]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
exec: memory radix tree page level compression
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181 28#include "cpu.h"
b67d9a52 29#include "tcg.h"
b3c7724c 30#include "hw/hw.h"
cc9e98cb 31#include "hw/qdev.h"
1de7afc9 32#include "qemu/osdep.h"
9c17d615 33#include "sysemu/kvm.h"
2ff3de68 34#include "sysemu/sysemu.h"
0d09e41a 35#include "hw/xen/xen.h"
1de7afc9
PB
36#include "qemu/timer.h"
37#include "qemu/config-file.h"
022c62cb 38#include "exec/memory.h"
9c17d615 39#include "sysemu/dma.h"
022c62cb 40#include "exec/address-spaces.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
432d268c 43#else /* !CONFIG_USER_ONLY */
9c17d615 44#include "sysemu/xen-mapcache.h"
6506e4f9 45#include "trace.h"
53a5960a 46#endif
0d6d3c87 47#include "exec/cpu-all.h"
54936004 48
022c62cb 49#include "exec/cputlb.h"
5b6dd868 50#include "translate-all.h"
0cac1b66 51
022c62cb 52#include "exec/memory-internal.h"
67d95c15 53
b35ba30f
MT
54#include "qemu/range.h"
55
db7b5426 56//#define DEBUG_SUBPAGE
1196be37 57
e2eef170 58#if !defined(CONFIG_USER_ONLY)
74576198 59static int in_migration;
94a6b54f 60
a3161038 61RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
62
63static MemoryRegion *system_memory;
309cb471 64static MemoryRegion *system_io;
62152b8a 65
f6790af6
AK
66AddressSpace address_space_io;
67AddressSpace address_space_memory;
2673a5da 68
0844e007 69MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 70static MemoryRegion io_mem_unassigned;
0e0df1e2 71
e2eef170 72#endif
9fa3e853 73
bdc44640 74struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
75/* current CPU in the current thread. It is only valid inside
76 cpu_exec() */
4917cf44 77DEFINE_TLS(CPUState *, current_cpu);
2e70f6ef 78/* 0 = Do not count executed instructions.
bf20dc07 79 1 = Precise instruction counting.
2e70f6ef 80 2 = Adaptive rate instruction counting. */
5708fc66 81int use_icount;
6a00d601 82
e2eef170 83#if !defined(CONFIG_USER_ONLY)
4346ae3e 84
1db8abb1
PB
85typedef struct PhysPageEntry PhysPageEntry;
86
87struct PhysPageEntry {
9736e55b 88 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 89 uint32_t skip : 6;
9736e55b 90 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 91 uint32_t ptr : 26;
1db8abb1
PB
92};
93
8b795765
MT
94#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
95
03f49957
PB
96/* Size of the L2 (and L3, etc) page tables. */
97#define ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
98
99#define P_L2_BITS 10
100#define P_L2_SIZE (1 << P_L2_BITS)
101
102#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
103
104typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 105
1db8abb1
PB
106struct AddressSpaceDispatch {
107 /* This is a multi-level map on the physical address space.
108 * The bottom level has pointers to MemoryRegionSections.
109 */
110 PhysPageEntry phys_map;
0475d94f
PB
111 Node *nodes;
112 MemoryRegionSection *sections;
acc9d80b 113 AddressSpace *as;
1db8abb1
PB
114};
115
90260c6c
JK
116#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
117typedef struct subpage_t {
118 MemoryRegion iomem;
acc9d80b 119 AddressSpace *as;
90260c6c
JK
120 hwaddr base;
121 uint16_t sub_section[TARGET_PAGE_SIZE];
122} subpage_t;
123
b41aac4f
LPF
124#define PHYS_SECTION_UNASSIGNED 0
125#define PHYS_SECTION_NOTDIRTY 1
126#define PHYS_SECTION_ROM 2
127#define PHYS_SECTION_WATCH 3
5312bd8b 128
9affd6fc
PB
129typedef struct PhysPageMap {
130 unsigned sections_nb;
131 unsigned sections_nb_alloc;
132 unsigned nodes_nb;
133 unsigned nodes_nb_alloc;
134 Node *nodes;
135 MemoryRegionSection *sections;
136} PhysPageMap;
137
6092666e 138static PhysPageMap *prev_map;
9affd6fc 139static PhysPageMap next_map;
d6f2ea22 140
e2eef170 141static void io_mem_init(void);
62152b8a 142static void memory_map_init(void);
e2eef170 143
1ec9b909 144static MemoryRegion io_mem_watch;
6658ffb8 145#endif
fd6ce8f6 146
6d9a1304 147#if !defined(CONFIG_USER_ONLY)
d6f2ea22 148
f7bf5461 149static void phys_map_node_reserve(unsigned nodes)
d6f2ea22 150{
9affd6fc
PB
151 if (next_map.nodes_nb + nodes > next_map.nodes_nb_alloc) {
152 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc * 2,
153 16);
154 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc,
155 next_map.nodes_nb + nodes);
156 next_map.nodes = g_renew(Node, next_map.nodes,
157 next_map.nodes_nb_alloc);
d6f2ea22 158 }
f7bf5461
AK
159}
160
8b795765 161static uint32_t phys_map_node_alloc(void)
f7bf5461
AK
162{
163 unsigned i;
8b795765 164 uint32_t ret;
f7bf5461 165
9affd6fc 166 ret = next_map.nodes_nb++;
f7bf5461 167 assert(ret != PHYS_MAP_NODE_NIL);
9affd6fc 168 assert(ret != next_map.nodes_nb_alloc);
03f49957 169 for (i = 0; i < P_L2_SIZE; ++i) {
9736e55b 170 next_map.nodes[ret][i].skip = 1;
9affd6fc 171 next_map.nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
d6f2ea22 172 }
f7bf5461 173 return ret;
d6f2ea22
AK
174}
175
a8170e5e
AK
176static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
177 hwaddr *nb, uint16_t leaf,
2999097b 178 int level)
f7bf5461
AK
179{
180 PhysPageEntry *p;
181 int i;
03f49957 182 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 183
9736e55b 184 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
c19e8800 185 lp->ptr = phys_map_node_alloc();
9affd6fc 186 p = next_map.nodes[lp->ptr];
f7bf5461 187 if (level == 0) {
03f49957 188 for (i = 0; i < P_L2_SIZE; i++) {
9736e55b 189 p[i].skip = 0;
b41aac4f 190 p[i].ptr = PHYS_SECTION_UNASSIGNED;
4346ae3e 191 }
67c4d23c 192 }
f7bf5461 193 } else {
9affd6fc 194 p = next_map.nodes[lp->ptr];
92e873b9 195 }
03f49957 196 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 197
03f49957 198 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 199 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 200 lp->skip = 0;
c19e8800 201 lp->ptr = leaf;
07f07b31
AK
202 *index += step;
203 *nb -= step;
2999097b
AK
204 } else {
205 phys_page_set_level(lp, index, nb, leaf, level - 1);
206 }
207 ++lp;
f7bf5461
AK
208 }
209}
210
ac1970fb 211static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 212 hwaddr index, hwaddr nb,
2999097b 213 uint16_t leaf)
f7bf5461 214{
2999097b 215 /* Wildly overreserve - it doesn't matter much. */
07f07b31 216 phys_map_node_reserve(3 * P_L2_LEVELS);
5cd2c5b6 217
ac1970fb 218 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
219}
220
b35ba30f
MT
221/* Compact a non leaf page entry. Simply detect that the entry has a single child,
222 * and update our entry so we can skip it and go directly to the destination.
223 */
224static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
225{
226 unsigned valid_ptr = P_L2_SIZE;
227 int valid = 0;
228 PhysPageEntry *p;
229 int i;
230
231 if (lp->ptr == PHYS_MAP_NODE_NIL) {
232 return;
233 }
234
235 p = nodes[lp->ptr];
236 for (i = 0; i < P_L2_SIZE; i++) {
237 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
238 continue;
239 }
240
241 valid_ptr = i;
242 valid++;
243 if (p[i].skip) {
244 phys_page_compact(&p[i], nodes, compacted);
245 }
246 }
247
248 /* We can only compress if there's only one child. */
249 if (valid != 1) {
250 return;
251 }
252
253 assert(valid_ptr < P_L2_SIZE);
254
255 /* Don't compress if it won't fit in the # of bits we have. */
256 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
257 return;
258 }
259
260 lp->ptr = p[valid_ptr].ptr;
261 if (!p[valid_ptr].skip) {
262 /* If our only child is a leaf, make this a leaf. */
263 /* By design, we should have made this node a leaf to begin with so we
264 * should never reach here.
265 * But since it's so simple to handle this, let's do it just in case we
266 * change this rule.
