectors)
378{
379 BlockDriverInfo bdi;
380
381 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
382 *cluster_sector_num = sector_num;
383 *cluster_nb_sectors = nb_sectors;
384 } else {
385 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
386 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
387 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
388 nb_sectors, c);
389 }
390}
391
392static int bdrv_get_cluster_size(BlockDriverState *bs)
393{
394 BlockDriverInfo bdi;
395 int ret;
396
397 ret = bdrv_get_info(bs, &bdi);
398 if (ret < 0 || bdi.cluster_size == 0) {
399 return bs->request_alignment;
400 } else {
401 return bdi.cluster_size;
402 }
403}
404
405static bool tracked_request_overlaps(BdrvTrackedRequest *req,
406 int64_t offset, unsigned int bytes)
407{
408 /* aaaa bbbb */
409 if (offset >= req->overlap_offset + req->overlap_bytes) {
410 return false;
411 }
412 /* bbbb aaaa */
413 if (req->overlap_offset >= offset + bytes) {
414 return false;
415 }
416 return true;
417}
418
419static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
420{
421 BlockDriverState *bs = self->bs;
422 BdrvTrackedRequest *req;
423 bool retry;
424 bool waited = false;
425
426 if (!bs->serialising_in_flight) {
427 return false;
428 }
429
430 do {
431 retry = false;
432 QLIST_FOREACH(req, &bs->tracked_requests, list) {
433 if (req == self || (!req->serialising && !self->serialising)) {
434 continue;
435 }
436 if (tracked_request_overlaps(req, self->overlap_offset,
437 self->overlap_bytes))
438 {
439 /* Hitting this means there was a reentrant request, for
440 * example, a block driver issuing nested requests. This must
441 * never happen since it means deadlock.
442 */
443 assert(qemu_coroutine_self() != req->co);
444
445 /* If the request is already (indirectly) waiting for us, or
446 * will wait for us as soon as it wakes up, then just go on
447 * (instead of producing a deadlock in the former case). */
448 if (!req->waiting_for) {
449 self->waiting_for = req;
450 qemu_co_queue_wait(&req->wait_queue);
451 self->waiting_for = NULL;
452 retry = true;
453 waited = true;
454 break;
455 }
456 }
457 }
458 } while (retry);
459
460 return waited;
461}
462
463static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
464 size_t size)
465{
466 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
467 return -EIO;
468 }
469
470 if (!bdrv_is_inserted(bs)) {
471 return -ENOMEDIUM;
472 }
473
474 if (offset < 0) {
475 return -EIO;
476 }
477
478 return 0;
479}
480
481static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
482 int nb_sectors)
483{
484 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
485 return -EIO;
486 }
487
488 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
489 nb_sectors * BDRV_SECTOR_SIZE);
490}
491
492typedef struct RwCo {
493 BlockDriverState *bs;
494 int64_t offset;
495 QEMUIOVector *qiov;
496 bool is_write;
497 int ret;
498 BdrvRequestFlags flags;
499} RwCo;
500
501static void coroutine_fn bdrv_rw_co_entry(void *opaque)
502{
503 RwCo *rwco = opaque;
504
505 if (!rwco->is_write) {
506 rwco->ret = bdrv_co_do_preadv(rwco->bs, rwco->offset,
507 rwco->qiov->size, rwco->qiov,
508 rwco->flags);
509 } else {
510 rwco->ret = bdrv_co_do_pwritev(rwco->bs, rwco->offset,
511 rwco->qiov->size, rwco->qiov,
512 rwco->flags);
513 }
514}
515
516/*
517 * Process a vectored synchronous request using coroutines
518 */
519static int bdrv_prwv_co(BlockDriverState *bs, int64_t offset,
520 QEMUIOVector *qiov, bool is_write,
521 BdrvRequestFlags flags)
522{
523 Coroutine *co;
524 RwCo rwco = {
525 .bs = bs,
526 .offset = offset,
527 .qiov = qiov,
528 .is_write = is_write,
529 .ret = NOT_DONE,
530 .flags = flags,
531 };
532
533 /**
534 * In sync call context, when the vcpu is blocked, this throttling timer
535 * will not fire; so the I/O throttling function has to be disabled here
536 * if it has been enabled.
537 */
538 if (bs->io_limits_enabled) {
539 fprintf(stderr, "Disabling I/O throttling on '%s' due "
540 "to synchronous I/O.\n", bdrv_get_device_name(bs));
541 bdrv_io_limits_disable(bs);
542 }
543
544 if (qemu_in_coroutine()) {
545 /* Fast-path if already in coroutine context */
546 bdrv_rw_co_entry(&rwco);
547 } else {
548 AioContext *aio_context = bdrv_get_aio_context(bs);
549
550 co = qemu_coroutine_create(bdrv_rw_co_entry);
551 qemu_coroutine_enter(co, &rwco);
552 while (rwco.ret == NOT_DONE) {
553 aio_poll(aio_context, true);
554 }
555 }
556 return rwco.ret;
557}
558
559/*
560 * Process a synchronous request using coroutines
561 */
562static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
563 int nb_sectors, bool is_write, BdrvRequestFlags flags)
564{
565 QEMUIOVector qiov;
566 struct iovec iov = {
567 .iov_base = (void *)buf,
568 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
569 };
570
571 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
572 return -EINVAL;
573 }
574
575 qemu_iovec_init_external(&qiov, &iov, 1);
576 return bdrv_prwv_co(bs, sector_num << BDRV_SECTOR_BITS,
577 &qiov, is_write, flags);
578}
579
580/* return < 0 if error. See bdrv_write() for the return codes */
581int bdrv_read(BlockDriverState *bs, int64_t sector_num,
582 uint8_t *buf, int nb_sectors)
583{
584 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false, 0);
585}
586
587/* Just like bdrv_read(), but with I/O throttling temporarily disabled */
588int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
589 uint8_t *buf, int nb_sectors)
590{
591 bool enabled;
592 int ret;
593
594 enabled = bs->io_limits_enabled;
595 bs->io_limits_enabled = false;
596 ret = bdrv_read(bs, sector_num, buf, nb_sectors);
597 bs->io_limits_enabled = enabled;
598 return ret;
599}
600
601/* Return < 0 if error. Important errors are:
602 -EIO generic I/O error (may happen for all errors)
603 -ENOMEDIUM No media inserted.
604 -EINVAL Invalid sector number or nb_sectors
605 -EACCES Trying to write a read-only device
606*/
607int bdrv_write(BlockDriverState *bs, int64_t sector_num,
608 const uint8_t *buf, int nb_sectors)
609{
610 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
611}
612
613int bdrv_write_zeroes(BlockDriverState *bs, int64_t sector_num,
614 int nb_sectors, BdrvRequestFlags flags)
615{
616 return bdrv_rw_co(bs, sector_num, NULL, nb_sectors, true,
617 BDRV_REQ_ZERO_WRITE | flags);
618}
619
620/*
621 * Completely zero out a block device with the help of bdrv_write_zeroes.
622 * The operation is sped up by checking the block status and only writing
623 * zeroes to the device if they currently do not return zeroes. Optional
624 * flags are passed through to bdrv_write_zeroes (e.g. BDRV_REQ_MAY_UNMAP).
