]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
Allocate guest memory on host page boundaries (Hollis Blanchard)
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
67b915a5 20#include "config.h"
d5a8f07c 21#ifdef _WIN32
4fddf62a 22#define WIN32_LEAN_AND_MEAN
d5a8f07c
FB
23#include <windows.h>
24#else
a98d49b1 25#include <sys/types.h>
d5a8f07c
FB
26#include <sys/mman.h>
27#endif
54936004
FB
28#include <stdlib.h>
29#include <stdio.h>
30#include <stdarg.h>
31#include <string.h>
32#include <errno.h>
33#include <unistd.h>
34#include <inttypes.h>
35
6180a181
FB
36#include "cpu.h"
37#include "exec-all.h"
ca10f867 38#include "qemu-common.h"
b67d9a52 39#include "tcg.h"
b3c7724c 40#include "hw/hw.h"
74576198 41#include "osdep.h"
7ba1e619 42#include "kvm.h"
53a5960a
PB
43#if defined(CONFIG_USER_ONLY)
44#include <qemu.h>
45#endif
54936004 46
fd6ce8f6 47//#define DEBUG_TB_INVALIDATE
66e85a21 48//#define DEBUG_FLUSH
9fa3e853 49//#define DEBUG_TLB
67d3b957 50//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
51
52/* make various TB consistency checks */
5fafdf24
TS
53//#define DEBUG_TB_CHECK
54//#define DEBUG_TLB_CHECK
fd6ce8f6 55
1196be37 56//#define DEBUG_IOPORT
db7b5426 57//#define DEBUG_SUBPAGE
1196be37 58
99773bd4
PB
59#if !defined(CONFIG_USER_ONLY)
60/* TB consistency checks only implemented for usermode emulation. */
61#undef DEBUG_TB_CHECK
62#endif
63
9fa3e853
FB
64#define SMC_BITMAP_USE_THRESHOLD 10
65
66#define MMAP_AREA_START 0x00000000
67#define MMAP_AREA_END 0xa8000000
fd6ce8f6 68
108c49b8
FB
69#if defined(TARGET_SPARC64)
70#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
71#elif defined(TARGET_SPARC)
72#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
73#elif defined(TARGET_ALPHA)
74#define TARGET_PHYS_ADDR_SPACE_BITS 42
75#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
76#elif defined(TARGET_PPC64)
77#define TARGET_PHYS_ADDR_SPACE_BITS 42
00f82b8a
AJ
78#elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
79#define TARGET_PHYS_ADDR_SPACE_BITS 42
80#elif defined(TARGET_I386) && !defined(USE_KQEMU)
81#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8
FB
82#else
83/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
84#define TARGET_PHYS_ADDR_SPACE_BITS 32
85#endif
86
bdaf78e0 87static TranslationBlock *tbs;
26a5f13b 88int code_gen_max_blocks;
9fa3e853 89TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 90static int nb_tbs;
eb51d102
FB
91/* any access to the tbs or the page table must use this lock */
92spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 93
141ac468
BS
94#if defined(__arm__) || defined(__sparc_v9__)
95/* The prologue must be reachable with a direct jump. ARM and Sparc64
96 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
97 section close to code segment. */
98#define code_gen_section \
99 __attribute__((__section__(".gen_code"))) \
100 __attribute__((aligned (32)))
101#else
102#define code_gen_section \
103 __attribute__((aligned (32)))
104#endif
105
106uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
107static uint8_t *code_gen_buffer;
108static unsigned long code_gen_buffer_size;
26a5f13b 109/* threshold to flush the translated code buffer */
bdaf78e0 110static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
111uint8_t *code_gen_ptr;
112
e2eef170 113#if !defined(CONFIG_USER_ONLY)
00f82b8a 114ram_addr_t phys_ram_size;
9fa3e853
FB
115int phys_ram_fd;
116uint8_t *phys_ram_base;
1ccde1cb 117uint8_t *phys_ram_dirty;
74576198 118static int in_migration;
e9a1ab19 119static ram_addr_t phys_ram_alloc_offset = 0;
e2eef170 120#endif
9fa3e853 121
6a00d601
FB
122CPUState *first_cpu;
123/* current CPU in the current thread. It is only valid inside
124 cpu_exec() */
5fafdf24 125CPUState *cpu_single_env;
2e70f6ef 126/* 0 = Do not count executed instructions.
bf20dc07 127 1 = Precise instruction counting.
2e70f6ef
PB
128 2 = Adaptive rate instruction counting. */
129int use_icount = 0;
130/* Current instruction counter. While executing translated code this may
131 include some instructions that have not yet been executed. */
132int64_t qemu_icount;
6a00d601 133
54936004 134typedef struct PageDesc {
92e873b9 135 /* list of TBs intersecting this ram page */
fd6ce8f6 136 TranslationBlock *first_tb;
9fa3e853
FB
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141#if defined(CONFIG_USER_ONLY)
142 unsigned long flags;
143#endif
54936004
FB
144} PageDesc;
145
92e873b9 146typedef struct PhysPageDesc {
0f459d16 147 /* offset in host memory of the page + io_index in the low bits */
00f82b8a 148 ram_addr_t phys_offset;
92e873b9
FB
149} PhysPageDesc;
150
54936004 151#define L2_BITS 10
bedb69ea
JM
152#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
153/* XXX: this is a temporary hack for alpha target.
154 * In the future, this is to be replaced by a multi-level table
155 * to actually be able to handle the complete 64 bits address space.
156 */
157#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
158#else
03875444 159#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 160#endif
54936004
FB
161
162#define L1_SIZE (1 << L1_BITS)
163#define L2_SIZE (1 << L2_BITS)
164
83fb7adf
FB
165unsigned long qemu_real_host_page_size;
166unsigned long qemu_host_page_bits;
167unsigned long qemu_host_page_size;
168unsigned long qemu_host_page_mask;
54936004 169
92e873b9 170/* XXX: for system emulation, it could just be an array */
54936004 171static PageDesc *l1_map[L1_SIZE];
bdaf78e0 172static PhysPageDesc **l1_phys_map;
54936004 173
e2eef170
PB
174#if !defined(CONFIG_USER_ONLY)
175static void io_mem_init(void);
176
33417e70 177/* io memory support */
33417e70
FB
178CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
179CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 180void *io_mem_opaque[IO_MEM_NB_ENTRIES];
33417e70 181static int io_mem_nb;
6658ffb8
PB
182static int io_mem_watch;
183#endif
33417e70 184
34865134 185/* log support */
d9b630fd 186static const char *logfilename = "/tmp/qemu.log";
34865134
FB
187FILE *logfile;
188int loglevel;
e735b91c 189static int log_append = 0;
34865134 190
e3db7226
FB
191/* statistics */
192static int tlb_flush_count;
193static int tb_flush_count;
194static int tb_phys_invalidate_count;
195
db7b5426
BS
196#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
197typedef struct subpage_t {
198 target_phys_addr_t base;
3ee89922
BS
199 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
200 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
201 void *opaque[TARGET_PAGE_SIZE][2][4];
db7b5426
BS
202} subpage_t;
203
7cb69cae
FB
204#ifdef _WIN32
205static void map_exec(void *addr, long size)
206{
207 DWORD old_protect;
208 VirtualProtect(addr, size,
209 PAGE_EXECUTE_READWRITE, &old_protect);
210
211}
212#else
213static void map_exec(void *addr, long size)
214{
4369415f 215 unsigned long start, end, page_size;
7cb69cae 216
4369415f 217 page_size = getpagesize();
7cb69cae 218 start = (unsigned long)addr;
4369415f 219 start &= ~(page_size - 1);
7cb69cae
FB
220
221 end = (unsigned long)addr + size;
4369415f
FB
222 end += page_size - 1;
223 end &= ~(page_size - 1);
7cb69cae
FB
224
225 mprotect((void *)start, end - start,
226 PROT_READ | PROT_WRITE | PROT_EXEC);
227}
228#endif
229
b346ff46 230static void page_init(void)
54936004 231{
83fb7adf 232 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 233 TARGET_PAGE_SIZE */
15ed71ba 234 qemu_real_host_page_size = qemu_getpagesize();
83fb7adf
FB
235 if (qemu_host_page_size == 0)
236 qemu_host_page_size = qemu_real_host_page_size;
237 if (qemu_host_page_size < TARGET_PAGE_SIZE)
238 qemu_host_page_size = TARGET_PAGE_SIZE;
239 qemu_host_page_bits = 0;
240 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
241 qemu_host_page_bits++;
242 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
243 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
244 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
245
246#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
247 {
248 long long startaddr, endaddr;
249 FILE *f;
250 int n;
251
c8a706fe 252 mmap_lock();
0776590d 253 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
254 f = fopen("/proc/self/maps", "r");
255 if (f) {
256 do {
257 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
258 if (n == 2) {
e0b8d65a
BS
259 startaddr = MIN(startaddr,
260 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
261 endaddr = MIN(endaddr,
262 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 263 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
264 TARGET_PAGE_ALIGN(endaddr),
265 PAGE_RESERVED);
266 }
267 } while (!feof(f));
268 fclose(f);
269 }
c8a706fe 270 mmap_unlock();
50a9569b
AZ
271 }
272#endif
54936004
FB
273}
274
434929bf 275static inline PageDesc **page_l1_map(target_ulong index)
54936004 276{
17e2377a
PB
277#if TARGET_LONG_BITS > 32
278 /* Host memory outside guest VM. For 32-bit targets we have already
279 excluded high addresses. */
d8173e0f 280 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
281 return NULL;
282#endif
434929bf
AL
283 return &l1_map[index >> L2_BITS];
284}
285
286static inline PageDesc *page_find_alloc(target_ulong index)
287{
288 PageDesc **lp, *p;
289 lp = page_l1_map(index);
290 if (!lp)
291 return NULL;
292
54936004
FB
293 p = *lp;
294 if (!p) {
295 /* allocate if not found */
17e2377a
PB
296#if defined(CONFIG_USER_ONLY)
297 unsigned long addr;
298 size_t len = sizeof(PageDesc) * L2_SIZE;
299 /* Don't use qemu_malloc because it may recurse. */
300 p = mmap(0, len, PROT_READ | PROT_WRITE,
301 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 302 *lp = p;
17e2377a
PB
303 addr = h2g(p);
304 if (addr == (target_ulong)addr) {
305 page_set_flags(addr & TARGET_PAGE_MASK,
306 TARGET_PAGE_ALIGN(addr + len),
307 PAGE_RESERVED);
308 }
309#else
310 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
311 *lp = p;
312#endif
54936004
FB
313 }
314 return p + (index & (L2_SIZE - 1));
315}
316
00f82b8a 317static inline PageDesc *page_find(target_ulong index)
54936004 318{
434929bf
AL
319 PageDesc **lp, *p;
320 lp = page_l1_map(index);
321 if (!lp)
322 return NULL;
54936004 323
434929bf 324 p = *lp;
54936004
FB
325 if (!p)
326 return 0;
fd6ce8f6
FB
327 return p + (index & (L2_SIZE - 1));
328}
329
108c49b8 330static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 331{
108c49b8 332 void **lp, **p;
e3f4e2a4 333 PhysPageDesc *pd;
92e873b9 334
108c49b8
FB
335 p = (void **)l1_phys_map;
336#if TARGET_PHYS_ADDR_SPACE_BITS > 32
337
338#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
339#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
340#endif
341 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
342 p = *lp;
343 if (!p) {
344 /* allocate if not found */
108c49b8
FB
345 if (!alloc)
346 return NULL;
347 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
348 memset(p, 0, sizeof(void *) * L1_SIZE);
349 *lp = p;
350 }
351#endif
352 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
353 pd = *lp;
354 if (!pd) {
355 int i;
108c49b8
FB
356 /* allocate if not found */
357 if (!alloc)
358 return NULL;
e3f4e2a4
PB
359 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
360 *lp = pd;
361 for (i = 0; i < L2_SIZE; i++)
362 pd[i].phys_offset = IO_MEM_UNASSIGNED;
92e873b9 363 }
e3f4e2a4 364 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
365}
366
108c49b8 367static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 368{
108c49b8 369 return phys_page_find_alloc(index, 0);
92e873b9
FB
370}
371
9fa3e853 372#if !defined(CONFIG_USER_ONLY)
6a00d601 373static void tlb_protect_code(ram_addr_t ram_addr);
5fafdf24 374static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 375 target_ulong vaddr);
c8a706fe
PB
376#define mmap_lock() do { } while(0)
377#define mmap_unlock() do { } while(0)
9fa3e853 378#endif
fd6ce8f6 379
4369415f
FB
380#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
381
382#if defined(CONFIG_USER_ONLY)
383/* Currently it is not recommanded to allocate big chunks of data in
384 user mode. It will change when a dedicated libc will be used */
385#define USE_STATIC_CODE_GEN_BUFFER
386#endif
387
388#ifdef USE_STATIC_CODE_GEN_BUFFER
389static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
390#endif
391
8fcd3692 392static void code_gen_alloc(unsigned long tb_size)
26a5f13b 393{
4369415f
FB