267 */
268 lp->skip = 0;
269 } else {
270 lp->skip += p[valid_ptr].skip;
271 }
272}
273
274static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
275{
276 DECLARE_BITMAP(compacted, nodes_nb);
277
278 if (d->phys_map.skip) {
279 phys_page_compact(&d->phys_map, d->nodes, compacted);
280 }
281}
282
97115a8d 283static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
9affd6fc 284 Node *nodes, MemoryRegionSection *sections)
92e873b9 285{
31ab2b4a 286 PhysPageEntry *p;
97115a8d 287 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 288 int i;
f1f6e3b8 289
9736e55b 290 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 291 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 292 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 293 }
9affd6fc 294 p = nodes[lp.ptr];
03f49957 295 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 296 }
b35ba30f
MT
297
298 if (sections[lp.ptr].size.hi ||
299 range_covers_byte(sections[lp.ptr].offset_within_address_space,
300 sections[lp.ptr].size.lo, addr)) {
301 return &sections[lp.ptr];
302 } else {
303 return &sections[PHYS_SECTION_UNASSIGNED];
304 }
f3705d53
AK
305}
306
e5548617
BS
307bool memory_region_is_unassigned(MemoryRegion *mr)
308{
2a8e7499 309 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 310 && mr != &io_mem_watch;
fd6ce8f6 311}
149f54b5 312
c7086b4a 313static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
314 hwaddr addr,
315 bool resolve_subpage)
9f029603 316{
90260c6c
JK
317 MemoryRegionSection *section;
318 subpage_t *subpage;
319
97115a8d 320 section = phys_page_find(d->phys_map, addr, d->nodes, d->sections);
90260c6c
JK
321 if (resolve_subpage && section->mr->subpage) {
322 subpage = container_of(section->mr, subpage_t, iomem);
0475d94f 323 section = &d->sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
324 }
325 return section;
9f029603
JK
326}
327
90260c6c 328static MemoryRegionSection *
c7086b4a 329address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 330 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
331{
332 MemoryRegionSection *section;
333 Int128 diff;
334
c7086b4a 335 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
336 /* Compute offset within MemoryRegionSection */
337 addr -= section->offset_within_address_space;
338
339 /* Compute offset within MemoryRegion */
340 *xlat = addr + section->offset_within_region;
341
342 diff = int128_sub(section->mr->size, int128_make64(addr));
3752a036 343 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
149f54b5
PB
344 return section;
345}
90260c6c 346
5c8a00ce
PB
347MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
348 hwaddr *xlat, hwaddr *plen,
349 bool is_write)
90260c6c 350{
30951157
AK
351 IOMMUTLBEntry iotlb;
352 MemoryRegionSection *section;
353 MemoryRegion *mr;
354 hwaddr len = *plen;
355
356 for (;;) {
c7086b4a 357 section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
30951157
AK
358 mr = section->mr;
359
360 if (!mr->iommu_ops) {
361 break;
362 }
363
364 iotlb = mr->iommu_ops->translate(mr, addr);
365 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
366 | (addr & iotlb.addr_mask));
367 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
368 if (!(iotlb.perm & (1 << is_write))) {
369 mr = &io_mem_unassigned;
370 break;
371 }
372
373 as = iotlb.target_as;
374 }
375
376 *plen = len;
377 *xlat = addr;
378 return mr;
90260c6c
JK
379}
380
381MemoryRegionSection *
382address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
383 hwaddr *plen)
384{
30951157 385 MemoryRegionSection *section;
c7086b4a 386 section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
30951157
AK
387
388 assert(!section->mr->iommu_ops);
389 return section;
90260c6c 390}
5b6dd868 391#endif
fd6ce8f6 392
5b6dd868 393void cpu_exec_init_all(void)
fdbb84d1 394{
5b6dd868 395#if !defined(CONFIG_USER_ONLY)
b2a8658e 396 qemu_mutex_init(&ram_list.mutex);
5b6dd868
BS
397 memory_map_init();
398 io_mem_init();
fdbb84d1 399#endif
5b6dd868 400}
fdbb84d1 401
b170fce3 402#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
403
404static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 405{
259186a7 406 CPUState *cpu = opaque;
a513fe19 407
5b6dd868
BS
408 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
409 version_id is increased. */
259186a7
AF
410 cpu->interrupt_request &= ~0x01;
411 tlb_flush(cpu->env_ptr, 1);
5b6dd868
BS
412
413 return 0;
a513fe19 414}
7501267e 415
1a1562f5 416const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
417 .name = "cpu_common",
418 .version_id = 1,
419 .minimum_version_id = 1,
420 .minimum_version_id_old = 1,
421 .post_load = cpu_common_post_load,
422 .fields = (VMStateField []) {
259186a7
AF
423 VMSTATE_UINT32(halted, CPUState),
424 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868
BS
425 VMSTATE_END_OF_LIST()
426 }
427};
1a1562f5 428
5b6dd868 429#endif
ea041c0e 430
38d8f5c8 431CPUState *qemu_get_cpu(int index)
ea041c0e 432{
bdc44640 433 CPUState *cpu;
ea041c0e 434
bdc44640 435 CPU_FOREACH(cpu) {
55e5c285 436 if (cpu->cpu_index == index) {
bdc44640 437 return cpu;
55e5c285 438 }
ea041c0e 439 }
5b6dd868 440
bdc44640 441 return NULL;
ea041c0e
FB
442}
443
5b6dd868 444void cpu_exec_init(CPUArchState *env)
ea041c0e 445{
5b6dd868 446 CPUState *cpu = ENV_GET_CPU(env);
b170fce3 447 CPUClass *cc = CPU_GET_CLASS(cpu);
bdc44640 448 CPUState *some_cpu;
5b6dd868
BS
449 int cpu_index;
450
451#if defined(CONFIG_USER_ONLY)
452 cpu_list_lock();
453#endif
5b6dd868 454 cpu_index = 0;
bdc44640 455 CPU_FOREACH(some_cpu) {
5b6dd868
BS
456 cpu_index++;
457 }
55e5c285 458 cpu->cpu_index = cpu_index;
1b1ed8dc 459 cpu->numa_node = 0;
5b6dd868
BS
460 QTAILQ_INIT(&env->breakpoints);
461 QTAILQ_INIT(&env->watchpoints);
462#ifndef CONFIG_USER_ONLY
463 cpu->thread_id = qemu_get_thread_id();
464#endif
bdc44640 465 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
5b6dd868
BS
466#if defined(CONFIG_USER_ONLY)
467 cpu_list_unlock();
468#endif
e0d47944
AF
469 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
470 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
471 }
5b6dd868 472#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
5b6dd868
BS
473 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
474 cpu_save, cpu_load, env);
b170fce3 475 assert(cc->vmsd == NULL);
e0d47944 476 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
5b6dd868 477#endif
b170fce3
AF
478 if (cc->vmsd != NULL) {
479 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
480 }
ea041c0e
FB
481}
482
1fddef4b 483#if defined(TARGET_HAS_ICE)
94df27fd 484#if defined(CONFIG_USER_ONLY)
00b941e5 485static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
94df27fd
PB
486{
487 tb_invalidate_phys_page_range(pc, pc + 1, 0);
488}
489#else
00b941e5 490static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 491{
e8262a1b
MF
492 hwaddr phys = cpu_get_phys_page_debug(cpu, pc);
493 if (phys != -1) {
494 tb_invalidate_phys_addr(phys | (pc & ~TARGET_PAGE_MASK));
495 }
1e7855a5 496}
c27004ec 497#endif
94df27fd 498#endif /* TARGET_HAS_ICE */
d720b93d 499
c527ee8f 500#if defined(CONFIG_USER_ONLY)
9349b4f9 501void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
c527ee8f
PB
502
503{
504}
505
9349b4f9 506int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
c527ee8f
PB
507 int flags, CPUWatchpoint **watchpoint)
508{
509 return -ENOSYS;
510}
511#else
6658ffb8 512/* Add a watchpoint. */
9349b4f9 513int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 514 int flags, CPUWatchpoint **watchpoint)
6658ffb8 515{
b4051334 516 target_ulong len_mask = ~(len - 1);
c0ce998e 517 CPUWatchpoint *wp;
6658ffb8 518
b4051334 519 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
0dc23828
MF
520 if ((len & (len - 1)) || (addr & ~len_mask) ||
521 len == 0 || len > TARGET_PAGE_SIZE) {
b4051334
AL
522 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
523 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
524 return -EINVAL;
525 }
7267c094 526 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
527
528 wp->vaddr = addr;
b4051334 529 wp->len_mask = len_mask;
a1d1bb31
AL
530 wp->flags = flags;
531
2dc9f411 532 /* keep all GDB-injected watchpoints in front */
c0ce998e 533 if (flags & BP_GDB)
72cf2d4f 534 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 535 else
72cf2d4f 536 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 537
6658ffb8 538 tlb_flush_page(env, addr);
a1d1bb31
AL
539
540 if (watchpoint)
541 *watchpoint = wp;
542 return 0;
6658ffb8
PB
543}
544
a1d1bb31 545/* Remove a specific watchpoint. */
9349b4f9 546int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 547 int flags)
6658ffb8 548{
b4051334 549 target_ulong len_mask = ~(len - 1);
a1d1bb31 550 CPUWatchpoint *wp;
6658ffb8 551
72cf2d4f 552 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 553 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 554 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 555 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
556 return 0;
557 }
558 }
a1d1bb31 559 return -ENOENT;
6658ffb8
PB
560}
561
a1d1bb31 562/* Remove a specific watchpoint by reference. */
9349b4f9 563void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
a1d1bb31 564{
72cf2d4f 565 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 566
a1d1bb31
AL
567 tlb_flush_page(env, watchpoint->vaddr);
568
7267c094 569 g_free(watchpoint);
a1d1bb31
AL
570}
571
572/* Remove all matching watchpoints. */
9349b4f9 573void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31 574{
c0ce998e 575 CPUWatchpoint *wp, *next;
a1d1bb31 576
72cf2d4f 577 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
578 if (wp->flags & mask)
579 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 580 }
7d03f82f 581}
c527ee8f 582#endif
7d03f82f 583
a1d1bb31 584/* Add a breakpoint. */
9349b4f9 585int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
a1d1bb31 586 CPUBreakpoint **breakpoint)
4c3a88a2 587{
1fddef4b 588#if defined(TARGET_HAS_ICE)
c0ce998e 589 CPUBreakpoint *bp;
3b46e624 590
7267c094 591 bp = g_malloc(sizeof(*bp));
4c3a88a2 592
a1d1bb31
AL
593 bp->pc = pc;
594 bp->flags = flags;
595
2dc9f411 596 /* keep all GDB-injected breakpoints in front */
00b941e5 597 if (flags & BP_GDB) {
72cf2d4f 598 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
00b941e5 599 } else {
72cf2d4f 600 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
00b941e5 601 }
3b46e624 602
00b941e5 603 breakpoint_invalidate(ENV_GET_CPU(env), pc);
a1d1bb31 604
00b941e5 605 if (breakpoint) {
a1d1bb31 606 *breakpoint = bp;
00b941e5 607 }
4c3a88a2
FB
608 return 0;
609#else
a1d1bb31 610 return -ENOSYS;
4c3a88a2
FB
611#endif
612}
613
a1d1bb31 614/* Remove a specific breakpoint. */
9349b4f9 615int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
a1d1bb31 616{
7d03f82f 617#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
618 CPUBreakpoint *bp;
619
72cf2d4f 620 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
621 if (bp->pc == pc && bp->flags == flags) {
622 cpu_breakpoint_remove_by_ref(env, bp);
623 return 0;
624 }
7d03f82f 625 }
a1d1bb31
AL
626 return -ENOENT;
627#else
628 return -ENOSYS;
7d03f82f
EI
629#endif
630}
631
a1d1bb31 632/* Remove a specific breakpoint by reference. */
9349b4f9 633void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
4c3a88a2 634{
1fddef4b 635#if defined(TARGET_HAS_ICE)
72cf2d4f 636 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 637
00b941e5 638 breakpoint_invalidate(ENV_GET_CPU(env), breakpoint->pc);
a1d1bb31 639
7267c094 640 g_free(breakpoint);
a1d1bb31
AL
641#endif
642}
643
644/* Remove all matching breakpoints. */
9349b4f9 645void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31
AL
646{
647#if defined(TARGET_HAS_ICE)
c0ce998e 648 CPUBreakpoint *bp, *next;
a1d1bb31 649
72cf2d4f 650 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
651 if (bp->flags & mask)
652 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 653 }
4c3a88a2
FB
654#endif
655}
656
c33a346e
FB
657/* enable or disable single step mode. EXCP_DEBUG is returned by the
658 CPU loop after each instruction */
3825b28f 659void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 660{
1fddef4b 661#if defined(TARGET_HAS_ICE)
ed2803da
AF
662 if (cpu->singlestep_enabled != enabled) {
663 cpu->singlestep_enabled = enabled;
664 if (kvm_enabled()) {
38e478ec 665 kvm_update_guest_debug(cpu, 0);
ed2803da 666 } else {
ccbb4d44 667 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 668 /* XXX: only flush what is necessary */
38e478ec 669 CPUArchState *env = cpu->env_ptr;
e22a25c9
AL
670 tb_flush(env);
671 }
c33a346e
FB
672 }
673#endif
674}
675
9349b4f9 676void cpu_abort(CPUArchState *env, const char *fmt, ...)
