]> git.proxmox.com Git - mirror_qemu.git/blame - hw/i386/intel_iommu.c
intel-iommu: add supports for queued invalidation interface
[mirror_qemu.git] / hw / i386 / intel_iommu.c
CommitLineData
1da12ec4
LT
1/*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
4 *
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22#include "hw/sysbus.h"
23#include "exec/address-spaces.h"
24#include "intel_iommu_internal.h"
25
26/*#define DEBUG_INTEL_IOMMU*/
27#ifdef DEBUG_INTEL_IOMMU
28enum {
29 DEBUG_GENERAL, DEBUG_CSR, DEBUG_INV, DEBUG_MMU, DEBUG_FLOG,
30};
31#define VTD_DBGBIT(x) (1 << DEBUG_##x)
32static int vtd_dbgflags = VTD_DBGBIT(GENERAL) | VTD_DBGBIT(CSR);
33
34#define VTD_DPRINTF(what, fmt, ...) do { \
35 if (vtd_dbgflags & VTD_DBGBIT(what)) { \
36 fprintf(stderr, "(vtd)%s: " fmt "\n", __func__, \
37 ## __VA_ARGS__); } \
38 } while (0)
39#else
40#define VTD_DPRINTF(what, fmt, ...) do {} while (0)
41#endif
42
43static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
44 uint64_t wmask, uint64_t w1cmask)
45{
46 stq_le_p(&s->csr[addr], val);
47 stq_le_p(&s->wmask[addr], wmask);
48 stq_le_p(&s->w1cmask[addr], w1cmask);
49}
50
51static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
52{
53 stq_le_p(&s->womask[addr], mask);
54}
55
56static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
57 uint32_t wmask, uint32_t w1cmask)
58{
59 stl_le_p(&s->csr[addr], val);
60 stl_le_p(&s->wmask[addr], wmask);
61 stl_le_p(&s->w1cmask[addr], w1cmask);
62}
63
64static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
65{
66 stl_le_p(&s->womask[addr], mask);
67}
68
69/* "External" get/set operations */
70static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
71{
72 uint64_t oldval = ldq_le_p(&s->csr[addr]);
73 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
74 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
75 stq_le_p(&s->csr[addr],
76 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
77}
78
79static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
80{
81 uint32_t oldval = ldl_le_p(&s->csr[addr]);
82 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
83 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
84 stl_le_p(&s->csr[addr],
85 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
86}
87
88static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
89{
90 uint64_t val = ldq_le_p(&s->csr[addr]);
91 uint64_t womask = ldq_le_p(&s->womask[addr]);
92 return val & ~womask;
93}
94
95static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
96{
97 uint32_t val = ldl_le_p(&s->csr[addr]);
98 uint32_t womask = ldl_le_p(&s->womask[addr]);
99 return val & ~womask;
100}
101
102/* "Internal" get/set operations */
103static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
104{
105 return ldq_le_p(&s->csr[addr]);
106}
107
108static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
109{
110 return ldl_le_p(&s->csr[addr]);
111}
112
113static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
114{
115 stq_le_p(&s->csr[addr], val);
116}
117
118static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
119 uint32_t clear, uint32_t mask)
120{
121 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
122 stl_le_p(&s->csr[addr], new_val);
123 return new_val;
124}
125
126static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
127 uint64_t clear, uint64_t mask)
128{
129 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
130 stq_le_p(&s->csr[addr], new_val);
131 return new_val;
132}
133
134/* Given the reg addr of both the message data and address, generate an
135 * interrupt via MSI.
136 */
137static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
138 hwaddr mesg_data_reg)
139{
140 hwaddr addr;
141 uint32_t data;
142
143 assert(mesg_data_reg < DMAR_REG_SIZE);
144 assert(mesg_addr_reg < DMAR_REG_SIZE);
145
146 addr = vtd_get_long_raw(s, mesg_addr_reg);
147 data = vtd_get_long_raw(s, mesg_data_reg);
148
149 VTD_DPRINTF(FLOG, "msi: addr 0x%"PRIx64 " data 0x%"PRIx32, addr, data);
150 stl_le_phys(&address_space_memory, addr, data);
151}
152
153/* Generate a fault event to software via MSI if conditions are met.
154 * Notice that the value of FSTS_REG being passed to it should be the one
155 * before any update.
156 */
157static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
158{
159 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
160 pre_fsts & VTD_FSTS_IQE) {
161 VTD_DPRINTF(FLOG, "there are previous interrupt conditions "
162 "to be serviced by software, fault event is not generated "
163 "(FSTS_REG 0x%"PRIx32 ")", pre_fsts);
164 return;
165 }
166 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
167 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
168 VTD_DPRINTF(FLOG, "Interrupt Mask set, fault event is not generated");
169 } else {
170 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
171 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
172 }
173}
174
175/* Check if the Fault (F) field of the Fault Recording Register referenced by
176 * @index is Set.
177 */
178static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
179{
180 /* Each reg is 128-bit */
181 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
182 addr += 8; /* Access the high 64-bit half */
183
184 assert(index < DMAR_FRCD_REG_NR);
185
186 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
187}
188
189/* Update the PPF field of Fault Status Register.
190 * Should be called whenever change the F field of any fault recording
191 * registers.
192 */
193static void vtd_update_fsts_ppf(IntelIOMMUState *s)
194{
195 uint32_t i;
196 uint32_t ppf_mask = 0;
197
198 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
199 if (vtd_is_frcd_set(s, i)) {
200 ppf_mask = VTD_FSTS_PPF;
201 break;
202 }
203 }
204 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
205 VTD_DPRINTF(FLOG, "set PPF of FSTS_REG to %d", ppf_mask ? 1 : 0);
206}
207
208static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
209{
210 /* Each reg is 128-bit */
211 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
212 addr += 8; /* Access the high 64-bit half */
213
214 assert(index < DMAR_FRCD_REG_NR);
215
216 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
217 vtd_update_fsts_ppf(s);
218}
219
220/* Must not update F field now, should be done later */
221static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
222 uint16_t source_id, hwaddr addr,
223 VTDFaultReason fault, bool is_write)
224{
225 uint64_t hi = 0, lo;
226 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
227
228 assert(index < DMAR_FRCD_REG_NR);
229
230 lo = VTD_FRCD_FI(addr);
231 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
232 if (!is_write) {
233 hi |= VTD_FRCD_T;
234 }
235 vtd_set_quad_raw(s, frcd_reg_addr, lo);
236 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
237 VTD_DPRINTF(FLOG, "record to FRCD_REG #%"PRIu16 ": hi 0x%"PRIx64
238 ", lo 0x%"PRIx64, index, hi, lo);
239}
240
241/* Try to collapse multiple pending faults from the same requester */
242static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
243{
244 uint32_t i;
245 uint64_t frcd_reg;
246 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
247
248 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
249 frcd_reg = vtd_get_quad_raw(s, addr);
250 VTD_DPRINTF(FLOG, "frcd_reg #%d 0x%"PRIx64, i, frcd_reg);
251 if ((frcd_reg & VTD_FRCD_F) &&
252 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
253 return true;
254 }
255 addr += 16; /* 128-bit for each */
256 }
257 return false;
258}
259
260/* Log and report an DMAR (address translation) fault to software */
261static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
262 hwaddr addr, VTDFaultReason fault,
263 bool is_write)
264{
265 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
266
267 assert(fault < VTD_FR_MAX);
268
269 if (fault == VTD_FR_RESERVED_ERR) {
270 /* This is not a normal fault reason case. Drop it. */
271 return;
272 }
273 VTD_DPRINTF(FLOG, "sid 0x%"PRIx16 ", fault %d, addr 0x%"PRIx64
274 ", is_write %d", source_id, fault, addr, is_write);
275 if (fsts_reg & VTD_FSTS_PFO) {
276 VTD_DPRINTF(FLOG, "new fault is not recorded due to "
277 "Primary Fault Overflow");
278 return;
279 }
280 if (vtd_try_collapse_fault(s, source_id)) {
281 VTD_DPRINTF(FLOG, "new fault is not recorded due to "
282 "compression of faults");
283 return;
284 }
285 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
286 VTD_DPRINTF(FLOG, "Primary Fault Overflow and "
287 "new fault is not recorded, set PFO field");
288 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
289 return;
290 }
291
292 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
293
294 if (fsts_reg & VTD_FSTS_PPF) {
295 VTD_DPRINTF(FLOG, "there are pending faults already, "
296 "fault event is not generated");
297 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
298 s->next_frcd_reg++;
299 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
300 s->next_frcd_reg = 0;
301 }
302 } else {
303 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
304 VTD_FSTS_FRI(s->next_frcd_reg));
305 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
306 s->next_frcd_reg++;
307 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
308 s->next_frcd_reg = 0;
309 }
310 /* This case actually cause the PPF to be Set.
