]> git.proxmox.com Git - mirror_qemu.git/blame - hw/net/ne2000.c
Clean up inclusion of sysemu/sysemu.h
[mirror_qemu.git] / hw / net / ne2000.c
CommitLineData
80cabfad
FB
1/*
2 * QEMU NE2000 emulation
5fafdf24 3 *
80cabfad 4 * Copyright (c) 2003-2004 Fabrice Bellard
5fafdf24 5 *
80cabfad
FB
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
0b8fa32f 24
e8d40465 25#include "qemu/osdep.h"
084e2b11 26#include "net/eth.h"
0b8fa32f 27#include "qemu/module.h"
d4842052 28#include "exec/memory.h"
64552b6b 29#include "hw/irq.h"
d6454270 30#include "migration/vmstate.h"
47b43a1f 31#include "ne2000.h"
cd4479a9 32#include "trace.h"
80cabfad
FB
33
34/* debug NE2000 card */
35//#define DEBUG_NE2000
36
b41a2cd1 37#define MAX_ETH_FRAME_SIZE 1514
80cabfad
FB
38
39#define E8390_CMD 0x00 /* The command register (for all pages) */
40/* Page 0 register offsets. */
41#define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
42#define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
43#define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
44#define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
45#define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
46#define EN0_TSR 0x04 /* Transmit status reg RD */
47#define EN0_TPSR 0x04 /* Transmit starting page WR */
48#define EN0_NCR 0x05 /* Number of collision reg RD */
49#define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
50#define EN0_FIFO 0x06 /* FIFO RD */
51#define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
52#define EN0_ISR 0x07 /* Interrupt status reg RD WR */
53#define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
54#define EN0_RSARLO 0x08 /* Remote start address reg 0 */
55#define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
56#define EN0_RSARHI 0x09 /* Remote start address reg 1 */
57#define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
089af991 58#define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
80cabfad 59#define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
089af991 60#define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
80cabfad
FB
61#define EN0_RSR 0x0c /* rx status reg RD */
62#define EN0_RXCR 0x0c /* RX configuration reg WR */
63#define EN0_TXCR 0x0d /* TX configuration reg WR */
64#define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
65#define EN0_DCFG 0x0e /* Data configuration reg WR */
66#define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
67#define EN0_IMR 0x0f /* Interrupt mask reg WR */
68#define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
69
70#define EN1_PHYS 0x11
71#define EN1_CURPAG 0x17
72#define EN1_MULT 0x18
73
a343df16
FB
74#define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
75#define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
76
089af991
FB
77#define EN3_CONFIG0 0x33
78#define EN3_CONFIG1 0x34
79#define EN3_CONFIG2 0x35
80#define EN3_CONFIG3 0x36
81
80cabfad
FB
82/* Register accessed at EN_CMD, the 8390 base addr. */
83#define E8390_STOP 0x01 /* Stop and reset the chip */
84#define E8390_START 0x02 /* Start the chip, clear reset */
85#define E8390_TRANS 0x04 /* Transmit a frame */
86#define E8390_RREAD 0x08 /* Remote read */
87#define E8390_RWRITE 0x10 /* Remote write */
88#define E8390_NODMA 0x20 /* Remote DMA */
89#define E8390_PAGE0 0x00 /* Select page chip registers */
90#define E8390_PAGE1 0x40 /* using the two high-order bits */
91#define E8390_PAGE2 0x80 /* Page 3 is invalid. */
92
93/* Bits in EN0_ISR - Interrupt status register */