625 *
626 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
627 */
628int bdrv_make_zero(BlockDriverState *bs, BdrvRequestFlags flags)
629{
630 int64_t target_sectors, ret, nb_sectors, sector_num = 0;
631 int n;
632
633 target_sectors = bdrv_nb_sectors(bs);
634 if (target_sectors < 0) {
635 return target_sectors;
636 }
637
638 for (;;) {
639 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
640 if (nb_sectors <= 0) {
641 return 0;
642 }
643 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n);
644 if (ret < 0) {
645 error_report("error getting block status at sector %" PRId64 ": %s",
646 sector_num, strerror(-ret));
647 return ret;
648 }
649 if (ret & BDRV_BLOCK_ZERO) {
650 sector_num += n;
651 continue;
652 }
653 ret = bdrv_write_zeroes(bs, sector_num, n, flags);
654 if (ret < 0) {
655 error_report("error writing zeroes at sector %" PRId64 ": %s",
656 sector_num, strerror(-ret));
657 return ret;
658 }
659 sector_num += n;
660 }
661}
662
663int bdrv_pread(BlockDriverState *bs, int64_t offset, void *buf, int bytes)
664{
665 QEMUIOVector qiov;
666 struct iovec iov = {
667 .iov_base = (void *)buf,
668 .iov_len = bytes,
669 };
670 int ret;
671
672 if (bytes < 0) {
673 return -EINVAL;
674 }
675
676 qemu_iovec_init_external(&qiov, &iov, 1);
677 ret = bdrv_prwv_co(bs, offset, &qiov, false, 0);
678 if (ret < 0) {
679 return ret;
680 }
681
682 return bytes;
683}
684
685int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov)
686{
687 int ret;
688
689 ret = bdrv_prwv_co(bs, offset, qiov, true, 0);
690 if (ret < 0) {
691 return ret;
692 }
693
694 return qiov->size;
695}
696
697int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
698 const void *buf, int bytes)
699{
700 QEMUIOVector qiov;
701 struct iovec iov = {
702 .iov_base = (void *) buf,
703 .iov_len = bytes,
704 };
705
706 if (bytes < 0) {
707 return -EINVAL;
708 }
709
710 qemu_iovec_init_external(&qiov, &iov, 1);
711 return bdrv_pwritev(bs, offset, &qiov);
712}
713
714/*
715 * Writes to the file and ensures that no writes are reordered across this
716 * request (acts as a barrier)
717 *
718 * Returns 0 on success, -errno in error cases.
719 */
720int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
721 const void *buf, int count)
722{
723 int ret;
724
725 ret = bdrv_pwrite(bs, offset, buf, count);
726 if (ret < 0) {
727 return ret;
728 }
729
730 /* No flush needed for cache modes that already do it */
731 if (bs->enable_write_cache) {
732 bdrv_flush(bs);
733 }
734
735 return 0;
736}
737
738static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
739 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
740{
741 /* Perform I/O through a temporary buffer so that users who scribble over
742 * their read buffer while the operation is in progress do not end up
743 * modifying the image file. This is critical for zero-copy guest I/O
744 * where anything might happen inside guest memory.
745 */
746 void *bounce_buffer;
747
748 BlockDriver *drv = bs->drv;
749 struct iovec iov;
750 QEMUIOVector bounce_qiov;
751 int64_t cluster_sector_num;
752 int cluster_nb_sectors;
753 size_t skip_bytes;
754 int ret;
755
756 /* Cover entire cluster so no additional backing file I/O is required when
757 * allocating cluster in the image file.
758 */
759 bdrv_round_to_clusters(bs, sector_num, nb_sectors,
760 &cluster_sector_num, &cluster_nb_sectors);
761
762 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
763 cluster_sector_num, cluster_nb_sectors);
764
765 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
766 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
767 if (bounce_buffer == NULL) {
768 ret = -ENOMEM;
769 goto err;
770 }
771
772 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
773
774 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
775 &bounce_qiov);
776 if (ret < 0) {
777 goto err;
778 }
779
780 if (drv->bdrv_co_write_zeroes &&
781 buffer_is_zero(bounce_buffer, iov.iov_len)) {
782 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
783 cluster_nb_sectors, 0);
784 } else {
785 /* This does not change the data on the disk, it is not necessary
786 * to flush even in cache=writethrough mode.
787 */
788 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
789 &bounce_qiov);
790 }
791
792 if (ret < 0) {
793 /* It might be okay to ignore write errors for guest requests. If this
794 * is a deliberate copy-on-read then we don't want to ignore the error.
795 * Simply report it in all cases.
796 */
797 goto err;
798 }
799
800 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
801 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
802 nb_sectors * BDRV_SECTOR_SIZE);
803
804err:
805 qemu_vfree(bounce_buffer);
806 return ret;
807}
808
809/*
810 * Forwards an already correctly aligned request to the BlockDriver. This
811 * handles copy on read and zeroing after EOF; any other features must be
812 * implemented by the caller.
813 */
814static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs,
815 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
816 int64_t align, QEMUIOVector *qiov, int flags)
817{
818 BlockDriver *drv = bs->drv;
819 int ret;
820
821 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
822 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
823
824 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
825 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
826 assert(!qiov || bytes == qiov->size);
827
828 /* Handle Copy on Read and associated serialisation */
829 if (flags & BDRV_REQ_COPY_ON_READ) {
830 /* If we touch the same cluster it counts as an overlap. This
831 * guarantees that allocating writes will be serialized and not race
832 * with each other for the same cluster. For example, in copy-on-read
833 * it ensures that the CoR read and write operations are atomic and
834 * guest writes cannot interleave between them. */
835 mark_request_serialising(req, bdrv_get_cluster_size(bs));
836 }
837
838 wait_serialising_requests(req);
839
840 if (flags & BDRV_REQ_COPY_ON_READ) {
841 int pnum;
842
843 ret = bdrv_is_allocated(bs, sector_num, nb_sectors, &pnum);
844 if (ret < 0) {
845 goto out;
846 }
847
848 if (!ret || pnum != nb_sectors) {
849 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
850 goto out;
851 }
852 }
853
854 /* Forward the request to the BlockDriver */
855 if (!bs->zero_beyond_eof) {
856 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
857 } else {
858 /* Read zeros after EOF */
859 int64_t total_sectors, max_nb_sectors;
860
861 total_sectors = bdrv_nb_sectors(bs);
862 if (total_sectors < 0) {
863 ret = total_sectors;
864 goto out;
865 }
866
867 max_nb_sectors = ROUND_UP(MAX(0, total_sectors - sector_num),
868 align >> BDRV_SECTOR_BITS);
869 if (nb_sectors < max_nb_sectors) {
870 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
871 } else if (max_nb_sectors > 0) {
872 QEMUIOVector local_qiov;
873
874 qemu_iovec_init(&local_qiov, qiov->niov);
875 qemu_iovec_concat(&local_qiov, qiov, 0,
876 max_nb_sectors * BDRV_SECTOR_SIZE);
877
878 ret = drv->bdrv_co_readv(bs, sector_num, max_nb_sectors,
879 &local_qiov);
880
881 qemu_iovec_destroy(&local_qiov);
882 } else {
883 ret = 0;
884 }
885
886 /* Reading beyond end of file is supposed to produce zeroes */
887 if (ret == 0 && total_sectors < sector_num + nb_sectors) {
888 uint64_t offset = MAX(0, total_sectors - sector_num);
889 uint64_t bytes = (sector_num + nb_sectors - offset) *
890 BDRV_SECTOR_SIZE;
891 qemu_iovec_memset(qiov, offset * BDRV_SECTOR_SIZE, 0, bytes);
892 }
893 }
894
895out:
896 return ret;
897}
898
61007b31
SH
899/*
900 * Handle a read request in coroutine context
901 */
902static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
903 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
904 BdrvRequestFlags flags)
905{
906 BlockDriver *drv = bs->drv;
907 BdrvTrackedRequest req;
908
d01c07f2
FZ
909 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
910 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
61007b31
SH
911 uint8_t *head_buf = NULL;
912 uint8_t *tail_buf = NULL;
913 QEMUIOVector local_qiov;
914 bool use_local_qiov = false;
915 int ret;
916
917 if (!drv) {
918 return -ENOMEDIUM;
919 }
920
921 ret = bdrv_check_byte_request(bs, offset, bytes);
922 if (ret < 0) {
923 return ret;
924 }
925
926 if (bs->copy_on_read) {
927 flags |= BDRV_REQ_COPY_ON_READ;
928 }
929
930 /* throttling disk I/O */
931 if (bs->io_limits_enabled) {
76f4afb4 932 throttle_group_co_io_limits_intercept(bs, bytes, false);
61007b31
SH
933 }
934
935 /* Align read if necessary by padding qiov */
936 if (offset & (align - 1)) {
937 head_buf = qemu_blockalign(bs, align);
938 qemu_iovec_init(&local_qiov, qiov->niov + 2);
939 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
940 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
941 use_local_qiov = true;
942
943 bytes += offset & (align - 1);
944 offset = offset & ~(align - 1);
945 }
946
947 if ((offset + bytes) & (align - 1)) {
948 if (!use_local_qiov) {
949 qemu_iovec_init(&local_qiov, qiov->niov + 1);
950 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
951 use_local_qiov = true;
952 }
953 tail_buf = qemu_blockalign(bs, align);
954 qemu_iovec_add(&local_qiov, tail_buf,
955 align - ((offset + bytes) & (align - 1)));
956
957 bytes = ROUND_UP(bytes, align);
958 }
959
960 tracked_request_begin(&req, bs, offset, bytes, false);
961 ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align,
962 use_local_qiov ? &local_qiov : qiov,
963 flags);
964 tracked_request_end(&req);
965
966 if (use_local_qiov) {
967 qemu_iovec_destroy(&local_qiov);
968 qemu_vfree(head_buf);
969 qemu_vfree(tail_buf);
970 }
971
972 return ret;
973}
974
975static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
976 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
977 BdrvRequestFlags flags)
978{
979 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
980 return -EINVAL;
981 }
982
983 return bdrv_co_do_preadv(bs, sector_num << BDRV_SECTOR_BITS,
984 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
985}
986
987int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
988 int nb_sectors, QEMUIOVector *qiov)
989{
990 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
991
992 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
993}
994
995int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
996 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
997{
998 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
999
1000 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1001 BDRV_REQ_COPY_ON_READ);
1002}
1003
1004#define MAX_WRITE_ZEROES_BOUNCE_BUFFER 32768
1005
1006static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
1007 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags)
1008{
1009 BlockDriver *drv = bs->drv;
1010 QEMUIOVector qiov;
1011 struct iovec iov = {0};
1012 int ret = 0;
1013
1014 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_write_zeroes,
1015 BDRV_REQUEST_MAX_SECTORS);
1016
1017 while (nb_sectors > 0 && !ret) {
1018 int num = nb_sectors;
1019
1020 /* Align request. Block drivers can expect the "bulk" of the request
1021 * to be aligned.