7501267e 677{
878096ee 678 CPUState *cpu = ENV_GET_CPU(env);
7501267e 679 va_list ap;
493ae1f0 680 va_list ap2;
7501267e
FB
681
682 va_start(ap, fmt);
493ae1f0 683 va_copy(ap2, ap);
7501267e
FB
684 fprintf(stderr, "qemu: fatal: ");
685 vfprintf(stderr, fmt, ap);
686 fprintf(stderr, "\n");
878096ee 687 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
93fcfe39
AL
688 if (qemu_log_enabled()) {
689 qemu_log("qemu: fatal: ");
690 qemu_log_vprintf(fmt, ap2);
691 qemu_log("\n");
a0762859 692 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 693 qemu_log_flush();
93fcfe39 694 qemu_log_close();
924edcae 695 }
493ae1f0 696 va_end(ap2);
f9373291 697 va_end(ap);
fd052bf6
RV
698#if defined(CONFIG_USER_ONLY)
699 {
700 struct sigaction act;
701 sigfillset(&act.sa_mask);
702 act.sa_handler = SIG_DFL;
703 sigaction(SIGABRT, &act, NULL);
704 }
705#endif
7501267e
FB
706 abort();
707}
708
0124311e 709#if !defined(CONFIG_USER_ONLY)
041603fe
PB
710static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
711{
712 RAMBlock *block;
713
714 /* The list is protected by the iothread lock here. */
715 block = ram_list.mru_block;
716 if (block && addr - block->offset < block->length) {
717 goto found;
718 }
719 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
720 if (addr - block->offset < block->length) {
721 goto found;
722 }
723 }
724
725 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
726 abort();
727
728found:
729 ram_list.mru_block = block;
730 return block;
731}
732
d24981d3
JQ
733static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
734 uintptr_t length)
735{
041603fe
PB
736 RAMBlock *block;
737 ram_addr_t start1;
d24981d3 738
041603fe
PB
739 block = qemu_get_ram_block(start);
740 assert(block == qemu_get_ram_block(end - 1));
741 start1 = (uintptr_t)block->host + (start - block->offset);
742 cpu_tlb_reset_dirty_all(start1, length);
d24981d3
JQ
743}
744
5579c7f3 745/* Note: start and end must be within the same ram block. */
c227f099 746void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 747 int dirty_flags)
1ccde1cb 748{
d24981d3 749 uintptr_t length;
1ccde1cb
FB
750
751 start &= TARGET_PAGE_MASK;
752 end = TARGET_PAGE_ALIGN(end);
753
754 length = end - start;
755 if (length == 0)
756 return;
f7c11b53 757 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 758
d24981d3
JQ
759 if (tcg_enabled()) {
760 tlb_reset_dirty_range_all(start, end, length);
5579c7f3 761 }
1ccde1cb
FB
762}
763
8b9c99d9 764static int cpu_physical_memory_set_dirty_tracking(int enable)
74576198 765{
f6f3fbca 766 int ret = 0;
74576198 767 in_migration = enable;
f6f3fbca 768 return ret;
74576198
AL
769}
770
a8170e5e 771hwaddr memory_region_section_get_iotlb(CPUArchState *env,
149f54b5
PB
772 MemoryRegionSection *section,
773 target_ulong vaddr,
774 hwaddr paddr, hwaddr xlat,
775 int prot,
776 target_ulong *address)
e5548617 777{
a8170e5e 778 hwaddr iotlb;
e5548617
BS
779 CPUWatchpoint *wp;
780
cc5bea60 781 if (memory_region_is_ram(section->mr)) {
e5548617
BS
782 /* Normal RAM. */
783 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
149f54b5 784 + xlat;
e5548617 785 if (!section->readonly) {
b41aac4f 786 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 787 } else {
b41aac4f 788 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
789 }
790 } else {
0475d94f 791 iotlb = section - address_space_memory.dispatch->sections;
149f54b5 792 iotlb += xlat;
e5548617
BS
793 }
794
795 /* Make accesses to pages with watchpoints go via the
796 watchpoint trap routines. */
797 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
798 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
799 /* Avoid trapping reads of pages with a write breakpoint. */
800 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 801 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
802 *address |= TLB_MMIO;
803 break;
804 }
805 }
806 }
807
808 return iotlb;
809}
9fa3e853
FB
810#endif /* defined(CONFIG_USER_ONLY) */
811
e2eef170 812#if !defined(CONFIG_USER_ONLY)
8da3ff18 813
c227f099 814static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 815 uint16_t section);
acc9d80b 816static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 817
575ddeb4 818static void *(*phys_mem_alloc)(size_t size) = qemu_anon_ram_alloc;
91138037
MA
819
820/*
821 * Set a custom physical guest memory alloator.
822 * Accelerators with unusual needs may need this. Hopefully, we can
823 * get rid of it eventually.
824 */
575ddeb4 825void phys_mem_set_alloc(void *(*alloc)(size_t))
91138037
MA
826{
827 phys_mem_alloc = alloc;
828}
829
5312bd8b
AK
830static uint16_t phys_section_add(MemoryRegionSection *section)
831{
68f3f65b
PB
832 /* The physical section number is ORed with a page-aligned
833 * pointer to produce the iotlb entries. Thus it should
834 * never overflow into the page-aligned value.
835 */
9affd6fc 836 assert(next_map.sections_nb < TARGET_PAGE_SIZE);
68f3f65b 837
9affd6fc
PB
838 if (next_map.sections_nb == next_map.sections_nb_alloc) {
839 next_map.sections_nb_alloc = MAX(next_map.sections_nb_alloc * 2,
840 16);
841 next_map.sections = g_renew(MemoryRegionSection, next_map.sections,
842 next_map.sections_nb_alloc);
5312bd8b 843 }
9affd6fc 844 next_map.sections[next_map.sections_nb] = *section;
dfde4e6e 845 memory_region_ref(section->mr);
9affd6fc 846 return next_map.sections_nb++;
5312bd8b
AK
847}
848
058bc4b5
PB
849static void phys_section_destroy(MemoryRegion *mr)
850{
dfde4e6e
PB
851 memory_region_unref(mr);
852
058bc4b5
PB
853 if (mr->subpage) {
854 subpage_t *subpage = container_of(mr, subpage_t, iomem);
855 memory_region_destroy(&subpage->iomem);
856 g_free(subpage);
857 }
858}
859
6092666e 860static void phys_sections_free(PhysPageMap *map)
5312bd8b 861{
9affd6fc
PB
862 while (map->sections_nb > 0) {
863 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
864 phys_section_destroy(section->mr);
865 }
9affd6fc
PB
866 g_free(map->sections);
867 g_free(map->nodes);
6092666e 868 g_free(map);
5312bd8b
AK
869}
870
ac1970fb 871static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
872{
873 subpage_t *subpage;
a8170e5e 874 hwaddr base = section->offset_within_address_space
0f0cb164 875 & TARGET_PAGE_MASK;
97115a8d 876 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
9affd6fc 877 next_map.nodes, next_map.sections);
0f0cb164
AK
878 MemoryRegionSection subsection = {
879 .offset_within_address_space = base,
052e87b0 880 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 881 };
a8170e5e 882 hwaddr start, end;
0f0cb164 883
f3705d53 884 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 885
f3705d53 886 if (!(existing->mr->subpage)) {
acc9d80b 887 subpage = subpage_init(d->as, base);
0f0cb164 888 subsection.mr = &subpage->iomem;
ac1970fb 889 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
2999097b 890 phys_section_add(&subsection));
0f0cb164 891 } else {
f3705d53 892 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
893 }
894 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 895 end = start + int128_get64(section->size) - 1;
0f0cb164
AK
896 subpage_register(subpage, start, end, phys_section_add(section));
897}
898
899
052e87b0
PB
900static void register_multipage(AddressSpaceDispatch *d,
901 MemoryRegionSection *section)
33417e70 902{
a8170e5e 903 hwaddr start_addr = section->offset_within_address_space;
5312bd8b 904 uint16_t section_index = phys_section_add(section);
052e87b0
PB
905 uint64_t num_pages = int128_get64(int128_rshift(section->size,
906 TARGET_PAGE_BITS));
dd81124b 907
733d5ef5
PB
908 assert(num_pages);
909 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
910}
911
ac1970fb 912static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 913{
89ae337a 914 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 915 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 916 MemoryRegionSection now = *section, remain = *section;
052e87b0 917 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 918
733d5ef5
PB
919 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
920 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
921 - now.offset_within_address_space;
922
052e87b0 923 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 924 register_subpage(d, &now);
733d5ef5 925 } else {
052e87b0 926 now.size = int128_zero();
733d5ef5 927 }
052e87b0
PB
928 while (int128_ne(remain.size, now.size)) {
929 remain.size = int128_sub(remain.size, now.size);
930 remain.offset_within_address_space += int128_get64(now.size);
931 remain.offset_within_region += int128_get64(now.size);
69b67646 932 now = remain;
052e87b0 933 if (int128_lt(remain.size, page_size)) {
733d5ef5 934 register_subpage(d, &now);
88266249 935 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 936 now.size = page_size;
ac1970fb 937 register_subpage(d, &now);
69b67646 938 } else {
052e87b0 939 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 940 register_multipage(d, &now);
69b67646 941 }
0f0cb164
AK
942 }
943}
944
62a2744c
SY
945void qemu_flush_coalesced_mmio_buffer(void)
946{
947 if (kvm_enabled())
948 kvm_flush_coalesced_mmio_buffer();
949}
950
b2a8658e
UD
951void qemu_mutex_lock_ramlist(void)
952{
953 qemu_mutex_lock(&ram_list.mutex);
954}
955
956void qemu_mutex_unlock_ramlist(void)
957{
958 qemu_mutex_unlock(&ram_list.mutex);
959}
960
e1e84ba0 961#ifdef __linux__
c902760f
MT
962
963#include <sys/vfs.h>
964
965#define HUGETLBFS_MAGIC 0x958458f6
966
967static long gethugepagesize(const char *path)
968{
969 struct statfs fs;
970 int ret;
971
972 do {
9742bf26 973 ret = statfs(path, &fs);
c902760f
MT
974 } while (ret != 0 && errno == EINTR);
975
976 if (ret != 0) {
9742bf26
YT
977 perror(path);
978 return 0;
c902760f
MT
979 }
980
981 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 982 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
983
984 return fs.f_bsize;
985}
986
ef36fa14
MT
987static sigjmp_buf sigjump;
988
989static void sigbus_handler(int signal)
990{
991 siglongjmp(sigjump, 1);
992}
993
04b16653
AW
994static void *file_ram_alloc(RAMBlock *block,
995 ram_addr_t memory,
996 const char *path)
c902760f
MT
997{
998 char *filename;
8ca761f6
PF
999 char *sanitized_name;
1000 char *c;
c902760f
MT
1001 void *area;
1002 int fd;
c902760f
MT
1003 unsigned long hpagesize;
1004
1005 hpagesize = gethugepagesize(path);
1006 if (!hpagesize) {
9742bf26 1007 return NULL;
c902760f
MT
1008 }
1009
1010 if (memory < hpagesize) {
1011 return NULL;
1012 }
1013
1014 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1015 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
1016 return NULL;
1017 }
1018
8ca761f6
PF
1019 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1020 sanitized_name = g_strdup(block->mr->name);
1021 for (c = sanitized_name; *c != '\0'; c++) {
1022 if (*c == '/')
1023 *c = '_';
1024 }
1025
1026 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1027 sanitized_name);
1028 g_free(sanitized_name);
c902760f
MT
1029
1030 fd = mkstemp(filename);
1031 if (fd < 0) {
9742bf26 1032 perror("unable to create backing store for hugepages");
e4ada482 1033 g_free(filename);
9742bf26 1034 return NULL;
c902760f
MT
1035 }
1036 unlink(filename);
e4ada482 1037 g_free(filename);
c902760f
MT
1038
1039 memory = (memory+hpagesize-1) & ~(hpagesize-1);
1040
1041 /*
1042 * ftruncate is not supported by hugetlbfs in older
1043 * hosts, so don't bother bailing out on errors.
1044 * If anything goes wrong with it under other filesystems,
1045 * mmap will fail.