394#ifdef USE_STATIC_CODE_GEN_BUFFER
395 code_gen_buffer = static_code_gen_buffer;
396 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
397 map_exec(code_gen_buffer, code_gen_buffer_size);
398#else
26a5f13b
FB
399 code_gen_buffer_size = tb_size;
400 if (code_gen_buffer_size == 0) {
4369415f
FB
401#if defined(CONFIG_USER_ONLY)
402 /* in user mode, phys_ram_size is not meaningful */
403 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
404#else
26a5f13b 405 /* XXX: needs ajustments */
174a9a1f 406 code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
4369415f 407#endif
26a5f13b
FB
408 }
409 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
410 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
411 /* The code gen buffer location may have constraints depending on
412 the host cpu and OS */
413#if defined(__linux__)
414 {
415 int flags;
141ac468
BS
416 void *start = NULL;
417
26a5f13b
FB
418 flags = MAP_PRIVATE | MAP_ANONYMOUS;
419#if defined(__x86_64__)
420 flags |= MAP_32BIT;
421 /* Cannot map more than that */
422 if (code_gen_buffer_size > (800 * 1024 * 1024))
423 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
424#elif defined(__sparc_v9__)
425 // Map the buffer below 2G, so we can use direct calls and branches
426 flags |= MAP_FIXED;
427 start = (void *) 0x60000000UL;
428 if (code_gen_buffer_size > (512 * 1024 * 1024))
429 code_gen_buffer_size = (512 * 1024 * 1024);
26a5f13b 430#endif
141ac468
BS
431 code_gen_buffer = mmap(start, code_gen_buffer_size,
432 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
433 flags, -1, 0);
434 if (code_gen_buffer == MAP_FAILED) {
435 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
436 exit(1);
437 }
438 }
06e67a82
AL
439#elif defined(__FreeBSD__)
440 {
441 int flags;
442 void *addr = NULL;
443 flags = MAP_PRIVATE | MAP_ANONYMOUS;
444#if defined(__x86_64__)
445 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
446 * 0x40000000 is free */
447 flags |= MAP_FIXED;
448 addr = (void *)0x40000000;
449 /* Cannot map more than that */
450 if (code_gen_buffer_size > (800 * 1024 * 1024))
451 code_gen_buffer_size = (800 * 1024 * 1024);
452#endif
453 code_gen_buffer = mmap(addr, code_gen_buffer_size,
454 PROT_WRITE | PROT_READ | PROT_EXEC,
455 flags, -1, 0);
456 if (code_gen_buffer == MAP_FAILED) {
457 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
458 exit(1);
459 }
460 }
26a5f13b
FB
461#else
462 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
463 if (!code_gen_buffer) {
464 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
465 exit(1);
466 }
467 map_exec(code_gen_buffer, code_gen_buffer_size);
468#endif
4369415f 469#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
470 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
471 code_gen_buffer_max_size = code_gen_buffer_size -
472 code_gen_max_block_size();
473 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
474 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
475}
476
477/* Must be called before using the QEMU cpus. 'tb_size' is the size
478 (in bytes) allocated to the translation buffer. Zero means default
479 size. */
480void cpu_exec_init_all(unsigned long tb_size)
481{
26a5f13b
FB
482 cpu_gen_init();
483 code_gen_alloc(tb_size);
484 code_gen_ptr = code_gen_buffer;
4369415f 485 page_init();
e2eef170 486#if !defined(CONFIG_USER_ONLY)
26a5f13b 487 io_mem_init();
e2eef170 488#endif
26a5f13b
FB
489}
490
9656f324
PB
491#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
492
493#define CPU_COMMON_SAVE_VERSION 1
494
495static void cpu_common_save(QEMUFile *f, void *opaque)
496{
497 CPUState *env = opaque;
498
499 qemu_put_be32s(f, &env->halted);
500 qemu_put_be32s(f, &env->interrupt_request);
501}
502
503static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
504{
505 CPUState *env = opaque;
506
507 if (version_id != CPU_COMMON_SAVE_VERSION)
508 return -EINVAL;
509
510 qemu_get_be32s(f, &env->halted);
75f482ae 511 qemu_get_be32s(f, &env->interrupt_request);
9656f324
PB
512 tlb_flush(env, 1);
513
514 return 0;
515}
516#endif
517
6a00d601 518void cpu_exec_init(CPUState *env)
fd6ce8f6 519{
6a00d601
FB
520 CPUState **penv;
521 int cpu_index;
522
6a00d601
FB
523 env->next_cpu = NULL;
524 penv = &first_cpu;
525 cpu_index = 0;
526 while (*penv != NULL) {
527 penv = (CPUState **)&(*penv)->next_cpu;
528 cpu_index++;
529 }
530 env->cpu_index = cpu_index;
6658ffb8 531 env->nb_watchpoints = 0;
6a00d601 532 *penv = env;
b3c7724c 533#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
9656f324
PB
534 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
535 cpu_common_save, cpu_common_load, env);
b3c7724c
PB
536 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
537 cpu_save, cpu_load, env);
538#endif
fd6ce8f6
FB
539}
540
9fa3e853
FB
541static inline void invalidate_page_bitmap(PageDesc *p)
542{
543 if (p->code_bitmap) {
59817ccb 544 qemu_free(p->code_bitmap);
9fa3e853
FB
545 p->code_bitmap = NULL;
546 }
547 p->code_write_count = 0;
548}
549
fd6ce8f6
FB
550/* set to NULL all the 'first_tb' fields in all PageDescs */
551static void page_flush_tb(void)
552{
553 int i, j;
554 PageDesc *p;
555
556 for(i = 0; i < L1_SIZE; i++) {
557 p = l1_map[i];
558 if (p) {
9fa3e853
FB
559 for(j = 0; j < L2_SIZE; j++) {
560 p->first_tb = NULL;
561 invalidate_page_bitmap(p);
562 p++;
563 }
fd6ce8f6
FB
564 }
565 }
566}
567
568/* flush all the translation blocks */
d4e8164f 569/* XXX: tb_flush is currently not thread safe */
6a00d601 570void tb_flush(CPUState *env1)
fd6ce8f6 571{
6a00d601 572 CPUState *env;
0124311e 573#if defined(DEBUG_FLUSH)
ab3d1727
BS
574 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
575 (unsigned long)(code_gen_ptr - code_gen_buffer),
576 nb_tbs, nb_tbs > 0 ?
577 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 578#endif
26a5f13b 579 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
580 cpu_abort(env1, "Internal error: code buffer overflow\n");
581
fd6ce8f6 582 nb_tbs = 0;
3b46e624 583
6a00d601
FB
584 for(env = first_cpu; env != NULL; env = env->next_cpu) {
585 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
586 }
9fa3e853 587
8a8a608f 588 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 589 page_flush_tb();
9fa3e853 590
fd6ce8f6 591 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
592 /* XXX: flush processor icache at this point if cache flush is
593 expensive */
e3db7226 594 tb_flush_count++;
fd6ce8f6
FB
595}
596
597#ifdef DEBUG_TB_CHECK
598
bc98a7ef 599static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
600{
601 TranslationBlock *tb;
602 int i;
603 address &= TARGET_PAGE_MASK;
99773bd4
PB
604 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
605 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
606 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
607 address >= tb->pc + tb->size)) {
608 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
99773bd4 609 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
610 }
611 }
612 }
613}
614
615/* verify that all the pages have correct rights for code */
616static void tb_page_check(void)
617{
618 TranslationBlock *tb;
619 int i, flags1, flags2;
3b46e624 620
99773bd4
PB
621 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
622 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
623 flags1 = page_get_flags(tb->pc);
624 flags2 = page_get_flags(tb->pc + tb->size - 1);
625 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
626 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 627 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
628 }
629 }
630 }
631}
632
bdaf78e0 633static void tb_jmp_check(TranslationBlock *tb)
d4e8164f
FB
634{
635 TranslationBlock *tb1;
636 unsigned int n1;
637
638 /* suppress any remaining jumps to this TB */
639 tb1 = tb->jmp_first;
640 for(;;) {
641 n1 = (long)tb1 & 3;
642 tb1 = (TranslationBlock *)((long)tb1 & ~3);
643 if (n1 == 2)
644 break;
645 tb1 = tb1->jmp_next[n1];
646 }
647 /* check end of list */
648 if (tb1 != tb) {
649 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
650 }
651}
652
fd6ce8f6
FB
653#endif
654
655/* invalidate one TB */
656static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
657 int next_offset)
658{
659 TranslationBlock *tb1;
660 for(;;) {
661 tb1 = *ptb;
662 if (tb1 == tb) {
663 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
664 break;
665 }
666 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
667 }
668}
669
9fa3e853
FB
670static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
671{
672 TranslationBlock *tb1;
673 unsigned int n1;
674
675 for(;;) {
676 tb1 = *ptb;
677 n1 = (long)tb1 & 3;
678 tb1 = (TranslationBlock *)((long)tb1 & ~3);
679 if (tb1 == tb) {
680 *ptb = tb1->page_next[n1];
681 break;
682 }
683 ptb = &tb1->page_next[n1];
684 }
685}
686
d4e8164f
FB
687static inline void tb_jmp_remove(TranslationBlock *tb, int n)
688{
689 TranslationBlock *tb1, **ptb;
690 unsigned int n1;
691
692 ptb = &tb->jmp_next[n];
693 tb1 = *ptb;
694 if (tb1) {
695 /* find tb(n) in circular list */
696 for(;;) {
697 tb1 = *ptb;
698 n1 = (long)tb1 & 3;
699 tb1 = (TranslationBlock *)((long)tb1 & ~3);
700 if (n1 == n && tb1 == tb)
701 break;
702 if (n1 == 2) {
703 ptb = &tb1->jmp_first;
704 } else {
705 ptb = &tb1->jmp_next[n1];
706 }
707 }
708 /* now we can suppress tb(n) from the list */
709 *ptb = tb->jmp_next[n];
710
711 tb->jmp_next[n] = NULL;
712 }
713}
714
715/* reset the jump entry 'n' of a TB so that it is not chained to
716 another TB */
717static inline void tb_reset_jump(TranslationBlock *tb, int n)
718{
719 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
720}
721
2e70f6ef 722void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 723{
6a00d601 724 CPUState *env;
8a40a180 725 PageDesc *p;
d4e8164f 726 unsigned int h, n1;
00f82b8a 727 target_phys_addr_t phys_pc;
8a40a180 728 TranslationBlock *tb1, *tb2;
3b46e624 729
8a40a180
FB
730 /* remove the TB from the hash list */
731 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
732 h = tb_phys_hash_func(phys_pc);
5fafdf24 733 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
734 offsetof(TranslationBlock, phys_hash_next));
735
736 /* remove the TB from the page list */
737 if (tb->page_addr[0] != page_addr) {
738 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
739 tb_page_remove(&p->first_tb, tb);
740 invalidate_page_bitmap(p);
741 }
742 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
743 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
744 tb_page_remove(&p->first_tb, tb);
745 invalidate_page_bitmap(p);
746 }
747
36bdbe54 748 tb_invalidated_flag = 1;
59817ccb 749
fd6ce8f6 750 /* remove the TB from the hash list */
8a40a180 751 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
752 for(env = first_cpu; env != NULL; env = env->next_cpu) {
753 if (env->tb_jmp_cache[h] == tb)
754 env->tb_jmp_cache[h] = NULL;
755 }
d4e8164f
FB
756
757 /* suppress this TB from the two jump lists */
758 tb_jmp_remove(tb, 0);
759 tb_jmp_remove(tb, 1);
760
761 /* suppress any remaining jumps to this TB */
762 tb1 = tb->jmp_first;
763 for(;;) {
764 n1 = (long)tb1 & 3;
765 if (n1 == 2)
766 break;
767 tb1 = (TranslationBlock *)((long)tb1 & ~3);
768 tb2 = tb1->jmp_next[n1];
769 tb_reset_jump(tb1, n1);
770 tb1->jmp_next[n1] = NULL;
771 tb1 = tb2;
772 }
773 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 774
e3db7226 775 tb_phys_invalidate_count++;
9fa3e853
FB
776}
777
778static inline void set_bits(uint8_t *tab, int start, int len)
779{
780 int end, mask, end1;
781
782 end = start + len;
783 tab += start >> 3;
784 mask = 0xff << (start & 7);
785 if ((start & ~7) == (end & ~7)) {
786 if (start < end) {
787 mask &= ~(0xff << (end & 7));
788 *tab |= mask;
789 }
790 } else {
791 *tab++ |= mask;
792 start = (start + 8) & ~7;
793 end1 = end & ~7;
794 while (start < end1) {
795 *tab++ = 0xff;
796 start += 8;
797 }
798 if (start < end) {
799 mask = ~(0xff << (end & 7));
800 *tab |= mask;
801 }
802 }
803}
804
805static void build_page_bitmap(PageDesc *p)
806{
807 int n, tb_start, tb_end;
808 TranslationBlock *tb;
3b46e624 809
b2a7081a 810 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
811 if (!p->code_bitmap)
812 return;
9fa3e853
FB
813
814 tb = p->first_tb;
815 while (tb != NULL) {
816 n = (long)tb & 3;
817 tb = (TranslationBlock *)((long)tb & ~3);
818 /* NOTE: this is subtle as a TB may span two physical pages */