311 * So generate fault event (interrupt).
312 */
313 vtd_generate_fault_event(s, fsts_reg);
314 }
315}
316
ed7b8fbc
LT
317/* Handle Invalidation Queue Errors of queued invalidation interface error
318 * conditions.
319 */
320static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
321{
322 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
323
324 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
325 vtd_generate_fault_event(s, fsts_reg);
326}
327
328/* Set the IWC field and try to generate an invalidation completion interrupt */
329static void vtd_generate_completion_event(IntelIOMMUState *s)
330{
331 VTD_DPRINTF(INV, "completes an invalidation wait command with "
332 "Interrupt Flag");
333 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
334 VTD_DPRINTF(INV, "there is a previous interrupt condition to be "
335 "serviced by software, "
336 "new invalidation event is not generated");
337 return;
338 }
339 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
340 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
341 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
342 VTD_DPRINTF(INV, "IM filed in IECTL_REG is set, new invalidation "
343 "event is not generated");
344 return;
345 } else {
346 /* Generate the interrupt event */
347 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
348 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
349 }
350}
351
1da12ec4
LT
352static inline bool vtd_root_entry_present(VTDRootEntry *root)
353{
354 return root->val & VTD_ROOT_ENTRY_P;
355}
356
357static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
358 VTDRootEntry *re)
359{
360 dma_addr_t addr;
361
362 addr = s->root + index * sizeof(*re);
363 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
364 VTD_DPRINTF(GENERAL, "error: fail to access root-entry at 0x%"PRIx64
365 " + %"PRIu8, s->root, index);
366 re->val = 0;
367 return -VTD_FR_ROOT_TABLE_INV;
368 }
369 re->val = le64_to_cpu(re->val);
370 return 0;
371}
372
373static inline bool vtd_context_entry_present(VTDContextEntry *context)
374{
375 return context->lo & VTD_CONTEXT_ENTRY_P;
376}
377
378static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
379 VTDContextEntry *ce)
380{
381 dma_addr_t addr;
382
383 if (!vtd_root_entry_present(root)) {
384 VTD_DPRINTF(GENERAL, "error: root-entry is not present");
385 return -VTD_FR_ROOT_ENTRY_P;
386 }
387 addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
388 if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
389 VTD_DPRINTF(GENERAL, "error: fail to access context-entry at 0x%"PRIx64
390 " + %"PRIu8,
391 (uint64_t)(root->val & VTD_ROOT_ENTRY_CTP), index);
392 return -VTD_FR_CONTEXT_TABLE_INV;
393 }
394 ce->lo = le64_to_cpu(ce->lo);
395 ce->hi = le64_to_cpu(ce->hi);
396 return 0;
397}
398
399static inline dma_addr_t vtd_get_slpt_base_from_context(VTDContextEntry *ce)
400{
401 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
402}
403
404/* The shift of an addr for a certain level of paging structure */
405static inline uint32_t vtd_slpt_level_shift(uint32_t level)
406{
407 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
408}
409
410static inline uint64_t vtd_get_slpte_addr(uint64_t slpte)
411{
412 return slpte & VTD_SL_PT_BASE_ADDR_MASK;
413}
414
415/* Whether the pte indicates the address of the page frame */
416static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
417{
418 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
419}
420
421/* Get the content of a spte located in @base_addr[@index] */
422static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
423{
424 uint64_t slpte;
425
426 assert(index < VTD_SL_PT_ENTRY_NR);
427
428 if (dma_memory_read(&address_space_memory,
429 base_addr + index * sizeof(slpte), &slpte,
430 sizeof(slpte))) {
431 slpte = (uint64_t)-1;
432 return slpte;
433 }
434 slpte = le64_to_cpu(slpte);
435 return slpte;
436}
437
438/* Given a gpa and the level of paging structure, return the offset of current
439 * level.
440 */
441static inline uint32_t vtd_gpa_level_offset(uint64_t gpa, uint32_t level)
442{
443 return (gpa >> vtd_slpt_level_shift(level)) &
444 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
445}
446
447/* Check Capability Register to see if the @level of page-table is supported */
448static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
449{
450 return VTD_CAP_SAGAW_MASK & s->cap &
451 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
452}
453
454/* Get the page-table level that hardware should use for the second-level
455 * page-table walk from the Address Width field of context-entry.
456 */
457static inline uint32_t vtd_get_level_from_context_entry(VTDContextEntry *ce)
458{
459 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
460}
461
462static inline uint32_t vtd_get_agaw_from_context_entry(VTDContextEntry *ce)
463{
464 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
465}
466
467static const uint64_t vtd_paging_entry_rsvd_field[] = {
468 [0] = ~0ULL,
469 /* For not large page */
470 [1] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
471 [2] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
472 [3] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
473 [4] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
474 /* For large page */
475 [5] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
476 [6] = 0x1ff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
477 [7] = 0x3ffff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
478 [8] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
479};
480
481static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
482{
483 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
484 /* Maybe large page */
485 return slpte & vtd_paging_entry_rsvd_field[level + 4];
486 } else {
487 return slpte & vtd_paging_entry_rsvd_field[level];
488 }
489}
490
491/* Given the @gpa, get relevant @slptep. @slpte_level will be the last level
492 * of the translation, can be used for deciding the size of large page.