94#define ENISR_RX 0x01 /* Receiver, no error */
95#define ENISR_TX 0x02 /* Transmitter, no error */
96#define ENISR_RX_ERR 0x04 /* Receiver, with error */
97#define ENISR_TX_ERR 0x08 /* Transmitter, with error */
98#define ENISR_OVER 0x10 /* Receiver overwrote the ring */
99#define ENISR_COUNTERS 0x20 /* Counters need emptying */
100#define ENISR_RDC 0x40 /* remote dma complete */
101#define ENISR_RESET 0x80 /* Reset completed */
102#define ENISR_ALL 0x3f /* Interrupts we will enable */
103
104/* Bits in received packet status byte and EN0_RSR*/
105#define ENRSR_RXOK 0x01 /* Received a good packet */
106#define ENRSR_CRC 0x02 /* CRC error */
107#define ENRSR_FAE 0x04 /* frame alignment error */
108#define ENRSR_FO 0x08 /* FIFO overrun */
109#define ENRSR_MPA 0x10 /* missed pkt */
110#define ENRSR_PHY 0x20 /* physical/multicast address */
111#define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
112#define ENRSR_DEF 0x80 /* deferring */
113
114/* Transmitted packet status, EN0_TSR. */
115#define ENTSR_PTX 0x01 /* Packet transmitted without error */
116#define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
117#define ENTSR_COL 0x04 /* The transmit collided at least once. */
118#define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
119#define ENTSR_CRS 0x10 /* The carrier sense was lost. */
120#define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
121#define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
122#define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
123
9453c5bc 124void ne2000_reset(NE2000State *s)
80cabfad
FB
125{
126 int i;
127
128 s->isr = ENISR_RESET;
93db6685 129 memcpy(s->mem, &s->c.macaddr, 6);
80cabfad
FB
130 s->mem[14] = 0x57;
131 s->mem[15] = 0x57;
132
133 /* duplicate prom data */
134 for(i = 15;i >= 0; i--) {
135 s->mem[2 * i] = s->mem[i];
136 s->mem[2 * i + 1] = s->mem[i];
137 }
138}
139
140static void ne2000_update_irq(NE2000State *s)
141{
142 int isr;
a343df16 143 isr = (s->isr & s->imr) & 0x7f;
a541f297 144#if defined(DEBUG_NE2000)
d537cf6c 145 printf("NE2000: Set IRQ to %d (%02x %02x)\n",
7d37435b 146 isr ? 1 : 0, s->isr, s->imr);
a541f297 147#endif
d537cf6c 148 qemu_set_irq(s->irq, (isr != 0));
80cabfad
FB
149}
150
d861b05e 151static int ne2000_buffer_full(NE2000State *s)
80cabfad 152{
80cabfad 153 int avail, index, boundary;
d861b05e 154
415ab35a
PP
155 if (s->stop <= s->start) {
156 return 1;
157 }
158
80cabfad
FB
159 index = s->curpag << 8;
160 boundary = s->boundary << 8;
28c1c656 161 if (index < boundary)
80cabfad
FB
162 avail = boundary - index;
163 else
164 avail = (s->stop - s->start) - (index - boundary);
165 if (avail < (MAX_ETH_FRAME_SIZE + 4))
d861b05e
PB
166 return 1;
167 return 0;
168}
169
b41a2cd1
FB
170#define MIN_BUF_SIZE 60
171
4e68f7a0 172ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_)
80cabfad 173{
cc1f0f45 174 NE2000State *s = qemu_get_nic_opaque(nc);
fdc89e90 175 size_t size = size_;
80cabfad 176 uint8_t *p;
0ae045ae 177 unsigned int total_len, next, avail, len, index, mcast_idx;
b41a2cd1 178 uint8_t buf1[60];
5fafdf24 179 static const uint8_t broadcast_macaddr[6] =
7c9d8e07 180 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
3b46e624 181
80cabfad 182#if defined(DEBUG_NE2000)
fdc89e90 183 printf("NE2000: received len=%zu\n", size);
80cabfad
FB
184#endif
185
d861b05e 186 if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
4f1c942b 187 return -1;
3b46e624 188
7c9d8e07
FB
189 /* XXX: check this */
190 if (s->rxcr & 0x10) {
