]> git.proxmox.com Git - mirror_qemu.git/blame - hw/nand.c
find -type f | xargs sed -i 's/[\t ]$//g' # on most files
[mirror_qemu.git] / hw / nand.c
CommitLineData
3e3d5815
AZ
1/*
2 * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash
3 * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
4 * Samsung Electronic.
5 *
6 * Copyright (c) 2006 Openedhand Ltd.
7 * Written by Andrzej Zaborowski <balrog@zabor.org>
8 *
9 * This code is licensed under the GNU GPL v2.
10 */
11
12#ifndef NAND_IO
13
14# include "vl.h"
15
16# define NAND_CMD_READ0 0x00
17# define NAND_CMD_READ1 0x01
18# define NAND_CMD_READ2 0x50
19# define NAND_CMD_LPREAD2 0x30
20# define NAND_CMD_NOSERIALREAD2 0x35
21# define NAND_CMD_RANDOMREAD1 0x05
22# define NAND_CMD_RANDOMREAD2 0xe0
23# define NAND_CMD_READID 0x90
24# define NAND_CMD_RESET 0xff
25# define NAND_CMD_PAGEPROGRAM1 0x80
26# define NAND_CMD_PAGEPROGRAM2 0x10
27# define NAND_CMD_CACHEPROGRAM2 0x15
28# define NAND_CMD_BLOCKERASE1 0x60
29# define NAND_CMD_BLOCKERASE2 0xd0
30# define NAND_CMD_READSTATUS 0x70
31# define NAND_CMD_COPYBACKPRG1 0x85
32
33# define NAND_IOSTATUS_ERROR (1 << 0)
34# define NAND_IOSTATUS_PLANE0 (1 << 1)
35# define NAND_IOSTATUS_PLANE1 (1 << 2)
36# define NAND_IOSTATUS_PLANE2 (1 << 3)
37# define NAND_IOSTATUS_PLANE3 (1 << 4)
38# define NAND_IOSTATUS_BUSY (1 << 6)
39# define NAND_IOSTATUS_UNPROTCT (1 << 7)
40
41# define MAX_PAGE 0x800
42# define MAX_OOB 0x40
43
44struct nand_flash_s {
45 uint8_t manf_id, chip_id;
46 int size, pages;
47 int page_shift, oob_shift, erase_shift, addr_shift;
48 uint8_t *storage;
49 BlockDriverState *bdrv;
50 int mem_oob;
51
52 int cle, ale, ce, wp, gnd;
53
54 uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
55 uint8_t *ioaddr;
56 int iolen;
57
58 uint32_t cmd, addr;
59 int addrlen;
60 int status;
61 int offset;
62
63 void (*blk_write)(struct nand_flash_s *s);
64 void (*blk_erase)(struct nand_flash_s *s);
65 void (*blk_load)(struct nand_flash_s *s, uint32_t addr, int offset);
66};
67
68# define NAND_NO_AUTOINCR 0x00000001
69# define NAND_BUSWIDTH_16 0x00000002
70# define NAND_NO_PADDING 0x00000004
71# define NAND_CACHEPRG 0x00000008
72# define NAND_COPYBACK 0x00000010
73# define NAND_IS_AND 0x00000020
74# define NAND_4PAGE_ARRAY 0x00000040
75# define NAND_NO_READRDY 0x00000100
76# define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK)
77
78# define NAND_IO
79
80# define PAGE(addr) ((addr) >> ADDR_SHIFT)
81# define PAGE_START(page) (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
82# define PAGE_MASK ((1 << ADDR_SHIFT) - 1)
83# define OOB_SHIFT (PAGE_SHIFT - 5)
84# define OOB_SIZE (1 << OOB_SHIFT)
85# define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
86# define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8))
87
88# define PAGE_SIZE 256
89# define PAGE_SHIFT 8
90# define PAGE_SECTORS 1
91# define ADDR_SHIFT 8
92# include "nand.c"
93# define PAGE_SIZE 512
94# define PAGE_SHIFT 9
95# define PAGE_SECTORS 1
96# define ADDR_SHIFT 8
97# include "nand.c"
98# define PAGE_SIZE 2048
99# define PAGE_SHIFT 11
100# define PAGE_SECTORS 4
101# define ADDR_SHIFT 16
102# include "nand.c"
103
104/* Information based on Linux drivers/mtd/nand/nand_ids.c */
105struct nand_info_s {