493 */
494static int vtd_gpa_to_slpte(VTDContextEntry *ce, uint64_t gpa, bool is_write,
495 uint64_t *slptep, uint32_t *slpte_level,
496 bool *reads, bool *writes)
497{
498 dma_addr_t addr = vtd_get_slpt_base_from_context(ce);
499 uint32_t level = vtd_get_level_from_context_entry(ce);
500 uint32_t offset;
501 uint64_t slpte;
502 uint32_t ce_agaw = vtd_get_agaw_from_context_entry(ce);
503 uint64_t access_right_check;
504
505 /* Check if @gpa is above 2^X-1, where X is the minimum of MGAW in CAP_REG
506 * and AW in context-entry.
507 */
508 if (gpa & ~((1ULL << MIN(ce_agaw, VTD_MGAW)) - 1)) {
509 VTD_DPRINTF(GENERAL, "error: gpa 0x%"PRIx64 " exceeds limits", gpa);
510 return -VTD_FR_ADDR_BEYOND_MGAW;
511 }
512
513 /* FIXME: what is the Atomics request here? */
514 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
515
516 while (true) {
517 offset = vtd_gpa_level_offset(gpa, level);
518 slpte = vtd_get_slpte(addr, offset);
519
520 if (slpte == (uint64_t)-1) {
521 VTD_DPRINTF(GENERAL, "error: fail to access second-level paging "
522 "entry at level %"PRIu32 " for gpa 0x%"PRIx64,
523 level, gpa);
524 if (level == vtd_get_level_from_context_entry(ce)) {
525 /* Invalid programming of context-entry */
526 return -VTD_FR_CONTEXT_ENTRY_INV;
527 } else {
528 return -VTD_FR_PAGING_ENTRY_INV;
529 }
530 }
531 *reads = (*reads) && (slpte & VTD_SL_R);
532 *writes = (*writes) && (slpte & VTD_SL_W);
533 if (!(slpte & access_right_check)) {
534 VTD_DPRINTF(GENERAL, "error: lack of %s permission for "
535 "gpa 0x%"PRIx64 " slpte 0x%"PRIx64,
536 (is_write ? "write" : "read"), gpa, slpte);
537 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
538 }
539 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
540 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in second "
541 "level paging entry level %"PRIu32 " slpte 0x%"PRIx64,
542 level, slpte);
543 return -VTD_FR_PAGING_ENTRY_RSVD;
544 }
545
546 if (vtd_is_last_slpte(slpte, level)) {
547 *slptep = slpte;
548 *slpte_level = level;
549 return 0;
550 }
551 addr = vtd_get_slpte_addr(slpte);
552 level--;
553 }
554}
555
556/* Map a device to its corresponding domain (context-entry) */
557static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
558 uint8_t devfn, VTDContextEntry *ce)
559{
560 VTDRootEntry re;
561 int ret_fr;
562
563 ret_fr = vtd_get_root_entry(s, bus_num, &re);
564 if (ret_fr) {
565 return ret_fr;
566 }
567
568 if (!vtd_root_entry_present(&re)) {
569 VTD_DPRINTF(GENERAL, "error: root-entry #%"PRIu8 " is not present",
570 bus_num);
571 return -VTD_FR_ROOT_ENTRY_P;
572 } else if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD)) {
573 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in root-entry "
574 "hi 0x%"PRIx64 " lo 0x%"PRIx64, re.rsvd, re.val);
575 return -VTD_FR_ROOT_ENTRY_RSVD;
576 }
577
578 ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
579 if (ret_fr) {
580 return ret_fr;
581 }
582
583 if (!vtd_context_entry_present(ce)) {
584 VTD_DPRINTF(GENERAL,
585 "error: context-entry #%"PRIu8 "(bus #%"PRIu8 ") "
586 "is not present", devfn, bus_num);
587 return -VTD_FR_CONTEXT_ENTRY_P;
588 } else if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
589 (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO)) {
590 VTD_DPRINTF(GENERAL,
591 "error: non-zero reserved field in context-entry "
592 "hi 0x%"PRIx64 " lo 0x%"PRIx64, ce->hi, ce->lo);
593 return -VTD_FR_CONTEXT_ENTRY_RSVD;
594 }
595 /* Check if the programming of context-entry is valid */
596 if (!vtd_is_level_supported(s, vtd_get_level_from_context_entry(ce))) {
597 VTD_DPRINTF(GENERAL, "error: unsupported Address Width value in "
598 "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
599 ce->hi, ce->lo);
600 return -VTD_FR_CONTEXT_ENTRY_INV;
601 } else if (ce->lo & VTD_CONTEXT_ENTRY_TT) {
602 VTD_DPRINTF(GENERAL, "error: unsupported Translation Type in "
603 "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
604 ce->hi, ce->lo);
605 return -VTD_FR_CONTEXT_ENTRY_INV;
606 }
607 return 0;
608}
609
610static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
611{
612 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
613}
614
615static const bool vtd_qualified_faults[] = {
616 [VTD_FR_RESERVED] = false,
617 [VTD_FR_ROOT_ENTRY_P] = false,
618 [VTD_FR_CONTEXT_ENTRY_P] = true,
619 [VTD_FR_CONTEXT_ENTRY_INV] = true,
620 [VTD_FR_ADDR_BEYOND_MGAW] = true,
621 [VTD_FR_WRITE] = true,
622 [VTD_FR_READ] = true,
623 [VTD_FR_PAGING_ENTRY_INV] = true,
624 [VTD_FR_ROOT_TABLE_INV] = false,
625 [VTD_FR_CONTEXT_TABLE_INV] = false,
626 [VTD_FR_ROOT_ENTRY_RSVD] = false,
627 [VTD_FR_PAGING_ENTRY_RSVD] = true,
628 [VTD_FR_CONTEXT_ENTRY_TT] = true,
629 [VTD_FR_RESERVED_ERR] = false,
630 [VTD_FR_MAX] = false,
631};
632
633/* To see if a fault condition is "qualified", which is reported to software
634 * only if the FPD field in the context-entry used to process the faulting
635 * request is 0.
636 */
637static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
638{
639 return vtd_qualified_faults[fault];
640}
641
642static inline bool vtd_is_interrupt_addr(hwaddr addr)
643{
644 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
645}
646
647/* Map dev to context-entry then do a paging-structures walk to do a iommu
648 * translation.
649 * @bus_num: The bus number
650 * @devfn: The devfn, which is the combined of device and function number
651 * @is_write: The access is a write operation
652 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
653 */
654static void vtd_do_iommu_translate(IntelIOMMUState *s, uint8_t bus_num,
655 uint8_t devfn, hwaddr addr, bool is_write,
656 IOMMUTLBEntry *entry)
657{
658 VTDContextEntry ce;
659 uint64_t slpte;
660 uint32_t level;
661 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
662 int ret_fr;
663 bool is_fpd_set = false;
664 bool reads = true;
665 bool writes = true;
666
667 /* Check if the request is in interrupt address range */
668 if (vtd_is_interrupt_addr(addr)) {
669 if (is_write) {
670 /* FIXME: since we don't know the length of the access here, we
671 * treat Non-DWORD length write requests without PASID as
672 * interrupt requests, too. Withoud interrupt remapping support,
673 * we just use 1:1 mapping.