1022 */
1023 if (bs->bl.write_zeroes_alignment
1024 && num > bs->bl.write_zeroes_alignment) {
1025 if (sector_num % bs->bl.write_zeroes_alignment != 0) {
1026 /* Make a small request up to the first aligned sector. */
1027 num = bs->bl.write_zeroes_alignment;
1028 num -= sector_num % bs->bl.write_zeroes_alignment;
1029 } else if ((sector_num + num) % bs->bl.write_zeroes_alignment != 0) {
1030 /* Shorten the request to the last aligned sector. num cannot
1031 * underflow because num > bs->bl.write_zeroes_alignment.
1032 */
1033 num -= (sector_num + num) % bs->bl.write_zeroes_alignment;
1034 }
1035 }
1036
1037 /* limit request size */
1038 if (num > max_write_zeroes) {
1039 num = max_write_zeroes;
1040 }
1041
1042 ret = -ENOTSUP;
1043 /* First try the efficient write zeroes operation */
1044 if (drv->bdrv_co_write_zeroes) {
1045 ret = drv->bdrv_co_write_zeroes(bs, sector_num, num, flags);
1046 }
1047
1048 if (ret == -ENOTSUP) {
1049 /* Fall back to bounce buffer if write zeroes is unsupported */
1050 int max_xfer_len = MIN_NON_ZERO(bs->bl.max_transfer_length,
1051 MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1052 num = MIN(num, max_xfer_len);
1053 iov.iov_len = num * BDRV_SECTOR_SIZE;
1054 if (iov.iov_base == NULL) {
1055 iov.iov_base = qemu_try_blockalign(bs, num * BDRV_SECTOR_SIZE);
1056 if (iov.iov_base == NULL) {
1057 ret = -ENOMEM;
1058 goto fail;
1059 }
1060 memset(iov.iov_base, 0, num * BDRV_SECTOR_SIZE);
1061 }
1062 qemu_iovec_init_external(&qiov, &iov, 1);
1063
1064 ret = drv->bdrv_co_writev(bs, sector_num, num, &qiov);
1065
1066 /* Keep bounce buffer around if it is big enough for all
1067 * all future requests.
1068 */
1069 if (num < max_xfer_len) {
1070 qemu_vfree(iov.iov_base);
1071 iov.iov_base = NULL;
1072 }
1073 }
1074
1075 sector_num += num;
1076 nb_sectors -= num;
1077 }
1078
1079fail:
1080 qemu_vfree(iov.iov_base);
1081 return ret;
1082}
1083
1084/*
1085 * Forwards an already correctly aligned write request to the BlockDriver.
1086 */
1087static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs,
1088 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1089 QEMUIOVector *qiov, int flags)
1090{
1091 BlockDriver *drv = bs->drv;
1092 bool waited;
1093 int ret;
1094
1095 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
1096 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
1097
1098 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1099 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1100 assert(!qiov || bytes == qiov->size);
1101
1102 waited = wait_serialising_requests(req);
1103 assert(!waited || !req->serialising);
1104 assert(req->overlap_offset <= offset);
1105 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1106
1107 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1108
1109 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1110 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_write_zeroes &&
1111 qemu_iovec_is_zero(qiov)) {
1112 flags |= BDRV_REQ_ZERO_WRITE;
1113 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1114 flags |= BDRV_REQ_MAY_UNMAP;
1115 }
1116 }
1117
1118 if (ret < 0) {
1119 /* Do nothing, write notifier decided to fail this request */
1120 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1121 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_ZERO);
1122 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors, flags);
1123 } else {
1124 BLKDBG_EVENT(bs, BLKDBG_PWRITEV);
1125 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
1126 }
1127 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_DONE);
1128
1129 if (ret == 0 && !bs->enable_write_cache) {
1130 ret = bdrv_co_flush(bs);
1131 }
1132
1133 bdrv_set_dirty(bs, sector_num, nb_sectors);
1134
1135 block_acct_highest_sector(&bs->stats, sector_num, nb_sectors);
1136
1137 if (ret >= 0) {
1138 bs->total_sectors = MAX(bs->total_sectors, sector_num + nb_sectors);
1139 }
1140
1141 return ret;
1142}
1143
9eeb6dd1
FZ
1144static int coroutine_fn bdrv_co_do_zero_pwritev(BlockDriverState *bs,
1145 int64_t offset,
1146 unsigned int bytes,
1147 BdrvRequestFlags flags,
1148 BdrvTrackedRequest *req)
1149{
1150 uint8_t *buf = NULL;
1151 QEMUIOVector local_qiov;
1152 struct iovec iov;
1153 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1154 unsigned int head_padding_bytes, tail_padding_bytes;
1155 int ret = 0;
1156
1157 head_padding_bytes = offset & (align - 1);
1158 tail_padding_bytes = align - ((offset + bytes) & (align - 1));
1159
1160
1161 assert(flags & BDRV_REQ_ZERO_WRITE);
1162 if (head_padding_bytes || tail_padding_bytes) {
1163 buf = qemu_blockalign(bs, align);
1164 iov = (struct iovec) {
1165 .iov_base = buf,
1166 .iov_len = align,
1167 };
1168 qemu_iovec_init_external(&local_qiov, &iov, 1);
1169 }
1170 if (head_padding_bytes) {
1171 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1172
1173 /* RMW the unaligned part before head. */
1174 mark_request_serialising(req, align);
1175 wait_serialising_requests(req);
1176 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_HEAD);
1177 ret = bdrv_aligned_preadv(bs, req, offset & ~(align - 1), align,
1178 align, &local_qiov, 0);
1179 if (ret < 0) {
1180 goto fail;
1181 }
1182 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1183
1184 memset(buf + head_padding_bytes, 0, zero_bytes);
1185 ret = bdrv_aligned_pwritev(bs, req, offset & ~(align - 1), align,
1186 &local_qiov,
1187 flags & ~BDRV_REQ_ZERO_WRITE);
1188 if (ret < 0) {
1189 goto fail;
1190 }
1191 offset += zero_bytes;
1192 bytes -= zero_bytes;
1193 }
1194
1195 assert(!bytes || (offset & (align - 1)) == 0);
1196 if (bytes >= align) {
1197 /* Write the aligned part in the middle. */
1198 uint64_t aligned_bytes = bytes & ~(align - 1);
1199 ret = bdrv_aligned_pwritev(bs, req, offset, aligned_bytes,
1200 NULL, flags);
1201 if (ret < 0) {
1202 goto fail;
1203 }
1204 bytes -= aligned_bytes;
1205 offset += aligned_bytes;
1206 }
1207
1208 assert(!bytes || (offset & (align - 1)) == 0);
1209 if (bytes) {
1210 assert(align == tail_padding_bytes + bytes);
1211 /* RMW the unaligned part after tail. */
1212 mark_request_serialising(req, align);
1213 wait_serialising_requests(req);
1214 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_TAIL);
1215 ret = bdrv_aligned_preadv(bs, req, offset, align,
1216 align, &local_qiov, 0);
1217 if (ret < 0) {
1218 goto fail;
1219 }
1220 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1221
1222 memset(buf, 0, bytes);
1223 ret = bdrv_aligned_pwritev(bs, req, offset, align,
1224 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1225 }
1226fail:
1227 qemu_vfree(buf);
1228 return ret;
1229
1230}
1231
61007b31
SH
1232/*
1233 * Handle a write request in coroutine context
1234 */
1235static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
1236 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1237 BdrvRequestFlags flags)
1238{
1239 BdrvTrackedRequest req;
d01c07f2
FZ
1240 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
1241 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
61007b31
SH
1242 uint8_t *head_buf = NULL;
1243 uint8_t *tail_buf = NULL;
1244 QEMUIOVector local_qiov;
1245 bool use_local_qiov = false;
1246 int ret;
1247
1248 if (!bs->drv) {
1249 return -ENOMEDIUM;
1250 }
1251 if (bs->read_only) {
eaf5fe2d 1252 return -EPERM;
61007b31
SH
1253 }
1254
1255 ret = bdrv_check_byte_request(bs, offset, bytes);
1256 if (ret < 0) {
1257 return ret;
1258 }
1259
1260 /* throttling disk I/O */
1261 if (bs->io_limits_enabled) {
76f4afb4 1262 throttle_group_co_io_limits_intercept(bs, bytes, true);
61007b31
SH
1263 }
1264
1265 /*
1266 * Align write if necessary by performing a read-modify-write cycle.