106 int size;
107 int width;
108 int page_shift;
109 int erase_shift;
110 uint32_t options;
111} nand_flash_ids[0x100] = {
112 [0 ... 0xff] = { 0 },
113
114 [0x6e] = { 1, 8, 8, 4, 0 },
115 [0x64] = { 2, 8, 8, 4, 0 },
116 [0x6b] = { 4, 8, 9, 4, 0 },
117 [0xe8] = { 1, 8, 8, 4, 0 },
118 [0xec] = { 1, 8, 8, 4, 0 },
119 [0xea] = { 2, 8, 8, 4, 0 },
120 [0xd5] = { 4, 8, 9, 4, 0 },
121 [0xe3] = { 4, 8, 9, 4, 0 },
122 [0xe5] = { 4, 8, 9, 4, 0 },
123 [0xd6] = { 8, 8, 9, 4, 0 },
124
125 [0x39] = { 8, 8, 9, 4, 0 },
126 [0xe6] = { 8, 8, 9, 4, 0 },
127 [0x49] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
128 [0x59] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
129
130 [0x33] = { 16, 8, 9, 5, 0 },
131 [0x73] = { 16, 8, 9, 5, 0 },
132 [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
133 [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
134
135 [0x35] = { 32, 8, 9, 5, 0 },
136 [0x75] = { 32, 8, 9, 5, 0 },
137 [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
138 [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
139
140 [0x36] = { 64, 8, 9, 5, 0 },
141 [0x76] = { 64, 8, 9, 5, 0 },
142 [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
143 [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
144
145 [0x78] = { 128, 8, 9, 5, 0 },
146 [0x39] = { 128, 8, 9, 5, 0 },
147 [0x79] = { 128, 8, 9, 5, 0 },
148 [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
149 [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
150 [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
151 [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
152
153 [0x71] = { 256, 8, 9, 5, 0 },
154
155 /*
156 * These are the new chips with large page size. The pagesize and the
157 * erasesize is determined from the extended id bytes
158 */
159# define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
160# define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
161
162 /* 512 Megabit */
163 [0xa2] = { 64, 8, 0, 0, LP_OPTIONS },
164 [0xf2] = { 64, 8, 0, 0, LP_OPTIONS },
165 [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16 },
166 [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16 },
167
168 /* 1 Gigabit */
169 [0xa1] = { 128, 8, 0, 0, LP_OPTIONS },
170 [0xf1] = { 128, 8, 0, 0, LP_OPTIONS },
171 [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16 },
172 [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16 },
173
174 /* 2 Gigabit */
175 [0xaa] = { 256, 8, 0, 0, LP_OPTIONS },
176 [0xda] = { 256, 8, 0, 0, LP_OPTIONS },
177 [0xba] = { 256, 16, 0, 0, LP_OPTIONS16 },
178 [0xca] = { 256, 16, 0, 0, LP_OPTIONS16 },
179
180 /* 4 Gigabit */
181 [0xac] = { 512, 8, 0, 0, LP_OPTIONS },
182 [0xdc] = { 512, 8, 0, 0, LP_OPTIONS },
183 [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16 },
184 [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16 },
185
186 /* 8 Gigabit */
187 [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS },
188 [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS },
189 [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
190 [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
191
192 /* 16 Gigabit */
193 [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS },
194 [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS },
195 [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
196 [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
197};
198
199static void nand_reset(struct nand_flash_s *s)
200{
201 s->cmd = NAND_CMD_READ0;
202 s->addr = 0;
203 s->addrlen = 0;
204 s->iolen = 0;
205 s->offset = 0;
206 s->status &= NAND_IOSTATUS_UNPROTCT;
207}
208
209static void nand_command(struct nand_flash_s *s)
210{
211 switch (s->cmd) {
212 case NAND_CMD_READ0:
213 s->iolen = 0;
214 break;
215
216 case NAND_CMD_READID:
217 s->io[0] = s->manf_id;
218 s->io[1] = s->chip_id;
219 s->io[2] = 'Q'; /* Don't-care byte (often 0xa5) */
220 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)
221 s->io[3] = 0x15; /* Page Size, Block Size, Spare Size.. */
222 else
223 s->io[3] = 0xc0; /* Multi-plane */
224 s->ioaddr = s->io;
225 s->iolen = 4;
226 break;
227
228 case NAND_CMD_RANDOMREAD2:
229 case NAND_CMD_NOSERIALREAD2:
230 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
231 break;
232
233 s->blk_load(s, s->addr, s->addr & ((1 << s->addr_shift) - 1));
234 break;
235
236 case NAND_CMD_RESET:
237 nand_reset(s);
238 break;
239
240 case NAND_CMD_PAGEPROGRAM1:
241 s->ioaddr = s->io;
242 s->iolen = 0;
243 break;
244
245 case NAND_CMD_PAGEPROGRAM2:
246 if (s->wp) {
247 s->blk_write(s);
248 }
249 break;
250
251 case NAND_CMD_BLOCKERASE1:
252 break;
253
254 case NAND_CMD_BLOCKERASE2:
255 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)
256 s->addr <<= 16;
257 else
258 s->addr <<= 8;
259
260 if (s->wp) {
261 s->blk_erase(s);
262 }
263 break;
264
265 case NAND_CMD_READSTATUS:
266 s->io[0] = s->status;
267 s->ioaddr = s->io;
268 s->iolen = 1;
269 break;
270
271 default:
272 printf("%s: Unknown NAND command 0x%02x\n", __FUNCTION__, s->cmd);
273 }
274}
275
aa941b94
AZ
276static void nand_save(QEMUFile *f, void *opaque)
277{
278 struct nand_flash_s *s = (struct nand_flash_s *) opaque;
279 qemu_put_byte(f, s->cle);
280 qemu_put_byte(f, s->ale);
281 qemu_put_byte(f, s->ce);
282 qemu_put_byte(f, s->wp);
283 qemu_put_byte(f, s->gnd);
284 qemu_put_buffer(f, s->io, sizeof(s->io));
285 qemu_put_be32(f, s->ioaddr - s->io);
286 qemu_put_be32(f, s->iolen);
287
288 qemu_put_be32s(f, &s->cmd);
289 qemu_put_be32s(f, &s->addr);
290 qemu_put_be32(f, s->addrlen);
291 qemu_put_be32(f, s->status);
292 qemu_put_be32(f, s->offset);
293 /* XXX: do we want to save s->storage too? */
294}
295
296static int nand_load(QEMUFile *f, void *opaque, int version_id)
297{
298 struct nand_flash_s *s = (struct nand_flash_s *) opaque;
299 s->cle = qemu_get_byte(f);
300 s->ale = qemu_get_byte(f);
301 s->ce = qemu_get_byte(f);
302 s->wp = qemu_get_byte(f);
303 s->gnd = qemu_get_byte(f);
304 qemu_get_buffer(f, s->io, sizeof(s->io));
305 s->ioaddr = s->io + qemu_get_be32(f);
306 s->iolen = qemu_get_be32(f);
307 if (s->ioaddr >= s->io + sizeof(s->io) || s->ioaddr < s->io)
308 return -EINVAL;
309
310 qemu_get_be32s(f, &s->cmd);
311 qemu_get_be32s(f, &s->addr);
312 s->addrlen = qemu_get_be32(f);
313 s->status = qemu_get_be32(f);
314 s->offset = qemu_get_be32(f);
315 return 0;
316}
317
318static int nand_iid = 0;
319
3e3d5815
AZ
320/*
321 * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip
322 * outputs are R/B and eight I/O pins.