674 */
675 VTD_DPRINTF(MMU, "write request to interrupt address "
676 "gpa 0x%"PRIx64, addr);
677 entry->iova = addr & VTD_PAGE_MASK_4K;
678 entry->translated_addr = addr & VTD_PAGE_MASK_4K;
679 entry->addr_mask = ~VTD_PAGE_MASK_4K;
680 entry->perm = IOMMU_WO;
681 return;
682 } else {
683 VTD_DPRINTF(GENERAL, "error: read request from interrupt address "
684 "gpa 0x%"PRIx64, addr);
685 vtd_report_dmar_fault(s, source_id, addr, VTD_FR_READ, is_write);
686 return;
687 }
688 }
689
690 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
691 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
692 if (ret_fr) {
693 ret_fr = -ret_fr;
694 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
695 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA requests "
696 "through this context-entry (with FPD Set)");
697 } else {
698 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
699 }
700 return;
701 }
702
703 ret_fr = vtd_gpa_to_slpte(&ce, addr, is_write, &slpte, &level,
704 &reads, &writes);
705 if (ret_fr) {
706 ret_fr = -ret_fr;
707 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
708 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA requests "
709 "through this context-entry (with FPD Set)");
710 } else {
711 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
712 }
713 return;
714 }
715
716 entry->iova = addr & VTD_PAGE_MASK_4K;
717 entry->translated_addr = vtd_get_slpte_addr(slpte) & VTD_PAGE_MASK_4K;
718 entry->addr_mask = ~VTD_PAGE_MASK_4K;
719 entry->perm = (writes ? 2 : 0) + (reads ? 1 : 0);
720}
721
722static void vtd_root_table_setup(IntelIOMMUState *s)
723{
724 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
725 s->root_extended = s->root & VTD_RTADDR_RTT;
726 s->root &= VTD_RTADDR_ADDR_MASK;
727
728 VTD_DPRINTF(CSR, "root_table addr 0x%"PRIx64 " %s", s->root,
729 (s->root_extended ? "(extended)" : ""));
730}
731
732/* Context-cache invalidation
733 * Returns the Context Actual Invalidation Granularity.
734 * @val: the content of the CCMD_REG
735 */
736static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
737{
738 uint64_t caig;
739 uint64_t type = val & VTD_CCMD_CIRG_MASK;
740
741 switch (type) {
742 case VTD_CCMD_GLOBAL_INVL:
743 VTD_DPRINTF(INV, "Global invalidation request");
744 caig = VTD_CCMD_GLOBAL_INVL_A;
745 break;
746
747 case VTD_CCMD_DOMAIN_INVL:
748 VTD_DPRINTF(INV, "Domain-selective invalidation request");
749 caig = VTD_CCMD_DOMAIN_INVL_A;
750 break;
751
752 case VTD_CCMD_DEVICE_INVL:
753 VTD_DPRINTF(INV, "Domain-selective invalidation request");
754 caig = VTD_CCMD_DEVICE_INVL_A;
755 break;
756
757 default:
758 VTD_DPRINTF(GENERAL,
759 "error: wrong context-cache invalidation granularity");
760 caig = 0;
761 }
762 return caig;
763}
764
765/* Flush IOTLB
766 * Returns the IOTLB Actual Invalidation Granularity.
767 * @val: the content of the IOTLB_REG
768 */
769static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
770{
771 uint64_t iaig;
772 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
773
774 switch (type) {
775 case VTD_TLB_GLOBAL_FLUSH:
776 VTD_DPRINTF(INV, "Global IOTLB flush");
777 iaig = VTD_TLB_GLOBAL_FLUSH_A;
778 break;
779
780 case VTD_TLB_DSI_FLUSH:
781 VTD_DPRINTF(INV, "Domain-selective IOTLB flush");
782 iaig = VTD_TLB_DSI_FLUSH_A;
783 break;
784
785 case VTD_TLB_PSI_FLUSH:
786 VTD_DPRINTF(INV, "Page-selective-within-domain IOTLB flush");
787 iaig = VTD_TLB_PSI_FLUSH_A;
788 break;
789
790 default:
791 VTD_DPRINTF(GENERAL, "error: wrong iotlb flush granularity");
792 iaig = 0;
793 }
794 return iaig;
795}
796
ed7b8fbc
LT
797static inline bool vtd_queued_inv_enable_check(IntelIOMMUState *s)
798{
799 return s->iq_tail == 0;
800}
801
802static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
803{
804 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
805 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
806}
807
808static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
809{
810 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
811
812 VTD_DPRINTF(INV, "Queued Invalidation Enable %s", (en ? "on" : "off"));
813 if (en) {
814 if (vtd_queued_inv_enable_check(s)) {
815 s->iq = iqa_val & VTD_IQA_IQA_MASK;
816 /* 2^(x+8) entries */
817 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
818 s->qi_enabled = true;
819 VTD_DPRINTF(INV, "DMAR_IQA_REG 0x%"PRIx64, iqa_val);
820 VTD_DPRINTF(INV, "Invalidation Queue addr 0x%"PRIx64 " size %d",
821 s->iq, s->iq_size);
822 /* Ok - report back to driver */
823 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
824 } else {
825 VTD_DPRINTF(GENERAL, "error: can't enable Queued Invalidation: "
826 "tail %"PRIu16, s->iq_tail);
827 }
828 } else {
829 if (vtd_queued_inv_disable_check(s)) {
830 /* disable Queued Invalidation */
831 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
832 s->iq_head = 0;
833 s->qi_enabled = false;
834 /* Ok - report back to driver */
835 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
836 } else {
837 VTD_DPRINTF(GENERAL, "error: can't disable Queued Invalidation: "
838 "head %"PRIu16 ", tail %"PRIu16
839 ", last_descriptor %"PRIu8,
840 s->iq_head, s->iq_tail, s->iq_last_desc_type);
841 }
842 }
843}
844
1da12ec4
LT
845/* Set Root Table Pointer */
846static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
847{
848 VTD_DPRINTF(CSR, "set Root Table Pointer");
849
850 vtd_root_table_setup(s);
851 /* Ok - report back to driver */
852 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
853}
854
855/* Handle Translation Enable/Disable */
856static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
857{
858 VTD_DPRINTF(CSR, "Translation Enable %s", (en ? "on" : "off"));
859
860 if (en) {
861 s->dmar_enabled = true;
862 /* Ok - report back to driver */
863 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
864 } else {
865 s->dmar_enabled = false;
866
867 /* Clear the index of Fault Recording Register */
868 s->next_frcd_reg = 0;
869 /* Ok - report back to driver */
870 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
871 }
872}
873
874/* Handle write to Global Command Register */
875static void vtd_handle_gcmd_write(IntelIOMMUState *s)
876{
877 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
878 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
879 uint32_t changed = status ^ val;
880
881 VTD_DPRINTF(CSR, "value 0x%"PRIx32 " status 0x%"PRIx32, val, status);
882 if (changed & VTD_GCMD_TE) {
883 /* Translation enable/disable */
884 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
885 }
886 if (val & VTD_GCMD_SRTP) {
887 /* Set/update the root-table pointer */
888 vtd_handle_gcmd_srtp(s);
889 }
ed7b8fbc
LT
890 if (changed & VTD_GCMD_QIE) {
891 /* Queued Invalidation Enable */
892 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
893 }
1da12ec4
LT
894}
895
896/* Handle write to Context Command Register */
