]> git.proxmox.com Git - mirror_qemu.git/blame - hw/intc/arm_gicv3_kvm.c
arm_gicv3_kvm: kvm_dist_get/put: skip the registers banked by GICR
[mirror_qemu.git] / hw / intc / arm_gicv3_kvm.c
CommitLineData
a7bf3034
PF
1/*
2 * ARM Generic Interrupt Controller using KVM in-kernel support
3 *
4 * Copyright (c) 2015 Samsung Electronics Co., Ltd.
5 * Written by Pavel Fedin
6 * Based on vGICv2 code by Peter Maydell
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
8ef94f0b 22#include "qemu/osdep.h"
da34e65c 23#include "qapi/error.h"
a7bf3034
PF
24#include "hw/intc/arm_gicv3_common.h"
25#include "hw/sysbus.h"
367b9f52 26#include "qemu/error-report.h"
a7bf3034 27#include "sysemu/kvm.h"
d5aa0c22 28#include "sysemu/sysemu.h"
a7bf3034 29#include "kvm_arm.h"
367b9f52 30#include "gicv3_internal.h"
a7bf3034 31#include "vgic_common.h"
795c40b8 32#include "migration/blocker.h"
a7bf3034
PF
33
34#ifdef DEBUG_GICV3_KVM
35#define DPRINTF(fmt, ...) \
36 do { fprintf(stderr, "kvm_gicv3: " fmt, ## __VA_ARGS__); } while (0)
37#else
38#define DPRINTF(fmt, ...) \
39 do { } while (0)
40#endif
41
42#define TYPE_KVM_ARM_GICV3 "kvm-arm-gicv3"
43#define KVM_ARM_GICV3(obj) \
44 OBJECT_CHECK(GICv3State, (obj), TYPE_KVM_ARM_GICV3)
45#define KVM_ARM_GICV3_CLASS(klass) \
46 OBJECT_CLASS_CHECK(KVMARMGICv3Class, (klass), TYPE_KVM_ARM_GICV3)
47#define KVM_ARM_GICV3_GET_CLASS(obj) \
48 OBJECT_GET_CLASS(KVMARMGICv3Class, (obj), TYPE_KVM_ARM_GICV3)
49
367b9f52
VK
50#define KVM_DEV_ARM_VGIC_SYSREG(op0, op1, crn, crm, op2) \
51 (ARM64_SYS_REG_SHIFT_MASK(op0, OP0) | \
52 ARM64_SYS_REG_SHIFT_MASK(op1, OP1) | \
53 ARM64_SYS_REG_SHIFT_MASK(crn, CRN) | \
54 ARM64_SYS_REG_SHIFT_MASK(crm, CRM) | \
55 ARM64_SYS_REG_SHIFT_MASK(op2, OP2))
56
57#define ICC_PMR_EL1 \
58 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 4, 6, 0)
59#define ICC_BPR0_EL1 \
60 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 3)
61#define ICC_AP0R_EL1(n) \
62 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 4 | n)
63#define ICC_AP1R_EL1(n) \
64 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 9, n)
65#define ICC_BPR1_EL1 \
66 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 3)
67#define ICC_CTLR_EL1 \
68 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 4)
69#define ICC_SRE_EL1 \
70 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 5)
71#define ICC_IGRPEN0_EL1 \
72 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 6)
73#define ICC_IGRPEN1_EL1 \
74 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 7)
75
a7bf3034
PF
76typedef struct KVMARMGICv3Class {
77 ARMGICv3CommonClass parent_class;
78 DeviceRealize parent_realize;
79 void (*parent_reset)(DeviceState *dev);
80} KVMARMGICv3Class;
81
82static void kvm_arm_gicv3_set_irq(void *opaque, int irq, int level)
83{
84 GICv3State *s = (GICv3State *)opaque;
85
86 kvm_arm_gic_set_irq(s->num_irq, irq, level);
87}
88
367b9f52
VK
89#define KVM_VGIC_ATTR(reg, typer) \
90 ((typer & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) | (reg))
91
92static inline void kvm_gicd_access(GICv3State *s, int offset,
93 uint32_t *val, bool write)
94{
95 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
96 KVM_VGIC_ATTR(offset, 0),
556969e9 97 val, write, &error_abort);
367b9f52
VK
98}