819 if (n == 0) {
820 /* NOTE: tb_end may be after the end of the page, but
821 it is not a problem */
822 tb_start = tb->pc & ~TARGET_PAGE_MASK;
823 tb_end = tb_start + tb->size;
824 if (tb_end > TARGET_PAGE_SIZE)
825 tb_end = TARGET_PAGE_SIZE;
826 } else {
827 tb_start = 0;
828 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
829 }
830 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
831 tb = tb->page_next[n];
832 }
833}
834
2e70f6ef
PB
835TranslationBlock *tb_gen_code(CPUState *env,
836 target_ulong pc, target_ulong cs_base,
837 int flags, int cflags)
d720b93d
FB
838{
839 TranslationBlock *tb;
840 uint8_t *tc_ptr;
841 target_ulong phys_pc, phys_page2, virt_page2;
842 int code_gen_size;
843
c27004ec
FB
844 phys_pc = get_phys_addr_code(env, pc);
845 tb = tb_alloc(pc);
d720b93d
FB
846 if (!tb) {
847 /* flush must be done */
848 tb_flush(env);
849 /* cannot fail at this point */
c27004ec 850 tb = tb_alloc(pc);
2e70f6ef
PB
851 /* Don't forget to invalidate previous TB info. */
852 tb_invalidated_flag = 1;
d720b93d
FB
853 }
854 tc_ptr = code_gen_ptr;
855 tb->tc_ptr = tc_ptr;
856 tb->cs_base = cs_base;
857 tb->flags = flags;
858 tb->cflags = cflags;
d07bde88 859 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 860 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 861
d720b93d 862 /* check next page if needed */
c27004ec 863 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 864 phys_page2 = -1;
c27004ec 865 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
866 phys_page2 = get_phys_addr_code(env, virt_page2);
867 }
868 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 869 return tb;
d720b93d 870}
3b46e624 871
9fa3e853
FB
872/* invalidate all TBs which intersect with the target physical page
873 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
874 the same physical page. 'is_cpu_write_access' should be true if called
875 from a real cpu write access: the virtual CPU will exit the current
876 TB if code is modified inside this TB. */
00f82b8a 877void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
878 int is_cpu_write_access)
879{
880 int n, current_tb_modified, current_tb_not_found, current_flags;
d720b93d 881 CPUState *env = cpu_single_env;
9fa3e853 882 PageDesc *p;
ea1c1802 883 TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
9fa3e853 884 target_ulong tb_start, tb_end;
d720b93d 885 target_ulong current_pc, current_cs_base;
9fa3e853
FB
886
887 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 888 if (!p)
9fa3e853 889 return;
5fafdf24 890 if (!p->code_bitmap &&
d720b93d
FB
891 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
892 is_cpu_write_access) {
9fa3e853
FB
893 /* build code bitmap */
894 build_page_bitmap(p);
895 }
896
897 /* we remove all the TBs in the range [start, end[ */
898 /* XXX: see if in some cases it could be faster to invalidate all the code */
d720b93d
FB
899 current_tb_not_found = is_cpu_write_access;
900 current_tb_modified = 0;
901 current_tb = NULL; /* avoid warning */
902 current_pc = 0; /* avoid warning */
903 current_cs_base = 0; /* avoid warning */
904 current_flags = 0; /* avoid warning */
9fa3e853
FB
905 tb = p->first_tb;
906 while (tb != NULL) {
907 n = (long)tb & 3;
908 tb = (TranslationBlock *)((long)tb & ~3);
909 tb_next = tb->page_next[n];
910 /* NOTE: this is subtle as a TB may span two physical pages */
911 if (n == 0) {
912 /* NOTE: tb_end may be after the end of the page, but
913 it is not a problem */
914 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
915 tb_end = tb_start + tb->size;
916 } else {
917 tb_start = tb->page_addr[1];
918 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
919 }
920 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
921#ifdef TARGET_HAS_PRECISE_SMC
922 if (current_tb_not_found) {
923 current_tb_not_found = 0;
924 current_tb = NULL;
2e70f6ef 925 if (env->mem_io_pc) {
d720b93d 926 /* now we have a real cpu fault */
2e70f6ef 927 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
928 }
929 }
930 if (current_tb == tb &&
2e70f6ef 931 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
932 /* If we are modifying the current TB, we must stop
933 its execution. We could be more precise by checking
934 that the modification is after the current PC, but it
935 would require a specialized function to partially
936 restore the CPU state */
3b46e624 937
d720b93d 938 current_tb_modified = 1;
5fafdf24 939 cpu_restore_state(current_tb, env,
2e70f6ef 940 env->mem_io_pc, NULL);
d720b93d
FB
941#if defined(TARGET_I386)
942 current_flags = env->hflags;
943 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
944 current_cs_base = (target_ulong)env->segs[R_CS].base;
945 current_pc = current_cs_base + env->eip;
946#else
947#error unsupported CPU
948#endif
949 }
950#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
951 /* we need to do that to handle the case where a signal
952 occurs while doing tb_phys_invalidate() */
953 saved_tb = NULL;
954 if (env) {
955 saved_tb = env->current_tb;
956 env->current_tb = NULL;
957 }
9fa3e853 958 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
959 if (env) {
960 env->current_tb = saved_tb;
961 if (env->interrupt_request && env->current_tb)
962 cpu_interrupt(env, env->interrupt_request);
963 }
9fa3e853
FB
964 }
965 tb = tb_next;
966 }
967#if !defined(CONFIG_USER_ONLY)
968 /* if no code remaining, no need to continue to use slow writes */
969 if (!p->first_tb) {
970 invalidate_page_bitmap(p);
d720b93d 971 if (is_cpu_write_access) {
2e70f6ef 972 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
973 }
974 }
975#endif
976#ifdef TARGET_HAS_PRECISE_SMC
977 if (current_tb_modified) {
978 /* we generate a block containing just the instruction
979 modifying the memory. It will ensure that it cannot modify
980 itself */
ea1c1802 981 env->current_tb = NULL;
2e70f6ef 982 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 983 cpu_resume_from_signal(env, NULL);
9fa3e853 984 }
fd6ce8f6 985#endif
9fa3e853 986}
fd6ce8f6 987
9fa3e853 988/* len must be <= 8 and start must be a multiple of len */
00f82b8a 989static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
990{
991 PageDesc *p;
992 int offset, b;
59817ccb 993#if 0
a4193c8a
FB
994 if (1) {
995 if (loglevel) {
5fafdf24 996 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
2e70f6ef 997 cpu_single_env->mem_io_vaddr, len,
5fafdf24 998 cpu_single_env->eip,
a4193c8a
FB
999 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1000 }
59817ccb
FB
1001 }
1002#endif
9fa3e853 1003 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1004 if (!p)
9fa3e853
FB
1005 return;
1006 if (p->code_bitmap) {
1007 offset = start & ~TARGET_PAGE_MASK;
1008 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1009 if (b & ((1 << len) - 1))
1010 goto do_invalidate;
1011 } else {
1012 do_invalidate:
d720b93d 1013 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1014 }
1015}
1016
9fa3e853 1017#if !defined(CONFIG_SOFTMMU)
00f82b8a 1018static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1019 unsigned long pc, void *puc)
9fa3e853 1020{
d720b93d
FB
1021 int n, current_flags, current_tb_modified;
1022 target_ulong current_pc, current_cs_base;
9fa3e853 1023 PageDesc *p;
d720b93d
FB
1024 TranslationBlock *tb, *current_tb;
1025#ifdef TARGET_HAS_PRECISE_SMC
1026 CPUState *env = cpu_single_env;
1027#endif
9fa3e853
FB
1028
1029 addr &= TARGET_PAGE_MASK;
1030 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1031 if (!p)
9fa3e853
FB
1032 return;
1033 tb = p->first_tb;
d720b93d
FB
1034 current_tb_modified = 0;
1035 current_tb = NULL;
1036 current_pc = 0; /* avoid warning */
1037 current_cs_base = 0; /* avoid warning */
1038 current_flags = 0; /* avoid warning */
1039#ifdef TARGET_HAS_PRECISE_SMC
1040 if (tb && pc != 0) {
1041 current_tb = tb_find_pc(pc);
1042 }
1043#endif
9fa3e853
FB
1044 while (tb != NULL) {
1045 n = (long)tb & 3;
1046 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1047#ifdef TARGET_HAS_PRECISE_SMC
1048 if (current_tb == tb &&
2e70f6ef 1049 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1050 /* If we are modifying the current TB, we must stop
1051 its execution. We could be more precise by checking
1052 that the modification is after the current PC, but it
1053 would require a specialized function to partially
1054 restore the CPU state */
3b46e624 1055
d720b93d
FB
1056 current_tb_modified = 1;
1057 cpu_restore_state(current_tb, env, pc, puc);
1058#if defined(TARGET_I386)
1059 current_flags = env->hflags;
1060 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
1061 current_cs_base = (target_ulong)env->segs[R_CS].base;
1062 current_pc = current_cs_base + env->eip;
1063#else
1064#error unsupported CPU
1065#endif
1066 }
1067#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1068 tb_phys_invalidate(tb, addr);
1069 tb = tb->page_next[n];
1070 }
fd6ce8f6 1071 p->first_tb = NULL;
d720b93d
FB
1072#ifdef TARGET_HAS_PRECISE_SMC
1073 if (current_tb_modified) {
1074 /* we generate a block containing just the instruction
1075 modifying the memory. It will ensure that it cannot modify
1076 itself */
ea1c1802 1077 env->current_tb = NULL;
2e70f6ef 1078 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1079 cpu_resume_from_signal(env, puc);
1080 }
1081#endif
fd6ce8f6 1082}
9fa3e853 1083#endif
fd6ce8f6
FB
1084
1085/* add the tb in the target page and protect it if necessary */
5fafdf24 1086static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1087 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1088{
1089 PageDesc *p;
9fa3e853
FB
1090 TranslationBlock *last_first_tb;
1091
1092 tb->page_addr[n] = page_addr;
3a7d929e 1093 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1094 tb->page_next[n] = p->first_tb;
1095 last_first_tb = p->first_tb;
1096 p->first_tb = (TranslationBlock *)((long)tb | n);
1097 invalidate_page_bitmap(p);
fd6ce8f6 1098
107db443 1099#if defined(TARGET_HAS_SMC) || 1
d720b93d 1100
9fa3e853 1101#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1102 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1103 target_ulong addr;
1104 PageDesc *p2;
9fa3e853
FB
1105 int prot;
1106
fd6ce8f6
FB
1107 /* force the host page as non writable (writes will have a
1108 page fault + mprotect overhead) */
53a5960a 1109 page_addr &= qemu_host_page_mask;
fd6ce8f6 1110 prot = 0;
53a5960a
PB
1111 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1112 addr += TARGET_PAGE_SIZE) {
1113
1114 p2 = page_find (addr >> TARGET_PAGE_BITS);
1115 if (!p2)
1116 continue;
1117 prot |= p2->flags;
1118 p2->flags &= ~PAGE_WRITE;
1119 page_get_flags(addr);
1120 }
5fafdf24 1121 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1122 (prot & PAGE_BITS) & ~PAGE_WRITE);
1123#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1124 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1125 page_addr);
fd6ce8f6 1126#endif
fd6ce8f6 1127 }
9fa3e853
FB
1128#else
1129 /* if some code is already present, then the pages are already
1130 protected. So we handle the case where only the first TB is
1131 allocated in a physical page */
1132 if (!last_first_tb) {
6a00d601 1133 tlb_protect_code(page_addr);
9fa3e853
FB
1134 }
1135#endif
d720b93d
FB
1136
1137#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1138}
1139
1140/* Allocate a new translation block. Flush the translation buffer if
1141 too many translation blocks or too much generated code. */
c27004ec 1142TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1143{
1144 TranslationBlock *tb;
fd6ce8f6 1145
26a5f13b
FB
1146 if (nb_tbs >= code_gen_max_blocks ||
1147 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1148 return NULL;
fd6ce8f6
FB
1149 tb = &tbs[nb_tbs++];
1150 tb->pc = pc;
b448f2f3 1151 tb->cflags = 0;
d4e8164f
FB
1152 return tb;
1153}
1154
2e70f6ef
PB
1155void tb_free(TranslationBlock *tb)
1156{
bf20dc07 1157 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1158 Ignore the hard cases and just back up if this TB happens to
1159 be the last one generated. */
1160 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1161 code_gen_ptr = tb->tc_ptr;
1162 nb_tbs--;
1163 }
1164}
1165
9fa3e853
FB
1166/* add a new TB and link it to the physical page tables. phys_page2 is
1167 (-1) to indicate that only one page contains the TB. */
5fafdf24 1168void tb_link_phys(TranslationBlock *tb,