323 *
324 * CE, WP and R/B are active low.
325 */
5fafdf24 326void nand_setpins(struct nand_flash_s *s,
3e3d5815
AZ
327 int cle, int ale, int ce, int wp, int gnd)
328{
329 s->cle = cle;
330 s->ale = ale;
331 s->ce = ce;
332 s->wp = wp;
333 s->gnd = gnd;
334 if (wp)
335 s->status |= NAND_IOSTATUS_UNPROTCT;
336 else
337 s->status &= ~NAND_IOSTATUS_UNPROTCT;
338}
339
340void nand_getpins(struct nand_flash_s *s, int *rb)
341{
342 *rb = 1;
343}
344
345void nand_setio(struct nand_flash_s *s, uint8_t value)
346{
347 if (!s->ce && s->cle) {
348 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
349 if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
350 return;
351 if (value == NAND_CMD_RANDOMREAD1) {
352 s->addr &= ~((1 << s->addr_shift) - 1);
353 s->addrlen = 0;
354 return;
355 }
356 }
357 if (value == NAND_CMD_READ0)
358 s->offset = 0;
359 else if (value == NAND_CMD_READ1) {
360 s->offset = 0x100;
361 value = NAND_CMD_READ0;
362 }
363 else if (value == NAND_CMD_READ2) {
364 s->offset = 1 << s->page_shift;
365 value = NAND_CMD_READ0;
366 }
367
368 s->cmd = value;
369
370 if (s->cmd == NAND_CMD_READSTATUS ||
371 s->cmd == NAND_CMD_PAGEPROGRAM2 ||
372 s->cmd == NAND_CMD_BLOCKERASE1 ||
373 s->cmd == NAND_CMD_BLOCKERASE2 ||
374 s->cmd == NAND_CMD_NOSERIALREAD2 ||
375 s->cmd == NAND_CMD_RANDOMREAD2 ||
376 s->cmd == NAND_CMD_RESET)
377 nand_command(s);
378
379 if (s->cmd != NAND_CMD_RANDOMREAD2) {
380 s->addrlen = 0;
381 s->addr = 0;
382 }
383 }
384
385 if (s->ale) {
386 s->addr |= value << (s->addrlen * 8);
387 s->addrlen ++;
388
389 if (s->addrlen == 1 && s->cmd == NAND_CMD_READID)
390 nand_command(s);
391
392 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
393 s->addrlen == 3 && (
394 s->cmd == NAND_CMD_READ0 ||
395 s->cmd == NAND_CMD_PAGEPROGRAM1))
396 nand_command(s);
397 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
398 s->addrlen == 4 && (
399 s->cmd == NAND_CMD_READ0 ||
400 s->cmd == NAND_CMD_PAGEPROGRAM1))
401 nand_command(s);
402 }
403
404 if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
405 if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift))
406 s->io[s->iolen ++] = value;
407 } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
408 if ((s->addr & ((1 << s->addr_shift) - 1)) <
409 (1 << s->page_shift) + (1 << s->oob_shift)) {
410 s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] = value;
411 s->addr ++;
412 }
413 }
414}
415
416uint8_t nand_getio(struct nand_flash_s *s)
417{
418 int offset;
5fafdf24 419
3e3d5815
AZ
420 /* Allow sequential reading */
421 if (!s->iolen && s->cmd == NAND_CMD_READ0) {
422 offset = (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
423 s->offset = 0;
424
425 s->blk_load(s, s->addr, offset);
426 if (s->gnd)
427 s->iolen = (1 << s->page_shift) - offset;
428 else
429 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
430 }
431
432 if (s->ce || s->iolen <= 0)
433 return 0;
434
435 s->iolen --;
436 return *(s->ioaddr ++);
437}
438
439struct nand_flash_s *nand_init(int manf_id, int chip_id)
440{
441 int pagesize;
442 struct nand_flash_s *s;
443
444 if (nand_flash_ids[chip_id].size == 0) {
445 cpu_abort(cpu_single_env, "%s: Unsupported NAND chip ID.\n",