99
100static inline void kvm_gicr_access(GICv3State *s, int offset, int cpu,
101 uint32_t *val, bool write)
102{
103 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS,
104 KVM_VGIC_ATTR(offset, s->cpu[cpu].gicr_typer),
556969e9 105 val, write, &error_abort);
367b9f52
VK
106}
107
108static inline void kvm_gicc_access(GICv3State *s, uint64_t reg, int cpu,
109 uint64_t *val, bool write)
110{
111 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
112 KVM_VGIC_ATTR(reg, s->cpu[cpu].gicr_typer),
556969e9 113 val, write, &error_abort);
367b9f52
VK
114}
115
116static inline void kvm_gic_line_level_access(GICv3State *s, int irq, int cpu,
117 uint32_t *val, bool write)
118{
119 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO,
120 KVM_VGIC_ATTR(irq, s->cpu[cpu].gicr_typer) |
121 (VGIC_LEVEL_INFO_LINE_LEVEL <<
122 KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT),
556969e9 123 val, write, &error_abort);
367b9f52
VK
124}
125
126/* Loop through each distributor IRQ related register; since bits
127 * corresponding to SPIs and PPIs are RAZ/WI when affinity routing
128 * is enabled, we skip those.
129 */
130#define for_each_dist_irq_reg(_irq, _max, _field_width) \
131 for (_irq = GIC_INTERNAL; _irq < _max; _irq += (32 / _field_width))
132
133static void kvm_dist_get_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
134{
135 uint32_t reg, *field;
136 int irq;
137
138 field = (uint32_t *)bmp;
139 for_each_dist_irq_reg(irq, s->num_irq, 8) {
140 kvm_gicd_access(s, offset, &reg, false);
141 *field = reg;
142 offset += 4;
143 field++;
144 }
145}
146
147static void kvm_dist_put_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
148{
149 uint32_t reg, *field;
150 int irq;
151
152 field = (uint32_t *)bmp;
153 for_each_dist_irq_reg(irq, s->num_irq, 8) {
154 reg = *field;
155 kvm_gicd_access(s, offset, &reg, true);
156 offset += 4;
157 field++;
158 }
159}
160
161static void kvm_dist_get_edge_trigger(GICv3State *s, uint32_t offset,
162 uint32_t *bmp)
163{
164 uint32_t reg;
165 int irq;
166
5d639531
SZ
167 /* For the KVM GICv3, affinity routing is always enabled, and the first 2
168 * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
169 * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
170 * them. So it should increase the offset to skip GIC_INTERNAL irqs.
171 * This matches the for_each_dist_irq_reg() macro which also skips the
172 * first GIC_INTERNAL irqs.
173 */
174 offset += (GIC_INTERNAL * 2) / 8;
367b9f52
VK
175 for_each_dist_irq_reg(irq, s->num_irq, 2) {
176 kvm_gicd_access(s, offset, &reg, false);
177 reg = half_unshuffle32(reg >> 1);
178 if (irq % 32 != 0) {
179 reg = (reg << 16);
180 }
181 *gic_bmp_ptr32(bmp, irq) |= reg;
182 offset += 4;
183 }
184}
185
186static void kvm_dist_put_edge_trigger(GICv3State *s, uint32_t offset,
187 uint32_t *bmp)
188{
189 uint32_t reg;
190 int irq;
191
5d639531
SZ
192 /* For the KVM GICv3, affinity routing is always enabled, and the first 2
193 * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
194 * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
195 * them. So it should increase the offset to skip GIC_INTERNAL irqs.
196 * This matches the for_each_dist_irq_reg() macro which also skips the
197 * first GIC_INTERNAL irqs.