9fa3e853 1169 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1170{
9fa3e853
FB
1171 unsigned int h;
1172 TranslationBlock **ptb;
1173
c8a706fe
PB
1174 /* Grab the mmap lock to stop another thread invalidating this TB
1175 before we are done. */
1176 mmap_lock();
9fa3e853
FB
1177 /* add in the physical hash table */
1178 h = tb_phys_hash_func(phys_pc);
1179 ptb = &tb_phys_hash[h];
1180 tb->phys_hash_next = *ptb;
1181 *ptb = tb;
fd6ce8f6
FB
1182
1183 /* add in the page list */
9fa3e853
FB
1184 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1185 if (phys_page2 != -1)
1186 tb_alloc_page(tb, 1, phys_page2);
1187 else
1188 tb->page_addr[1] = -1;
9fa3e853 1189
d4e8164f
FB
1190 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1191 tb->jmp_next[0] = NULL;
1192 tb->jmp_next[1] = NULL;
1193
1194 /* init original jump addresses */
1195 if (tb->tb_next_offset[0] != 0xffff)
1196 tb_reset_jump(tb, 0);
1197 if (tb->tb_next_offset[1] != 0xffff)
1198 tb_reset_jump(tb, 1);
8a40a180
FB
1199
1200#ifdef DEBUG_TB_CHECK
1201 tb_page_check();
1202#endif
c8a706fe 1203 mmap_unlock();
fd6ce8f6
FB
1204}
1205
9fa3e853
FB
1206/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1207 tb[1].tc_ptr. Return NULL if not found */
1208TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1209{
9fa3e853
FB
1210 int m_min, m_max, m;
1211 unsigned long v;
1212 TranslationBlock *tb;
a513fe19
FB
1213
1214 if (nb_tbs <= 0)
1215 return NULL;
1216 if (tc_ptr < (unsigned long)code_gen_buffer ||
1217 tc_ptr >= (unsigned long)code_gen_ptr)
1218 return NULL;
1219 /* binary search (cf Knuth) */
1220 m_min = 0;
1221 m_max = nb_tbs - 1;
1222 while (m_min <= m_max) {
1223 m = (m_min + m_max) >> 1;
1224 tb = &tbs[m];
1225 v = (unsigned long)tb->tc_ptr;
1226 if (v == tc_ptr)
1227 return tb;
1228 else if (tc_ptr < v) {
1229 m_max = m - 1;
1230 } else {
1231 m_min = m + 1;
1232 }
5fafdf24 1233 }
a513fe19
FB
1234 return &tbs[m_max];
1235}
7501267e 1236
ea041c0e
FB
1237static void tb_reset_jump_recursive(TranslationBlock *tb);
1238
1239static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1240{
1241 TranslationBlock *tb1, *tb_next, **ptb;
1242 unsigned int n1;
1243
1244 tb1 = tb->jmp_next[n];
1245 if (tb1 != NULL) {
1246 /* find head of list */
1247 for(;;) {
1248 n1 = (long)tb1 & 3;
1249 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1250 if (n1 == 2)
1251 break;
1252 tb1 = tb1->jmp_next[n1];
1253 }
1254 /* we are now sure now that tb jumps to tb1 */
1255 tb_next = tb1;
1256
1257 /* remove tb from the jmp_first list */
1258 ptb = &tb_next->jmp_first;
1259 for(;;) {
1260 tb1 = *ptb;
1261 n1 = (long)tb1 & 3;
1262 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1263 if (n1 == n && tb1 == tb)
1264 break;
1265 ptb = &tb1->jmp_next[n1];
1266 }
1267 *ptb = tb->jmp_next[n];
1268 tb->jmp_next[n] = NULL;
3b46e624 1269
ea041c0e
FB
1270 /* suppress the jump to next tb in generated code */
1271 tb_reset_jump(tb, n);
1272
0124311e 1273 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1274 tb_reset_jump_recursive(tb_next);
1275 }
1276}
1277
1278static void tb_reset_jump_recursive(TranslationBlock *tb)
1279{
1280 tb_reset_jump_recursive2(tb, 0);
1281 tb_reset_jump_recursive2(tb, 1);
1282}
1283
1fddef4b 1284#if defined(TARGET_HAS_ICE)
d720b93d
FB
1285static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1286{
9b3c35e0
JM
1287 target_phys_addr_t addr;
1288 target_ulong pd;
c2f07f81
PB
1289 ram_addr_t ram_addr;
1290 PhysPageDesc *p;
d720b93d 1291
c2f07f81
PB
1292 addr = cpu_get_phys_page_debug(env, pc);
1293 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1294 if (!p) {
1295 pd = IO_MEM_UNASSIGNED;
1296 } else {
1297 pd = p->phys_offset;
1298 }
1299 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1300 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1301}
c27004ec 1302#endif
d720b93d 1303
6658ffb8 1304/* Add a watchpoint. */
0f459d16 1305int cpu_watchpoint_insert(CPUState *env, target_ulong addr, int type)
6658ffb8
PB
1306{
1307 int i;
1308
1309 for (i = 0; i < env->nb_watchpoints; i++) {
1310 if (addr == env->watchpoint[i].vaddr)
1311 return 0;
1312 }
1313 if (env->nb_watchpoints >= MAX_WATCHPOINTS)
1314 return -1;
1315
1316 i = env->nb_watchpoints++;
1317 env->watchpoint[i].vaddr = addr;
0f459d16 1318 env->watchpoint[i].type = type;
6658ffb8
PB
1319 tlb_flush_page(env, addr);
1320 /* FIXME: This flush is needed because of the hack to make memory ops
1321 terminate the TB. It can be removed once the proper IO trap and
1322 re-execute bits are in. */
1323 tb_flush(env);
1324 return i;
1325}
1326
1327/* Remove a watchpoint. */
1328int cpu_watchpoint_remove(CPUState *env, target_ulong addr)
1329{
1330 int i;
1331
1332 for (i = 0; i < env->nb_watchpoints; i++) {
1333 if (addr == env->watchpoint[i].vaddr) {
1334 env->nb_watchpoints--;
1335 env->watchpoint[i] = env->watchpoint[env->nb_watchpoints];
1336 tlb_flush_page(env, addr);
1337 return 0;
1338 }
1339 }
1340 return -1;
1341}
1342
7d03f82f
EI
1343/* Remove all watchpoints. */
1344void cpu_watchpoint_remove_all(CPUState *env) {
1345 int i;
1346
1347 for (i = 0; i < env->nb_watchpoints; i++) {
1348 tlb_flush_page(env, env->watchpoint[i].vaddr);
1349 }
1350 env->nb_watchpoints = 0;
1351}
1352
c33a346e
FB
1353/* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
1354 breakpoint is reached */
2e12669a 1355int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
4c3a88a2 1356{
1fddef4b 1357#if defined(TARGET_HAS_ICE)
4c3a88a2 1358 int i;
3b46e624 1359
4c3a88a2
FB
1360 for(i = 0; i < env->nb_breakpoints; i++) {
1361 if (env->breakpoints[i] == pc)
1362 return 0;
1363 }
1364
1365 if (env->nb_breakpoints >= MAX_BREAKPOINTS)
1366 return -1;
1367 env->breakpoints[env->nb_breakpoints++] = pc;
3b46e624 1368
d720b93d 1369 breakpoint_invalidate(env, pc);
4c3a88a2
FB
1370 return 0;
1371#else
1372 return -1;
1373#endif
1374}
1375
7d03f82f
EI
1376/* remove all breakpoints */
1377void cpu_breakpoint_remove_all(CPUState *env) {
1378#if defined(TARGET_HAS_ICE)
1379 int i;
1380 for(i = 0; i < env->nb_breakpoints; i++) {
1381 breakpoint_invalidate(env, env->breakpoints[i]);
1382 }
1383 env->nb_breakpoints = 0;
1384#endif
1385}
1386
4c3a88a2 1387/* remove a breakpoint */
2e12669a 1388int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
4c3a88a2 1389{
1fddef4b 1390#if defined(TARGET_HAS_ICE)
4c3a88a2
FB
1391 int i;
1392 for(i = 0; i < env->nb_breakpoints; i++) {
1393 if (env->breakpoints[i] == pc)
1394 goto found;
1395 }
1396 return -1;
1397 found:
4c3a88a2 1398 env->nb_breakpoints--;
1fddef4b
FB
1399 if (i < env->nb_breakpoints)
1400 env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
d720b93d
FB
1401
1402 breakpoint_invalidate(env, pc);
4c3a88a2
FB
1403 return 0;
1404#else
1405 return -1;
1406#endif
1407}
1408
c33a346e
FB
1409/* enable or disable single step mode. EXCP_DEBUG is returned by the
1410 CPU loop after each instruction */
1411void cpu_single_step(CPUState *env, int enabled)
1412{
1fddef4b 1413#if defined(TARGET_HAS_ICE)
c33a346e
FB
1414 if (env->singlestep_enabled != enabled) {
1415 env->singlestep_enabled = enabled;
1416 /* must flush all the translated code to avoid inconsistancies */
9fa3e853 1417 /* XXX: only flush what is necessary */
0124311e 1418 tb_flush(env);
c33a346e
FB
1419 }
1420#endif
1421}
1422
34865134
FB
1423/* enable or disable low levels log */
1424void cpu_set_log(int log_flags)
1425{
1426 loglevel = log_flags;
1427 if (loglevel && !logfile) {
11fcfab4 1428 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1429 if (!logfile) {
1430 perror(logfilename);
1431 _exit(1);
1432 }
9fa3e853
FB
1433#if !defined(CONFIG_SOFTMMU)
1434 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1435 {
b55266b5 1436 static char logfile_buf[4096];
9fa3e853
FB
1437 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1438 }
1439#else
34865134 1440 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1441#endif
e735b91c
PB
1442 log_append = 1;
1443 }
1444 if (!loglevel && logfile) {
1445 fclose(logfile);
1446 logfile = NULL;
34865134
FB
1447 }
1448}
1449
1450void cpu_set_log_filename(const char *filename)
1451{
1452 logfilename = strdup(filename);
e735b91c
PB
1453 if (logfile) {
1454 fclose(logfile);
1455 logfile = NULL;
1456 }
1457 cpu_set_log(loglevel);
34865134 1458}
c33a346e 1459
0124311e 1460/* mask must never be zero, except for A20 change call */
68a79315 1461void cpu_interrupt(CPUState *env, int mask)
ea041c0e 1462{
d5975363 1463#if !defined(USE_NPTL)
ea041c0e 1464 TranslationBlock *tb;
15a51156 1465 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
d5975363 1466#endif
2e70f6ef 1467 int old_mask;
59817ccb 1468
2e70f6ef 1469 old_mask = env->interrupt_request;
d5975363 1470 /* FIXME: This is probably not threadsafe. A different thread could
bf20dc07 1471 be in the middle of a read-modify-write operation. */
68a79315 1472 env->interrupt_request |= mask;
d5975363
PB
1473#if defined(USE_NPTL)
1474 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1475 problem and hope the cpu will stop of its own accord. For userspace
1476 emulation this often isn't actually as bad as it sounds. Often
1477 signals are used primarily to interrupt blocking syscalls. */
1478#else
2e70f6ef 1479 if (use_icount) {
266910c4 1480 env->icount_decr.u16.high = 0xffff;
2e70f6ef
PB
1481#ifndef CONFIG_USER_ONLY
1482 /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
1483 an async event happened and we need to process it. */
1484 if (!can_do_io(env)
1485 && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) {
1486 cpu_abort(env, "Raised interrupt while not in I/O function");
1487 }
1488#endif
1489 } else {
1490 tb = env->current_tb;
1491 /* if the cpu is currently executing code, we must unlink it and
1492 all the potentially executing TB */
1493 if (tb && !testandset(&interrupt_lock)) {
1494 env->current_tb = NULL;
1495 tb_reset_jump_recursive(tb);
1496 resetlock(&interrupt_lock);
1497 }
ea041c0e 1498 }
d5975363 1499#endif
ea041c0e
FB
1500}
1501
b54ad049
FB
1502void cpu_reset_interrupt(CPUState *env, int mask)
1503{
1504 env->interrupt_request &= ~mask;
1505}
1506
c7cd6a37 1507const CPULogItem cpu_log_items[] = {
5fafdf24 1508 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1509 "show generated host assembly code for each compiled TB" },
1510 { CPU_LOG_TB_IN_ASM, "in_asm",
1511 "show target assembly code for each compiled TB" },
5fafdf24 1512 { CPU_LOG_TB_OP, "op",
57fec1fe 1513 "show micro ops for each compiled TB" },
f193c797 1514 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1515 "show micro ops "
1516#ifdef TARGET_I386
1517 "before eflags optimization and "
f193c797 1518#endif
e01a1157 1519 "after liveness analysis" },
f193c797
FB
1520 { CPU_LOG_INT, "int",
1521 "show interrupts/exceptions in short format" },
1522 { CPU_LOG_EXEC, "exec",
1523 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1524 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1525 "show CPU state before block translation" },
f193c797
FB
1526#ifdef TARGET_I386
1527 { CPU_LOG_PCALL, "pcall",
1528 "show protected mode far calls/returns/exceptions" },
1529#endif
8e3a9fd2 1530#ifdef DEBUG_IOPORT
fd872598
FB
1531 { CPU_LOG_IOPORT, "ioport",
1532 "show all i/o ports accesses" },
8e3a9fd2 1533#endif
f193c797
FB
1534 { 0, NULL, NULL },
1535};
1536
1537static int cmp1(const char *s1, int n, const char *s2)
1538{
1539 if (strlen(s2) != n)
1540 return 0;
1541 return memcmp(s1, s2, n) == 0;
1542}
3b46e624 1543
f193c797
FB
1544/* takes a comma separated list of log masks. Return 0 if error. */
1545int cpu_str_to_log_mask(const char *str)
1546{
c7cd6a37 1547 const CPULogItem *item;
f193c797
FB
1548 int mask;
1549 const char *p, *p1;
1550
1551 p = str;
1552 mask = 0;
1553 for(;;) {
1554 p1 = strchr(p, ',');
1555 if (!p1)
1556 p1 = p + strlen(p);
8e3a9fd2
FB
1557 if(cmp1(p,p1-p,"all")) {
1558 for(item = cpu_log_items; item->mask != 0; item++) {
1559 mask |= item->mask;
1560 }
1561 } else {
f193c797
FB
1562 for(item = cpu_log_items; item->mask != 0; item++) {
1563 if (cmp1(p, p1 - p, item->name))
1564 goto found;
1565 }
1566 return 0;
8e3a9fd2 1567 }
f193c797
FB
1568 found:
1569 mask |= item->mask;
1570 if (*p1 != ',')
1571 break;
1572 p = p1 + 1;
1573 }
1574 return mask;
1575}
ea041c0e 1576
7501267e
FB
1577void cpu_abort(CPUState *env, const char *fmt, ...)