1046 */
1047 if (ftruncate(fd, memory))
9742bf26 1048 perror("ftruncate");
c902760f 1049
c902760f 1050 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
c902760f 1051 if (area == MAP_FAILED) {
9742bf26
YT
1052 perror("file_ram_alloc: can't mmap RAM pages");
1053 close(fd);
1054 return (NULL);
c902760f 1055 }
ef36fa14
MT
1056
1057 if (mem_prealloc) {
1058 int ret, i;
1059 struct sigaction act, oldact;
1060 sigset_t set, oldset;
1061
1062 memset(&act, 0, sizeof(act));
1063 act.sa_handler = &sigbus_handler;
1064 act.sa_flags = 0;
1065
1066 ret = sigaction(SIGBUS, &act, &oldact);
1067 if (ret) {
1068 perror("file_ram_alloc: failed to install signal handler");
1069 exit(1);
1070 }
1071
1072 /* unblock SIGBUS */
1073 sigemptyset(&set);
1074 sigaddset(&set, SIGBUS);
1075 pthread_sigmask(SIG_UNBLOCK, &set, &oldset);
1076
1077 if (sigsetjmp(sigjump, 1)) {
1078 fprintf(stderr, "file_ram_alloc: failed to preallocate pages\n");
1079 exit(1);
1080 }
1081
1082 /* MAP_POPULATE silently ignores failures */
1083 for (i = 0; i < (memory/hpagesize)-1; i++) {
1084 memset(area + (hpagesize*i), 0, 1);
1085 }
1086
1087 ret = sigaction(SIGBUS, &oldact, NULL);
1088 if (ret) {
1089 perror("file_ram_alloc: failed to reinstall signal handler");
1090 exit(1);
1091 }
1092
1093 pthread_sigmask(SIG_SETMASK, &oldset, NULL);
1094 }
1095
04b16653 1096 block->fd = fd;
c902760f
MT
1097 return area;
1098}
e1e84ba0
MA
1099#else
1100static void *file_ram_alloc(RAMBlock *block,
1101 ram_addr_t memory,
1102 const char *path)
1103{
1104 fprintf(stderr, "-mem-path not supported on this host\n");
1105 exit(1);
1106}
c902760f
MT
1107#endif
1108
d17b5288 1109static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1110{
1111 RAMBlock *block, *next_block;
3e837b2c 1112 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1113
49cd9ac6
SH
1114 assert(size != 0); /* it would hand out same offset multiple times */
1115
a3161038 1116 if (QTAILQ_EMPTY(&ram_list.blocks))
04b16653
AW
1117 return 0;
1118
a3161038 1119 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
f15fbc4b 1120 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653
AW
1121
1122 end = block->offset + block->length;
1123
a3161038 1124 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
04b16653
AW
1125 if (next_block->offset >= end) {
1126 next = MIN(next, next_block->offset);
1127 }
1128 }
1129 if (next - end >= size && next - end < mingap) {
3e837b2c 1130 offset = end;
04b16653
AW
1131 mingap = next - end;
1132 }
1133 }
3e837b2c
AW
1134
1135 if (offset == RAM_ADDR_MAX) {
1136 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1137 (uint64_t)size);
1138 abort();
1139 }
1140
04b16653
AW
1141 return offset;
1142}
1143
652d7ec2 1144ram_addr_t last_ram_offset(void)
d17b5288
AW
1145{
1146 RAMBlock *block;
1147 ram_addr_t last = 0;
1148
a3161038 1149 QTAILQ_FOREACH(block, &ram_list.blocks, next)
d17b5288
AW
1150 last = MAX(last, block->offset + block->length);
1151
1152 return last;
1153}
1154
ddb97f1d
JB
1155static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1156{
1157 int ret;
ddb97f1d
JB
1158
1159 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2ff3de68
MA
1160 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1161 "dump-guest-core", true)) {
ddb97f1d
JB
1162 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1163 if (ret) {
1164 perror("qemu_madvise");
1165 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1166 "but dump_guest_core=off specified\n");
1167 }
1168 }
1169}
1170
c5705a77 1171void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
84b89d78
CM
1172{
1173 RAMBlock *new_block, *block;
1174
c5705a77 1175 new_block = NULL;
a3161038 1176 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
c5705a77
AK
1177 if (block->offset == addr) {
1178 new_block = block;
1179 break;
1180 }
1181 }
1182 assert(new_block);
1183 assert(!new_block->idstr[0]);
84b89d78 1184
09e5ab63
AL
1185 if (dev) {
1186 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1187 if (id) {
1188 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1189 g_free(id);
84b89d78
CM
1190 }
1191 }
1192 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1193
b2a8658e
UD
1194 /* This assumes the iothread lock is taken here too. */
1195 qemu_mutex_lock_ramlist();
a3161038 1196 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
c5705a77 1197 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1198 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1199 new_block->idstr);
1200 abort();
1201 }
1202 }
b2a8658e 1203 qemu_mutex_unlock_ramlist();
c5705a77
AK
1204}
1205
8490fc78
LC
1206static int memory_try_enable_merging(void *addr, size_t len)
1207{
2ff3de68 1208 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
8490fc78
LC
1209 /* disabled by the user */
1210 return 0;
1211 }
1212
1213 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1214}
1215
c5705a77
AK
1216ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1217 MemoryRegion *mr)
1218{
abb26d63 1219 RAMBlock *block, *new_block;
c5705a77
AK
1220
1221 size = TARGET_PAGE_ALIGN(size);
1222 new_block = g_malloc0(sizeof(*new_block));
3435f395 1223 new_block->fd = -1;
84b89d78 1224
b2a8658e
UD
1225 /* This assumes the iothread lock is taken here too. */
1226 qemu_mutex_lock_ramlist();
7c637366 1227 new_block->mr = mr;
432d268c 1228 new_block->offset = find_ram_offset(size);
6977dfe6
YT
1229 if (host) {
1230 new_block->host = host;
cd19cfa2 1231 new_block->flags |= RAM_PREALLOC_MASK;
dfeaf2ab
MA
1232 } else if (xen_enabled()) {
1233 if (mem_path) {
1234 fprintf(stderr, "-mem-path not supported with Xen\n");
1235 exit(1);
1236 }
1237 xen_ram_alloc(new_block->offset, size, mr);
6977dfe6
YT
1238 } else {
1239 if (mem_path) {
e1e84ba0
MA
1240 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1241 /*
1242 * file_ram_alloc() needs to allocate just like
1243 * phys_mem_alloc, but we haven't bothered to provide
1244 * a hook there.
1245 */
1246 fprintf(stderr,
1247 "-mem-path not supported with this accelerator\n");
1248 exit(1);
1249 }
6977dfe6 1250 new_block->host = file_ram_alloc(new_block, size, mem_path);
0628c182
MA
1251 }
1252 if (!new_block->host) {
91138037 1253 new_block->host = phys_mem_alloc(size);
39228250
MA
1254 if (!new_block->host) {
1255 fprintf(stderr, "Cannot set up guest memory '%s': %s\n",
1256 new_block->mr->name, strerror(errno));
1257 exit(1);
1258 }
8490fc78 1259 memory_try_enable_merging(new_block->host, size);
6977dfe6 1260 }
c902760f 1261 }
94a6b54f
PB
1262 new_block->length = size;
1263
abb26d63
PB
1264 /* Keep the list sorted from biggest to smallest block. */
1265 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1266 if (block->length < new_block->length) {
1267 break;
1268 }
1269 }
1270 if (block) {
1271 QTAILQ_INSERT_BEFORE(block, new_block, next);
1272 } else {
1273 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1274 }
0d6d3c87 1275 ram_list.mru_block = NULL;
94a6b54f 1276
f798b07f 1277 ram_list.version++;
b2a8658e 1278 qemu_mutex_unlock_ramlist();
f798b07f 1279
7267c094 1280 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
04b16653 1281 last_ram_offset() >> TARGET_PAGE_BITS);
5fda043f
IM
1282 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1283 0, size >> TARGET_PAGE_BITS);
1720aeee 1284 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
94a6b54f 1285
ddb97f1d 1286 qemu_ram_setup_dump(new_block->host, size);
ad0b5321 1287 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
3e469dbf 1288 qemu_madvise(new_block->host, size, QEMU_MADV_DONTFORK);
ddb97f1d 1289
6f0437e8
JK
1290 if (kvm_enabled())
1291 kvm_setup_guest_memory(new_block->host, size);
1292
94a6b54f
PB
1293 return new_block->offset;
1294}
e9a1ab19 1295
c5705a77 1296ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
6977dfe6 1297{
c5705a77 1298 return qemu_ram_alloc_from_ptr(size, NULL, mr);
6977dfe6
YT
1299}
1300
1f2e98b6
AW
1301void qemu_ram_free_from_ptr(ram_addr_t addr)
1302{
1303 RAMBlock *block;
1304
b2a8658e
UD
1305 /* This assumes the iothread lock is taken here too. */
1306 qemu_mutex_lock_ramlist();
a3161038 1307 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1f2e98b6 1308 if (addr == block->offset) {
a3161038 1309 QTAILQ_REMOVE(&ram_list.blocks, block, next);
0d6d3c87 1310 ram_list.mru_block = NULL;
f798b07f 1311 ram_list.version++;
7267c094 1312 g_free(block);
b2a8658e 1313 break;
1f2e98b6
AW
1314 }
1315 }
b2a8658e 1316 qemu_mutex_unlock_ramlist();
1f2e98b6
AW
1317}
1318
c227f099 1319void qemu_ram_free(ram_addr_t addr)
e9a1ab19 1320{
04b16653
AW
1321 RAMBlock *block;
1322
b2a8658e
UD
1323 /* This assumes the iothread lock is taken here too. */
1324 qemu_mutex_lock_ramlist();
a3161038 1325 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
04b16653 1326 if (addr == block->offset) {
a3161038 1327 QTAILQ_REMOVE(&ram_list.blocks, block, next);
0d6d3c87 1328 ram_list.mru_block = NULL;
f798b07f 1329 ram_list.version++;
cd19cfa2
HY
1330 if (block->flags & RAM_PREALLOC_MASK) {
1331 ;
dfeaf2ab
MA
1332 } else if (xen_enabled()) {
1333 xen_invalidate_map_cache_entry(block->host);
089f3f76 1334#ifndef _WIN32
3435f395
MA
1335 } else if (block->fd >= 0) {
1336 munmap(block->host, block->length);
1337 close(block->fd);
089f3f76 1338#endif
04b16653 1339 } else {
dfeaf2ab 1340 qemu_anon_ram_free(block->host, block->length);
04b16653 1341 }
7267c094 1342 g_free(block);
b2a8658e 1343 break;
04b16653
AW
1344 }
1345 }
b2a8658e 1346 qemu_mutex_unlock_ramlist();
04b16653 1347
e9a1ab19
FB
1348}
1349
cd19cfa2
HY
1350#ifndef _WIN32
1351void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1352{
1353 RAMBlock *block;
1354 ram_addr_t offset;
1355 int flags;
1356 void *area, *vaddr;
1357
a3161038 1358 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
cd19cfa2
HY
1359 offset = addr - block->offset;
1360 if (offset < block->length) {
1361 vaddr = block->host + offset;
1362 if (block->flags & RAM_PREALLOC_MASK) {
1363 ;
dfeaf2ab
MA
1364 } else if (xen_enabled()) {
1365 abort();
cd19cfa2
HY
1366 } else {
1367 flags = MAP_FIXED;
1368 munmap(vaddr, length);
3435f395 1369 if (block->fd >= 0) {
cd19cfa2 1370#ifdef MAP_POPULATE
3435f395
MA
1371 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1372 MAP_PRIVATE;
fd28aa13 1373#else
3435f395 1374 flags |= MAP_PRIVATE;
cd19cfa2 1375#endif
3435f395
MA
1376 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1377 flags, block->fd, offset);
cd19cfa2 1378 } else {
2eb9fbaa
MA
1379 /*
1380 * Remap needs to match alloc. Accelerators that
1381 * set phys_mem_alloc never remap. If they did,
1382 * we'd need a remap hook here.
1383 */
1384 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1385
cd19cfa2
HY
1386 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1387 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1388 flags, -1, 0);
cd19cfa2
HY
1389 }
1390 if (area != vaddr) {
f15fbc4b
AP
1391 fprintf(stderr, "Could not remap addr: "
1392 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1393 length, addr);
1394 exit(1);
1395 }
8490fc78 1396 memory_try_enable_merging(vaddr, length);
ddb97f1d 1397 qemu_ram_setup_dump(vaddr, length);
cd19cfa2
HY
1398 }
1399 return;
1400 }
1401 }
1402}
1403#endif /* !_WIN32 */
1404
1b5ec234
PB
1405/* Return a host pointer to ram allocated with qemu_ram_alloc.
1406 With the exception of the softmmu code in this file, this should
1407 only be used for local memory (e.g. video ram) that the device owns,
1408 and knows it isn't going to access beyond the end of the block.