1267 * Pad qiov with the read parts and be sure to have a tracked request not
1268 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1269 */
1270 tracked_request_begin(&req, bs, offset, bytes, true);
1271
9eeb6dd1
FZ
1272 if (!qiov) {
1273 ret = bdrv_co_do_zero_pwritev(bs, offset, bytes, flags, &req);
1274 goto out;
1275 }
1276
61007b31
SH
1277 if (offset & (align - 1)) {
1278 QEMUIOVector head_qiov;
1279 struct iovec head_iov;
1280
1281 mark_request_serialising(&req, align);
1282 wait_serialising_requests(&req);
1283
1284 head_buf = qemu_blockalign(bs, align);
1285 head_iov = (struct iovec) {
1286 .iov_base = head_buf,
1287 .iov_len = align,
1288 };
1289 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1290
1291 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_HEAD);
1292 ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align,
1293 align, &head_qiov, 0);
1294 if (ret < 0) {
1295 goto fail;
1296 }
1297 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1298
1299 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1300 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1301 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1302 use_local_qiov = true;
1303
1304 bytes += offset & (align - 1);
1305 offset = offset & ~(align - 1);
1306 }
1307
1308 if ((offset + bytes) & (align - 1)) {
1309 QEMUIOVector tail_qiov;
1310 struct iovec tail_iov;
1311 size_t tail_bytes;
1312 bool waited;
1313
1314 mark_request_serialising(&req, align);
1315 waited = wait_serialising_requests(&req);
1316 assert(!waited || !use_local_qiov);
1317
1318 tail_buf = qemu_blockalign(bs, align);
1319 tail_iov = (struct iovec) {
1320 .iov_base = tail_buf,
1321 .iov_len = align,
1322 };
1323 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1324
1325 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_TAIL);
1326 ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align,
1327 align, &tail_qiov, 0);
1328 if (ret < 0) {
1329 goto fail;
1330 }
1331 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1332
1333 if (!use_local_qiov) {
1334 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1335 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1336 use_local_qiov = true;
1337 }
1338
1339 tail_bytes = (offset + bytes) & (align - 1);
1340 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1341
1342 bytes = ROUND_UP(bytes, align);
1343 }
1344
61007b31
SH
1345 ret = bdrv_aligned_pwritev(bs, &req, offset, bytes,
1346 use_local_qiov ? &local_qiov : qiov,
1347 flags);
1348
1349fail:
61007b31
SH
1350
1351 if (use_local_qiov) {
1352 qemu_iovec_destroy(&local_qiov);
1353 }
1354 qemu_vfree(head_buf);
1355 qemu_vfree(tail_buf);
9eeb6dd1
FZ
1356out:
1357 tracked_request_end(&req);
61007b31
SH
1358 return ret;
1359}
1360
1361static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1362 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1363 BdrvRequestFlags flags)
1364{
1365 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1366 return -EINVAL;
1367 }
1368
1369 return bdrv_co_do_pwritev(bs, sector_num << BDRV_SECTOR_BITS,
1370 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1371}
1372
1373int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
1374 int nb_sectors, QEMUIOVector *qiov)
1375{
1376 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
1377
1378 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
1379}
1380
1381int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
1382 int64_t sector_num, int nb_sectors,
1383 BdrvRequestFlags flags)
1384{
61007b31
SH
1385 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors, flags);
1386
1387 if (!(bs->open_flags & BDRV_O_UNMAP)) {
1388 flags &= ~BDRV_REQ_MAY_UNMAP;
1389 }
61007b31 1390
d01c07f2
FZ
1391 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
1392 BDRV_REQ_ZERO_WRITE | flags);
61007b31
SH
1393}
1394
1395int bdrv_flush_all(void)
1396{
1397 BlockDriverState *bs = NULL;
1398 int result = 0;
1399
1400 while ((bs = bdrv_next(bs))) {
1401 AioContext *aio_context = bdrv_get_aio_context(bs);
1402 int ret;
1403
1404 aio_context_acquire(aio_context);
1405 ret = bdrv_flush(bs);
1406 if (ret < 0 && !result) {
1407 result = ret;
1408 }
1409 aio_context_release(aio_context);
1410 }
1411
1412 return result;
1413}
1414
1415typedef struct BdrvCoGetBlockStatusData {
1416 BlockDriverState *bs;
1417 BlockDriverState *base;
1418 int64_t sector_num;
1419 int nb_sectors;
1420 int *pnum;
1421 int64_t ret;
1422 bool done;
1423} BdrvCoGetBlockStatusData;
1424
1425/*
1426 * Returns the allocation status of the specified sectors.
1427 * Drivers not implementing the functionality are assumed to not support
1428 * backing files, hence all their sectors are reported as allocated.
1429 *
1430 * If 'sector_num' is beyond the end of the disk image the return value is 0
1431 * and 'pnum' is set to 0.
1432 *
1433 * 'pnum' is set to the number of sectors (including and immediately following
1434 * the specified sector) that are known to be in the same
1435 * allocated/unallocated state.
1436 *
1437 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
1438 * beyond the end of the disk image it will be clamped.