198 */
199 offset += (GIC_INTERNAL * 2) / 8;
367b9f52
VK
200 for_each_dist_irq_reg(irq, s->num_irq, 2) {
201 reg = *gic_bmp_ptr32(bmp, irq);
202 if (irq % 32 != 0) {
203 reg = (reg & 0xffff0000) >> 16;
204 } else {
205 reg = reg & 0xffff;
206 }
207 reg = half_shuffle32(reg) << 1;
208 kvm_gicd_access(s, offset, &reg, true);
209 offset += 4;
210 }
211}
212
213static void kvm_gic_get_line_level_bmp(GICv3State *s, uint32_t *bmp)
214{
215 uint32_t reg;
216 int irq;
217
218 for_each_dist_irq_reg(irq, s->num_irq, 1) {
219 kvm_gic_line_level_access(s, irq, 0, &reg, false);
220 *gic_bmp_ptr32(bmp, irq) = reg;
221 }
222}
223
224static void kvm_gic_put_line_level_bmp(GICv3State *s, uint32_t *bmp)
225{
226 uint32_t reg;
227 int irq;
228
229 for_each_dist_irq_reg(irq, s->num_irq, 1) {
230 reg = *gic_bmp_ptr32(bmp, irq);
231 kvm_gic_line_level_access(s, irq, 0, &reg, true);
232 }
233}
234
235/* Read a bitmap register group from the kernel VGIC. */
236static void kvm_dist_getbmp(GICv3State *s, uint32_t offset, uint32_t *bmp)
237{
238 uint32_t reg;
239 int irq;
240
5d639531
SZ
241 /* For the KVM GICv3, affinity routing is always enabled, and the
242 * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
243 * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
244 * functionality is replaced by the GICR registers. It doesn't need to sync
245 * them. So it should increase the offset to skip GIC_INTERNAL irqs.
246 * This matches the for_each_dist_irq_reg() macro which also skips the
247 * first GIC_INTERNAL irqs.
248 */
249 offset += (GIC_INTERNAL * 1) / 8;
367b9f52
VK
250 for_each_dist_irq_reg(irq, s->num_irq, 1) {
251 kvm_gicd_access(s, offset, &reg, false);
252 *gic_bmp_ptr32(bmp, irq) = reg;
253 offset += 4;
254 }
255}
256
257static void kvm_dist_putbmp(GICv3State *s, uint32_t offset,
258 uint32_t clroffset, uint32_t *bmp)
259{
260 uint32_t reg;
261 int irq;
262
5d639531
SZ
263 /* For the KVM GICv3, affinity routing is always enabled, and the
264 * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
265 * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
266 * functionality is replaced by the GICR registers. It doesn't need to sync
267 * them. So it should increase the offset and clroffset to skip GIC_INTERNAL
268 * irqs. This matches the for_each_dist_irq_reg() macro which also skips the
269 * first GIC_INTERNAL irqs.
270 */
271 offset += (GIC_INTERNAL * 1) / 8;
272 if (clroffset != 0) {
273 clroffset += (GIC_INTERNAL * 1) / 8;
274 }
275
367b9f52
VK
276 for_each_dist_irq_reg(irq, s->num_irq, 1) {
277 /* If this bitmap is a set/clear register pair, first write to the
278 * clear-reg to clear all bits before using the set-reg to write
279 * the 1 bits.