1409
1410 It should not be used for general purpose DMA.
1411 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1412 */
1413void *qemu_get_ram_ptr(ram_addr_t addr)
1414{
1415 RAMBlock *block = qemu_get_ram_block(addr);
1416
0d6d3c87
PB
1417 if (xen_enabled()) {
1418 /* We need to check if the requested address is in the RAM
1419 * because we don't want to map the entire memory in QEMU.
1420 * In that case just map until the end of the page.
1421 */
1422 if (block->offset == 0) {
1423 return xen_map_cache(addr, 0, 0);
1424 } else if (block->host == NULL) {
1425 block->host =
1426 xen_map_cache(block->offset, block->length, 1);
1427 }
1428 }
1429 return block->host + (addr - block->offset);
dc828ca1
PB
1430}
1431
38bee5dc
SS
1432/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1433 * but takes a size argument */
cb85f7ab 1434static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
38bee5dc 1435{
8ab934f9
SS
1436 if (*size == 0) {
1437 return NULL;
1438 }
868bb33f 1439 if (xen_enabled()) {
e41d7c69 1440 return xen_map_cache(addr, *size, 1);
868bb33f 1441 } else {
38bee5dc
SS
1442 RAMBlock *block;
1443
a3161038 1444 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
38bee5dc
SS
1445 if (addr - block->offset < block->length) {
1446 if (addr - block->offset + *size > block->length)
1447 *size = block->length - addr + block->offset;
1448 return block->host + (addr - block->offset);
1449 }
1450 }
1451
1452 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1453 abort();
38bee5dc
SS
1454 }
1455}
1456
7443b437
PB
1457/* Some of the softmmu routines need to translate from a host pointer
1458 (typically a TLB entry) back to a ram offset. */
1b5ec234 1459MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 1460{
94a6b54f
PB
1461 RAMBlock *block;
1462 uint8_t *host = ptr;
1463
868bb33f 1464 if (xen_enabled()) {
e41d7c69 1465 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1b5ec234 1466 return qemu_get_ram_block(*ram_addr)->mr;
712c2b41
SS
1467 }
1468
23887b79
PB
1469 block = ram_list.mru_block;
1470 if (block && block->host && host - block->host < block->length) {
1471 goto found;
1472 }
1473
a3161038 1474 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
432d268c
JN
1475 /* This case append when the block is not mapped. */
1476 if (block->host == NULL) {
1477 continue;
1478 }
f471a17e 1479 if (host - block->host < block->length) {
23887b79 1480 goto found;
f471a17e 1481 }
94a6b54f 1482 }
432d268c 1483
1b5ec234 1484 return NULL;
23887b79
PB
1485
1486found:
1487 *ram_addr = block->offset + (host - block->host);
1b5ec234 1488 return block->mr;
e890261f 1489}
f471a17e 1490
a8170e5e 1491static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 1492 uint64_t val, unsigned size)
9fa3e853 1493{
3a7d929e 1494 int dirty_flags;
f7c11b53 1495 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 1496 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
0e0df1e2 1497 tb_invalidate_phys_page_fast(ram_addr, size);
f7c11b53 1498 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 1499 }
0e0df1e2
AK
1500 switch (size) {
1501 case 1:
1502 stb_p(qemu_get_ram_ptr(ram_addr), val);
1503 break;
1504 case 2:
1505 stw_p(qemu_get_ram_ptr(ram_addr), val);
1506 break;
1507 case 4:
1508 stl_p(qemu_get_ram_ptr(ram_addr), val);
1509 break;
1510 default:
1511 abort();
3a7d929e 1512 }
f23db169 1513 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 1514 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
1515 /* we remove the notdirty callback only if the code has been
1516 flushed */
4917cf44
AF
1517 if (dirty_flags == 0xff) {
1518 CPUArchState *env = current_cpu->env_ptr;
1519 tlb_set_dirty(env, env->mem_io_vaddr);
1520 }
9fa3e853
FB
1521}
1522
b018ddf6
PB
1523static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1524 unsigned size, bool is_write)
1525{
1526 return is_write;
1527}
1528
0e0df1e2 1529static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 1530 .write = notdirty_mem_write,
b018ddf6 1531 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 1532 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
1533};
1534
0f459d16 1535/* Generate a debug exception if a watchpoint has been hit. */
b4051334 1536static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16 1537{
4917cf44 1538 CPUArchState *env = current_cpu->env_ptr;
06d55cc1 1539 target_ulong pc, cs_base;
0f459d16 1540 target_ulong vaddr;
a1d1bb31 1541 CPUWatchpoint *wp;
06d55cc1 1542 int cpu_flags;
0f459d16 1543
06d55cc1
AL
1544 if (env->watchpoint_hit) {
1545 /* We re-entered the check after replacing the TB. Now raise
1546 * the debug interrupt so that is will trigger after the
1547 * current instruction. */
c3affe56 1548 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
06d55cc1
AL
1549 return;
1550 }
2e70f6ef 1551 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 1552 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
1553 if ((vaddr == (wp->vaddr & len_mask) ||
1554 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
1555 wp->flags |= BP_WATCHPOINT_HIT;
1556 if (!env->watchpoint_hit) {
1557 env->watchpoint_hit = wp;
5a316526 1558 tb_check_watchpoint(env);
6e140f28
AL
1559 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1560 env->exception_index = EXCP_DEBUG;
488d6577 1561 cpu_loop_exit(env);
6e140f28
AL
1562 } else {
1563 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1564 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
488d6577 1565 cpu_resume_from_signal(env, NULL);
6e140f28 1566 }
06d55cc1 1567 }
6e140f28
AL
1568 } else {
1569 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
1570 }
1571 }
1572}
1573
6658ffb8
PB
1574/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1575 so these check for a hit then pass through to the normal out-of-line
1576 phys routines. */
a8170e5e 1577static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1ec9b909 1578 unsigned size)
6658ffb8 1579{
1ec9b909
AK
1580 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1581 switch (size) {
1582 case 1: return ldub_phys(addr);
1583 case 2: return lduw_phys(addr);
1584 case 4: return ldl_phys(addr);
1585 default: abort();
1586 }
6658ffb8
PB
1587}
1588
a8170e5e 1589static void watch_mem_write(void *opaque, hwaddr addr,
1ec9b909 1590 uint64_t val, unsigned size)
6658ffb8 1591{
1ec9b909
AK
1592 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1593 switch (size) {
67364150
MF
1594 case 1:
1595 stb_phys(addr, val);
1596 break;
1597 case 2:
1598 stw_phys(addr, val);
1599 break;
1600 case 4:
1601 stl_phys(addr, val);
1602 break;
1ec9b909
AK
1603 default: abort();
1604 }
6658ffb8
PB
1605}
1606
1ec9b909
AK
1607static const MemoryRegionOps watch_mem_ops = {
1608 .read = watch_mem_read,
1609 .write = watch_mem_write,
1610 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 1611};
6658ffb8 1612
a8170e5e 1613static uint64_t subpage_read(void *opaque, hwaddr addr,
70c68e44 1614 unsigned len)
db7b5426 1615{
acc9d80b
JK
1616 subpage_t *subpage = opaque;
1617 uint8_t buf[4];
791af8c8 1618
db7b5426 1619#if defined(DEBUG_SUBPAGE)
016e9d62 1620 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 1621 subpage, len, addr);
db7b5426 1622#endif
acc9d80b
JK
1623 address_space_read(subpage->as, addr + subpage->base, buf, len);
1624 switch (len) {
1625 case 1:
1626 return ldub_p(buf);
1627 case 2:
1628 return lduw_p(buf);
1629 case 4:
1630 return ldl_p(buf);
1631 default:
1632 abort();
1633 }
db7b5426
BS
1634}
1635
a8170e5e 1636static void subpage_write(void *opaque, hwaddr addr,
70c68e44 1637 uint64_t value, unsigned len)
db7b5426 1638{
acc9d80b
JK
1639 subpage_t *subpage = opaque;
1640 uint8_t buf[4];
1641
db7b5426 1642#if defined(DEBUG_SUBPAGE)
016e9d62 1643 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
1644 " value %"PRIx64"\n",
1645 __func__, subpage, len, addr, value);
db7b5426 1646#endif
acc9d80b
JK
1647 switch (len) {
1648 case 1:
1649 stb_p(buf, value);
1650 break;
1651 case 2:
1652 stw_p(buf, value);
1653 break;
1654 case 4:
1655 stl_p(buf, value);
1656 break;
1657 default:
1658 abort();
1659 }
1660 address_space_write(subpage->as, addr + subpage->base, buf, len);
db7b5426
BS
1661}
1662
c353e4cc 1663static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 1664 unsigned len, bool is_write)
c353e4cc 1665{
acc9d80b 1666 subpage_t *subpage = opaque;
c353e4cc 1667#if defined(DEBUG_SUBPAGE)
016e9d62 1668 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 1669 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
1670#endif
1671
acc9d80b 1672 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 1673 len, is_write);
c353e4cc
PB
1674}
1675
70c68e44
AK
1676static const MemoryRegionOps subpage_ops = {
1677 .read = subpage_read,
1678 .write = subpage_write,
c353e4cc 1679 .valid.accepts = subpage_accepts,
70c68e44 1680 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
1681};
1682
c227f099 1683static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1684 uint16_t section)
db7b5426
BS
1685{
1686 int idx, eidx;
1687
1688 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1689 return -1;
1690 idx = SUBPAGE_IDX(start);
1691 eidx = SUBPAGE_IDX(end);
1692#if defined(DEBUG_SUBPAGE)
016e9d62
AK
1693 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
1694 __func__, mmio, start, end, idx, eidx, section);
db7b5426 1695#endif
db7b5426 1696 for (; idx <= eidx; idx++) {
5312bd8b 1697 mmio->sub_section[idx] = section;
db7b5426
BS
1698 }
1699
1700 return 0;
1701}
1702
acc9d80b 1703static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 1704{
c227f099 1705 subpage_t *mmio;
db7b5426 1706
7267c094 1707 mmio = g_malloc0(sizeof(subpage_t));
1eec614b 1708
acc9d80b 1709 mmio->as = as;
1eec614b 1710 mmio->base = base;
2c9b15ca 1711 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
70c68e44 1712 "subpage", TARGET_PAGE_SIZE);
b3b00c78 1713 mmio->iomem.subpage = true;
db7b5426 1714#if defined(DEBUG_SUBPAGE)
016e9d62
AK
1715 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
1716 mmio, base, TARGET_PAGE_SIZE);
db7b5426 1717#endif
b41aac4f 1718 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
1719
1720 return mmio;
1721}
1722
5312bd8b
AK
1723static uint16_t dummy_section(MemoryRegion *mr)
1724{
1725 MemoryRegionSection section = {
1726 .mr = mr,
1727 .offset_within_address_space = 0,
1728 .offset_within_region = 0,
052e87b0 1729 .size = int128_2_64(),
5312bd8b
AK
1730 };
1731
1732 return phys_section_add(&section);
1733}
1734
a8170e5e 1735MemoryRegion *iotlb_to_region(hwaddr index)
aa102231 1736{
0475d94f 1737 return address_space_memory.dispatch->sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
1738}
1739
e9179ce1
AK
1740static void io_mem_init(void)
1741{
2c9b15ca
PB
1742 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1743 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
0e0df1e2 1744 "unassigned", UINT64_MAX);
2c9b15ca 1745 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
0e0df1e2 1746 "notdirty", UINT64_MAX);
2c9b15ca 1747 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1ec9b909 1748 "watch", UINT64_MAX);
e9179ce1
AK
1749}
1750
ac1970fb 1751static void mem_begin(MemoryListener *listener)
00752703
PB
1752{
1753 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1754 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1755
9736e55b 1756 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
1757 d->as = as;
1758 as->next_dispatch = d;
1759}
1760
1761static void mem_commit(MemoryListener *listener)
ac1970fb 1762{
89ae337a 1763 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
1764 AddressSpaceDispatch *cur = as->dispatch;
1765 AddressSpaceDispatch *next = as->next_dispatch;
1766
1767 next->nodes = next_map.nodes;
1768 next->sections = next_map.sections;
ac1970fb 1769
b35ba30f
MT
1770 phys_page_compact_all(next, next_map.nodes_nb);
1771
0475d94f
PB
1772 as->dispatch = next;
1773 g_free(cur);
ac1970fb
AK
1774}
1775
50c1e149
AK
1776static void core_begin(MemoryListener *listener)
1777{
b41aac4f
LPF
1778 uint16_t n;
1779
6092666e
PB
1780 prev_map = g_new(PhysPageMap, 1);
1781 *prev_map = next_map;
1782
9affd6fc 1783 memset(&next_map, 0, sizeof(next_map));
b41aac4f
LPF
1784 n = dummy_section(&io_mem_unassigned);
1785 assert(n == PHYS_SECTION_UNASSIGNED);
1786 n = dummy_section(&io_mem_notdirty);
1787 assert(n == PHYS_SECTION_NOTDIRTY);
1788 n = dummy_section(&io_mem_rom);
1789 assert(n == PHYS_SECTION_ROM);
1790 n = dummy_section(&io_mem_watch);
1791 assert(n == PHYS_SECTION_WATCH);
50c1e149
AK
1792}
1793
9affd6fc
PB
1794/* This listener's commit run after the other AddressSpaceDispatch listeners'.