1578{
1579 va_list ap;
493ae1f0 1580 va_list ap2;
7501267e
FB
1581
1582 va_start(ap, fmt);
493ae1f0 1583 va_copy(ap2, ap);
7501267e
FB
1584 fprintf(stderr, "qemu: fatal: ");
1585 vfprintf(stderr, fmt, ap);
1586 fprintf(stderr, "\n");
1587#ifdef TARGET_I386
7fe48483
FB
1588 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1589#else
1590 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1591#endif
924edcae 1592 if (logfile) {
f9373291 1593 fprintf(logfile, "qemu: fatal: ");
493ae1f0 1594 vfprintf(logfile, fmt, ap2);
f9373291
JM
1595 fprintf(logfile, "\n");
1596#ifdef TARGET_I386
1597 cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1598#else
1599 cpu_dump_state(env, logfile, fprintf, 0);
1600#endif
924edcae
AZ
1601 fflush(logfile);
1602 fclose(logfile);
1603 }
493ae1f0 1604 va_end(ap2);
f9373291 1605 va_end(ap);
7501267e
FB
1606 abort();
1607}
1608
c5be9f08
TS
1609CPUState *cpu_copy(CPUState *env)
1610{
01ba9816 1611 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1612 /* preserve chaining and index */
1613 CPUState *next_cpu = new_env->next_cpu;
1614 int cpu_index = new_env->cpu_index;
1615 memcpy(new_env, env, sizeof(CPUState));
1616 new_env->next_cpu = next_cpu;
1617 new_env->cpu_index = cpu_index;
1618 return new_env;
1619}
1620
0124311e
FB
1621#if !defined(CONFIG_USER_ONLY)
1622
5c751e99
EI
1623static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1624{
1625 unsigned int i;
1626
1627 /* Discard jump cache entries for any tb which might potentially
1628 overlap the flushed page. */
1629 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1630 memset (&env->tb_jmp_cache[i], 0,
1631 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1632
1633 i = tb_jmp_cache_hash_page(addr);
1634 memset (&env->tb_jmp_cache[i], 0,
1635 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1636}
1637
ee8b7021
FB
1638/* NOTE: if flush_global is true, also flush global entries (not
1639 implemented yet) */
1640void tlb_flush(CPUState *env, int flush_global)
33417e70 1641{
33417e70 1642 int i;
0124311e 1643
9fa3e853
FB
1644#if defined(DEBUG_TLB)
1645 printf("tlb_flush:\n");
1646#endif
0124311e
FB
1647 /* must reset current TB so that interrupts cannot modify the
1648 links while we are modifying them */
1649 env->current_tb = NULL;
1650
33417e70 1651 for(i = 0; i < CPU_TLB_SIZE; i++) {
84b7b8e7
FB
1652 env->tlb_table[0][i].addr_read = -1;
1653 env->tlb_table[0][i].addr_write = -1;
1654 env->tlb_table[0][i].addr_code = -1;
1655 env->tlb_table[1][i].addr_read = -1;
1656 env->tlb_table[1][i].addr_write = -1;
1657 env->tlb_table[1][i].addr_code = -1;
6fa4cea9
JM
1658#if (NB_MMU_MODES >= 3)
1659 env->tlb_table[2][i].addr_read = -1;
1660 env->tlb_table[2][i].addr_write = -1;
1661 env->tlb_table[2][i].addr_code = -1;
1662#if (NB_MMU_MODES == 4)
1663 env->tlb_table[3][i].addr_read = -1;
1664 env->tlb_table[3][i].addr_write = -1;
1665 env->tlb_table[3][i].addr_code = -1;
1666#endif
1667#endif
33417e70 1668 }
9fa3e853 1669
8a40a180 1670 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1671
0a962c02
FB
1672#ifdef USE_KQEMU
1673 if (env->kqemu_enabled) {
1674 kqemu_flush(env, flush_global);
1675 }
9fa3e853 1676#endif
e3db7226 1677 tlb_flush_count++;
33417e70
FB
1678}
1679
274da6b2 1680static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1681{
5fafdf24 1682 if (addr == (tlb_entry->addr_read &
84b7b8e7 1683 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1684 addr == (tlb_entry->addr_write &
84b7b8e7 1685 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1686 addr == (tlb_entry->addr_code &
84b7b8e7
FB
1687 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1688 tlb_entry->addr_read = -1;
1689 tlb_entry->addr_write = -1;
1690 tlb_entry->addr_code = -1;
1691 }
61382a50
FB
1692}
1693
2e12669a 1694void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1695{
8a40a180 1696 int i;
0124311e 1697
9fa3e853 1698#if defined(DEBUG_TLB)
108c49b8 1699 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1700#endif
0124311e
FB
1701 /* must reset current TB so that interrupts cannot modify the
1702 links while we are modifying them */
1703 env->current_tb = NULL;
61382a50
FB
1704
1705 addr &= TARGET_PAGE_MASK;
1706 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
84b7b8e7
FB
1707 tlb_flush_entry(&env->tlb_table[0][i], addr);
1708 tlb_flush_entry(&env->tlb_table[1][i], addr);
6fa4cea9
JM
1709#if (NB_MMU_MODES >= 3)
1710 tlb_flush_entry(&env->tlb_table[2][i], addr);
1711#if (NB_MMU_MODES == 4)
1712 tlb_flush_entry(&env->tlb_table[3][i], addr);
1713#endif
1714#endif
0124311e 1715
5c751e99 1716 tlb_flush_jmp_cache(env, addr);
9fa3e853 1717
0a962c02
FB
1718#ifdef USE_KQEMU
1719 if (env->kqemu_enabled) {
1720 kqemu_flush_page(env, addr);
1721 }
1722#endif
9fa3e853
FB
1723}
1724
9fa3e853
FB
1725/* update the TLBs so that writes to code in the virtual page 'addr'
1726 can be detected */
6a00d601 1727static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1728{
5fafdf24 1729 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1730 ram_addr + TARGET_PAGE_SIZE,
1731 CODE_DIRTY_FLAG);
9fa3e853
FB
1732}
1733
9fa3e853 1734/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1735 tested for self modifying code */
5fafdf24 1736static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1737 target_ulong vaddr)
9fa3e853 1738{
3a7d929e 1739 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1740}
1741
5fafdf24 1742static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1743 unsigned long start, unsigned long length)
1744{
1745 unsigned long addr;
84b7b8e7
FB
1746 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1747 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1748 if ((addr - start) < length) {
0f459d16 1749 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1750 }
1751 }
1752}
1753
3a7d929e 1754void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1755 int dirty_flags)
1ccde1cb
FB
1756{
1757 CPUState *env;
4f2ac237 1758 unsigned long length, start1;
0a962c02
FB
1759 int i, mask, len;
1760 uint8_t *p;
1ccde1cb
FB
1761
1762 start &= TARGET_PAGE_MASK;
1763 end = TARGET_PAGE_ALIGN(end);
1764
1765 length = end - start;
1766 if (length == 0)
1767 return;
0a962c02 1768 len = length >> TARGET_PAGE_BITS;
3a7d929e 1769#ifdef USE_KQEMU
6a00d601
FB
1770 /* XXX: should not depend on cpu context */
1771 env = first_cpu;
3a7d929e 1772 if (env->kqemu_enabled) {
f23db169
FB
1773 ram_addr_t addr;
1774 addr = start;
1775 for(i = 0; i < len; i++) {
1776 kqemu_set_notdirty(env, addr);
1777 addr += TARGET_PAGE_SIZE;
1778 }
3a7d929e
FB
1779 }
1780#endif
f23db169
FB
1781 mask = ~dirty_flags;
1782 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1783 for(i = 0; i < len; i++)
1784 p[i] &= mask;
1785
1ccde1cb
FB
1786 /* we modify the TLB cache so that the dirty bit will be set again
1787 when accessing the range */
59817ccb 1788 start1 = start + (unsigned long)phys_ram_base;
6a00d601
FB
1789 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1790 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1791 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
6a00d601 1792 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1793 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
6fa4cea9
JM
1794#if (NB_MMU_MODES >= 3)
1795 for(i = 0; i < CPU_TLB_SIZE; i++)
1796 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1797#if (NB_MMU_MODES == 4)
1798 for(i = 0; i < CPU_TLB_SIZE; i++)
1799 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1800#endif
1801#endif
6a00d601 1802 }
1ccde1cb
FB
1803}
1804
74576198
AL
1805int cpu_physical_memory_set_dirty_tracking(int enable)
1806{
1807 in_migration = enable;
1808 return 0;
1809}
1810
1811int cpu_physical_memory_get_dirty_tracking(void)
1812{
1813 return in_migration;
1814}
1815
3a7d929e
FB
1816static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1817{
1818 ram_addr_t ram_addr;
1819
84b7b8e7 1820 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5fafdf24 1821 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
3a7d929e
FB
1822 tlb_entry->addend - (unsigned long)phys_ram_base;
1823 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 1824 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
1825 }
1826 }
1827}
1828
1829/* update the TLB according to the current state of the dirty bits */
1830void cpu_tlb_update_dirty(CPUState *env)
1831{
1832 int i;
1833 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1834 tlb_update_dirty(&env->tlb_table[0][i]);
3a7d929e 1835 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1836 tlb_update_dirty(&env->tlb_table[1][i]);
6fa4cea9
JM
1837#if (NB_MMU_MODES >= 3)
1838 for(i = 0; i < CPU_TLB_SIZE; i++)
1839 tlb_update_dirty(&env->tlb_table[2][i]);
1840#if (NB_MMU_MODES == 4)
1841 for(i = 0; i < CPU_TLB_SIZE; i++)
1842 tlb_update_dirty(&env->tlb_table[3][i]);
1843#endif
1844#endif
3a7d929e
FB
1845}
1846
0f459d16 1847static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 1848{
0f459d16
PB
1849 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1850 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
1851}
1852
0f459d16
PB
1853/* update the TLB corresponding to virtual page vaddr
1854 so that it is no longer dirty */
1855static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 1856{
1ccde1cb
FB
1857 int i;
1858
0f459d16 1859 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 1860 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
0f459d16
PB
1861 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1862 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
6fa4cea9 1863#if (NB_MMU_MODES >= 3)
0f459d16 1864 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
6fa4cea9 1865#if (NB_MMU_MODES == 4)
0f459d16 1866 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
6fa4cea9
JM
1867#endif
1868#endif
9fa3e853
FB
1869}
1870
59817ccb
FB
1871/* add a new TLB entry. At most one entry for a given virtual address
1872 is permitted. Return 0 if OK or 2 if the page could not be mapped
1873 (can only happen in non SOFTMMU mode for I/O pages or pages
1874 conflicting with the host address space). */
5fafdf24
TS
1875int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1876 target_phys_addr_t paddr, int prot,
6ebbf390 1877 int mmu_idx, int is_softmmu)
9fa3e853 1878{
92e873b9 1879 PhysPageDesc *p;
4f2ac237 1880 unsigned long pd;
9fa3e853 1881 unsigned int index;
4f2ac237 1882 target_ulong address;
0f459d16 1883 target_ulong code_address;
108c49b8 1884 target_phys_addr_t addend;
9fa3e853 1885 int ret;
84b7b8e7 1886 CPUTLBEntry *te;
6658ffb8 1887 int i;
0f459d16 1888 target_phys_addr_t iotlb;
9fa3e853 1889
92e873b9 1890 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
1891 if (!p) {
1892 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
1893 } else {
1894 pd = p->phys_offset;
9fa3e853
FB
1895 }
1896#if defined(DEBUG_TLB)
6ebbf390
JM
1897 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1898 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
1899#endif
1900
1901 ret = 0;
0f459d16
PB
1902 address = vaddr;
1903 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1904 /* IO memory case (romd handled later) */
1905 address |= TLB_MMIO;
1906 }
1907 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1908 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1909 /* Normal RAM. */
1910 iotlb = pd & TARGET_PAGE_MASK;
1911 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1912 iotlb |= IO_MEM_NOTDIRTY;
1913 else
1914 iotlb |= IO_MEM_ROM;
1915 } else {
1916 /* IO handlers are currently passed a phsical address.
1917 It would be nice to pass an offset from the base address
1918 of that region. This would avoid having to special case RAM,
1919 and avoid full address decoding in every device.