191 /* promiscuous: receive all */
192 } else {
193 if (!memcmp(buf, broadcast_macaddr, 6)) {
194 /* broadcast address */
195 if (!(s->rxcr & 0x04))
4f1c942b 196 return size;
7c9d8e07
FB
197 } else if (buf[0] & 0x01) {
198 /* multicast */
199 if (!(s->rxcr & 0x08))
4f1c942b 200 return size;
084e2b11 201 mcast_idx = net_crc32(buf, ETH_ALEN) >> 26;
7c9d8e07 202 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
4f1c942b 203 return size;
7c9d8e07 204 } else if (s->mem[0] == buf[0] &&
3b46e624
TS
205 s->mem[2] == buf[1] &&
206 s->mem[4] == buf[2] &&
207 s->mem[6] == buf[3] &&
208 s->mem[8] == buf[4] &&
7c9d8e07
FB
209 s->mem[10] == buf[5]) {
210 /* match */
211 } else {
4f1c942b 212 return size;
7c9d8e07
FB
213 }
214 }
215
216
b41a2cd1
FB
217 /* if too small buffer, then expand it */
218 if (size < MIN_BUF_SIZE) {
219 memcpy(buf1, buf, size);
220 memset(buf1 + size, 0, MIN_BUF_SIZE - size);
221 buf = buf1;
222 size = MIN_BUF_SIZE;
223 }
224
80cabfad 225 index = s->curpag << 8;
9bbdbc66
PP
226 if (index >= NE2000_PMEM_END) {
227 index = s->start;
228 }
80cabfad
FB
229 /* 4 bytes for header */
230 total_len = size + 4;
231 /* address for next packet (4 bytes for CRC) */
232 next = index + ((total_len + 4 + 255) & ~0xff);
233 if (next >= s->stop)
234 next -= (s->stop - s->start);
235 /* prepare packet header */
236 p = s->mem + index;
8d6c7eb8
FB
237 s->rsr = ENRSR_RXOK; /* receive status */
238 /* XXX: check this */
239 if (buf[0] & 0x01)
240 s->rsr |= ENRSR_PHY;
241 p[0] = s->rsr;
80cabfad
FB
242 p[1] = next >> 8;
243 p[2] = total_len;
244 p[3] = total_len >> 8;
245 index += 4;
246
247 /* write packet data */
248 while (size > 0) {
0ae045ae
TS
249 if (index <= s->stop)
250 avail = s->stop - index;
251 else
737d2b3c 252 break;
80cabfad
FB
253 len = size;
254 if (len > avail)
255 len = avail;
256 memcpy(s->mem + index, buf, len);
257 buf += len;
258 index += len;
259 if (index == s->stop)
260 index = s->start;
261 size -= len;
262 }
263 s->curpag = next >> 8;
8d6c7eb8 264
9f083493 265 /* now we can signal we have received something */
80cabfad
FB
266 s->isr |= ENISR_RX;
267 ne2000_update_irq(s);
4f1c942b
MM
268
269 return size_;
80cabfad
FB
270}
271
1ec4e1dd 272static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
80cabfad 273{
b41a2cd1 274 NE2000State *s = opaque;
40545f84 275 int offset, page, index;
80cabfad
FB
276
277 addr &= 0xf;
a816b625 278 trace_ne2000_ioport_write(addr, val);
80cabfad
FB
279 if (addr == E8390_CMD) {
280 /* control register */
281 s->cmd = val;
a343df16 282 if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
ee9dbb29 283 s->isr &= ~ENISR_RESET;
e91c8a77 284 /* test specific case: zero length transfer */
80cabfad
FB
285 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
286 s->rcnt == 0) {
287 s->isr |= ENISR_RDC;
288 ne2000_update_irq(s);
289 }
290 if (val & E8390_TRANS) {
40545f84 291 index = (s->tpsr << 8);
5fafdf24 292 /* XXX: next 2 lines are a hack to make netware 3.11 work */
40545f84
FB
293 if (index >= NE2000_PMEM_END)
294 index -= NE2000_PMEM_SIZE;
295 /* fail safe: check range on the transmitted length */
296 if (index + s->tcnt <= NE2000_PMEM_END) {
b356f76d
JW
297 qemu_send_packet(qemu_get_queue(s->nic), s->mem + index,
298 s->tcnt);
40545f84 299 }
e91c8a77 300 /* signal end of transfer */
80cabfad
FB
301 s->tsr = ENTSR_PTX;
302 s->isr |= ENISR_TX;
5fafdf24 303 s->cmd &= ~E8390_TRANS;
80cabfad
FB
304 ne2000_update_irq(s);
305 }
306 }
307 } else {
308 page = s->cmd >> 6;