1795 * All AddressSpaceDispatch instances have switched to the next map.
1796 */
1797static void core_commit(MemoryListener *listener)
1798{
6092666e 1799 phys_sections_free(prev_map);
9affd6fc
PB
1800}
1801
1d71148e 1802static void tcg_commit(MemoryListener *listener)
50c1e149 1803{
182735ef 1804 CPUState *cpu;
117712c3
AK
1805
1806 /* since each CPU stores ram addresses in its TLB cache, we must
1807 reset the modified entries */
1808 /* XXX: slow ! */
bdc44640 1809 CPU_FOREACH(cpu) {
182735ef
AF
1810 CPUArchState *env = cpu->env_ptr;
1811
117712c3
AK
1812 tlb_flush(env, 1);
1813 }
50c1e149
AK
1814}
1815
93632747
AK
1816static void core_log_global_start(MemoryListener *listener)
1817{
1818 cpu_physical_memory_set_dirty_tracking(1);
1819}
1820
1821static void core_log_global_stop(MemoryListener *listener)
1822{
1823 cpu_physical_memory_set_dirty_tracking(0);
1824}
1825
93632747 1826static MemoryListener core_memory_listener = {
50c1e149 1827 .begin = core_begin,
9affd6fc 1828 .commit = core_commit,
93632747
AK
1829 .log_global_start = core_log_global_start,
1830 .log_global_stop = core_log_global_stop,
ac1970fb 1831 .priority = 1,
93632747
AK
1832};
1833
1d71148e
AK
1834static MemoryListener tcg_memory_listener = {
1835 .commit = tcg_commit,
1836};
1837
ac1970fb
AK
1838void address_space_init_dispatch(AddressSpace *as)
1839{
00752703 1840 as->dispatch = NULL;
89ae337a 1841 as->dispatch_listener = (MemoryListener) {
ac1970fb 1842 .begin = mem_begin,
00752703 1843 .commit = mem_commit,
ac1970fb
AK
1844 .region_add = mem_add,
1845 .region_nop = mem_add,
1846 .priority = 0,
1847 };
89ae337a 1848 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
1849}
1850
83f3c251
AK
1851void address_space_destroy_dispatch(AddressSpace *as)
1852{
1853 AddressSpaceDispatch *d = as->dispatch;
1854
89ae337a 1855 memory_listener_unregister(&as->dispatch_listener);
83f3c251
AK
1856 g_free(d);
1857 as->dispatch = NULL;
1858}
1859
62152b8a
AK
1860static void memory_map_init(void)
1861{
7267c094 1862 system_memory = g_malloc(sizeof(*system_memory));
03f49957
PB
1863
1864 assert(ADDR_SPACE_BITS <= 64);
1865
1866 memory_region_init(system_memory, NULL, "system",
1867 ADDR_SPACE_BITS == 64 ?
1868 UINT64_MAX : (0x1ULL << ADDR_SPACE_BITS));
7dca8043 1869 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 1870
7267c094 1871 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
1872 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
1873 65536);
7dca8043 1874 address_space_init(&address_space_io, system_io, "I/O");
93632747 1875
f6790af6 1876 memory_listener_register(&core_memory_listener, &address_space_memory);
2641689a
LG
1877 if (tcg_enabled()) {
1878 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1879 }
62152b8a
AK
1880}
1881
1882MemoryRegion *get_system_memory(void)
1883{
1884 return system_memory;
1885}
1886
309cb471
AK
1887MemoryRegion *get_system_io(void)
1888{
1889 return system_io;
1890}
1891
e2eef170
PB
1892#endif /* !defined(CONFIG_USER_ONLY) */
1893
13eb76e0
FB
1894/* physical memory access (slow version, mainly for debug) */
1895#if defined(CONFIG_USER_ONLY)
f17ec444 1896int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 1897 uint8_t *buf, int len, int is_write)
13eb76e0
FB
1898{
1899 int l, flags;
1900 target_ulong page;
53a5960a 1901 void * p;
13eb76e0
FB
1902
1903 while (len > 0) {
1904 page = addr & TARGET_PAGE_MASK;
1905 l = (page + TARGET_PAGE_SIZE) - addr;
1906 if (l > len)
1907 l = len;
1908 flags = page_get_flags(page);
1909 if (!(flags & PAGE_VALID))
a68fe89c 1910 return -1;
13eb76e0
FB
1911 if (is_write) {
1912 if (!(flags & PAGE_WRITE))
a68fe89c 1913 return -1;
579a97f7 1914 /* XXX: this code should not depend on lock_user */
72fb7daa 1915 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 1916 return -1;
72fb7daa
AJ
1917 memcpy(p, buf, l);
1918 unlock_user(p, addr, l);
13eb76e0
FB
1919 } else {
1920 if (!(flags & PAGE_READ))
a68fe89c 1921 return -1;
579a97f7 1922 /* XXX: this code should not depend on lock_user */
72fb7daa 1923 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 1924 return -1;
72fb7daa 1925 memcpy(buf, p, l);
5b257578 1926 unlock_user(p, addr, 0);
13eb76e0
FB
1927 }
1928 len -= l;
1929 buf += l;
1930 addr += l;
1931 }
a68fe89c 1932 return 0;
13eb76e0 1933}
8df1cd07 1934
13eb76e0 1935#else
51d7a9eb 1936
a8170e5e
AK
1937static void invalidate_and_set_dirty(hwaddr addr,
1938 hwaddr length)
51d7a9eb
AP
1939{
1940 if (!cpu_physical_memory_is_dirty(addr)) {
1941 /* invalidate code */
1942 tb_invalidate_phys_page_range(addr, addr + length, 0);
1943 /* set dirty bit */
1944 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1945 }
e226939d 1946 xen_modified_memory(addr, length);
51d7a9eb
AP
1947}
1948
2bbfa05d
PB
1949static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1950{
1951 if (memory_region_is_ram(mr)) {
1952 return !(is_write && mr->readonly);
1953 }
1954 if (memory_region_is_romd(mr)) {
1955 return !is_write;
1956 }
1957
1958 return false;
1959}
1960
23326164 1961static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 1962{
e1622f4b 1963 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
1964
1965 /* Regions are assumed to support 1-4 byte accesses unless
1966 otherwise specified. */
23326164
RH
1967 if (access_size_max == 0) {
1968 access_size_max = 4;
1969 }
1970
1971 /* Bound the maximum access by the alignment of the address. */
1972 if (!mr->ops->impl.unaligned) {
1973 unsigned align_size_max = addr & -addr;
1974 if (align_size_max != 0 && align_size_max < access_size_max) {
1975 access_size_max = align_size_max;
1976 }
82f2563f 1977 }
23326164
RH
1978
1979 /* Don't attempt accesses larger than the maximum. */
1980 if (l > access_size_max) {
1981 l = access_size_max;
82f2563f 1982 }
098178f2
PB
1983 if (l & (l - 1)) {
1984 l = 1 << (qemu_fls(l) - 1);
1985 }
23326164
RH
1986
1987 return l;
82f2563f
PB
1988}
1989
fd8aaa76 1990bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
ac1970fb 1991 int len, bool is_write)
13eb76e0 1992{
149f54b5 1993 hwaddr l;
13eb76e0 1994 uint8_t *ptr;
791af8c8 1995 uint64_t val;
149f54b5 1996 hwaddr addr1;
5c8a00ce 1997 MemoryRegion *mr;
fd8aaa76 1998 bool error = false;
3b46e624 1999
13eb76e0 2000 while (len > 0) {
149f54b5 2001 l = len;
5c8a00ce 2002 mr = address_space_translate(as, addr, &addr1, &l, is_write);
3b46e624 2003
13eb76e0 2004 if (is_write) {
5c8a00ce
PB
2005 if (!memory_access_is_direct(mr, is_write)) {
2006 l = memory_access_size(mr, l, addr1);
4917cf44 2007 /* XXX: could force current_cpu to NULL to avoid
6a00d601 2008 potential bugs */
23326164
RH
2009 switch (l) {
2010 case 8:
2011 /* 64 bit write access */
2012 val = ldq_p(buf);
2013 error |= io_mem_write(mr, addr1, val, 8);
2014 break;
2015 case 4:
1c213d19 2016 /* 32 bit write access */
c27004ec 2017 val = ldl_p(buf);
5c8a00ce 2018 error |= io_mem_write(mr, addr1, val, 4);
23326164
RH
2019 break;
2020 case 2:
1c213d19 2021 /* 16 bit write access */
c27004ec 2022 val = lduw_p(buf);
5c8a00ce 2023 error |= io_mem_write(mr, addr1, val, 2);
23326164
RH
2024 break;
2025 case 1:
1c213d19 2026 /* 8 bit write access */
c27004ec 2027 val = ldub_p(buf);
5c8a00ce 2028 error |= io_mem_write(mr, addr1, val, 1);
23326164
RH
2029 break;
2030 default:
2031 abort();
13eb76e0 2032 }
2bbfa05d 2033 } else {
5c8a00ce 2034 addr1 += memory_region_get_ram_addr(mr);
13eb76e0 2035 /* RAM case */
5579c7f3 2036 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 2037 memcpy(ptr, buf, l);
51d7a9eb 2038 invalidate_and_set_dirty(addr1, l);
13eb76e0
FB
2039 }
2040 } else {
5c8a00ce 2041 if (!memory_access_is_direct(mr, is_write)) {
13eb76e0 2042 /* I/O case */
5c8a00ce 2043 l = memory_access_size(mr, l, addr1);
23326164
RH
2044 switch (l) {
2045 case 8:
2046 /* 64 bit read access */
2047 error |= io_mem_read(mr, addr1, &val, 8);
2048 stq_p(buf, val);
2049 break;
2050 case 4:
13eb76e0 2051 /* 32 bit read access */
5c8a00ce 2052 error |= io_mem_read(mr, addr1, &val, 4);
c27004ec 2053 stl_p(buf, val);
23326164
RH
2054 break;
2055 case 2:
13eb76e0 2056 /* 16 bit read access */
5c8a00ce 2057 error |= io_mem_read(mr, addr1, &val, 2);
c27004ec 2058 stw_p(buf, val);
23326164
RH
2059 break;
2060 case 1:
1c213d19 2061 /* 8 bit read access */
5c8a00ce 2062 error |= io_mem_read(mr, addr1, &val, 1);
c27004ec 2063 stb_p(buf, val);
23326164
RH
2064 break;
2065 default:
2066 abort();
13eb76e0
FB
2067 }
2068 } else {
2069 /* RAM case */
5c8a00ce 2070 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
f3705d53 2071 memcpy(buf, ptr, l);
13eb76e0
FB
2072 }
2073 }
2074 len -= l;
2075 buf += l;
2076 addr += l;
2077 }
fd8aaa76
PB
2078
2079 return error;
13eb76e0 2080}
8df1cd07 2081
fd8aaa76 2082bool address_space_write(AddressSpace *as, hwaddr addr,
ac1970fb
AK
2083 const uint8_t *buf, int len)
2084{
fd8aaa76 2085 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
ac1970fb
AK
2086}
2087
fd8aaa76 2088bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
ac1970fb 2089{
fd8aaa76 2090 return address_space_rw(as, addr, buf, len, false);
ac1970fb
AK
2091}
2092
2093
a8170e5e 2094void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
2095 int len, int is_write)
2096{
fd8aaa76 2097 address_space_rw(&address_space_memory, addr, buf, len, is_write);
ac1970fb
AK
2098}
2099
d0ecd2aa 2100/* used for ROM loading : can write in RAM and ROM */