1920 We can't use the high bits of pd for this because
1921 IO_MEM_ROMD uses these as a ram address. */
1922 iotlb = (pd & ~TARGET_PAGE_MASK) + paddr;
1923 }
1924
1925 code_address = address;
1926 /* Make accesses to pages with watchpoints go via the
1927 watchpoint trap routines. */
1928 for (i = 0; i < env->nb_watchpoints; i++) {
1929 if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) {
1930 iotlb = io_mem_watch + paddr;
1931 /* TODO: The memory case can be optimized by not trapping
1932 reads of pages with a write breakpoint. */
1933 address |= TLB_MMIO;
6658ffb8 1934 }
0f459d16 1935 }
d79acba4 1936
0f459d16
PB
1937 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1938 env->iotlb[mmu_idx][index] = iotlb - vaddr;
1939 te = &env->tlb_table[mmu_idx][index];
1940 te->addend = addend - vaddr;
1941 if (prot & PAGE_READ) {
1942 te->addr_read = address;
1943 } else {
1944 te->addr_read = -1;
1945 }
5c751e99 1946
0f459d16
PB
1947 if (prot & PAGE_EXEC) {
1948 te->addr_code = code_address;
1949 } else {
1950 te->addr_code = -1;
1951 }
1952 if (prot & PAGE_WRITE) {
1953 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1954 (pd & IO_MEM_ROMD)) {
1955 /* Write access calls the I/O callback. */
1956 te->addr_write = address | TLB_MMIO;
1957 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1958 !cpu_physical_memory_is_dirty(pd)) {
1959 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 1960 } else {
0f459d16 1961 te->addr_write = address;
9fa3e853 1962 }
0f459d16
PB
1963 } else {
1964 te->addr_write = -1;
9fa3e853 1965 }
9fa3e853
FB
1966 return ret;
1967}
1968
0124311e
FB
1969#else
1970
ee8b7021 1971void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
1972{
1973}
1974
2e12669a 1975void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
1976{
1977}
1978
5fafdf24
TS
1979int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1980 target_phys_addr_t paddr, int prot,
6ebbf390 1981 int mmu_idx, int is_softmmu)
9fa3e853
FB
1982{
1983 return 0;
1984}
0124311e 1985
9fa3e853
FB
1986/* dump memory mappings */
1987void page_dump(FILE *f)
33417e70 1988{
9fa3e853
FB
1989 unsigned long start, end;
1990 int i, j, prot, prot1;
1991 PageDesc *p;
33417e70 1992
9fa3e853
FB
1993 fprintf(f, "%-8s %-8s %-8s %s\n",
1994 "start", "end", "size", "prot");
1995 start = -1;
1996 end = -1;
1997 prot = 0;
1998 for(i = 0; i <= L1_SIZE; i++) {
1999 if (i < L1_SIZE)
2000 p = l1_map[i];
2001 else
2002 p = NULL;
2003 for(j = 0;j < L2_SIZE; j++) {
2004 if (!p)
2005 prot1 = 0;
2006 else
2007 prot1 = p[j].flags;
2008 if (prot1 != prot) {
2009 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2010 if (start != -1) {
2011 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
5fafdf24 2012 start, end, end - start,
9fa3e853
FB
2013 prot & PAGE_READ ? 'r' : '-',
2014 prot & PAGE_WRITE ? 'w' : '-',
2015 prot & PAGE_EXEC ? 'x' : '-');
2016 }
2017 if (prot1 != 0)
2018 start = end;
2019 else
2020 start = -1;
2021 prot = prot1;
2022 }
2023 if (!p)
2024 break;
2025 }
33417e70 2026 }
33417e70
FB
2027}
2028
53a5960a 2029int page_get_flags(target_ulong address)
33417e70 2030{
9fa3e853
FB
2031 PageDesc *p;
2032
2033 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2034 if (!p)
9fa3e853
FB
2035 return 0;
2036 return p->flags;
2037}
2038
2039/* modify the flags of a page and invalidate the code if
2040 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2041 depending on PAGE_WRITE */
53a5960a 2042void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2043{
2044 PageDesc *p;
53a5960a 2045 target_ulong addr;
9fa3e853 2046
c8a706fe 2047 /* mmap_lock should already be held. */
9fa3e853
FB
2048 start = start & TARGET_PAGE_MASK;
2049 end = TARGET_PAGE_ALIGN(end);
2050 if (flags & PAGE_WRITE)
2051 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2052 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2053 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2054 /* We may be called for host regions that are outside guest
2055 address space. */
2056 if (!p)
2057 return;
9fa3e853
FB
2058 /* if the write protection is set, then we invalidate the code
2059 inside */
5fafdf24 2060 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2061 (flags & PAGE_WRITE) &&
2062 p->first_tb) {
d720b93d 2063 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2064 }
2065 p->flags = flags;
2066 }
33417e70
FB
2067}
2068
3d97b40b
TS
2069int page_check_range(target_ulong start, target_ulong len, int flags)
2070{
2071 PageDesc *p;
2072 target_ulong end;
2073 target_ulong addr;
2074
55f280c9
AZ
2075 if (start + len < start)
2076 /* we've wrapped around */
2077 return -1;
2078
3d97b40b
TS
2079 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2080 start = start & TARGET_PAGE_MASK;
2081
3d97b40b
TS
2082 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2083 p = page_find(addr >> TARGET_PAGE_BITS);
2084 if( !p )
2085 return -1;
2086 if( !(p->flags & PAGE_VALID) )
2087 return -1;
2088
dae3270c 2089 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2090 return -1;
dae3270c
FB
2091 if (flags & PAGE_WRITE) {
2092 if (!(p->flags & PAGE_WRITE_ORG))
2093 return -1;
2094 /* unprotect the page if it was put read-only because it
2095 contains translated code */
2096 if (!(p->flags & PAGE_WRITE)) {
2097 if (!page_unprotect(addr, 0, NULL))
2098 return -1;
2099 }
2100 return 0;
2101 }
3d97b40b
TS
2102 }
2103 return 0;
2104}
2105
9fa3e853
FB
2106/* called from signal handler: invalidate the code and unprotect the
2107 page. Return TRUE if the fault was succesfully handled. */
53a5960a 2108int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2109{
2110 unsigned int page_index, prot, pindex;
2111 PageDesc *p, *p1;
53a5960a 2112 target_ulong host_start, host_end, addr;
9fa3e853 2113
c8a706fe
PB
2114 /* Technically this isn't safe inside a signal handler. However we
2115 know this only ever happens in a synchronous SEGV handler, so in
2116 practice it seems to be ok. */
2117 mmap_lock();
2118
83fb7adf 2119 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2120 page_index = host_start >> TARGET_PAGE_BITS;
2121 p1 = page_find(page_index);
c8a706fe
PB
2122 if (!p1) {
2123 mmap_unlock();
9fa3e853 2124 return 0;
c8a706fe 2125 }
83fb7adf 2126 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2127 p = p1;
2128 prot = 0;
2129 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2130 prot |= p->flags;
2131 p++;
2132 }
2133 /* if the page was really writable, then we change its
2134 protection back to writable */
2135 if (prot & PAGE_WRITE_ORG) {
2136 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2137 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2138 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2139 (prot & PAGE_BITS) | PAGE_WRITE);
2140 p1[pindex].flags |= PAGE_WRITE;
2141 /* and since the content will be modified, we must invalidate
2142 the corresponding translated code. */
d720b93d 2143 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2144#ifdef DEBUG_TB_CHECK
2145 tb_invalidate_check(address);
2146#endif
c8a706fe 2147 mmap_unlock();
9fa3e853
FB
2148 return 1;
2149 }
2150 }
c8a706fe 2151 mmap_unlock();
9fa3e853
FB
2152 return 0;
2153}
2154
6a00d601
FB
2155static inline void tlb_set_dirty(CPUState *env,
2156 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2157{
2158}
9fa3e853
FB
2159#endif /* defined(CONFIG_USER_ONLY) */
2160
e2eef170 2161#if !defined(CONFIG_USER_ONLY)
db7b5426 2162static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
00f82b8a
AJ
2163 ram_addr_t memory);
2164static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2165 ram_addr_t orig_memory);
db7b5426
BS
2166#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2167 need_subpage) \
2168 do { \
2169 if (addr > start_addr) \
2170 start_addr2 = 0; \
2171 else { \
2172 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2173 if (start_addr2 > 0) \
2174 need_subpage = 1; \
2175 } \
2176 \
49e9fba2 2177 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2178 end_addr2 = TARGET_PAGE_SIZE - 1; \
2179 else { \
2180 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2181 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2182 need_subpage = 1; \
2183 } \
2184 } while (0)
2185
33417e70
FB
2186/* register physical memory. 'size' must be a multiple of the target
2187 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2188 io memory page */
5fafdf24 2189void cpu_register_physical_memory(target_phys_addr_t start_addr,
00f82b8a
AJ
2190 ram_addr_t size,
2191 ram_addr_t phys_offset)
33417e70 2192{
108c49b8 2193 target_phys_addr_t addr, end_addr;
92e873b9 2194 PhysPageDesc *p;
9d42037b 2195 CPUState *env;
00f82b8a 2196 ram_addr_t orig_size = size;
db7b5426 2197 void *subpage;
33417e70 2198
da260249
FB
2199#ifdef USE_KQEMU
2200 /* XXX: should not depend on cpu context */
2201 env = first_cpu;
2202 if (env->kqemu_enabled) {
2203 kqemu_set_phys_mem(start_addr, size, phys_offset);
2204 }
2205#endif
7ba1e619
AL
2206 if (kvm_enabled())
2207 kvm_set_phys_mem(start_addr, size, phys_offset);
2208
5fd386f6 2209 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
49e9fba2
BS
2210 end_addr = start_addr + (target_phys_addr_t)size;
2211 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2212 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2213 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
00f82b8a 2214 ram_addr_t orig_memory = p->phys_offset;
db7b5426
BS
2215 target_phys_addr_t start_addr2, end_addr2;
2216 int need_subpage = 0;
2217
2218 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2219 need_subpage);
4254fab8 2220 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2221 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2222 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2223 &p->phys_offset, orig_memory);
2224 } else {
2225 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2226 >> IO_MEM_SHIFT];
2227 }
2228 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
2229 } else {
2230 p->phys_offset = phys_offset;
2231 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2232 (phys_offset & IO_MEM_ROMD))
2233 phys_offset += TARGET_PAGE_SIZE;
2234 }
2235 } else {
2236 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2237 p->phys_offset = phys_offset;
2238 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2239 (phys_offset & IO_MEM_ROMD))
2240 phys_offset += TARGET_PAGE_SIZE;
2241 else {
2242 target_phys_addr_t start_addr2, end_addr2;
2243 int need_subpage = 0;
2244
2245 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2246 end_addr2, need_subpage);
2247
4254fab8 2248 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2249 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2250 &p->phys_offset, IO_MEM_UNASSIGNED);
2251 subpage_register(subpage, start_addr2, end_addr2,
2252 phys_offset);
2253 }
2254 }
2255 }
33417e70 2256 }
3b46e624 2257
9d42037b
FB
2258 /* since each CPU stores ram addresses in its TLB cache, we must
2259 reset the modified entries */
2260 /* XXX: slow ! */
2261 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2262 tlb_flush(env, 1);
2263 }
33417e70
FB
2264}
2265
ba863458 2266/* XXX: temporary until new memory mapping API */
00f82b8a 2267ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2268{
2269 PhysPageDesc *p;
2270
2271 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2272 if (!p)
2273 return IO_MEM_UNASSIGNED;
2274 return p->phys_offset;
2275}
2276
e9a1ab19 2277/* XXX: better than nothing */
00f82b8a 2278ram_addr_t qemu_ram_alloc(ram_addr_t size)
e9a1ab19
FB
2279{
2280 ram_addr_t addr;
7fb4fdcf 2281 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
012a7045 2282 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
ed441467 2283 (uint64_t)size, (uint64_t)phys_ram_size);
e9a1ab19
FB
2284 abort();
2285 }
2286 addr = phys_ram_alloc_offset;
2287 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2288 return addr;
2289}
2290
2291void qemu_ram_free(ram_addr_t addr)
2292{
2293}
2294
a4193c8a 2295static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2296{
67d3b957 2297#ifdef DEBUG_UNASSIGNED
ab3d1727 2298 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2299#endif
e18231a3
BS
2300#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2301 do_unassigned_access(addr, 0, 0, 0, 1);
2302#endif
2303 return 0;
2304}
2305
2306static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2307{
2308#ifdef DEBUG_UNASSIGNED
2309 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2310#endif
2311#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2312 do_unassigned_access(addr, 0, 0, 0, 2);
2313#endif
2314 return 0;
2315}
2316
2317static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2318{
2319#ifdef DEBUG_UNASSIGNED
2320 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2321#endif
2322#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2323 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2324#endif
33417e70
FB
2325 return 0;
2326}
2327
a4193c8a 2328static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2329{
67d3b957 2330#ifdef DEBUG_UNASSIGNED
ab3d1727 2331 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2332#endif
e18231a3
BS
2333#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2334 do_unassigned_access(addr, 1, 0, 0, 1);
2335#endif
2336}
2337
2338static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2339{
2340#ifdef DEBUG_UNASSIGNED
2341 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2342#endif
2343#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2344 do_unassigned_access(addr, 1, 0, 0, 2);
2345#endif
2346}
2347
2348static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2349{
2350#ifdef DEBUG_UNASSIGNED
2351 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2352#endif
2353#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2354 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2355#endif
33417e70
FB
2356}
2357
2358static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2359 unassigned_mem_readb,
e18231a3
BS
2360 unassigned_mem_readw,
2361 unassigned_mem_readl,
33417e70
FB
2362};
2363
2364static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2365 unassigned_mem_writeb,
e18231a3
BS
2366 unassigned_mem_writew,
2367 unassigned_mem_writel,
33417e70
FB
2368};
2369
0f459d16
PB
2370static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2371 uint32_t val)
9fa3e853 2372{
3a7d929e 2373 int dirty_flags;
3a7d929e
FB