1439 */
1440static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1441 int64_t sector_num,
1442 int nb_sectors, int *pnum)
1443{
1444 int64_t total_sectors;
1445 int64_t n;
1446 int64_t ret, ret2;
1447
1448 total_sectors = bdrv_nb_sectors(bs);
1449 if (total_sectors < 0) {
1450 return total_sectors;
1451 }
1452
1453 if (sector_num >= total_sectors) {
1454 *pnum = 0;
1455 return 0;
1456 }
1457
1458 n = total_sectors - sector_num;
1459 if (n < nb_sectors) {
1460 nb_sectors = n;
1461 }
1462
1463 if (!bs->drv->bdrv_co_get_block_status) {
1464 *pnum = nb_sectors;
1465 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1466 if (bs->drv->protocol_name) {
1467 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1468 }
1469 return ret;
1470 }
1471
1472 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum);
1473 if (ret < 0) {
1474 *pnum = 0;
1475 return ret;
1476 }
1477
1478 if (ret & BDRV_BLOCK_RAW) {
1479 assert(ret & BDRV_BLOCK_OFFSET_VALID);
1480 return bdrv_get_block_status(bs->file, ret >> BDRV_SECTOR_BITS,
1481 *pnum, pnum);
1482 }
1483
1484 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1485 ret |= BDRV_BLOCK_ALLOCATED;
a53f1a95 1486 } else {
61007b31
SH
1487 if (bdrv_unallocated_blocks_are_zero(bs)) {
1488 ret |= BDRV_BLOCK_ZERO;
1489 } else if (bs->backing_hd) {
1490 BlockDriverState *bs2 = bs->backing_hd;
1491 int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1492 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1493 ret |= BDRV_BLOCK_ZERO;
1494 }
1495 }
1496 }
1497
1498 if (bs->file &&
1499 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1500 (ret & BDRV_BLOCK_OFFSET_VALID)) {
1501 int file_pnum;
1502
1503 ret2 = bdrv_co_get_block_status(bs->file, ret >> BDRV_SECTOR_BITS,
1504 *pnum, &file_pnum);
1505 if (ret2 >= 0) {
1506 /* Ignore errors. This is just providing extra information, it
1507 * is useful but not necessary.
1508 */
1509 if (!file_pnum) {
1510 /* !file_pnum indicates an offset at or beyond the EOF; it is
1511 * perfectly valid for the format block driver to point to such
1512 * offsets, so catch it and mark everything as zero */
1513 ret |= BDRV_BLOCK_ZERO;
1514 } else {
1515 /* Limit request to the range reported by the protocol driver */
1516 *pnum = file_pnum;
1517 ret |= (ret2 & BDRV_BLOCK_ZERO);
1518 }
1519 }
1520 }
1521
1522 return ret;
1523}
1524
1525/* Coroutine wrapper for bdrv_get_block_status() */
1526static void coroutine_fn bdrv_get_block_status_co_entry(void *opaque)
1527{
1528 BdrvCoGetBlockStatusData *data = opaque;
1529 BlockDriverState *bs = data->bs;
1530
1531 data->ret = bdrv_co_get_block_status(bs, data->sector_num, data->nb_sectors,
1532 data->pnum);
1533 data->done = true;
1534}
1535
1536/*
1537 * Synchronous wrapper around bdrv_co_get_block_status().
1538 *
1539 * See bdrv_co_get_block_status() for details.
1540 */
1541int64_t bdrv_get_block_status(BlockDriverState *bs, int64_t sector_num,
1542 int nb_sectors, int *pnum)
1543{
1544 Coroutine *co;
1545 BdrvCoGetBlockStatusData data = {
1546 .bs = bs,
1547 .sector_num = sector_num,
1548 .nb_sectors = nb_sectors,
1549 .pnum = pnum,
1550 .done = false,
1551 };
1552
1553 if (qemu_in_coroutine()) {
1554 /* Fast-path if already in coroutine context */
1555 bdrv_get_block_status_co_entry(&data);
1556 } else {
1557 AioContext *aio_context = bdrv_get_aio_context(bs);
1558
1559 co = qemu_coroutine_create(bdrv_get_block_status_co_entry);
1560 qemu_coroutine_enter(co, &data);
1561 while (!data.done) {
1562 aio_poll(aio_context, true);
1563 }
1564 }
1565 return data.ret;
1566}
1567
1568int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1569 int nb_sectors, int *pnum)
1570{
1571 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum);
1572 if (ret < 0) {
1573 return ret;
1574 }
1575 return !!(ret & BDRV_BLOCK_ALLOCATED);
1576}
1577
1578/*
1579 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1580 *
1581 * Return true if the given sector is allocated in any image between
1582 * BASE and TOP (inclusive). BASE can be NULL to check if the given
1583 * sector is allocated in any image of the chain. Return false otherwise.
1584 *
1585 * 'pnum' is set to the number of sectors (including and immediately following
1586 * the specified sector) that are known to be in the same
1587 * allocated/unallocated state.
1588 *
1589 */
1590int bdrv_is_allocated_above(BlockDriverState *top,
1591 BlockDriverState *base,
1592 int64_t sector_num,
1593 int nb_sectors, int *pnum)
1594{
1595 BlockDriverState *intermediate;
1596 int ret, n = nb_sectors;
1597
1598 intermediate = top;
1599 while (intermediate && intermediate != base) {
1600 int pnum_inter;
1601 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1602 &pnum_inter);
1603 if (ret < 0) {
1604 return ret;
1605 } else if (ret) {
1606 *pnum = pnum_inter;
1607 return 1;
1608 }
1609
1610 /*
1611 * [sector_num, nb_sectors] is unallocated on top but intermediate
1612 * might have
1613 *
1614 * [sector_num+x, nr_sectors] allocated.
1615 */
1616 if (n > pnum_inter &&
1617 (intermediate == top ||
1618 sector_num + pnum_inter < intermediate->total_sectors)) {
1619 n = pnum_inter;
1620 }
1621
1622 intermediate = intermediate->backing_hd;
1623 }
1624
1625 *pnum = n;
1626 return 0;
1627}
1628
1629int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
1630 const uint8_t *buf, int nb_sectors)
1631{
1632 BlockDriver *drv = bs->drv;
1633 int ret;
1634
1635 if (!drv) {
1636 return -ENOMEDIUM;
1637 }
1638 if (!drv->bdrv_write_compressed) {
1639 return -ENOTSUP;
1640 }
1641 ret = bdrv_check_request(bs, sector_num, nb_sectors);
1642 if (ret < 0) {
1643 return ret;
1644 }
1645
1646 assert(QLIST_EMPTY(&bs->dirty_bitmaps));
1647
1648 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
1649}
1650
1651int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
1652 int64_t pos, int size)
1653{
1654 QEMUIOVector qiov;
1655 struct iovec iov = {
1656 .iov_base = (void *) buf,
1657 .iov_len = size,
1658 };
1659
1660 qemu_iovec_init_external(&qiov, &iov, 1);
1661 return bdrv_writev_vmstate(bs, &qiov, pos);
1662}
1663
1664int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
1665{
1666 BlockDriver *drv = bs->drv;
1667
1668 if (!drv) {
1669 return -ENOMEDIUM;
1670 } else if (drv->bdrv_save_vmstate) {
1671 return drv->bdrv_save_vmstate(bs, qiov, pos);
1672 } else if (bs->file) {
1673 return bdrv_writev_vmstate(bs->file, qiov, pos);
1674 }
1675
1676 return -ENOTSUP;
1677}
1678
1679int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
1680 int64_t pos, int size)
1681{
1682 BlockDriver *drv = bs->drv;
1683 if (!drv)
1684 return -ENOMEDIUM;
1685 if (drv->bdrv_load_vmstate)
1686 return drv->bdrv_load_vmstate(bs, buf, pos, size);
1687 if (bs->file)
1688 return bdrv_load_vmstate(bs->file, buf, pos, size);
1689 return -ENOTSUP;
1690}
1691
1692/**************************************************************/
1693/* async I/Os */
1694
1695BlockAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
1696 QEMUIOVector *qiov, int nb_sectors,
1697 BlockCompletionFunc *cb, void *opaque)
1698{
1699 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
1700
1701 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1702 cb, opaque, false);
1703}
1704
1705BlockAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
1706 QEMUIOVector *qiov, int nb_sectors,
1707 BlockCompletionFunc *cb, void *opaque)
1708{
1709 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
1710
1711 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1712 cb, opaque, true);
1713}
1714
1715BlockAIOCB *bdrv_aio_write_zeroes(BlockDriverState *bs,
1716 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags,
1717 BlockCompletionFunc *cb, void *opaque)
1718{
1719 trace_bdrv_aio_write_zeroes(bs, sector_num, nb_sectors, flags, opaque);
1720
1721 return bdrv_co_aio_rw_vector(bs, sector_num, NULL, nb_sectors,
1722 BDRV_REQ_ZERO_WRITE | flags,
1723 cb, opaque, true);
1724}
1725
1726
1727typedef struct MultiwriteCB {
1728 int error;
1729 int num_requests;
1730 int num_callbacks;
1731 struct {
1732 BlockCompletionFunc *cb;
1733 void *opaque;
1734 QEMUIOVector *free_qiov;
1735 } callbacks[];
1736} MultiwriteCB;
1737
1738static void multiwrite_user_cb(MultiwriteCB *mcb)
1739{
1740 int i;
1741
1742 for (i = 0; i < mcb->num_callbacks; i++) {
1743 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
1744 if (mcb->callbacks[i].free_qiov) {
1745 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
1746 }
1747 g_free(mcb->callbacks[i].free_qiov);
1748 }
1749}
1750
1751static void multiwrite_cb(void *opaque, int ret)
1752{
1753 MultiwriteCB *mcb = opaque;
1754
1755 trace_multiwrite_cb(mcb, ret);
1756
1757 if (ret < 0 && !mcb->error) {
1758 mcb->error = ret;
1759 }
1760
1761 mcb->num_requests--;
1762 if (mcb->num_requests == 0) {
1763 multiwrite_user_cb(mcb);
1764 g_free(mcb);
1765 }
1766}
1767
1768static int multiwrite_req_compare(const void *a, const void *b)
1769{
1770 const BlockRequest *req1 = a, *req2 = b;
1771
1772 /*
1773 * Note that we can't simply subtract req2->sector from req1->sector
1774 * here as that could overflow the return value.