897static void vtd_handle_ccmd_write(IntelIOMMUState *s)
898{
899 uint64_t ret;
900 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
901
902 /* Context-cache invalidation request */
903 if (val & VTD_CCMD_ICC) {
ed7b8fbc
LT
904 if (s->qi_enabled) {
905 VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
906 "should not use register-based invalidation");
907 return;
908 }
1da12ec4
LT
909 ret = vtd_context_cache_invalidate(s, val);
910 /* Invalidation completed. Change something to show */
911 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
912 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
913 ret);
914 VTD_DPRINTF(INV, "CCMD_REG write-back val: 0x%"PRIx64, ret);
915 }
916}
917
918/* Handle write to IOTLB Invalidation Register */
919static void vtd_handle_iotlb_write(IntelIOMMUState *s)
920{
921 uint64_t ret;
922 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
923
924 /* IOTLB invalidation request */
925 if (val & VTD_TLB_IVT) {
ed7b8fbc
LT
926 if (s->qi_enabled) {
927 VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
928 "should not use register-based invalidation");
929 return;
930 }
1da12ec4
LT
931 ret = vtd_iotlb_flush(s, val);
932 /* Invalidation completed. Change something to show */
933 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
934 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
935 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
936 VTD_DPRINTF(INV, "IOTLB_REG write-back val: 0x%"PRIx64, ret);
937 }
938}
939
ed7b8fbc
LT
940/* Fetch an Invalidation Descriptor from the Invalidation Queue */
941static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
942 VTDInvDesc *inv_desc)
943{
944 dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
945 if (dma_memory_read(&address_space_memory, addr, inv_desc,
946 sizeof(*inv_desc))) {
947 VTD_DPRINTF(GENERAL, "error: fail to fetch Invalidation Descriptor "
948 "base_addr 0x%"PRIx64 " offset %"PRIu32, base_addr, offset);
949 inv_desc->lo = 0;
950 inv_desc->hi = 0;
951
952 return false;
953 }
954 inv_desc->lo = le64_to_cpu(inv_desc->lo);
955 inv_desc->hi = le64_to_cpu(inv_desc->hi);
956 return true;
957}
958
959static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
960{
961 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
962 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
963 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Invalidation "
964 "Wait Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
965 inv_desc->hi, inv_desc->lo);
966 return false;
967 }
968 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
969 /* Status Write */
970 uint32_t status_data = (uint32_t)(inv_desc->lo >>
971 VTD_INV_DESC_WAIT_DATA_SHIFT);
972
973 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
974
975 /* FIXME: need to be masked with HAW? */
976 dma_addr_t status_addr = inv_desc->hi;
977 VTD_DPRINTF(INV, "status data 0x%x, status addr 0x%"PRIx64,
978 status_data, status_addr);
979 status_data = cpu_to_le32(status_data);
980 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
981 sizeof(status_data))) {
982 VTD_DPRINTF(GENERAL, "error: fail to perform a coherent write");
983 return false;
984 }
985 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
986 /* Interrupt flag */
987 VTD_DPRINTF(INV, "Invalidation Wait Descriptor interrupt completion");
988 vtd_generate_completion_event(s);
989 } else {
990 VTD_DPRINTF(GENERAL, "error: invalid Invalidation Wait Descriptor: "
991 "hi 0x%"PRIx64 " lo 0x%"PRIx64, inv_desc->hi, inv_desc->lo);
992 return false;
993 }
994 return true;
995}
996
997static bool vtd_process_inv_desc(IntelIOMMUState *s)
998{
999 VTDInvDesc inv_desc;
1000 uint8_t desc_type;
1001
1002 VTD_DPRINTF(INV, "iq head %"PRIu16, s->iq_head);
1003 if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
1004 s->iq_last_desc_type = VTD_INV_DESC_NONE;
1005 return false;
1006 }
1007 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
1008 /* FIXME: should update at first or at last? */
1009 s->iq_last_desc_type = desc_type;
1010
1011 switch (desc_type) {
1012 case VTD_INV_DESC_CC:
1013 VTD_DPRINTF(INV, "Context-cache Invalidate Descriptor hi 0x%"PRIx64
1014 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1015 break;
1016
1017 case VTD_INV_DESC_IOTLB:
1018 VTD_DPRINTF(INV, "IOTLB Invalidate Descriptor hi 0x%"PRIx64
1019 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1020 break;
1021
1022 case VTD_INV_DESC_WAIT:
1023 VTD_DPRINTF(INV, "Invalidation Wait Descriptor hi 0x%"PRIx64
1024 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1025 if (!vtd_process_wait_desc(s, &inv_desc)) {
1026 return false;
1027 }
1028 break;
1029
1030 default:
1031 VTD_DPRINTF(GENERAL, "error: unkonw Invalidation Descriptor type "
1032 "hi 0x%"PRIx64 " lo 0x%"PRIx64 " type %"PRIu8,
1033 inv_desc.hi, inv_desc.lo, desc_type);
1034 return false;
1035 }
1036 s->iq_head++;
1037 if (s->iq_head == s->iq_size) {
1038 s->iq_head = 0;
1039 }
1040 return true;
1041}
1042
1043/* Try to fetch and process more Invalidation Descriptors */
1044static void vtd_fetch_inv_desc(IntelIOMMUState *s)
1045{
1046 VTD_DPRINTF(INV, "fetch Invalidation Descriptors");
1047 if (s->iq_tail >= s->iq_size) {
1048 /* Detects an invalid Tail pointer */
1049 VTD_DPRINTF(GENERAL, "error: iq_tail is %"PRIu16
1050 " while iq_size is %"PRIu16, s->iq_tail, s->iq_size);
1051 vtd_handle_inv_queue_error(s);
1052 return;
1053 }
1054 while (s->iq_head != s->iq_tail) {
1055 if (!vtd_process_inv_desc(s)) {
1056 /* Invalidation Queue Errors */
1057 vtd_handle_inv_queue_error(s);
1058 break;
1059 }
1060 /* Must update the IQH_REG in time */
1061 vtd_set_quad_raw(s, DMAR_IQH_REG,
1062 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
1063 VTD_IQH_QH_MASK);
1064 }
1065}
1066
1067/* Handle write to Invalidation Queue Tail Register */
1068static void vtd_handle_iqt_write(IntelIOMMUState *s)
1069{
1070 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
1071
1072 s->iq_tail = VTD_IQT_QT(val);
1073 VTD_DPRINTF(INV, "set iq tail %"PRIu16, s->iq_tail);
1074 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1075 /* Process Invalidation Queue here */
1076 vtd_fetch_inv_desc(s);
1077 }
1078}
1079
1da12ec4
LT
1080static void vtd_handle_fsts_write(IntelIOMMUState *s)
1081{
1082 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
1083 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1084 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
1085
1086 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
1087 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1088 VTD_DPRINTF(FLOG, "all pending interrupt conditions serviced, clear "
1089 "IP field of FECTL_REG");
1090 }
ed7b8fbc
LT
1091 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
1092 * Descriptors if there are any when Queued Invalidation is enabled?