280 */
281 if (clroffset != 0) {
282 reg = 0;
283 kvm_gicd_access(s, clroffset, &reg, true);
e55c6b67 284 clroffset += 4;
367b9f52
VK
285 }
286 reg = *gic_bmp_ptr32(bmp, irq);
287 kvm_gicd_access(s, offset, &reg, true);
288 offset += 4;
289 }
290}
291
292static void kvm_arm_gicv3_check(GICv3State *s)
293{
294 uint32_t reg;
295 uint32_t num_irq;
296
297 /* Sanity checking s->num_irq */
298 kvm_gicd_access(s, GICD_TYPER, &reg, false);
299 num_irq = ((reg & 0x1f) + 1) * 32;
300
301 if (num_irq < s->num_irq) {
302 error_report("Model requests %u IRQs, but kernel supports max %u",
303 s->num_irq, num_irq);
304 abort();
305 }
306}
307
a7bf3034
PF
308static void kvm_arm_gicv3_put(GICv3State *s)
309{
367b9f52
VK
310 uint32_t regl, regh, reg;
311 uint64_t reg64, redist_typer;
312 int ncpu, i;
313
314 kvm_arm_gicv3_check(s);
315
316 kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
317 kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
318 redist_typer = ((uint64_t)regh << 32) | regl;
319
320 reg = s->gicd_ctlr;
321 kvm_gicd_access(s, GICD_CTLR, &reg, true);
322
323 if (redist_typer & GICR_TYPER_PLPIS) {
324 /* Set base addresses before LPIs are enabled by GICR_CTLR write */
325 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
326 GICv3CPUState *c = &s->cpu[ncpu];
327
328 reg64 = c->gicr_propbaser;
329 regl = (uint32_t)reg64;
330 kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, true);
331 regh = (uint32_t)(reg64 >> 32);
332 kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, true);
333
334 reg64 = c->gicr_pendbaser;
7229ec58 335 if (!(c->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
367b9f52
VK
336 /* Setting PTZ is advised if LPIs are disabled, to reduce
337 * GIC initialization time.
338 */
339 reg64 |= GICR_PENDBASER_PTZ;
340 }
341 regl = (uint32_t)reg64;
342 kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, true);
343 regh = (uint32_t)(reg64 >> 32);
344 kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, true);
345 }
346 }
347
348 /* Redistributor state (one per CPU) */
349
350 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
351 GICv3CPUState *c = &s->cpu[ncpu];
352
353 reg = c->gicr_ctlr;
354 kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, true);
355
356 reg = c->gicr_statusr[GICV3_NS];
357 kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, true);
358
359 reg = c->gicr_waker;
360 kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, true);
361
362 reg = c->gicr_igroupr0;
363 kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, true);
364
365 reg = ~0;
366 kvm_gicr_access(s, GICR_ICENABLER0, ncpu, &reg, true);
367 reg = c->gicr_ienabler0;
368 kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, true);
369
370 /* Restore config before pending so we treat level/edge correctly */
371 reg = half_shuffle32(c->edge_trigger >> 16) << 1;
372 kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, true);
373
374 reg = c->level;
375 kvm_gic_line_level_access(s, 0, ncpu, &reg, true);
376
377 reg = ~0;
378 kvm_gicr_access(s, GICR_ICPENDR0, ncpu, &reg, true);
379 reg = c->gicr_ipendr0;
380 kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, true);
381
382 reg = ~0;
383 kvm_gicr_access(s, GICR_ICACTIVER0, ncpu, &reg, true);
384 reg = c->gicr_iactiver0;
385 kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, true);
386
387 for (i = 0; i < GIC_INTERNAL; i += 4) {
388 reg = c->gicr_ipriorityr[i] |
389 (c->gicr_ipriorityr[i + 1] << 8) |
390 (c->gicr_ipriorityr[i + 2] << 16) |
391 (c->gicr_ipriorityr[i + 3] << 24);
392 kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, true);
393 }
394 }
395
396 /* Distributor state (shared between all CPUs */
397 reg = s->gicd_statusr[GICV3_NS];
398 kvm_gicd_access(s, GICD_STATUSR, &reg, true);
399
400 /* s->enable bitmap -> GICD_ISENABLERn */
401 kvm_dist_putbmp(s, GICD_ISENABLER, GICD_ICENABLER, s->enabled);