1775 */
1776 if (req1->sector > req2->sector) {
1777 return 1;
1778 } else if (req1->sector < req2->sector) {
1779 return -1;
1780 } else {
1781 return 0;
1782 }
1783}
1784
1785/*
1786 * Takes a bunch of requests and tries to merge them. Returns the number of
1787 * requests that remain after merging.
1788 */
1789static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
1790 int num_reqs, MultiwriteCB *mcb)
1791{
1792 int i, outidx;
1793
1794 // Sort requests by start sector
1795 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
1796
1797 // Check if adjacent requests touch the same clusters. If so, combine them,
1798 // filling up gaps with zero sectors.
1799 outidx = 0;
1800 for (i = 1; i < num_reqs; i++) {
1801 int merge = 0;
1802 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
1803
1804 // Handle exactly sequential writes and overlapping writes.
1805 if (reqs[i].sector <= oldreq_last) {
1806 merge = 1;
1807 }
1808
1809 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
1810 merge = 0;
1811 }
1812
1813 if (bs->bl.max_transfer_length && reqs[outidx].nb_sectors +
1814 reqs[i].nb_sectors > bs->bl.max_transfer_length) {
1815 merge = 0;
1816 }
1817
1818 if (merge) {
1819 size_t size;
1820 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
1821 qemu_iovec_init(qiov,
1822 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
1823
1824 // Add the first request to the merged one. If the requests are
1825 // overlapping, drop the last sectors of the first request.
1826 size = (reqs[i].sector - reqs[outidx].sector) << 9;
1827 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
1828
1829 // We should need to add any zeros between the two requests
1830 assert (reqs[i].sector <= oldreq_last);
1831
1832 // Add the second request
1833 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
1834
1835 // Add tail of first request, if necessary
1836 if (qiov->size < reqs[outidx].qiov->size) {
1837 qemu_iovec_concat(qiov, reqs[outidx].qiov, qiov->size,
1838 reqs[outidx].qiov->size - qiov->size);
1839 }
1840
1841 reqs[outidx].nb_sectors = qiov->size >> 9;
1842 reqs[outidx].qiov = qiov;
1843
1844 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
1845 } else {
1846 outidx++;
1847 reqs[outidx].sector = reqs[i].sector;
1848 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
1849 reqs[outidx].qiov = reqs[i].qiov;
1850 }
1851 }
1852
1853 block_acct_merge_done(&bs->stats, BLOCK_ACCT_WRITE, num_reqs - outidx - 1);
1854
1855 return outidx + 1;
1856}
1857
1858/*
1859 * Submit multiple AIO write requests at once.
1860 *
1861 * On success, the function returns 0 and all requests in the reqs array have
1862 * been submitted. In error case this function returns -1, and any of the
1863 * requests may or may not be submitted yet. In particular, this means that the
1864 * callback will be called for some of the requests, for others it won't. The
1865 * caller must check the error field of the BlockRequest to wait for the right
1866 * callbacks (if error != 0, no callback will be called).
1867 *
1868 * The implementation may modify the contents of the reqs array, e.g. to merge
1869 * requests. However, the fields opaque and error are left unmodified as they
1870 * are used to signal failure for a single request to the caller.
1871 */
1872int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
1873{
1874 MultiwriteCB *mcb;
1875 int i;
1876
1877 /* don't submit writes if we don't have a medium */
1878 if (bs->drv == NULL) {
1879 for (i = 0; i < num_reqs; i++) {
1880 reqs[i].error = -ENOMEDIUM;
1881 }
1882 return -1;
1883 }
1884
1885 if (num_reqs == 0) {
1886 return 0;
1887 }
1888
1889 // Create MultiwriteCB structure
1890 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
1891 mcb->num_requests = 0;
1892 mcb->num_callbacks = num_reqs;
1893
1894 for (i = 0; i < num_reqs; i++) {
1895 mcb->callbacks[i].cb = reqs[i].cb;
1896 mcb->callbacks[i].opaque = reqs[i].opaque;
1897 }
1898
1899 // Check for mergable requests
1900 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
1901
1902 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
1903
1904 /* Run the aio requests. */
1905 mcb->num_requests = num_reqs;
1906 for (i = 0; i < num_reqs; i++) {
1907 bdrv_co_aio_rw_vector(bs, reqs[i].sector, reqs[i].qiov,
1908 reqs[i].nb_sectors, reqs[i].flags,
1909 multiwrite_cb, mcb,
1910 true);
1911 }
1912
1913 return 0;
1914}
1915
1916void bdrv_aio_cancel(BlockAIOCB *acb)
1917{
1918 qemu_aio_ref(acb);
1919 bdrv_aio_cancel_async(acb);
1920 while (acb->refcnt > 1) {
1921 if (acb->aiocb_info->get_aio_context) {
1922 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
1923 } else if (acb->bs) {
1924 aio_poll(bdrv_get_aio_context(acb->bs), true);
1925 } else {
1926 abort();
1927 }
1928 }
1929 qemu_aio_unref(acb);
1930}
1931
1932/* Async version of aio cancel. The caller is not blocked if the acb implements
1933 * cancel_async, otherwise we do nothing and let the request normally complete.