1093 */
1da12ec4
LT
1094}
1095
1096static void vtd_handle_fectl_write(IntelIOMMUState *s)
1097{
1098 uint32_t fectl_reg;
1099 /* FIXME: when software clears the IM field, check the IP field. But do we
1100 * need to compare the old value and the new value to conclude that
1101 * software clears the IM field? Or just check if the IM field is zero?
1102 */
1103 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1104 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
1105 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
1106 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1107 VTD_DPRINTF(FLOG, "IM field is cleared, generate "
1108 "fault event interrupt");
1109 }
1110}
1111
ed7b8fbc
LT
1112static void vtd_handle_ics_write(IntelIOMMUState *s)
1113{
1114 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
1115 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1116
1117 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
1118 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1119 VTD_DPRINTF(INV, "pending completion interrupt condition serviced, "
1120 "clear IP field of IECTL_REG");
1121 }
1122}
1123
1124static void vtd_handle_iectl_write(IntelIOMMUState *s)
1125{
1126 uint32_t iectl_reg;
1127 /* FIXME: when software clears the IM field, check the IP field. But do we
1128 * need to compare the old value and the new value to conclude that
1129 * software clears the IM field? Or just check if the IM field is zero?
1130 */
1131 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1132 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
1133 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
1134 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1135 VTD_DPRINTF(INV, "IM field is cleared, generate "
1136 "invalidation event interrupt");
1137 }
1138}
1139
1da12ec4
LT
1140static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
1141{
1142 IntelIOMMUState *s = opaque;
1143 uint64_t val;
1144
1145 if (addr + size > DMAR_REG_SIZE) {
1146 VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1147 ", got 0x%"PRIx64 " %d",
1148 (uint64_t)DMAR_REG_SIZE, addr, size);
1149 return (uint64_t)-1;
1150 }
1151
1152 switch (addr) {
1153 /* Root Table Address Register, 64-bit */
1154 case DMAR_RTADDR_REG:
1155 if (size == 4) {
1156 val = s->root & ((1ULL << 32) - 1);
1157 } else {
1158 val = s->root;
1159 }
1160 break;
1161
1162 case DMAR_RTADDR_REG_HI:
1163 assert(size == 4);
1164 val = s->root >> 32;
1165 break;
1166
ed7b8fbc
LT
1167 /* Invalidation Queue Address Register, 64-bit */
1168 case DMAR_IQA_REG:
1169 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
1170 if (size == 4) {
1171 val = val & ((1ULL << 32) - 1);
1172 }
1173 break;
1174
1175 case DMAR_IQA_REG_HI:
1176 assert(size == 4);
1177 val = s->iq >> 32;
1178 break;
1179
1da12ec4
LT
1180 default:
1181 if (size == 4) {
1182 val = vtd_get_long(s, addr);
1183 } else {
1184 val = vtd_get_quad(s, addr);
1185 }
1186 }
1187 VTD_DPRINTF(CSR, "addr 0x%"PRIx64 " size %d val 0x%"PRIx64,
1188 addr, size, val);
1189 return val;
1190}
1191
1192static void vtd_mem_write(void *opaque, hwaddr addr,
1193 uint64_t val, unsigned size)
1194{
1195 IntelIOMMUState *s = opaque;
1196
1197 if (addr + size > DMAR_REG_SIZE) {
1198 VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1199 ", got 0x%"PRIx64 " %d",
1200 (uint64_t)DMAR_REG_SIZE, addr, size);
1201 return;
1202 }
1203
1204 switch (addr) {
1205 /* Global Command Register, 32-bit */
1206 case DMAR_GCMD_REG:
1207 VTD_DPRINTF(CSR, "DMAR_GCMD_REG write addr 0x%"PRIx64
1208 ", size %d, val 0x%"PRIx64, addr, size, val);
1209 vtd_set_long(s, addr, val);
1210 vtd_handle_gcmd_write(s);
1211 break;
1212
1213 /* Context Command Register, 64-bit */
1214 case DMAR_CCMD_REG:
1215 VTD_DPRINTF(CSR, "DMAR_CCMD_REG write addr 0x%"PRIx64
1216 ", size %d, val 0x%"PRIx64, addr, size, val);
1217 if (size == 4) {
1218 vtd_set_long(s, addr, val);
1219 } else {
1220 vtd_set_quad(s, addr, val);
1221 vtd_handle_ccmd_write(s);
1222 }
1223 break;
1224
1225 case DMAR_CCMD_REG_HI:
1226 VTD_DPRINTF(CSR, "DMAR_CCMD_REG_HI write addr 0x%"PRIx64
1227 ", size %d, val 0x%"PRIx64, addr, size, val);
1228 assert(size == 4);
1229 vtd_set_long(s, addr, val);
1230 vtd_handle_ccmd_write(s);
1231 break;
1232
1233 /* IOTLB Invalidation Register, 64-bit */
1234 case DMAR_IOTLB_REG:
1235 VTD_DPRINTF(INV, "DMAR_IOTLB_REG write addr 0x%"PRIx64
1236 ", size %d, val 0x%"PRIx64, addr, size, val);
1237 if (size == 4) {
1238 vtd_set_long(s, addr, val);
1239 } else {
1240 vtd_set_quad(s, addr, val);
1241 vtd_handle_iotlb_write(s);
1242 }
1243 break;
1244
1245 case DMAR_IOTLB_REG_HI:
1246 VTD_DPRINTF(INV, "DMAR_IOTLB_REG_HI write addr 0x%"PRIx64
1247 ", size %d, val 0x%"PRIx64, addr, size, val);
1248 assert(size == 4);
1249 vtd_set_long(s, addr, val);
1250 vtd_handle_iotlb_write(s);
1251 break;
1252
1253 /* Fault Status Register, 32-bit */
1254 case DMAR_FSTS_REG:
1255 VTD_DPRINTF(FLOG, "DMAR_FSTS_REG write addr 0x%"PRIx64
1256 ", size %d, val 0x%"PRIx64, addr, size, val);
1257 assert(size == 4);
1258 vtd_set_long(s, addr, val);
1259 vtd_handle_fsts_write(s);
1260 break;
1261
1262 /* Fault Event Control Register, 32-bit */
1263 case DMAR_FECTL_REG:
1264 VTD_DPRINTF(FLOG, "DMAR_FECTL_REG write addr 0x%"PRIx64
1265 ", size %d, val 0x%"PRIx64, addr, size, val);
1266 assert(size == 4);
1267 vtd_set_long(s, addr, val);
1268 vtd_handle_fectl_write(s);
1269 break;
1270
1271 /* Fault Event Data Register, 32-bit */
1272 case DMAR_FEDATA_REG:
1273 VTD_DPRINTF(FLOG, "DMAR_FEDATA_REG write addr 0x%"PRIx64
1274 ", size %d, val 0x%"PRIx64, addr, size, val);
1275 assert(size == 4);
1276 vtd_set_long(s, addr, val);
1277 break;
1278
1279 /* Fault Event Address Register, 32-bit */