402
403 /* s->group bitmap -> GICD_IGROUPRn */
404 kvm_dist_putbmp(s, GICD_IGROUPR, 0, s->group);
405
406 /* Restore targets before pending to ensure the pending state is set on
407 * the appropriate CPU interfaces in the kernel
408 */
409
410 /* s->gicd_irouter[irq] -> GICD_IROUTERn
411 * We can't use kvm_dist_put() here because the registers are 64-bit
412 */
413 for (i = GIC_INTERNAL; i < s->num_irq; i++) {
414 uint32_t offset;
415
416 offset = GICD_IROUTER + (sizeof(uint32_t) * i);
417 reg = (uint32_t)s->gicd_irouter[i];
418 kvm_gicd_access(s, offset, &reg, true);
419
420 offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
421 reg = (uint32_t)(s->gicd_irouter[i] >> 32);
422 kvm_gicd_access(s, offset, &reg, true);
423 }
424
425 /* s->trigger bitmap -> GICD_ICFGRn
426 * (restore configuration registers before pending IRQs so we treat
427 * level/edge correctly)
428 */
429 kvm_dist_put_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
430
431 /* s->level bitmap -> line_level */
432 kvm_gic_put_line_level_bmp(s, s->level);
433
434 /* s->pending bitmap -> GICD_ISPENDRn */
435 kvm_dist_putbmp(s, GICD_ISPENDR, GICD_ICPENDR, s->pending);
436
437 /* s->active bitmap -> GICD_ISACTIVERn */
438 kvm_dist_putbmp(s, GICD_ISACTIVER, GICD_ICACTIVER, s->active);
439
440 /* s->gicd_ipriority[] -> GICD_IPRIORITYRn */
441 kvm_dist_put_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
442
443 /* CPU Interface state (one per CPU) */
444
445 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
446 GICv3CPUState *c = &s->cpu[ncpu];
447 int num_pri_bits;
448
449 kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, true);
450 kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
451 &c->icc_ctlr_el1[GICV3_NS], true);
452 kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
453 &c->icc_igrpen[GICV3_G0], true);
454 kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
455 &c->icc_igrpen[GICV3_G1NS], true);
456 kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, true);
457 kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], true);
458 kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], true);
459
460 num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
461 ICC_CTLR_EL1_PRIBITS_MASK) >>
462 ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
463
464 switch (num_pri_bits) {
465 case 7:
466 reg64 = c->icc_apr[GICV3_G0][3];
467 kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, true);
468 reg64 = c->icc_apr[GICV3_G0][2];
469 kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, true);
470 case 6:
471 reg64 = c->icc_apr[GICV3_G0][1];
472 kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, true);
473 default:
474 reg64 = c->icc_apr[GICV3_G0][0];
475 kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, true);
476 }
477
478 switch (num_pri_bits) {
479 case 7:
480 reg64 = c->icc_apr[GICV3_G1NS][3];
481 kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, true);
482 reg64 = c->icc_apr[GICV3_G1NS][2];
483 kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, true);
484 case 6:
485 reg64 = c->icc_apr[GICV3_G1NS][1];
486 kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, true);
487 default:
488 reg64 = c->icc_apr[GICV3_G1NS][0];
489 kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, true);
490 }
491 }
a7bf3034
PF
492}
493
494static void kvm_arm_gicv3_get(GICv3State *s)
495{
367b9f52
VK
496 uint32_t regl, regh, reg;
497 uint64_t reg64, redist_typer;
498 int ncpu, i;
499
500 kvm_arm_gicv3_check(s);
501
502 kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
503 kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
504 redist_typer = ((uint64_t)regh << 32) | regl;
505
506 kvm_gicd_access(s, GICD_CTLR, &reg, false);
507 s->gicd_ctlr = reg;
508
509 /* Redistributor state (one per CPU) */
510
511 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