446 __FUNCTION__);
447 }
448
449 s = (struct nand_flash_s *) qemu_mallocz(sizeof(struct nand_flash_s));
450 s->bdrv = mtd_bdrv;
451 s->manf_id = manf_id;
452 s->chip_id = chip_id;
453 s->size = nand_flash_ids[s->chip_id].size << 20;
454 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
455 s->page_shift = 11;
456 s->erase_shift = 6;
457 } else {
458 s->page_shift = nand_flash_ids[s->chip_id].page_shift;
459 s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
460 }
461
462 switch (1 << s->page_shift) {
463 case 256:
464 nand_init_256(s);
465 break;
466 case 512:
467 nand_init_512(s);
468 break;
469 case 2048:
470 nand_init_2048(s);
471 break;
472 default:
473 cpu_abort(cpu_single_env, "%s: Unsupported NAND block size.\n",
474 __FUNCTION__);
475 }
476
477 pagesize = 1 << s->oob_shift;
478 s->mem_oob = 1;
479 if (s->bdrv && bdrv_getlength(s->bdrv) >=
480 (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
481 pagesize = 0;
482 s->mem_oob = 0;
483 }
484
485 if (!s->bdrv)
486 pagesize += 1 << s->page_shift;
487 if (pagesize)
488 s->storage = (uint8_t *) memset(qemu_malloc(s->pages * pagesize),
489 0xff, s->pages * pagesize);
aa941b94
AZ
490
491 register_savevm("nand", nand_iid ++, 0, nand_save, nand_load, s);
492
3e3d5815
AZ
493 return s;
494}
495
496void nand_done(struct nand_flash_s *s)
497{
498 if (s->bdrv) {
499 bdrv_close(s->bdrv);
500 bdrv_delete(s->bdrv);
501 }
502
503 if (!s->bdrv || s->mem_oob)
504 free(s->storage);
505
506 free(s);
507}
508
509#else
510
511/* Program a single page */
512static void glue(nand_blk_write_, PAGE_SIZE)(struct nand_flash_s *s)
513{
514 uint32_t off, page, sector, soff;
515 uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
516 if (PAGE(s->addr) >= s->pages)
517 return;
518
519 if (!s->bdrv) {
520 memcpy(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
521 s->offset, s->io, s->iolen);
522 } else if (s->mem_oob) {
523 sector = SECTOR(s->addr);
524 off = (s->addr & PAGE_MASK) + s->offset;
525 soff = SECTOR_OFFSET(s->addr);
526 if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS) == -1) {
527 printf("%s: read error in sector %i\n", __FUNCTION__, sector);
528 return;
529 }
530
531 memcpy(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
532 if (off + s->iolen > PAGE_SIZE) {
533 page = PAGE(s->addr);
534 memcpy(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
535 MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
536 }
537
538 if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS) == -1)
539 printf("%s: write error in sector %i\n", __FUNCTION__, sector);
540 } else {
541 off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
542 sector = off >> 9;
543 soff = off & 0x1ff;
544 if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) == -1) {
545 printf("%s: read error in sector %i\n", __FUNCTION__, sector);
546 return;
547 }
548
549 memcpy(iobuf + soff, s->io, s->iolen);
550
551 if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) == -1)
552 printf("%s: write error in sector %i\n", __FUNCTION__, sector);
553 }
554 s->offset = 0;
555}
556
557/* Erase a single block */