a8170e5e 2101void cpu_physical_memory_write_rom(hwaddr addr,
d0ecd2aa
FB
2102 const uint8_t *buf, int len)
2103{
149f54b5 2104 hwaddr l;
d0ecd2aa 2105 uint8_t *ptr;
149f54b5 2106 hwaddr addr1;
5c8a00ce 2107 MemoryRegion *mr;
3b46e624 2108
d0ecd2aa 2109 while (len > 0) {
149f54b5 2110 l = len;
5c8a00ce
PB
2111 mr = address_space_translate(&address_space_memory,
2112 addr, &addr1, &l, true);
3b46e624 2113
5c8a00ce
PB
2114 if (!(memory_region_is_ram(mr) ||
2115 memory_region_is_romd(mr))) {
d0ecd2aa
FB
2116 /* do nothing */
2117 } else {
5c8a00ce 2118 addr1 += memory_region_get_ram_addr(mr);
d0ecd2aa 2119 /* ROM/RAM case */
5579c7f3 2120 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa 2121 memcpy(ptr, buf, l);
51d7a9eb 2122 invalidate_and_set_dirty(addr1, l);
d0ecd2aa
FB
2123 }
2124 len -= l;
2125 buf += l;
2126 addr += l;
2127 }
2128}
2129
6d16c2f8 2130typedef struct {
d3e71559 2131 MemoryRegion *mr;
6d16c2f8 2132 void *buffer;
a8170e5e
AK
2133 hwaddr addr;
2134 hwaddr len;
6d16c2f8
AL
2135} BounceBuffer;
2136
2137static BounceBuffer bounce;
2138
ba223c29
AL
2139typedef struct MapClient {
2140 void *opaque;
2141 void (*callback)(void *opaque);
72cf2d4f 2142 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2143} MapClient;
2144
72cf2d4f
BS
2145static QLIST_HEAD(map_client_list, MapClient) map_client_list
2146 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
2147
2148void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2149{
7267c094 2150 MapClient *client = g_malloc(sizeof(*client));
ba223c29
AL
2151
2152 client->opaque = opaque;
2153 client->callback = callback;
72cf2d4f 2154 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
2155 return client;
2156}
2157
8b9c99d9 2158static void cpu_unregister_map_client(void *_client)
ba223c29
AL
2159{
2160 MapClient *client = (MapClient *)_client;
2161
72cf2d4f 2162 QLIST_REMOVE(client, link);
7267c094 2163 g_free(client);
ba223c29
AL
2164}
2165
2166static void cpu_notify_map_clients(void)
2167{
2168 MapClient *client;
2169
72cf2d4f
BS
2170 while (!QLIST_EMPTY(&map_client_list)) {
2171 client = QLIST_FIRST(&map_client_list);
ba223c29 2172 client->callback(client->opaque);
34d5e948 2173 cpu_unregister_map_client(client);
ba223c29
AL
2174 }
2175}
2176
51644ab7
PB
2177bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2178{
5c8a00ce 2179 MemoryRegion *mr;
51644ab7
PB
2180 hwaddr l, xlat;
2181
2182 while (len > 0) {
2183 l = len;
5c8a00ce
PB
2184 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2185 if (!memory_access_is_direct(mr, is_write)) {
2186 l = memory_access_size(mr, l, addr);
2187 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
2188 return false;
2189 }
2190 }
2191
2192 len -= l;
2193 addr += l;
2194 }
2195 return true;
2196}
2197
6d16c2f8
AL
2198/* Map a physical memory region into a host virtual address.
2199 * May map a subset of the requested range, given by and returned in *plen.
2200 * May return NULL if resources needed to perform the mapping are exhausted.
2201 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
2202 * Use cpu_register_map_client() to know when retrying the map operation is
2203 * likely to succeed.
6d16c2f8 2204 */
ac1970fb 2205void *address_space_map(AddressSpace *as,
a8170e5e
AK
2206 hwaddr addr,
2207 hwaddr *plen,
ac1970fb 2208 bool is_write)
6d16c2f8 2209{
a8170e5e 2210 hwaddr len = *plen;
e3127ae0
PB
2211 hwaddr done = 0;
2212 hwaddr l, xlat, base;
2213 MemoryRegion *mr, *this_mr;
2214 ram_addr_t raddr;
6d16c2f8 2215
e3127ae0
PB
2216 if (len == 0) {
2217 return NULL;
2218 }
38bee5dc 2219
e3127ae0
PB
2220 l = len;
2221 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2222 if (!memory_access_is_direct(mr, is_write)) {
2223 if (bounce.buffer) {
2224 return NULL;
6d16c2f8 2225 }
e85d9db5
KW
2226 /* Avoid unbounded allocations */
2227 l = MIN(l, TARGET_PAGE_SIZE);
2228 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
2229 bounce.addr = addr;
2230 bounce.len = l;
d3e71559
PB
2231
2232 memory_region_ref(mr);
2233 bounce.mr = mr;
e3127ae0
PB
2234 if (!is_write) {
2235 address_space_read(as, addr, bounce.buffer, l);
8ab934f9 2236 }
6d16c2f8 2237
e3127ae0
PB
2238 *plen = l;
2239 return bounce.buffer;
2240 }
2241
2242 base = xlat;
2243 raddr = memory_region_get_ram_addr(mr);
2244
2245 for (;;) {
6d16c2f8
AL
2246 len -= l;
2247 addr += l;
e3127ae0
PB
2248 done += l;
2249 if (len == 0) {
2250 break;
2251 }
2252
2253 l = len;
2254 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2255 if (this_mr != mr || xlat != base + done) {
2256 break;
2257 }
6d16c2f8 2258 }
e3127ae0 2259
d3e71559 2260 memory_region_ref(mr);
e3127ae0
PB
2261 *plen = done;
2262 return qemu_ram_ptr_length(raddr + base, plen);
6d16c2f8
AL
2263}
2264
ac1970fb 2265/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
2266 * Will also mark the memory as dirty if is_write == 1. access_len gives
2267 * the amount of memory that was actually read or written by the caller.
2268 */
a8170e5e
AK
2269void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2270 int is_write, hwaddr access_len)
6d16c2f8
AL
2271{
2272 if (buffer != bounce.buffer) {
d3e71559
PB
2273 MemoryRegion *mr;
2274 ram_addr_t addr1;
2275
2276 mr = qemu_ram_addr_from_host(buffer, &addr1);
2277 assert(mr != NULL);
6d16c2f8 2278 if (is_write) {
6d16c2f8
AL
2279 while (access_len) {
2280 unsigned l;
2281 l = TARGET_PAGE_SIZE;
2282 if (l > access_len)
2283 l = access_len;
51d7a9eb 2284 invalidate_and_set_dirty(addr1, l);
6d16c2f8
AL
2285 addr1 += l;
2286 access_len -= l;
2287 }
2288 }
868bb33f 2289 if (xen_enabled()) {
e41d7c69 2290 xen_invalidate_map_cache_entry(buffer);
050a0ddf 2291 }
d3e71559 2292 memory_region_unref(mr);
6d16c2f8
AL
2293 return;
2294 }
2295 if (is_write) {
ac1970fb 2296 address_space_write(as, bounce.addr, bounce.buffer, access_len);
6d16c2f8 2297 }
f8a83245 2298 qemu_vfree(bounce.buffer);
6d16c2f8 2299 bounce.buffer = NULL;
d3e71559 2300 memory_region_unref(bounce.mr);
ba223c29 2301 cpu_notify_map_clients();
6d16c2f8 2302}
d0ecd2aa 2303
a8170e5e
AK
2304void *cpu_physical_memory_map(hwaddr addr,
2305 hwaddr *plen,
ac1970fb
AK
2306 int is_write)
2307{
2308 return address_space_map(&address_space_memory, addr, plen, is_write);
2309}
2310
a8170e5e
AK
2311void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2312 int is_write, hwaddr access_len)
ac1970fb
AK
2313{
2314 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2315}
2316
8df1cd07 2317/* warning: addr must be aligned */
a8170e5e 2318static inline uint32_t ldl_phys_internal(hwaddr addr,
1e78bcc1 2319 enum device_endian endian)
8df1cd07 2320{
8df1cd07 2321 uint8_t *ptr;
791af8c8 2322 uint64_t val;
5c8a00ce 2323 MemoryRegion *mr;
149f54b5
PB
2324 hwaddr l = 4;
2325 hwaddr addr1;
8df1cd07 2326
5c8a00ce
PB
2327 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2328 false);
2329 if (l < 4 || !memory_access_is_direct(mr, false)) {
8df1cd07 2330 /* I/O case */
5c8a00ce 2331 io_mem_read(mr, addr1, &val, 4);
1e78bcc1
AG
2332#if defined(TARGET_WORDS_BIGENDIAN)
2333 if (endian == DEVICE_LITTLE_ENDIAN) {
2334 val = bswap32(val);
2335 }
2336#else
2337 if (endian == DEVICE_BIG_ENDIAN) {
2338 val = bswap32(val);
2339 }
2340#endif
8df1cd07
FB
2341 } else {
2342 /* RAM case */
5c8a00ce 2343 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2344 & TARGET_PAGE_MASK)
149f54b5 2345 + addr1);
1e78bcc1
AG
2346 switch (endian) {
2347 case DEVICE_LITTLE_ENDIAN:
2348 val = ldl_le_p(ptr);
2349 break;
2350 case DEVICE_BIG_ENDIAN:
2351 val = ldl_be_p(ptr);
2352 break;
2353 default:
2354 val = ldl_p(ptr);
2355 break;
2356 }
8df1cd07
FB
2357 }
2358 return val;
2359}
2360
a8170e5e 2361uint32_t ldl_phys(hwaddr addr)
1e78bcc1
AG
2362{
2363 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2364}
2365
a8170e5e 2366uint32_t ldl_le_phys(hwaddr addr)
1e78bcc1
AG
2367{
2368 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2369}
2370
a8170e5e 2371uint32_t ldl_be_phys(hwaddr addr)
1e78bcc1
AG
2372{
2373 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2374}
2375
84b7b8e7 2376/* warning: addr must be aligned */
a8170e5e 2377static inline uint64_t ldq_phys_internal(hwaddr addr,
1e78bcc1 2378 enum device_endian endian)
84b7b8e7 2379{
84b7b8e7
FB
2380 uint8_t *ptr;
2381 uint64_t val;
5c8a00ce 2382 MemoryRegion *mr;
149f54b5
PB
2383 hwaddr l = 8;
2384 hwaddr addr1;
84b7b8e7 2385
5c8a00ce
PB
2386 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2387 false);
2388 if (l < 8 || !memory_access_is_direct(mr, false)) {
84b7b8e7 2389 /* I/O case */
5c8a00ce 2390 io_mem_read(mr, addr1, &val, 8);
968a5627
PB
2391#if defined(TARGET_WORDS_BIGENDIAN)
2392 if (endian == DEVICE_LITTLE_ENDIAN) {
2393 val = bswap64(val);
2394 }
2395#else
2396 if (endian == DEVICE_BIG_ENDIAN) {
2397 val = bswap64(val);
2398 }
84b7b8e7
FB
2399#endif
2400 } else {
2401 /* RAM case */
5c8a00ce 2402 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2403 & TARGET_PAGE_MASK)
149f54b5 2404 + addr1);
1e78bcc1
AG
2405 switch (endian) {
2406 case DEVICE_LITTLE_ENDIAN:
2407 val = ldq_le_p(ptr);
2408 break;
2409 case DEVICE_BIG_ENDIAN:
2410 val = ldq_be_p(ptr);
2411 break;
2412 default:
2413 val = ldq_p(ptr);
2414 break;
2415 }
84b7b8e7
FB
2416 }
2417 return val;
2418}
2419
a8170e5e 2420uint64_t ldq_phys(hwaddr addr)
1e78bcc1
AG
2421{