512 GICv3CPUState *c = &s->cpu[ncpu];
513
514 kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, false);
515 c->gicr_ctlr = reg;
516
517 kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, false);
518 c->gicr_statusr[GICV3_NS] = reg;
519
520 kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, false);
521 c->gicr_waker = reg;
522
523 kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, false);
524 c->gicr_igroupr0 = reg;
525 kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, false);
526 c->gicr_ienabler0 = reg;
527 kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, false);
528 c->edge_trigger = half_unshuffle32(reg >> 1) << 16;
529 kvm_gic_line_level_access(s, 0, ncpu, &reg, false);
530 c->level = reg;
531 kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, false);
532 c->gicr_ipendr0 = reg;
533 kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, false);
534 c->gicr_iactiver0 = reg;
535
536 for (i = 0; i < GIC_INTERNAL; i += 4) {
537 kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, false);
538 c->gicr_ipriorityr[i] = extract32(reg, 0, 8);
539 c->gicr_ipriorityr[i + 1] = extract32(reg, 8, 8);
540 c->gicr_ipriorityr[i + 2] = extract32(reg, 16, 8);
541 c->gicr_ipriorityr[i + 3] = extract32(reg, 24, 8);
542 }
543 }
544
545 if (redist_typer & GICR_TYPER_PLPIS) {
546 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
547 GICv3CPUState *c = &s->cpu[ncpu];
548
549 kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, false);
550 kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, false);
551 c->gicr_propbaser = ((uint64_t)regh << 32) | regl;
552
553 kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, false);
554 kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, false);
555 c->gicr_pendbaser = ((uint64_t)regh << 32) | regl;
556 }
557 }
558
559 /* Distributor state (shared between all CPUs */
560
561 kvm_gicd_access(s, GICD_STATUSR, &reg, false);
562 s->gicd_statusr[GICV3_NS] = reg;
563
564 /* GICD_IGROUPRn -> s->group bitmap */
565 kvm_dist_getbmp(s, GICD_IGROUPR, s->group);
566
567 /* GICD_ISENABLERn -> s->enabled bitmap */
568 kvm_dist_getbmp(s, GICD_ISENABLER, s->enabled);
569
570 /* Line level of irq */
571 kvm_gic_get_line_level_bmp(s, s->level);
572 /* GICD_ISPENDRn -> s->pending bitmap */
573 kvm_dist_getbmp(s, GICD_ISPENDR, s->pending);
574
575 /* GICD_ISACTIVERn -> s->active bitmap */
576 kvm_dist_getbmp(s, GICD_ISACTIVER, s->active);
577
578 /* GICD_ICFGRn -> s->trigger bitmap */
579 kvm_dist_get_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
580
581 /* GICD_IPRIORITYRn -> s->gicd_ipriority[] */
582 kvm_dist_get_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
583
584 /* GICD_IROUTERn -> s->gicd_irouter[irq] */
585 for (i = GIC_INTERNAL; i < s->num_irq; i++) {
586 uint32_t offset;
587
588 offset = GICD_IROUTER + (sizeof(uint32_t) * i);
589 kvm_gicd_access(s, offset, &regl, false);
590 offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
591 kvm_gicd_access(s, offset, &regh, false);
592 s->gicd_irouter[i] = ((uint64_t)regh << 32) | regl;
593 }
594
595 /*****************************************************************
596 * CPU Interface(s) State
597 */
598
599 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
600 GICv3CPUState *c = &s->cpu[ncpu];
601 int num_pri_bits;
602
603 kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, false);
604 kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
605 &c->icc_ctlr_el1[GICV3_NS], false);
606 kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
607 &c->icc_igrpen[GICV3_G0], false);
608 kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
609 &c->icc_igrpen[GICV3_G1NS], false);
610 kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, false);
611 kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], false);