1280 case DMAR_FEADDR_REG:
1281 VTD_DPRINTF(FLOG, "DMAR_FEADDR_REG write addr 0x%"PRIx64
1282 ", size %d, val 0x%"PRIx64, addr, size, val);
1283 assert(size == 4);
1284 vtd_set_long(s, addr, val);
1285 break;
1286
1287 /* Fault Event Upper Address Register, 32-bit */
1288 case DMAR_FEUADDR_REG:
1289 VTD_DPRINTF(FLOG, "DMAR_FEUADDR_REG write addr 0x%"PRIx64
1290 ", size %d, val 0x%"PRIx64, addr, size, val);
1291 assert(size == 4);
1292 vtd_set_long(s, addr, val);
1293 break;
1294
1295 /* Protected Memory Enable Register, 32-bit */
1296 case DMAR_PMEN_REG:
1297 VTD_DPRINTF(CSR, "DMAR_PMEN_REG write addr 0x%"PRIx64
1298 ", size %d, val 0x%"PRIx64, addr, size, val);
1299 assert(size == 4);
1300 vtd_set_long(s, addr, val);
1301 break;
1302
1303 /* Root Table Address Register, 64-bit */
1304 case DMAR_RTADDR_REG:
1305 VTD_DPRINTF(CSR, "DMAR_RTADDR_REG write addr 0x%"PRIx64
1306 ", size %d, val 0x%"PRIx64, addr, size, val);
1307 if (size == 4) {
1308 vtd_set_long(s, addr, val);
1309 } else {
1310 vtd_set_quad(s, addr, val);
1311 }
1312 break;
1313
1314 case DMAR_RTADDR_REG_HI:
1315 VTD_DPRINTF(CSR, "DMAR_RTADDR_REG_HI write addr 0x%"PRIx64
1316 ", size %d, val 0x%"PRIx64, addr, size, val);
1317 assert(size == 4);
1318 vtd_set_long(s, addr, val);
1319 break;
1320
ed7b8fbc
LT
1321 /* Invalidation Queue Tail Register, 64-bit */
1322 case DMAR_IQT_REG:
1323 VTD_DPRINTF(INV, "DMAR_IQT_REG write addr 0x%"PRIx64
1324 ", size %d, val 0x%"PRIx64, addr, size, val);
1325 if (size == 4) {
1326 vtd_set_long(s, addr, val);
1327 } else {
1328 vtd_set_quad(s, addr, val);
1329 }
1330 vtd_handle_iqt_write(s);
1331 break;
1332
1333 case DMAR_IQT_REG_HI:
1334 VTD_DPRINTF(INV, "DMAR_IQT_REG_HI write addr 0x%"PRIx64
1335 ", size %d, val 0x%"PRIx64, addr, size, val);
1336 assert(size == 4);
1337 vtd_set_long(s, addr, val);
1338 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
1339 break;
1340
1341 /* Invalidation Queue Address Register, 64-bit */
1342 case DMAR_IQA_REG:
1343 VTD_DPRINTF(INV, "DMAR_IQA_REG write addr 0x%"PRIx64
1344 ", size %d, val 0x%"PRIx64, addr, size, val);
1345 if (size == 4) {
1346 vtd_set_long(s, addr, val);
1347 } else {
1348 vtd_set_quad(s, addr, val);
1349 }
1350 break;
1351
1352 case DMAR_IQA_REG_HI:
1353 VTD_DPRINTF(INV, "DMAR_IQA_REG_HI write addr 0x%"PRIx64
1354 ", size %d, val 0x%"PRIx64, addr, size, val);
1355 assert(size == 4);
1356 vtd_set_long(s, addr, val);
1357 break;
1358
1359 /* Invalidation Completion Status Register, 32-bit */
1360 case DMAR_ICS_REG:
1361 VTD_DPRINTF(INV, "DMAR_ICS_REG write addr 0x%"PRIx64
1362 ", size %d, val 0x%"PRIx64, addr, size, val);
1363 assert(size == 4);
1364 vtd_set_long(s, addr, val);
1365 vtd_handle_ics_write(s);
1366 break;
1367
1368 /* Invalidation Event Control Register, 32-bit */
1369 case DMAR_IECTL_REG:
1370 VTD_DPRINTF(INV, "DMAR_IECTL_REG write addr 0x%"PRIx64
1371 ", size %d, val 0x%"PRIx64, addr, size, val);
1372 assert(size == 4);
1373 vtd_set_long(s, addr, val);
1374 vtd_handle_iectl_write(s);
1375 break;
1376
1377 /* Invalidation Event Data Register, 32-bit */
1378 case DMAR_IEDATA_REG:
1379 VTD_DPRINTF(INV, "DMAR_IEDATA_REG write addr 0x%"PRIx64
1380 ", size %d, val 0x%"PRIx64, addr, size, val);
1381 assert(size == 4);
1382 vtd_set_long(s, addr, val);
1383 break;
1384
1385 /* Invalidation Event Address Register, 32-bit */
1386 case DMAR_IEADDR_REG:
1387 VTD_DPRINTF(INV, "DMAR_IEADDR_REG write addr 0x%"PRIx64
1388 ", size %d, val 0x%"PRIx64, addr, size, val);
1389 assert(size == 4);
1390 vtd_set_long(s, addr, val);
1391 break;
1392
1393 /* Invalidation Event Upper Address Register, 32-bit */
1394 case DMAR_IEUADDR_REG:
1395 VTD_DPRINTF(INV, "DMAR_IEUADDR_REG write addr 0x%"PRIx64
1396 ", size %d, val 0x%"PRIx64, addr, size, val);
1397 assert(size == 4);
1398 vtd_set_long(s, addr, val);
1399 break;
1400
1da12ec4
LT
1401 /* Fault Recording Registers, 128-bit */
1402 case DMAR_FRCD_REG_0_0:
1403 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_0 write addr 0x%"PRIx64
1404 ", size %d, val 0x%"PRIx64, addr, size, val);
1405 if (size == 4) {
1406 vtd_set_long(s, addr, val);
1407 } else {
1408 vtd_set_quad(s, addr, val);
1409 }
1410 break;
1411
1412 case DMAR_FRCD_REG_0_1:
1413 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_1 write addr 0x%"PRIx64
1414 ", size %d, val 0x%"PRIx64, addr, size, val);
1415 assert(size == 4);
1416 vtd_set_long(s, addr, val);
1417 break;
1418
1419 case DMAR_FRCD_REG_0_2:
1420 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_2 write addr 0x%"PRIx64
1421 ", size %d, val 0x%"PRIx64, addr, size, val);
1422 if (size == 4) {
1423 vtd_set_long(s, addr, val);
1424 } else {
1425 vtd_set_quad(s, addr, val);
1426 /* May clear bit 127 (Fault), update PPF */
1427 vtd_update_fsts_ppf(s);
1428 }
1429 break;
1430
1431 case DMAR_FRCD_REG_0_3:
1432 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_3 write addr 0x%"PRIx64
1433 ", size %d, val 0x%"PRIx64, addr, size, val);
1434 assert(size == 4);
1435 vtd_set_long(s, addr, val);
1436 /* May clear bit 127 (Fault), update PPF */
1437 vtd_update_fsts_ppf(s);
1438 break;
1439
1440 default:
1441 VTD_DPRINTF(GENERAL, "error: unhandled reg write addr 0x%"PRIx64
1442 ", size %d, val 0x%"PRIx64, addr, size, val);
1443 if (size == 4) {
1444 vtd_set_long(s, addr, val);
1445 } else {
1446 vtd_set_quad(s, addr, val);
1447 }
1448 }
1449}
1450
1451static IOMMUTLBEntry vtd_iommu_translate(MemoryRegion *iommu, hwaddr addr,
1452 bool is_write)
1453{
1454 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
1455 IntelIOMMUState *s = vtd_as->iommu_state;
1456 uint8_t bus_num = vtd_as->bus_num;
1457 uint8_t devfn = vtd_as->devfn;
1458 IOMMUTLBEntry ret = {
1459 .target_as = &address_space_memory,
1460 .iova = addr,