2422 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2423}
2424
a8170e5e 2425uint64_t ldq_le_phys(hwaddr addr)
1e78bcc1
AG
2426{
2427 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2428}
2429
a8170e5e 2430uint64_t ldq_be_phys(hwaddr addr)
1e78bcc1
AG
2431{
2432 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2433}
2434
aab33094 2435/* XXX: optimize */
a8170e5e 2436uint32_t ldub_phys(hwaddr addr)
aab33094
FB
2437{
2438 uint8_t val;
2439 cpu_physical_memory_read(addr, &val, 1);
2440 return val;
2441}
2442
733f0b02 2443/* warning: addr must be aligned */
a8170e5e 2444static inline uint32_t lduw_phys_internal(hwaddr addr,
1e78bcc1 2445 enum device_endian endian)
aab33094 2446{
733f0b02
MT
2447 uint8_t *ptr;
2448 uint64_t val;
5c8a00ce 2449 MemoryRegion *mr;
149f54b5
PB
2450 hwaddr l = 2;
2451 hwaddr addr1;
733f0b02 2452
5c8a00ce
PB
2453 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2454 false);
2455 if (l < 2 || !memory_access_is_direct(mr, false)) {
733f0b02 2456 /* I/O case */
5c8a00ce 2457 io_mem_read(mr, addr1, &val, 2);
1e78bcc1
AG
2458#if defined(TARGET_WORDS_BIGENDIAN)
2459 if (endian == DEVICE_LITTLE_ENDIAN) {
2460 val = bswap16(val);
2461 }
2462#else
2463 if (endian == DEVICE_BIG_ENDIAN) {
2464 val = bswap16(val);
2465 }
2466#endif
733f0b02
MT
2467 } else {
2468 /* RAM case */
5c8a00ce 2469 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2470 & TARGET_PAGE_MASK)
149f54b5 2471 + addr1);
1e78bcc1
AG
2472 switch (endian) {
2473 case DEVICE_LITTLE_ENDIAN:
2474 val = lduw_le_p(ptr);
2475 break;
2476 case DEVICE_BIG_ENDIAN:
2477 val = lduw_be_p(ptr);
2478 break;
2479 default:
2480 val = lduw_p(ptr);
2481 break;
2482 }
733f0b02
MT
2483 }
2484 return val;
aab33094
FB
2485}
2486
a8170e5e 2487uint32_t lduw_phys(hwaddr addr)
1e78bcc1
AG
2488{
2489 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2490}
2491
a8170e5e 2492uint32_t lduw_le_phys(hwaddr addr)
1e78bcc1
AG
2493{
2494 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2495}
2496
a8170e5e 2497uint32_t lduw_be_phys(hwaddr addr)
1e78bcc1
AG
2498{
2499 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2500}
2501
8df1cd07
FB
2502/* warning: addr must be aligned. The ram page is not masked as dirty
2503 and the code inside is not invalidated. It is useful if the dirty
2504 bits are used to track modified PTEs */
a8170e5e 2505void stl_phys_notdirty(hwaddr addr, uint32_t val)
8df1cd07 2506{
8df1cd07 2507 uint8_t *ptr;
5c8a00ce 2508 MemoryRegion *mr;
149f54b5
PB
2509 hwaddr l = 4;
2510 hwaddr addr1;
8df1cd07 2511
5c8a00ce
PB
2512 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2513 true);
2514 if (l < 4 || !memory_access_is_direct(mr, true)) {
2515 io_mem_write(mr, addr1, val, 4);
8df1cd07 2516 } else {
5c8a00ce 2517 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 2518 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 2519 stl_p(ptr, val);
74576198
AL
2520
2521 if (unlikely(in_migration)) {
2522 if (!cpu_physical_memory_is_dirty(addr1)) {
2523 /* invalidate code */
2524 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2525 /* set dirty bit */
f7c11b53
YT
2526 cpu_physical_memory_set_dirty_flags(
2527 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
2528 }
2529 }
8df1cd07
FB
2530 }
2531}
2532
2533/* warning: addr must be aligned */
a8170e5e 2534static inline void stl_phys_internal(hwaddr addr, uint32_t val,
1e78bcc1 2535 enum device_endian endian)
8df1cd07 2536{
8df1cd07 2537 uint8_t *ptr;
5c8a00ce 2538 MemoryRegion *mr;
149f54b5
PB
2539 hwaddr l = 4;
2540 hwaddr addr1;
8df1cd07 2541
5c8a00ce
PB
2542 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2543 true);
2544 if (l < 4 || !memory_access_is_direct(mr, true)) {
1e78bcc1
AG
2545#if defined(TARGET_WORDS_BIGENDIAN)
2546 if (endian == DEVICE_LITTLE_ENDIAN) {
2547 val = bswap32(val);
2548 }
2549#else
2550 if (endian == DEVICE_BIG_ENDIAN) {
2551 val = bswap32(val);
2552 }
2553#endif
5c8a00ce 2554 io_mem_write(mr, addr1, val, 4);
8df1cd07 2555 } else {
8df1cd07 2556 /* RAM case */
5c8a00ce 2557 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 2558 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
2559 switch (endian) {
2560 case DEVICE_LITTLE_ENDIAN:
2561 stl_le_p(ptr, val);
2562 break;
2563 case DEVICE_BIG_ENDIAN:
2564 stl_be_p(ptr, val);
2565 break;
2566 default:
2567 stl_p(ptr, val);
2568 break;
2569 }
51d7a9eb 2570 invalidate_and_set_dirty(addr1, 4);
8df1cd07
FB
2571 }
2572}
2573
a8170e5e 2574void stl_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2575{
2576 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2577}
2578
a8170e5e 2579void stl_le_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2580{
2581 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2582}
2583
a8170e5e 2584void stl_be_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2585{
2586 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2587}
2588
aab33094 2589/* XXX: optimize */
a8170e5e 2590void stb_phys(hwaddr addr, uint32_t val)
aab33094
FB
2591{
2592 uint8_t v = val;
2593 cpu_physical_memory_write(addr, &v, 1);
2594}
2595
733f0b02 2596/* warning: addr must be aligned */
a8170e5e 2597static inline void stw_phys_internal(hwaddr addr, uint32_t val,
1e78bcc1 2598 enum device_endian endian)
aab33094 2599{
733f0b02 2600 uint8_t *ptr;
5c8a00ce 2601 MemoryRegion *mr;
149f54b5
PB
2602 hwaddr l = 2;
2603 hwaddr addr1;
733f0b02 2604
5c8a00ce
PB
2605 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2606 true);
2607 if (l < 2 || !memory_access_is_direct(mr, true)) {
1e78bcc1
AG
2608#if defined(TARGET_WORDS_BIGENDIAN)
2609 if (endian == DEVICE_LITTLE_ENDIAN) {
2610 val = bswap16(val);
2611 }
2612#else
2613 if (endian == DEVICE_BIG_ENDIAN) {
2614 val = bswap16(val);
2615 }
2616#endif
5c8a00ce 2617 io_mem_write(mr, addr1, val, 2);
733f0b02 2618 } else {
733f0b02 2619 /* RAM case */
5c8a00ce 2620 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
733f0b02 2621 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
2622 switch (endian) {
2623 case DEVICE_LITTLE_ENDIAN:
2624 stw_le_p(ptr, val);
2625 break;
2626 case DEVICE_BIG_ENDIAN:
2627 stw_be_p(ptr, val);
2628 break;
2629 default:
2630 stw_p(ptr, val);
2631 break;
2632 }
51d7a9eb 2633 invalidate_and_set_dirty(addr1, 2);
733f0b02 2634 }
aab33094
FB
2635}
2636
a8170e5e 2637void stw_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2638{
2639 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2640}
2641
a8170e5e 2642void stw_le_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2643{
2644 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2645}
2646
a8170e5e 2647void stw_be_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2648{
2649 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2650}
2651
aab33094 2652/* XXX: optimize */
a8170e5e 2653void stq_phys(hwaddr addr, uint64_t val)
aab33094
FB
2654{
2655 val = tswap64(val);
71d2b725 2656 cpu_physical_memory_write(addr, &val, 8);
aab33094
FB
2657}
2658
a8170e5e 2659void stq_le_phys(hwaddr addr, uint64_t val)
1e78bcc1
AG
2660{
2661 val = cpu_to_le64(val);
2662 cpu_physical_memory_write(addr, &val, 8);
2663}
2664
a8170e5e 2665void stq_be_phys(hwaddr addr, uint64_t val)
1e78bcc1
AG
2666{
2667 val = cpu_to_be64(val);
2668 cpu_physical_memory_write(addr, &val, 8);
2669}
2670
5e2972fd 2671/* virtual memory access for debug (includes writing to ROM) */
f17ec444 2672int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 2673 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2674{
2675 int l;
a8170e5e 2676 hwaddr phys_addr;
9b3c35e0 2677 target_ulong page;
13eb76e0
FB
2678
2679 while (len > 0) {
2680 page = addr & TARGET_PAGE_MASK;
f17ec444 2681 phys_addr = cpu_get_phys_page_debug(cpu, page);
13eb76e0
FB
2682 /* if no physical page mapped, return an error */
2683 if (phys_addr == -1)
2684 return -1;
2685 l = (page + TARGET_PAGE_SIZE) - addr;
2686 if (l > len)
2687 l = len;
5e2972fd 2688 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
2689 if (is_write)
2690 cpu_physical_memory_write_rom(phys_addr, buf, l);
2691 else
5e2972fd 2692 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
2693 len -= l;
2694 buf += l;
2695 addr += l;
2696 }
2697 return 0;
2698}
a68fe89c 2699#endif
13eb76e0 2700
8e4a424b
BS
2701#if !defined(CONFIG_USER_ONLY)
2702
2703/*
2704 * A helper function for the _utterly broken_ virtio device model to find out if
2705 * it's running on a big endian machine. Don't do this at home kids!
2706 */
2707bool virtio_is_big_endian(void);
2708bool virtio_is_big_endian(void)
2709{
2710#if defined(TARGET_WORDS_BIGENDIAN)
2711 return true;
2712#else
2713 return false;
2714#endif
2715}
2716
2717#endif
2718
76f35538 2719#ifndef CONFIG_USER_ONLY
a8170e5e 2720bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 2721{
5c8a00ce 2722 MemoryRegion*mr;
149f54b5 2723 hwaddr l = 1;
76f35538 2724
5c8a00ce
PB
2725 mr = address_space_translate(&address_space_memory,
2726 phys_addr, &phys_addr, &l, false);
76f35538 2727
5c8a00ce
PB
2728 return !(memory_region_is_ram(mr) ||
2729 memory_region_is_romd(mr));
76f35538 2730}
bd2fa51f
MH
2731
2732void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2733{
2734 RAMBlock *block;
2735
2736 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2737 func(block->host, block->offset, block->length, opaque);
2738 }
2739}
ec3f8c99 2740#endif