612 kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], false);
613 num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
614 ICC_CTLR_EL1_PRIBITS_MASK) >>
615 ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
616
617 switch (num_pri_bits) {
618 case 7:
619 kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, false);
620 c->icc_apr[GICV3_G0][3] = reg64;
621 kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, false);
622 c->icc_apr[GICV3_G0][2] = reg64;
623 case 6:
624 kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, false);
625 c->icc_apr[GICV3_G0][1] = reg64;
626 default:
627 kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, false);
628 c->icc_apr[GICV3_G0][0] = reg64;
629 }
630
631 switch (num_pri_bits) {
632 case 7:
633 kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, false);
634 c->icc_apr[GICV3_G1NS][3] = reg64;
635 kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, false);
636 c->icc_apr[GICV3_G1NS][2] = reg64;
637 case 6:
638 kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, false);
639 c->icc_apr[GICV3_G1NS][1] = reg64;
640 default:
641 kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, false);
642 c->icc_apr[GICV3_G1NS][0] = reg64;
643 }
644 }
a7bf3034
PF
645}
646
07a5628c
VK
647static void arm_gicv3_icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
648{
649 ARMCPU *cpu;
650 GICv3State *s;
651 GICv3CPUState *c;
652
653 c = (GICv3CPUState *)env->gicv3state;
654 s = c->gic;
655 cpu = ARM_CPU(c->cpu);
656
07a5628c
VK
657 c->icc_pmr_el1 = 0;
658 c->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
659 c->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
660 c->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR;
661
662 c->icc_sre_el1 = 0x7;
663 memset(c->icc_apr, 0, sizeof(c->icc_apr));
664 memset(c->icc_igrpen, 0, sizeof(c->icc_igrpen));
e7d54416
EA
665
666 if (s->migration_blocker) {
667 return;
668 }
669
670 /* Initialize to actual HW supported configuration */
671 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
672 KVM_VGIC_ATTR(ICC_CTLR_EL1, cpu->mp_affinity),
556969e9 673 &c->icc_ctlr_el1[GICV3_NS], false, &error_abort);
e7d54416
EA
674
675 c->icc_ctlr_el1[GICV3_S] = c->icc_ctlr_el1[GICV3_NS];
07a5628c
VK
676}
677
a7bf3034
PF
678static void kvm_arm_gicv3_reset(DeviceState *dev)
679{
680 GICv3State *s = ARM_GICV3_COMMON(dev);
681 KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
682
683 DPRINTF("Reset\n");
684
685 kgc->parent_reset(dev);
367b9f52
VK
686
687 if (s->migration_blocker) {
688 DPRINTF("Cannot put kernel gic state, no kernel interface\n");
689 return;
690 }
691
a7bf3034
PF
692 kvm_arm_gicv3_put(s);
693}
694
07a5628c
VK
695/*
696 * CPU interface registers of GIC needs to be reset on CPU reset.
697 * For the calling arm_gicv3_icc_reset() on CPU reset, we register
698 * below ARMCPRegInfo. As we reset the whole cpu interface under single
699 * register reset, we define only one register of CPU interface instead
700 * of defining all the registers.
701 */
702static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
703 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
704 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
705 /*
706 * If ARM_CP_NOP is used, resetfn is not called,
707 * So ARM_CP_NO_RAW is appropriate type.
708 */
709 .type = ARM_CP_NO_RAW,
710 .access = PL1_RW,
711 .readfn = arm_cp_read_zero,
712 .writefn = arm_cp_write_ignore,
713 /*
714 * We hang the whole cpu interface reset routine off here
715 * rather than parcelling it out into one little function
716 * per register
717 */
718 .resetfn = arm_gicv3_icc_reset,
719 },
720 REGINFO_SENTINEL
721};
722
d5aa0c22
EA
723/**
724 * vm_change_state_handler - VM change state callback aiming at flushing
725 * RDIST pending tables into guest RAM
726 *
727 * The tables get flushed to guest RAM whenever the VM gets stopped.