1461 .translated_addr = 0,
1462 .addr_mask = ~(hwaddr)0,
1463 .perm = IOMMU_NONE,
1464 };
1465
1466 if (!s->dmar_enabled) {
1467 /* DMAR disabled, passthrough, use 4k-page*/
1468 ret.iova = addr & VTD_PAGE_MASK_4K;
1469 ret.translated_addr = addr & VTD_PAGE_MASK_4K;
1470 ret.addr_mask = ~VTD_PAGE_MASK_4K;
1471 ret.perm = IOMMU_RW;
1472 return ret;
1473 }
1474
1475 vtd_do_iommu_translate(s, bus_num, devfn, addr, is_write, &ret);
1476
1477 VTD_DPRINTF(MMU,
1478 "bus %"PRIu8 " slot %"PRIu8 " func %"PRIu8 " devfn %"PRIu8
1479 " gpa 0x%"PRIx64 " hpa 0x%"PRIx64, bus_num,
1480 VTD_PCI_SLOT(devfn), VTD_PCI_FUNC(devfn), devfn, addr,
1481 ret.translated_addr);
1482 return ret;
1483}
1484
1485static const VMStateDescription vtd_vmstate = {
1486 .name = "iommu-intel",
1487 .unmigratable = 1,
1488};
1489
1490static const MemoryRegionOps vtd_mem_ops = {
1491 .read = vtd_mem_read,
1492 .write = vtd_mem_write,
1493 .endianness = DEVICE_LITTLE_ENDIAN,
1494 .impl = {
1495 .min_access_size = 4,
1496 .max_access_size = 8,
1497 },
1498 .valid = {
1499 .min_access_size = 4,
1500 .max_access_size = 8,
1501 },
1502};
1503
1504static Property vtd_properties[] = {
1505 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
1506 DEFINE_PROP_END_OF_LIST(),
1507};
1508
1509/* Do the initialization. It will also be called when reset, so pay
1510 * attention when adding new initialization stuff.
1511 */
1512static void vtd_init(IntelIOMMUState *s)
1513{
1514 memset(s->csr, 0, DMAR_REG_SIZE);
1515 memset(s->wmask, 0, DMAR_REG_SIZE);
1516 memset(s->w1cmask, 0, DMAR_REG_SIZE);
1517 memset(s->womask, 0, DMAR_REG_SIZE);
1518
1519 s->iommu_ops.translate = vtd_iommu_translate;
1520 s->root = 0;
1521 s->root_extended = false;
1522 s->dmar_enabled = false;
1523 s->iq_head = 0;
1524 s->iq_tail = 0;
1525 s->iq = 0;
1526 s->iq_size = 0;
1527 s->qi_enabled = false;
1528 s->iq_last_desc_type = VTD_INV_DESC_NONE;
1529 s->next_frcd_reg = 0;
1530 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | VTD_CAP_MGAW |
1531 VTD_CAP_SAGAW;
ed7b8fbc 1532 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
1da12ec4
LT
1533
1534 /* Define registers with default values and bit semantics */
1535 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
1536 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
1537 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
1538 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
1539 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
1540 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
1541 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
1542 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
1543 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
1544
1545 /* Advanced Fault Logging not supported */
1546 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
1547 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
1548 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
1549 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
1550
1551 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
1552 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
1553 */
1554 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
1555
1556 /* Treated as RO for implementations that PLMR and PHMR fields reported
1557 * as Clear in the CAP_REG.
1558 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
1559 */
1560 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
1561
ed7b8fbc
LT
1562 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
1563 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
1564 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
1565 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
1566 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
1567 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
1568 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
1569 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
1570 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
1571
1da12ec4
LT
1572 /* IOTLB registers */
1573 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
1574 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
1575 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
1576
1577 /* Fault Recording Registers, 128-bit */
1578 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
1579 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
1580}
1581
1582/* Should not reset address_spaces when reset because devices will still use
1583 * the address space they got at first (won't ask the bus again).
1584 */
1585static void vtd_reset(DeviceState *dev)
1586{
1587 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
1588
1589 VTD_DPRINTF(GENERAL, "");
1590 vtd_init(s);
1591}
1592
1593static void vtd_realize(DeviceState *dev, Error **errp)
1594{
1595 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
1596
1597 VTD_DPRINTF(GENERAL, "");
1598 memset(s->address_spaces, 0, sizeof(s->address_spaces));
1599 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
1600 "intel_iommu", DMAR_REG_SIZE);
1601 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
1602 vtd_init(s);
1603}
1604
1605static void vtd_class_init(ObjectClass *klass, void *data)
1606{
1607 DeviceClass *dc = DEVICE_CLASS(klass);
1608
1609 dc->reset = vtd_reset;
1610 dc->realize = vtd_realize;
1611 dc->vmsd = &vtd_vmstate;
1612 dc->props = vtd_properties;
1613}
1614
1615static const TypeInfo vtd_info = {
1616 .name = TYPE_INTEL_IOMMU_DEVICE,
1617 .parent = TYPE_SYS_BUS_DEVICE,
1618 .instance_size = sizeof(IntelIOMMUState),
1619 .class_init = vtd_class_init,
1620};
1621
1622static void vtd_register_types(void)
1623{
1624 VTD_DPRINTF(GENERAL, "");
1625 type_register_static(&vtd_info);
1626}
1627
1628type_init(vtd_register_types)