309 offset = addr | (page << 4);
310 switch(offset) {
311 case EN0_STARTPG:
9bbdbc66
PP
312 if (val << 8 <= NE2000_PMEM_END) {
313 s->start = val << 8;
314 }
80cabfad
FB
315 break;
316 case EN0_STOPPG:
9bbdbc66
PP
317 if (val << 8 <= NE2000_PMEM_END) {
318 s->stop = val << 8;
319 }
80cabfad
FB
320 break;
321 case EN0_BOUNDARY:
9bbdbc66
PP
322 if (val << 8 < NE2000_PMEM_END) {
323 s->boundary = val;
324 }
80cabfad
FB
325 break;
326 case EN0_IMR:
327 s->imr = val;
328 ne2000_update_irq(s);
329 break;
330 case EN0_TPSR:
331 s->tpsr = val;
332 break;
333 case EN0_TCNTLO:
334 s->tcnt = (s->tcnt & 0xff00) | val;
335 break;
336 case EN0_TCNTHI:
337 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
338 break;
339 case EN0_RSARLO:
340 s->rsar = (s->rsar & 0xff00) | val;
341 break;
342 case EN0_RSARHI:
343 s->rsar = (s->rsar & 0x00ff) | (val << 8);
344 break;
345 case EN0_RCNTLO:
346 s->rcnt = (s->rcnt & 0xff00) | val;
347 break;
348 case EN0_RCNTHI:
349 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
350 break;
7c9d8e07
FB
351 case EN0_RXCR:
352 s->rxcr = val;
353 break;
80cabfad
FB
354 case EN0_DCFG:
355 s->dcfg = val;
356 break;
357 case EN0_ISR:
ee9dbb29 358 s->isr &= ~(val & 0x7f);
80cabfad
FB
359 ne2000_update_irq(s);
360 break;
361 case EN1_PHYS ... EN1_PHYS + 5:
362 s->phys[offset - EN1_PHYS] = val;
363 break;
364 case EN1_CURPAG:
9bbdbc66
PP
365 if (val << 8 < NE2000_PMEM_END) {
366 s->curpag = val;
367 }
80cabfad
FB
368 break;
369 case EN1_MULT ... EN1_MULT + 7:
370 s->mult[offset - EN1_MULT] = val;
371 break;
372 }
373 }
374}
375
1ec4e1dd 376static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
80cabfad 377{
b41a2cd1 378 NE2000State *s = opaque;
80cabfad
FB
379 int offset, page, ret;
380
381 addr &= 0xf;
382 if (addr == E8390_CMD) {
383 ret = s->cmd;
384 } else {
385 page = s->cmd >> 6;
386 offset = addr | (page << 4);
387 switch(offset) {
388 case EN0_TSR:
389 ret = s->tsr;
390 break;
391 case EN0_BOUNDARY:
392 ret = s->boundary;
393 break;
394 case EN0_ISR:
395 ret = s->isr;
396 break;
7d37435b
PB
397 case EN0_RSARLO:
398 ret = s->rsar & 0x00ff;
399 break;
400 case EN0_RSARHI:
401 ret = s->rsar >> 8;
402 break;
80cabfad
FB
403 case EN1_PHYS ... EN1_PHYS + 5:
404 ret = s->phys[offset - EN1_PHYS];
405 break;
406 case EN1_CURPAG:
407 ret = s->curpag;
408 break;
409 case EN1_MULT ... EN1_MULT + 7:
410 ret = s->mult[offset - EN1_MULT];
411 break;
8d6c7eb8
FB
412 case EN0_RSR:
413 ret = s->rsr;
414 break;
a343df16
FB
415 case EN2_STARTPG:
416 ret = s->start >> 8;
417 break;
418 case EN2_STOPPG:
419 ret = s->stop >> 8;
420 break;
7d37435b
PB
421 case EN0_RTL8029ID0:
422 ret = 0x50;
423 break;
424 case EN0_RTL8029ID1:
425 ret = 0x43;
426 break;
427 case EN3_CONFIG0:
428 ret = 0; /* 10baseT media */
429 break;
430 case EN3_CONFIG2:
431 ret = 0x40; /* 10baseT active */
432 break;
433 case EN3_CONFIG3:
434 ret = 0x40; /* Full duplex */
435 break;
80cabfad
FB
436 default:
437 ret = 0x00;
438 break;
439 }
440 }
a816b625 441 trace_ne2000_ioport_read(addr, ret);
80cabfad
FB
442 return ret;
443}
444
5fafdf24 445static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
69b91039 446 uint32_t val)
ee9dbb29 447{
5fafdf24 448 if (addr < 32 ||
ee9dbb29
FB
449 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
450 s->mem[addr] = val;
451 }
452}
453
5fafdf24 454static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
ee9dbb29
FB
455 uint32_t val)
456{
457 addr &= ~1; /* XXX: check exact behaviour if not even */