2374 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2375 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2376#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2377 tb_invalidate_phys_page_fast(ram_addr, 1);
2378 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2379#endif
3a7d929e 2380 }
0f459d16 2381 stb_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2382#ifdef USE_KQEMU
2383 if (cpu_single_env->kqemu_enabled &&
2384 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2385 kqemu_modify_page(cpu_single_env, ram_addr);
2386#endif
f23db169
FB
2387 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2388 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2389 /* we remove the notdirty callback only if the code has been
2390 flushed */
2391 if (dirty_flags == 0xff)
2e70f6ef 2392 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2393}
2394
0f459d16
PB
2395static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2396 uint32_t val)
9fa3e853 2397{
3a7d929e 2398 int dirty_flags;
3a7d929e
FB
2399 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2400 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2401#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2402 tb_invalidate_phys_page_fast(ram_addr, 2);
2403 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2404#endif
3a7d929e 2405 }
0f459d16 2406 stw_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2407#ifdef USE_KQEMU
2408 if (cpu_single_env->kqemu_enabled &&
2409 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2410 kqemu_modify_page(cpu_single_env, ram_addr);
2411#endif
f23db169
FB
2412 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2413 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2414 /* we remove the notdirty callback only if the code has been
2415 flushed */
2416 if (dirty_flags == 0xff)
2e70f6ef 2417 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2418}
2419
0f459d16
PB
2420static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2421 uint32_t val)
9fa3e853 2422{
3a7d929e 2423 int dirty_flags;
3a7d929e
FB
2424 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2425 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2426#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2427 tb_invalidate_phys_page_fast(ram_addr, 4);
2428 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2429#endif
3a7d929e 2430 }
0f459d16 2431 stl_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2432#ifdef USE_KQEMU
2433 if (cpu_single_env->kqemu_enabled &&
2434 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2435 kqemu_modify_page(cpu_single_env, ram_addr);
2436#endif
f23db169
FB
2437 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2438 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2439 /* we remove the notdirty callback only if the code has been
2440 flushed */
2441 if (dirty_flags == 0xff)
2e70f6ef 2442 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2443}
2444
3a7d929e 2445static CPUReadMemoryFunc *error_mem_read[3] = {
9fa3e853
FB
2446 NULL, /* never used */
2447 NULL, /* never used */
2448 NULL, /* never used */
2449};
2450
1ccde1cb
FB
2451static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2452 notdirty_mem_writeb,
2453 notdirty_mem_writew,
2454 notdirty_mem_writel,
2455};
2456
0f459d16
PB
2457/* Generate a debug exception if a watchpoint has been hit. */
2458static void check_watchpoint(int offset, int flags)
2459{
2460 CPUState *env = cpu_single_env;
2461 target_ulong vaddr;
2462 int i;
2463
2e70f6ef 2464 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
0f459d16
PB
2465 for (i = 0; i < env->nb_watchpoints; i++) {
2466 if (vaddr == env->watchpoint[i].vaddr
2467 && (env->watchpoint[i].type & flags)) {
2468 env->watchpoint_hit = i + 1;
2469 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2470 break;
2471 }
2472 }
2473}
2474
6658ffb8
PB
2475/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2476 so these check for a hit then pass through to the normal out-of-line
2477 phys routines. */
2478static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2479{
0f459d16 2480 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
6658ffb8
PB
2481 return ldub_phys(addr);
2482}
2483
2484static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2485{
0f459d16 2486 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
6658ffb8
PB
2487 return lduw_phys(addr);
2488}
2489
2490static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2491{
0f459d16 2492 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
6658ffb8
PB
2493 return ldl_phys(addr);
2494}
2495
6658ffb8
PB
2496static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2497 uint32_t val)
2498{
0f459d16 2499 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
6658ffb8
PB
2500 stb_phys(addr, val);
2501}
2502
2503static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2504 uint32_t val)
2505{
0f459d16 2506 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
6658ffb8
PB
2507 stw_phys(addr, val);
2508}
2509
2510static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2511 uint32_t val)
2512{
0f459d16 2513 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
6658ffb8
PB
2514 stl_phys(addr, val);
2515}
2516
2517static CPUReadMemoryFunc *watch_mem_read[3] = {
2518 watch_mem_readb,
2519 watch_mem_readw,
2520 watch_mem_readl,
2521};
2522
2523static CPUWriteMemoryFunc *watch_mem_write[3] = {
2524 watch_mem_writeb,
2525 watch_mem_writew,
2526 watch_mem_writel,
2527};
6658ffb8 2528
db7b5426
BS
2529static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2530 unsigned int len)
2531{
db7b5426
BS
2532 uint32_t ret;
2533 unsigned int idx;
2534
2535 idx = SUBPAGE_IDX(addr - mmio->base);
2536#if defined(DEBUG_SUBPAGE)
2537 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2538 mmio, len, addr, idx);
2539#endif
3ee89922 2540 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr);
db7b5426
BS
2541
2542 return ret;
2543}
2544
2545static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2546 uint32_t value, unsigned int len)
2547{
db7b5426
BS
2548 unsigned int idx;
2549
2550 idx = SUBPAGE_IDX(addr - mmio->base);
2551#if defined(DEBUG_SUBPAGE)
2552 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2553 mmio, len, addr, idx, value);
2554#endif
3ee89922 2555 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value);
db7b5426
BS
2556}
2557
2558static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2559{
2560#if defined(DEBUG_SUBPAGE)
2561 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2562#endif
2563
2564 return subpage_readlen(opaque, addr, 0);
2565}
2566
2567static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2568 uint32_t value)
2569{
2570#if defined(DEBUG_SUBPAGE)
2571 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2572#endif
2573 subpage_writelen(opaque, addr, value, 0);
2574}
2575
2576static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2577{
2578#if defined(DEBUG_SUBPAGE)
2579 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2580#endif
2581
2582 return subpage_readlen(opaque, addr, 1);
2583}
2584
2585static void subpage_writew (void *opaque, target_phys_addr_t addr,
2586 uint32_t value)
2587{
2588#if defined(DEBUG_SUBPAGE)
2589 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2590#endif
2591 subpage_writelen(opaque, addr, value, 1);
2592}
2593
2594static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2595{
2596#if defined(DEBUG_SUBPAGE)
2597 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2598#endif
2599
2600 return subpage_readlen(opaque, addr, 2);
2601}
2602
2603static void subpage_writel (void *opaque,
2604 target_phys_addr_t addr, uint32_t value)
2605{
2606#if defined(DEBUG_SUBPAGE)
2607 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2608#endif
2609 subpage_writelen(opaque, addr, value, 2);
2610}
2611
2612static CPUReadMemoryFunc *subpage_read[] = {
2613 &subpage_readb,
2614 &subpage_readw,
2615 &subpage_readl,
2616};
2617
2618static CPUWriteMemoryFunc *subpage_write[] = {
2619 &subpage_writeb,
2620 &subpage_writew,
2621 &subpage_writel,
2622};
2623
2624static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
00f82b8a 2625 ram_addr_t memory)
db7b5426
BS
2626{
2627 int idx, eidx;
4254fab8 2628 unsigned int i;
db7b5426
BS
2629
2630 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2631 return -1;
2632 idx = SUBPAGE_IDX(start);
2633 eidx = SUBPAGE_IDX(end);
2634#if defined(DEBUG_SUBPAGE)
2635 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2636 mmio, start, end, idx, eidx, memory);
2637#endif
2638 memory >>= IO_MEM_SHIFT;
2639 for (; idx <= eidx; idx++) {
4254fab8 2640 for (i = 0; i < 4; i++) {
3ee89922
BS
2641 if (io_mem_read[memory][i]) {
2642 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2643 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2644 }
2645 if (io_mem_write[memory][i]) {
2646 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2647 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2648 }
4254fab8 2649 }
db7b5426
BS
2650 }
2651
2652 return 0;
2653}
2654
00f82b8a
AJ
2655static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2656 ram_addr_t orig_memory)
db7b5426
BS
2657{
2658 subpage_t *mmio;
2659 int subpage_memory;
2660
2661 mmio = qemu_mallocz(sizeof(subpage_t));
2662 if (mmio != NULL) {
2663 mmio->base = base;
2664 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2665#if defined(DEBUG_SUBPAGE)
2666 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2667 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2668#endif
2669 *phys = subpage_memory | IO_MEM_SUBPAGE;
2670 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
2671 }
2672
2673 return mmio;
2674}
2675
33417e70
FB
2676static void io_mem_init(void)
2677{
3a7d929e 2678 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
a4193c8a 2679 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
3a7d929e 2680 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
1ccde1cb
FB
2681 io_mem_nb = 5;
2682
0f459d16 2683 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
6658ffb8 2684 watch_mem_write, NULL);
1ccde1cb 2685 /* alloc dirty bits array */
0a962c02 2686 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
3a7d929e 2687 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
33417e70
FB
2688}
2689
2690/* mem_read and mem_write are arrays of functions containing the
2691 function to access byte (index 0), word (index 1) and dword (index
3ee89922
BS
2692 2). Functions can be omitted with a NULL function pointer. The
2693 registered functions may be modified dynamically later.
2694 If io_index is non zero, the corresponding io zone is
4254fab8
BS
2695 modified. If it is zero, a new io zone is allocated. The return
2696 value can be used with cpu_register_physical_memory(). (-1) is
2697 returned if error. */
33417e70
FB
2698int cpu_register_io_memory(int io_index,
2699 CPUReadMemoryFunc **mem_read,
a4193c8a
FB
2700 CPUWriteMemoryFunc **mem_write,
2701 void *opaque)
33417e70 2702{
4254fab8 2703 int i, subwidth = 0;
33417e70
FB
2704
2705 if (io_index <= 0) {
b5ff1b31 2706 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
33417e70
FB
2707 return -1;
2708 io_index = io_mem_nb++;
2709 } else {
2710 if (io_index >= IO_MEM_NB_ENTRIES)
2711 return -1;
2712 }
b5ff1b31 2713
33417e70 2714 for(i = 0;i < 3; i++) {
4254fab8
BS
2715 if (!mem_read[i] || !mem_write[i])
2716 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
2717 io_mem_read[io_index][i] = mem_read[i];
2718 io_mem_write[io_index][i] = mem_write[i];
2719 }
a4193c8a 2720 io_mem_opaque[io_index] = opaque;
4254fab8 2721 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 2722}
61382a50 2723
8926b517
FB
2724CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2725{
2726 return io_mem_write[io_index >> IO_MEM_SHIFT];
2727}
2728
2729CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2730{
2731 return io_mem_read[io_index >> IO_MEM_SHIFT];
2732}
2733
e2eef170
PB
2734#endif /* !defined(CONFIG_USER_ONLY) */
2735
13eb76e0
FB
2736/* physical memory access (slow version, mainly for debug) */
2737#if defined(CONFIG_USER_ONLY)
5fafdf24 2738void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2739 int len, int is_write)
2740{
2741 int l, flags;
2742 target_ulong page;
53a5960a 2743 void * p;
13eb76e0
FB
2744
2745 while (len > 0) {
2746 page = addr & TARGET_PAGE_MASK;
2747 l = (page + TARGET_PAGE_SIZE) - addr;
2748 if (l > len)
2749 l = len;
2750 flags = page_get_flags(page);
2751 if (!(flags & PAGE_VALID))
2752 return;
2753 if (is_write) {
2754 if (!(flags & PAGE_WRITE))
2755 return;
579a97f7 2756 /* XXX: this code should not depend on lock_user */
72fb7daa 2757 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
2758 /* FIXME - should this return an error rather than just fail? */
2759 return;
72fb7daa
AJ
2760 memcpy(p, buf, l);
2761 unlock_user(p, addr, l);
13eb76e0
FB
2762 } else {
2763 if (!(flags & PAGE_READ))
2764 return;
579a97f7 2765 /* XXX: this code should not depend on lock_user */
72fb7daa 2766 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
2767 /* FIXME - should this return an error rather than just fail? */
2768 return;
72fb7daa 2769 memcpy(buf, p, l);
5b257578 2770 unlock_user(p, addr, 0);
13eb76e0
FB
2771 }
2772 len -= l;
2773 buf += l;
2774 addr += l;
2775 }
2776}
8df1cd07 2777
13eb76e0 2778#else
5fafdf24 2779void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2780 int len, int is_write)
2781{
2782 int l, io_index;
2783 uint8_t *ptr;
2784 uint32_t val;
2e12669a
FB
2785 target_phys_addr_t page;
2786 unsigned long pd;
92e873b9 2787 PhysPageDesc *p;
3b46e624 2788
13eb76e0
FB
2789 while (len > 0) {
2790 page = addr & TARGET_PAGE_MASK;
2791 l = (page + TARGET_PAGE_SIZE) - addr;
2792 if (l > len)
2793 l = len;
92e873b9 2794 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
2795 if (!p) {
2796 pd = IO_MEM_UNASSIGNED;
2797 } else {
2798 pd = p->phys_offset;
2799 }
3b46e624 2800
13eb76e0 2801 if (is_write) {
3a7d929e 2802 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
13eb76e0 2803 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
6a00d601
FB
2804 /* XXX: could force cpu_single_env to NULL to avoid
2805 potential bugs */
13eb76e0 2806 if (l >= 4 && ((addr & 3) == 0)) {
1c213d19 2807 /* 32 bit write access */
c27004ec 2808 val = ldl_p(buf);
a4193c8a 2809 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2810 l = 4;
2811 } else if (l >= 2 && ((addr & 1) == 0)) {
1c213d19 2812 /* 16 bit write access */
c27004ec 2813 val = lduw_p(buf);