558static void glue(nand_blk_erase_, PAGE_SIZE)(struct nand_flash_s *s)
559{
560 uint32_t i, page, addr;
561 uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
562 addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
563
564 if (PAGE(addr) >= s->pages)
565 return;
566
567 if (!s->bdrv) {
568 memset(s->storage + PAGE_START(addr),
569 0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
570 } else if (s->mem_oob) {
571 memset(s->storage + (PAGE(addr) << OOB_SHIFT),
572 0xff, OOB_SIZE << s->erase_shift);
573 i = SECTOR(addr);
574 page = SECTOR(addr + (ADDR_SHIFT + s->erase_shift));
575 for (; i < page; i ++)
576 if (bdrv_write(s->bdrv, i, iobuf, 1) == -1)
577 printf("%s: write error in sector %i\n", __FUNCTION__, i);
578 } else {
579 addr = PAGE_START(addr);
580 page = addr >> 9;
581 if (bdrv_read(s->bdrv, page, iobuf, 1) == -1)
582 printf("%s: read error in sector %i\n", __FUNCTION__, page);
583 memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
584 if (bdrv_write(s->bdrv, page, iobuf, 1) == -1)
585 printf("%s: write error in sector %i\n", __FUNCTION__, page);
586
587 memset(iobuf, 0xff, 0x200);
588 i = (addr & ~0x1ff) + 0x200;
589 for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
590 i < addr; i += 0x200)
591 if (bdrv_write(s->bdrv, i >> 9, iobuf, 1) == -1)
592 printf("%s: write error in sector %i\n", __FUNCTION__, i >> 9);
593
594 page = i >> 9;
595 if (bdrv_read(s->bdrv, page, iobuf, 1) == -1)
596 printf("%s: read error in sector %i\n", __FUNCTION__, page);
a07dec22 597 memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
3e3d5815
AZ
598 if (bdrv_write(s->bdrv, page, iobuf, 1) == -1)
599 printf("%s: write error in sector %i\n", __FUNCTION__, page);
600 }
601}
602
603static void glue(nand_blk_load_, PAGE_SIZE)(struct nand_flash_s *s,
604 uint32_t addr, int offset)
605{
606 if (PAGE(addr) >= s->pages)
607 return;
608
609 if (s->bdrv) {
610 if (s->mem_oob) {
611 if (bdrv_read(s->bdrv, SECTOR(addr), s->io, PAGE_SECTORS) == -1)
612 printf("%s: read error in sector %i\n",
613 __FUNCTION__, SECTOR(addr));
614 memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
615 s->storage + (PAGE(s->addr) << OOB_SHIFT),
616 OOB_SIZE);
617 s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
618 } else {
619 if (bdrv_read(s->bdrv, PAGE_START(addr) >> 9,
620 s->io, (PAGE_SECTORS + 2)) == -1)
621 printf("%s: read error in sector %i\n",
622 __FUNCTION__, PAGE_START(addr) >> 9);
623 s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
624 }
625 } else {
626 memcpy(s->io, s->storage + PAGE_START(s->addr) +
627 offset, PAGE_SIZE + OOB_SIZE - offset);
628 s->ioaddr = s->io;
629 }
630
631 s->addr &= PAGE_SIZE - 1;
632 s->addr += PAGE_SIZE;
633}
634
635static void glue(nand_init_, PAGE_SIZE)(struct nand_flash_s *s)
636{
637 s->oob_shift = PAGE_SHIFT - 5;
638 s->pages = s->size >> PAGE_SHIFT;
639 s->addr_shift = ADDR_SHIFT;
640
641 s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
642 s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
643 s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
644}
645
646# undef PAGE_SIZE
647# undef PAGE_SHIFT
648# undef PAGE_SECTORS
649# undef ADDR_SHIFT
650#endif /* NAND_IO */