728 */
729static void vm_change_state_handler(void *opaque, int running,
730 RunState state)
731{
732 GICv3State *s = (GICv3State *)opaque;
733 Error *err = NULL;
734 int ret;
735
736 if (running) {
737 return;
738 }
739
740 ret = kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
741 KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES,
742 NULL, true, &err);
743 if (err) {
744 error_report_err(err);
745 }
746 if (ret < 0 && ret != -EFAULT) {
747 abort();
748 }
749}
750
751
a7bf3034
PF
752static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp)
753{
754 GICv3State *s = KVM_ARM_GICV3(dev);
755 KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
756 Error *local_err = NULL;
d19a4d4e 757 int i;
a7bf3034
PF
758
759 DPRINTF("kvm_arm_gicv3_realize\n");
760
761 kgc->parent_realize(dev, &local_err);
762 if (local_err) {
763 error_propagate(errp, local_err);
764 return;
765 }
766
767 if (s->security_extn) {
768 error_setg(errp, "the in-kernel VGICv3 does not implement the "
769 "security extensions");
770 return;
771 }
772
773 gicv3_init_irqs_and_mmio(s, kvm_arm_gicv3_set_irq, NULL);
774
07a5628c
VK
775 for (i = 0; i < s->num_cpu; i++) {
776 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
777
778 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
779 }
780
a7bf3034
PF
781 /* Try to create the device via the device control API */
782 s->dev_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V3, false);
783 if (s->dev_fd < 0) {
784 error_setg_errno(errp, -s->dev_fd, "error creating in-kernel VGIC");
785 return;
786 }
787
788 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS,
556969e9 789 0, &s->num_irq, true, &error_abort);
a7bf3034
PF
790
791 /* Tell the kernel to complete VGIC initialization now */
792 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
556969e9 793 KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true, &error_abort);
a7bf3034
PF
794
795 kvm_arm_register_device(&s->iomem_dist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR,
796 KVM_VGIC_V3_ADDR_TYPE_DIST, s->dev_fd);
797 kvm_arm_register_device(&s->iomem_redist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR,
798 KVM_VGIC_V3_ADDR_TYPE_REDIST, s->dev_fd);
757caeed 799
d19a4d4e
EA
800 if (kvm_has_gsi_routing()) {
801 /* set up irq routing */
802 kvm_init_irq_routing(kvm_state);
803 for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) {
804 kvm_irqchip_add_irq_route(kvm_state, i, 0, i);
805 }
806
807 kvm_gsi_routing_allowed = true;
808
809 kvm_irqchip_commit_routes(kvm_state);
810 }
367b9f52
VK
811
812 if (!kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
813 GICD_CTLR)) {
814 error_setg(&s->migration_blocker, "This operating system kernel does "
815 "not support vGICv3 migration");
816 migrate_add_blocker(s->migration_blocker, &local_err);
817 if (local_err) {
818 error_propagate(errp, local_err);
819 error_free(s->migration_blocker);
820 return;
821 }
822 }
d5aa0c22
EA
823 if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
824 KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES)) {
825 qemu_add_vm_change_state_handler(vm_change_state_handler, s);
826 }
a7bf3034
PF
827}
828
829static void kvm_arm_gicv3_class_init(ObjectClass *klass, void *data)
830{
831 DeviceClass *dc = DEVICE_CLASS(klass);
832 ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass);
833 KVMARMGICv3Class *kgc = KVM_ARM_GICV3_CLASS(klass);
834
835 agcc->pre_save = kvm_arm_gicv3_get;
836 agcc->post_load = kvm_arm_gicv3_put;
837 kgc->parent_realize = dc->realize;
838 kgc->parent_reset = dc->reset;
839 dc->realize = kvm_arm_gicv3_realize;
840 dc->reset = kvm_arm_gicv3_reset;
841}
842
843static const TypeInfo kvm_arm_gicv3_info = {
844 .name = TYPE_KVM_ARM_GICV3,
845 .parent = TYPE_ARM_GICV3_COMMON,
846 .instance_size = sizeof(GICv3State),
847 .class_init = kvm_arm_gicv3_class_init,
848 .class_size = sizeof(KVMARMGICv3Class),
849};
850
851static void kvm_arm_gicv3_register_types(void)
852{
853 type_register_static(&kvm_arm_gicv3_info);
854}
855
856type_init(kvm_arm_gicv3_register_types)