a4193c8a 2814 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2815 l = 2;
2816 } else {
1c213d19 2817 /* 8 bit write access */
c27004ec 2818 val = ldub_p(buf);
a4193c8a 2819 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2820 l = 1;
2821 }
2822 } else {
b448f2f3
FB
2823 unsigned long addr1;
2824 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 2825 /* RAM case */
b448f2f3 2826 ptr = phys_ram_base + addr1;
13eb76e0 2827 memcpy(ptr, buf, l);
3a7d929e
FB
2828 if (!cpu_physical_memory_is_dirty(addr1)) {
2829 /* invalidate code */
2830 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2831 /* set dirty bit */
5fafdf24 2832 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 2833 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 2834 }
13eb76e0
FB
2835 }
2836 } else {
5fafdf24 2837 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 2838 !(pd & IO_MEM_ROMD)) {
13eb76e0
FB
2839 /* I/O case */
2840 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2841 if (l >= 4 && ((addr & 3) == 0)) {
2842 /* 32 bit read access */
a4193c8a 2843 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
c27004ec 2844 stl_p(buf, val);
13eb76e0
FB
2845 l = 4;
2846 } else if (l >= 2 && ((addr & 1) == 0)) {
2847 /* 16 bit read access */
a4193c8a 2848 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
c27004ec 2849 stw_p(buf, val);
13eb76e0
FB
2850 l = 2;
2851 } else {
1c213d19 2852 /* 8 bit read access */
a4193c8a 2853 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
c27004ec 2854 stb_p(buf, val);
13eb76e0
FB
2855 l = 1;
2856 }
2857 } else {
2858 /* RAM case */
5fafdf24 2859 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
13eb76e0
FB
2860 (addr & ~TARGET_PAGE_MASK);
2861 memcpy(buf, ptr, l);
2862 }
2863 }
2864 len -= l;
2865 buf += l;
2866 addr += l;
2867 }
2868}
8df1cd07 2869
d0ecd2aa 2870/* used for ROM loading : can write in RAM and ROM */
5fafdf24 2871void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
2872 const uint8_t *buf, int len)
2873{
2874 int l;
2875 uint8_t *ptr;
2876 target_phys_addr_t page;
2877 unsigned long pd;
2878 PhysPageDesc *p;
3b46e624 2879
d0ecd2aa
FB
2880 while (len > 0) {
2881 page = addr & TARGET_PAGE_MASK;
2882 l = (page + TARGET_PAGE_SIZE) - addr;
2883 if (l > len)
2884 l = len;
2885 p = phys_page_find(page >> TARGET_PAGE_BITS);
2886 if (!p) {
2887 pd = IO_MEM_UNASSIGNED;
2888 } else {
2889 pd = p->phys_offset;
2890 }
3b46e624 2891
d0ecd2aa 2892 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
2893 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
2894 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
2895 /* do nothing */
2896 } else {
2897 unsigned long addr1;
2898 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2899 /* ROM/RAM case */
2900 ptr = phys_ram_base + addr1;
2901 memcpy(ptr, buf, l);
2902 }
2903 len -= l;
2904 buf += l;
2905 addr += l;
2906 }
2907}
2908
2909
8df1cd07
FB
2910/* warning: addr must be aligned */
2911uint32_t ldl_phys(target_phys_addr_t addr)
2912{
2913 int io_index;
2914 uint8_t *ptr;
2915 uint32_t val;
2916 unsigned long pd;
2917 PhysPageDesc *p;
2918
2919 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2920 if (!p) {
2921 pd = IO_MEM_UNASSIGNED;
2922 } else {
2923 pd = p->phys_offset;
2924 }
3b46e624 2925
5fafdf24 2926 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 2927 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
2928 /* I/O case */
2929 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2930 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2931 } else {
2932 /* RAM case */
5fafdf24 2933 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
8df1cd07
FB
2934 (addr & ~TARGET_PAGE_MASK);
2935 val = ldl_p(ptr);
2936 }
2937 return val;
2938}
2939
84b7b8e7
FB
2940/* warning: addr must be aligned */
2941uint64_t ldq_phys(target_phys_addr_t addr)
2942{
2943 int io_index;
2944 uint8_t *ptr;
2945 uint64_t val;
2946 unsigned long pd;
2947 PhysPageDesc *p;
2948
2949 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2950 if (!p) {
2951 pd = IO_MEM_UNASSIGNED;
2952 } else {
2953 pd = p->phys_offset;
2954 }
3b46e624 2955
2a4188a3
FB
2956 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2957 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
2958 /* I/O case */
2959 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2960#ifdef TARGET_WORDS_BIGENDIAN
2961 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
2962 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
2963#else
2964 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2965 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
2966#endif
2967 } else {
2968 /* RAM case */
5fafdf24 2969 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
2970 (addr & ~TARGET_PAGE_MASK);
2971 val = ldq_p(ptr);
2972 }
2973 return val;
2974}
2975
aab33094
FB
2976/* XXX: optimize */
2977uint32_t ldub_phys(target_phys_addr_t addr)
2978{
2979 uint8_t val;
2980 cpu_physical_memory_read(addr, &val, 1);
2981 return val;
2982}
2983
2984/* XXX: optimize */
2985uint32_t lduw_phys(target_phys_addr_t addr)
2986{
2987 uint16_t val;
2988 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
2989 return tswap16(val);
2990}
2991
8df1cd07
FB
2992/* warning: addr must be aligned. The ram page is not masked as dirty
2993 and the code inside is not invalidated. It is useful if the dirty
2994 bits are used to track modified PTEs */
2995void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
2996{
2997 int io_index;
2998 uint8_t *ptr;
2999 unsigned long pd;
3000 PhysPageDesc *p;
3001
3002 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3003 if (!p) {
3004 pd = IO_MEM_UNASSIGNED;
3005 } else {
3006 pd = p->phys_offset;
3007 }
3b46e624 3008
3a7d929e 3009 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07
FB
3010 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3011 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3012 } else {
74576198
AL
3013 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3014 ptr = phys_ram_base + addr1;
8df1cd07 3015 stl_p(ptr, val);
74576198
AL
3016
3017 if (unlikely(in_migration)) {
3018 if (!cpu_physical_memory_is_dirty(addr1)) {
3019 /* invalidate code */
3020 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3021 /* set dirty bit */
3022 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3023 (0xff & ~CODE_DIRTY_FLAG);
3024 }
3025 }
8df1cd07
FB
3026 }
3027}
3028
bc98a7ef
JM
3029void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3030{
3031 int io_index;
3032 uint8_t *ptr;
3033 unsigned long pd;
3034 PhysPageDesc *p;
3035
3036 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3037 if (!p) {
3038 pd = IO_MEM_UNASSIGNED;
3039 } else {
3040 pd = p->phys_offset;
3041 }
3b46e624 3042
bc98a7ef
JM
3043 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3044 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3045#ifdef TARGET_WORDS_BIGENDIAN
3046 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3047 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3048#else
3049 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3050 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3051#endif
3052 } else {
5fafdf24 3053 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3054 (addr & ~TARGET_PAGE_MASK);
3055 stq_p(ptr, val);
3056 }
3057}
3058
8df1cd07 3059/* warning: addr must be aligned */
8df1cd07
FB
3060void stl_phys(target_phys_addr_t addr, uint32_t val)
3061{
3062 int io_index;
3063 uint8_t *ptr;
3064 unsigned long pd;
3065 PhysPageDesc *p;
3066
3067 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3068 if (!p) {
3069 pd = IO_MEM_UNASSIGNED;
3070 } else {
3071 pd = p->phys_offset;
3072 }
3b46e624 3073
3a7d929e 3074 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07
FB
3075 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3076 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3077 } else {
3078 unsigned long addr1;
3079 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3080 /* RAM case */
3081 ptr = phys_ram_base + addr1;
3082 stl_p(ptr, val);
3a7d929e
FB
3083 if (!cpu_physical_memory_is_dirty(addr1)) {
3084 /* invalidate code */
3085 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3086 /* set dirty bit */
f23db169
FB
3087 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3088 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3089 }
8df1cd07
FB
3090 }
3091}
3092
aab33094
FB
3093/* XXX: optimize */
3094void stb_phys(target_phys_addr_t addr, uint32_t val)
3095{
3096 uint8_t v = val;
3097 cpu_physical_memory_write(addr, &v, 1);
3098}
3099
3100/* XXX: optimize */
3101void stw_phys(target_phys_addr_t addr, uint32_t val)
3102{
3103 uint16_t v = tswap16(val);
3104 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3105}
3106
3107/* XXX: optimize */
3108void stq_phys(target_phys_addr_t addr, uint64_t val)
3109{
3110 val = tswap64(val);
3111 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3112}
3113
13eb76e0
FB
3114#endif
3115
3116/* virtual memory access for debug */
5fafdf24 3117int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3118 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3119{
3120 int l;
9b3c35e0
JM
3121 target_phys_addr_t phys_addr;
3122 target_ulong page;
13eb76e0
FB
3123
3124 while (len > 0) {
3125 page = addr & TARGET_PAGE_MASK;
3126 phys_addr = cpu_get_phys_page_debug(env, page);
3127 /* if no physical page mapped, return an error */
3128 if (phys_addr == -1)
3129 return -1;
3130 l = (page + TARGET_PAGE_SIZE) - addr;
3131 if (l > len)
3132 l = len;
5fafdf24 3133 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
b448f2f3 3134 buf, l, is_write);
13eb76e0
FB
3135 len -= l;
3136 buf += l;
3137 addr += l;
3138 }
3139 return 0;
3140}
3141
2e70f6ef
PB
3142/* in deterministic execution mode, instructions doing device I/Os
3143 must be at the end of the TB */
3144void cpu_io_recompile(CPUState *env, void *retaddr)
3145{
3146 TranslationBlock *tb;
3147 uint32_t n, cflags;
3148 target_ulong pc, cs_base;
3149 uint64_t flags;
3150
3151 tb = tb_find_pc((unsigned long)retaddr);
3152 if (!tb) {
3153 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3154 retaddr);
3155 }
3156 n = env->icount_decr.u16.low + tb->icount;
3157 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3158 /* Calculate how many instructions had been executed before the fault
bf20dc07 3159 occurred. */
2e70f6ef
PB
3160 n = n - env->icount_decr.u16.low;
3161 /* Generate a new TB ending on the I/O insn. */
3162 n++;
3163 /* On MIPS and SH, delay slot instructions can only be restarted if
3164 they were already the first instruction in the TB. If this is not
bf20dc07 3165 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3166 branch. */
3167#if defined(TARGET_MIPS)
3168 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3169 env->active_tc.PC -= 4;
3170 env->icount_decr.u16.low++;
3171 env->hflags &= ~MIPS_HFLAG_BMASK;
3172 }
3173#elif defined(TARGET_SH4)
3174 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3175 && n > 1) {
3176 env->pc -= 2;
3177 env->icount_decr.u16.low++;
3178 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3179 }
3180#endif
3181 /* This should never happen. */
3182 if (n > CF_COUNT_MASK)
3183 cpu_abort(env, "TB too big during recompile");
3184
3185 cflags = n | CF_LAST_IO;
3186 pc = tb->pc;
3187 cs_base = tb->cs_base;
3188 flags = tb->flags;
3189 tb_phys_invalidate(tb, -1);
3190 /* FIXME: In theory this could raise an exception. In practice
3191 we have already translated the block once so it's probably ok. */
3192 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3193 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3194 the first in the TB) then we end up generating a whole new TB and
3195 repeating the fault, which is horribly inefficient.
3196 Better would be to execute just this insn uncached, or generate a
3197 second new TB. */
3198 cpu_resume_from_signal(env, NULL);
3199}
3200
e3db7226
FB
3201void dump_exec_info(FILE *f,
3202 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3203{
3204 int i, target_code_size, max_target_code_size;
3205 int direct_jmp_count, direct_jmp2_count, cross_page;
3206 TranslationBlock *tb;
3b46e624 3207
e3db7226
FB
3208 target_code_size = 0;
3209 max_target_code_size = 0;
3210 cross_page = 0;
3211 direct_jmp_count = 0;
3212 direct_jmp2_count = 0;
3213 for(i = 0; i < nb_tbs; i++) {
3214 tb = &tbs[i];
3215 target_code_size += tb->size;
3216 if (tb->size > max_target_code_size)
3217 max_target_code_size = tb->size;
3218 if (tb->page_addr[1] != -1)
3219 cross_page++;
3220 if (tb->tb_next_offset[0] != 0xffff) {
3221 direct_jmp_count++;
3222 if (tb->tb_next_offset[1] != 0xffff) {
3223 direct_jmp2_count++;
3224 }
3225 }
3226 }
3227 /* XXX: avoid using doubles ? */
57fec1fe 3228 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3229 cpu_fprintf(f, "gen code size %ld/%ld\n",
3230 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3231 cpu_fprintf(f, "TB count %d/%d\n",
3232 nb_tbs, code_gen_max_blocks);
5fafdf24 3233 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3234 nb_tbs ? target_code_size / nb_tbs : 0,
3235 max_target_code_size);
5fafdf24 3236 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3237 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3238 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3239 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3240 cross_page,
e3db7226
FB
3241 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3242 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3243 direct_jmp_count,
e3db7226
FB
3244 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3245 direct_jmp2_count,
3246 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3247 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3248 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3249 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3250 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3251 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3252}
3253
5fafdf24 3254#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3255
3256#define MMUSUFFIX _cmmu
3257#define GETPC() NULL
3258#define env cpu_single_env
b769d8fe 3259#define SOFTMMU_CODE_ACCESS
61382a50
FB
3260
3261#define SHIFT 0
3262#include "softmmu_template.h"
3263
3264#define SHIFT 1
3265#include "softmmu_template.h"
3266
3267#define SHIFT 2
3268#include "softmmu_template.h"
3269
3270#define SHIFT 3
3271#include "softmmu_template.h"
3272
3273#undef env
3274
3275#endif