5fafdf24 458 if (addr < 32 ||
ee9dbb29 459 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
69b91039
FB
460 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
461 }
462}
463
5fafdf24 464static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
69b91039
FB
465 uint32_t val)
466{
57ccbabe 467 addr &= ~1; /* XXX: check exact behaviour if not even */
aa7f9966
PP
468 if (addr < 32
469 || (addr >= NE2000_PMEM_START
470 && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
6e931878 471 stl_le_p(s->mem + addr, val);
ee9dbb29
FB
472 }
473}
474
475static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
476{
5fafdf24 477 if (addr < 32 ||
ee9dbb29
FB
478 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
479 return s->mem[addr];
480 } else {
481 return 0xff;
482 }
483}
484
485static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
486{
487 addr &= ~1; /* XXX: check exact behaviour if not even */
5fafdf24 488 if (addr < 32 ||
ee9dbb29 489 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
69b91039 490 return le16_to_cpu(*(uint16_t *)(s->mem + addr));
ee9dbb29
FB
491 } else {
492 return 0xffff;
493 }
494}
495
69b91039
FB
496static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
497{
57ccbabe 498 addr &= ~1; /* XXX: check exact behaviour if not even */
aa7f9966
PP
499 if (addr < 32
500 || (addr >= NE2000_PMEM_START
501 && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
f567656a 502 return ldl_le_p(s->mem + addr);
69b91039
FB
503 } else {
504 return 0xffffffff;
505 }
506}
507
3df3f6fd
FB
508static inline void ne2000_dma_update(NE2000State *s, int len)
509{
510 s->rsar += len;
511 /* wrap */
512 /* XXX: check what to do if rsar > stop */
513 if (s->rsar == s->stop)
514 s->rsar = s->start;
515
516 if (s->rcnt <= len) {
517 s->rcnt = 0;
e91c8a77 518 /* signal end of transfer */
3df3f6fd
FB
519 s->isr |= ENISR_RDC;
520 ne2000_update_irq(s);
521 } else {
522 s->rcnt -= len;
523 }
524}
525
1ec4e1dd 526static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
80cabfad 527{
b41a2cd1 528 NE2000State *s = opaque;
80cabfad
FB
529
530#ifdef DEBUG_NE2000
531 printf("NE2000: asic write val=0x%04x\n", val);
532#endif
ee9dbb29 533 if (s->rcnt == 0)
3df3f6fd 534 return;
80cabfad
FB
535 if (s->dcfg & 0x01) {
536 /* 16 bit access */
ee9dbb29 537 ne2000_mem_writew(s, s->rsar, val);
3df3f6fd 538 ne2000_dma_update(s, 2);
80cabfad
FB
539 } else {
540 /* 8 bit access */
ee9dbb29 541 ne2000_mem_writeb(s, s->rsar, val);
3df3f6fd 542 ne2000_dma_update(s, 1);
80cabfad
FB
543 }
544}
545
1ec4e1dd 546static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
80cabfad 547{
b41a2cd1 548 NE2000State *s = opaque;
80cabfad
FB
549 int ret;
550
80cabfad
FB
551 if (s->dcfg & 0x01) {
552 /* 16 bit access */
ee9dbb29 553 ret = ne2000_mem_readw(s, s->rsar);
3df3f6fd 554 ne2000_dma_update(s, 2);
80cabfad
FB
555 } else {
556 /* 8 bit access */
ee9dbb29 557 ret = ne2000_mem_readb(s, s->rsar);
3df3f6fd 558 ne2000_dma_update(s, 1);
80cabfad
FB
559 }
560#ifdef DEBUG_NE2000
561 printf("NE2000: asic read val=0x%04x\n", ret);
562#endif
563 return ret;
564}
565
69b91039
FB
566static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
567{
568 NE2000State *s = opaque;
569
570#ifdef DEBUG_NE2000
571 printf("NE2000: asic writel val=0x%04x\n", val);
572#endif
573 if (s->rcnt == 0)
3df3f6fd 574 return;
69b91039
FB
575 /* 32 bit access */
576 ne2000_mem_writel(s, s->rsar, val);
3df3f6fd 577 ne2000_dma_update(s, 4);
69b91039
FB
578}
579