1934 * In either case the completion callback must be called. */
1935void bdrv_aio_cancel_async(BlockAIOCB *acb)
1936{
1937 if (acb->aiocb_info->cancel_async) {
1938 acb->aiocb_info->cancel_async(acb);
1939 }
1940}
1941
1942/**************************************************************/
1943/* async block device emulation */
1944
1945typedef struct BlockAIOCBSync {
1946 BlockAIOCB common;
1947 QEMUBH *bh;
1948 int ret;
1949 /* vector translation state */
1950 QEMUIOVector *qiov;
1951 uint8_t *bounce;
1952 int is_write;
1953} BlockAIOCBSync;
1954
1955static const AIOCBInfo bdrv_em_aiocb_info = {
1956 .aiocb_size = sizeof(BlockAIOCBSync),
1957};
1958
1959static void bdrv_aio_bh_cb(void *opaque)
1960{
1961 BlockAIOCBSync *acb = opaque;
1962
1963 if (!acb->is_write && acb->ret >= 0) {
1964 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
1965 }
1966 qemu_vfree(acb->bounce);
1967 acb->common.cb(acb->common.opaque, acb->ret);
1968 qemu_bh_delete(acb->bh);
1969 acb->bh = NULL;
1970 qemu_aio_unref(acb);
1971}
1972
1973static BlockAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
1974 int64_t sector_num,
1975 QEMUIOVector *qiov,
1976 int nb_sectors,
1977 BlockCompletionFunc *cb,
1978 void *opaque,
1979 int is_write)
1980
1981{
1982 BlockAIOCBSync *acb;
1983
1984 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
1985 acb->is_write = is_write;
1986 acb->qiov = qiov;
1987 acb->bounce = qemu_try_blockalign(bs, qiov->size);
1988 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_aio_bh_cb, acb);
1989
1990 if (acb->bounce == NULL) {
1991 acb->ret = -ENOMEM;
1992 } else if (is_write) {
1993 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
1994 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
1995 } else {
1996 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
1997 }
1998
1999 qemu_bh_schedule(acb->bh);
2000
2001 return &acb->common;
2002}
2003
2004static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
2005 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
2006 BlockCompletionFunc *cb, void *opaque)
2007{
2008 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
2009}
2010
2011static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
2012 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
2013 BlockCompletionFunc *cb, void *opaque)
2014{
2015 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
2016}
2017
2018
2019typedef struct BlockAIOCBCoroutine {
2020 BlockAIOCB common;
2021 BlockRequest req;
2022 bool is_write;
2023 bool need_bh;
2024 bool *done;
2025 QEMUBH* bh;
2026} BlockAIOCBCoroutine;
2027
2028static const AIOCBInfo bdrv_em_co_aiocb_info = {
2029 .aiocb_size = sizeof(BlockAIOCBCoroutine),
2030};
2031
2032static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
2033{
2034 if (!acb->need_bh) {
2035 acb->common.cb(acb->common.opaque, acb->req.error);
2036 qemu_aio_unref(acb);
2037 }
2038}
2039
2040static void bdrv_co_em_bh(void *opaque)
2041{
2042 BlockAIOCBCoroutine *acb = opaque;
2043
2044 assert(!acb->need_bh);
2045 qemu_bh_delete(acb->bh);
2046 bdrv_co_complete(acb);
2047}
2048
2049static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
2050{
2051 acb->need_bh = false;
2052 if (acb->req.error != -EINPROGRESS) {
2053 BlockDriverState *bs = acb->common.bs;
2054
2055 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
2056 qemu_bh_schedule(acb->bh);
2057 }
2058}
2059
2060/* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
2061static void coroutine_fn bdrv_co_do_rw(void *opaque)
2062{
2063 BlockAIOCBCoroutine *acb = opaque;
2064 BlockDriverState *bs = acb->common.bs;
2065
2066 if (!acb->is_write) {
2067 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
2068 acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2069 } else {
2070 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
2071 acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2072 }
2073
2074 bdrv_co_complete(acb);
2075}
2076
2077static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
2078 int64_t sector_num,
2079 QEMUIOVector *qiov,
2080 int nb_sectors,
2081 BdrvRequestFlags flags,
2082 BlockCompletionFunc *cb,
2083 void *opaque,
2084 bool is_write)
2085{
2086 Coroutine *co;
2087 BlockAIOCBCoroutine *acb;
2088
2089 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2090 acb->need_bh = true;
2091 acb->req.error = -EINPROGRESS;
2092 acb->req.sector = sector_num;
2093 acb->req.nb_sectors = nb_sectors;
2094 acb->req.qiov = qiov;
2095 acb->req.flags = flags;
2096 acb->is_write = is_write;
2097
2098 co = qemu_coroutine_create(bdrv_co_do_rw);
2099 qemu_coroutine_enter(co, acb);
2100
2101 bdrv_co_maybe_schedule_bh(acb);
2102 return &acb->common;
2103}
2104
2105static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
2106{
2107 BlockAIOCBCoroutine *acb = opaque;
2108 BlockDriverState *bs = acb->common.bs;
2109
2110 acb->req.error = bdrv_co_flush(bs);
2111 bdrv_co_complete(acb);
2112}
2113
2114BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
2115 BlockCompletionFunc *cb, void *opaque)
2116{
2117 trace_bdrv_aio_flush(bs, opaque);
2118
2119 Coroutine *co;
2120 BlockAIOCBCoroutine *acb;
2121
2122 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2123 acb->need_bh = true;
2124 acb->req.error = -EINPROGRESS;
2125
2126 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
2127 qemu_coroutine_enter(co, acb);
2128
2129 bdrv_co_maybe_schedule_bh(acb);
2130 return &acb->common;
2131}
2132
2133static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
2134{
2135 BlockAIOCBCoroutine *acb = opaque;
2136 BlockDriverState *bs = acb->common.bs;
2137
2138 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
2139 bdrv_co_complete(acb);
2140}
2141
2142BlockAIOCB *bdrv_aio_discard(BlockDriverState *bs,
2143 int64_t sector_num, int nb_sectors,
2144 BlockCompletionFunc *cb, void *opaque)
2145{
2146 Coroutine *co;
2147 BlockAIOCBCoroutine *acb;
2148
2149 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
2150
2151 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2152 acb->need_bh = true;
2153 acb->req.error = -EINPROGRESS;
2154 acb->req.sector = sector_num;
2155 acb->req.nb_sectors = nb_sectors;
2156 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
2157 qemu_coroutine_enter(co, acb);
2158
2159 bdrv_co_maybe_schedule_bh(acb);
2160 return &acb->common;
2161}
2162
2163void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
2164 BlockCompletionFunc *cb, void *opaque)
2165{
2166 BlockAIOCB *acb;
2167
2168 acb = g_slice_alloc(aiocb_info->aiocb_size);
2169 acb->aiocb_info = aiocb_info;
2170 acb->bs = bs;
2171 acb->cb = cb;
2172 acb->opaque = opaque;
2173 acb->refcnt = 1;
2174 return acb;
2175}
2176
2177void qemu_aio_ref(void *p)
2178{
2179 BlockAIOCB *acb = p;
2180 acb->refcnt++;
2181}
2182
2183void qemu_aio_unref(void *p)
2184{
2185 BlockAIOCB *acb = p;
2186 assert(acb->refcnt > 0);
2187 if (--acb->refcnt == 0) {
2188 g_slice_free1(acb->aiocb_info->aiocb_size, acb);
2189 }
2190}
2191
2192/**************************************************************/
2193/* Coroutine block device emulation */
2194
2195typedef struct CoroutineIOCompletion {
2196 Coroutine *coroutine;
2197 int ret;
2198} CoroutineIOCompletion;
2199
2200static void bdrv_co_io_em_complete(void *opaque, int ret)
2201{
2202 CoroutineIOCompletion *co = opaque;
2203
2204 co->ret = ret;
2205 qemu_coroutine_enter(co->coroutine, NULL);
2206}
2207
2208static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
2209 int nb_sectors, QEMUIOVector *iov,
2210 bool is_write)
2211{
2212 CoroutineIOCompletion co = {
2213 .coroutine = qemu_coroutine_self(),
2214 };
2215 BlockAIOCB *acb;
2216
2217 if (is_write) {
2218 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
2219 bdrv_co_io_em_complete, &co);
2220 } else {
2221 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
2222 bdrv_co_io_em_complete, &co);
2223 }
2224
2225 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
2226 if (!acb) {
2227 return -EIO;
2228 }
2229 qemu_coroutine_yield();
2230
2231 return co.ret;
2232}
2233
2234static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
2235 int64_t sector_num, int nb_sectors,
2236 QEMUIOVector *iov)
2237{
2238 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
2239}
2240
2241static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
2242 int64_t sector_num, int nb_sectors,
2243 QEMUIOVector *iov)
2244{
2245 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
2246}
2247
2248static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2249{
2250 RwCo *rwco = opaque;
2251
2252 rwco->ret = bdrv_co_flush(rwco->bs);
2253}
2254
2255int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2256{
2257 int ret;
2258
2259 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2260 return 0;
2261 }
2262
2263 /* Write back cached data to the OS even with cache=unsafe */
2264 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2265 if (bs->drv->bdrv_co_flush_to_os) {
2266 ret = bs->drv->bdrv_co_flush_to_os(bs);
2267 if (ret < 0) {
2268 return ret;
2269 }
2270 }
2271
2272 /* But don't actually force it to the disk with cache=unsafe */
2273 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2274 goto flush_parent;
2275 }
2276
2277 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2278 if (bs->drv->bdrv_co_flush_to_disk) {
2279 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2280 } else if (bs->drv->bdrv_aio_flush) {
2281 BlockAIOCB *acb;
2282 CoroutineIOCompletion co = {
2283 .coroutine = qemu_coroutine_self(),
2284 };
2285
2286 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2287 if (acb == NULL) {
2288 ret = -EIO;
2289 } else {
2290 qemu_coroutine_yield();
2291 ret = co.ret;
2292 }
2293 } else {
2294 /*
2295 * Some block drivers always operate in either writethrough or unsafe
2296 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2297 * know how the server works (because the behaviour is hardcoded or
2298 * depends on server-side configuration), so we can't ensure that
2299 * everything is safe on disk. Returning an error doesn't work because
2300 * that would break guests even if the server operates in writethrough
2301 * mode.
2302 *
2303 * Let's hope the user knows what he's doing.
2304 */
2305 ret = 0;
2306 }
2307 if (ret < 0) {
2308 return ret;
2309 }
2310
2311 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2312 * in the case of cache=unsafe, so there are no useless flushes.
2313 */
2314flush_parent:
2315 return bdrv_co_flush(bs->file);
2316}
2317
2318int bdrv_flush(BlockDriverState *bs)
2319{
2320 Coroutine *co;
2321 RwCo rwco = {
2322 .bs = bs,
2323 .ret = NOT_DONE,
2324 };
2325
2326 if (qemu_in_coroutine()) {
2327 /* Fast-path if already in coroutine context */
2328 bdrv_flush_co_entry(&rwco);
2329 } else {
2330 AioContext *aio_context = bdrv_get_aio_context(bs);
2331
2332 co = qemu_coroutine_create(bdrv_flush_co_entry);
2333 qemu_coroutine_enter(co, &rwco);
2334 while (rwco.ret == NOT_DONE) {
2335 aio_poll(aio_context, true);
2336 }
2337 }
2338
2339 return rwco.ret;
2340}
2341
2342typedef struct DiscardCo {
2343 BlockDriverState *bs;
2344 int64_t sector_num;
2345 int nb_sectors;
2346 int ret;
2347} DiscardCo;
2348static void coroutine_fn bdrv_discard_co_entry(void *opaque)
2349{
2350 DiscardCo *rwco = opaque;
2351
2352 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
2353}
2354
2355int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
2356 int nb_sectors)
2357{
2358 int max_discard, ret;
2359
2360 if (!bs->drv) {
2361 return -ENOMEDIUM;
2362 }
2363
2364 ret = bdrv_check_request(bs, sector_num, nb_sectors);
2365 if (ret < 0) {
2366 return ret;
2367 } else if (bs->read_only) {
eaf5fe2d 2368 return -EPERM;
61007b31
SH
2369 }
2370
2371 bdrv_reset_dirty(bs, sector_num, nb_sectors);
2372
2373 /* Do nothing if disabled. */
2374 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2375 return 0;
2376 }
2377
2378 if (!bs->drv->bdrv_co_discard && !bs->drv->bdrv_aio_discard) {
2379 return 0;
2380 }
2381
2382 max_discard = MIN_NON_ZERO(bs->bl.max_discard, BDRV_REQUEST_MAX_SECTORS);
2383 while (nb_sectors > 0) {
2384 int ret;
2385 int num = nb_sectors;
2386
2387 /* align request */
2388 if (bs->bl.discard_alignment &&
2389 num >= bs->bl.discard_alignment &&
2390 sector_num % bs->bl.discard_alignment) {
2391 if (num > bs->bl.discard_alignment) {
2392 num = bs->bl.discard_alignment;
2393 }
2394 num -= sector_num % bs->bl.discard_alignment;
2395 }
2396
2397 /* limit request size */
2398 if (num > max_discard) {
2399 num = max_discard;
2400 }
2401
2402 if (bs->drv->bdrv_co_discard) {
2403 ret = bs->drv->bdrv_co_discard(bs, sector_num, num);
2404 } else {
2405 BlockAIOCB *acb;
2406 CoroutineIOCompletion co = {
2407 .coroutine = qemu_coroutine_self(),
2408 };
2409
2410 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
2411 bdrv_co_io_em_complete, &co);
2412 if (acb == NULL) {
2413 return -EIO;
2414 } else {
2415 qemu_coroutine_yield();
2416 ret = co.ret;
2417 }
2418 }
2419 if (ret && ret != -ENOTSUP) {
2420 return ret;
2421 }
2422
2423 sector_num += num;
2424 nb_sectors -= num;
2425 }
2426 return 0;
2427}
2428
2429int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
2430{
2431 Coroutine *co;
2432 DiscardCo rwco = {
2433 .bs = bs,
2434 .sector_num = sector_num,
2435 .nb_sectors = nb_sectors,
2436 .ret = NOT_DONE,
2437 };
2438
2439 if (qemu_in_coroutine()) {
2440 /* Fast-path if already in coroutine context */
2441 bdrv_discard_co_entry(&rwco);
2442 } else {
2443 AioContext *aio_context = bdrv_get_aio_context(bs);
2444
2445 co = qemu_coroutine_create(bdrv_discard_co_entry);
2446 qemu_coroutine_enter(co, &rwco);
2447 while (rwco.ret == NOT_DONE) {
2448 aio_poll(aio_context, true);
2449 }
2450 }
2451
2452 return rwco.ret;
2453}
2454
2455/* needed for generic scsi interface */
2456
2457int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
2458{
2459 BlockDriver *drv = bs->drv;
2460
2461 if (drv && drv->bdrv_ioctl)
2462 return drv->bdrv_ioctl(bs, req, buf);
2463 return -ENOTSUP;
2464}
2465
2466BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
2467 unsigned long int req, void *buf,
2468 BlockCompletionFunc *cb, void *opaque)
2469{
2470 BlockDriver *drv = bs->drv;
2471
2472 if (drv && drv->bdrv_aio_ioctl)
2473 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
2474 return NULL;
2475}
2476
2477void *qemu_blockalign(BlockDriverState *bs, size_t size)
2478{
2479 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2480}
2481
2482void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2483{
2484 return memset(qemu_blockalign(bs, size), 0, size);
2485}
2486
2487void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2488{
2489 size_t align = bdrv_opt_mem_align(bs);
2490
2491 /* Ensure that NULL is never returned on success */
2492 assert(align > 0);
2493 if (size == 0) {
2494 size = align;
2495 }
2496
2497 return qemu_try_memalign(align, size);
2498}
2499
2500void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2501{
2502 void *mem = qemu_try_blockalign(bs, size);
2503
2504 if (mem) {
2505 memset(mem, 0, size);
2506 }
2507
2508 return mem;
2509}
2510
2511/*
2512 * Check if all memory in this vector is sector aligned.
2513 */
2514bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2515{
2516 int i;
4196d2f0 2517 size_t alignment = bdrv_min_mem_align(bs);
61007b31
SH
2518
2519 for (i = 0; i < qiov->niov; i++) {
2520 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2521 return false;
2522 }
2523 if (qiov->iov[i].iov_len % alignment) {
2524 return false;
2525 }
2526 }
2527
2528 return true;
2529}
2530
2531void bdrv_add_before_write_notifier(BlockDriverState *bs,
2532 NotifierWithReturn *notifier)
2533{
2534 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2535}
2536
2537void bdrv_io_plug(BlockDriverState *bs)
2538{
2539 BlockDriver *drv = bs->drv;
2540 if (drv && drv->bdrv_io_plug) {
2541 drv->bdrv_io_plug(bs);
2542 } else if (bs->file) {
2543 bdrv_io_plug(bs->file);
2544 }
2545}
2546
2547void bdrv_io_unplug(BlockDriverState *bs)
2548{
2549 BlockDriver *drv = bs->drv;
2550 if (drv && drv->bdrv_io_unplug) {
2551 drv->bdrv_io_unplug(bs);
2552 } else if (bs->file) {
2553 bdrv_io_unplug(bs->file);
2554 }
2555}
2556
2557void bdrv_flush_io_queue(BlockDriverState *bs)
2558{
2559 BlockDriver *drv = bs->drv;
2560 if (drv && drv->bdrv_flush_io_queue) {
2561 drv->bdrv_flush_io_queue(bs);
2562 } else if (bs->file) {
2563 bdrv_flush_io_queue(bs->file);
2564 }
2565}