580static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
581{
582 NE2000State *s = opaque;
583 int ret;
584
585 /* 32 bit access */
586 ret = ne2000_mem_readl(s, s->rsar);
3df3f6fd 587 ne2000_dma_update(s, 4);
69b91039
FB
588#ifdef DEBUG_NE2000
589 printf("NE2000: asic readl val=0x%04x\n", ret);
590#endif
591 return ret;
592}
593
1ec4e1dd 594static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
80cabfad
FB
595{
596 /* nothing to do (end of reset pulse) */
597}
598
1ec4e1dd 599static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
80cabfad 600{
b41a2cd1 601 NE2000State *s = opaque;
80cabfad
FB
602 ne2000_reset(s);
603 return 0;
604}
605
7c131dd5 606static int ne2000_post_load(void* opaque, int version_id)
30ca2aab 607{
7c131dd5 608 NE2000State* s = opaque;
a60380a5 609
7c131dd5
JQ
610 if (version_id < 2) {
611 s->rxcr = 0x0c;
612 }
613 return 0;
a60380a5
JQ
614}
615
7c131dd5
JQ
616const VMStateDescription vmstate_ne2000 = {
617 .name = "ne2000",
618 .version_id = 2,
619 .minimum_version_id = 0,
7c131dd5 620 .post_load = ne2000_post_load,
d49805ae 621 .fields = (VMStateField[]) {
7c131dd5
JQ
622 VMSTATE_UINT8_V(rxcr, NE2000State, 2),
623 VMSTATE_UINT8(cmd, NE2000State),
624 VMSTATE_UINT32(start, NE2000State),
625 VMSTATE_UINT32(stop, NE2000State),
626 VMSTATE_UINT8(boundary, NE2000State),
627 VMSTATE_UINT8(tsr, NE2000State),
628 VMSTATE_UINT8(tpsr, NE2000State),
629 VMSTATE_UINT16(tcnt, NE2000State),
630 VMSTATE_UINT16(rcnt, NE2000State),
631 VMSTATE_UINT32(rsar, NE2000State),
632 VMSTATE_UINT8(rsr, NE2000State),
633 VMSTATE_UINT8(isr, NE2000State),
634 VMSTATE_UINT8(dcfg, NE2000State),
635 VMSTATE_UINT8(imr, NE2000State),
636 VMSTATE_BUFFER(phys, NE2000State),
637 VMSTATE_UINT8(curpag, NE2000State),
638 VMSTATE_BUFFER(mult, NE2000State),
639 VMSTATE_UNUSED(4), /* was irq */
640 VMSTATE_BUFFER(mem, NE2000State),
641 VMSTATE_END_OF_LIST()
642 }
643};
a60380a5 644
a8170e5e 645static uint64_t ne2000_read(void *opaque, hwaddr addr,
1ec4e1dd
AK
646 unsigned size)
647{
648 NE2000State *s = opaque;
cd4479a9 649 uint64_t val;
69b91039 650
1ec4e1dd 651 if (addr < 0x10 && size == 1) {
cd4479a9 652 val = ne2000_ioport_read(s, addr);
1ec4e1dd
AK
653 } else if (addr == 0x10) {
654 if (size <= 2) {
cd4479a9 655 val = ne2000_asic_ioport_read(s, addr);
1ec4e1dd 656 } else {
cd4479a9 657 val = ne2000_asic_ioport_readl(s, addr);
1ec4e1dd
AK
658 }
659 } else if (addr == 0x1f && size == 1) {
cd4479a9
PMD
660 val = ne2000_reset_ioport_read(s, addr);
661 } else {
662 val = ((uint64_t)1 << (size * 8)) - 1;
1ec4e1dd 663 }
cd4479a9
PMD
664 trace_ne2000_read(addr, val);
665
666 return val;
1ec4e1dd
AK
667}
668
a8170e5e 669static void ne2000_write(void *opaque, hwaddr addr,
1ec4e1dd 670 uint64_t data, unsigned size)
69b91039 671{
1ec4e1dd
AK
672 NE2000State *s = opaque;
673
cd4479a9 674 trace_ne2000_write(addr, data);
1ec4e1dd 675 if (addr < 0x10 && size == 1) {
0ed8b6f6 676 ne2000_ioport_write(s, addr, data);
1ec4e1dd
AK
677 } else if (addr == 0x10) {
678 if (size <= 2) {
0ed8b6f6 679 ne2000_asic_ioport_write(s, addr, data);
1ec4e1dd 680 } else {
0ed8b6f6 681 ne2000_asic_ioport_writel(s, addr, data);
1ec4e1dd
AK
682 }
683 } else if (addr == 0x1f && size == 1) {
0ed8b6f6 684 ne2000_reset_ioport_write(s, addr, data);
1ec4e1dd
AK
685 }
686}
69b91039 687
1ec4e1dd
AK
688static const MemoryRegionOps ne2000_ops = {
689 .read = ne2000_read,
690 .write = ne2000_write,
45d883dc 691 .endianness = DEVICE_LITTLE_ENDIAN,
1ec4e1dd 692};
69b91039 693
1ec4e1dd
AK
694/***********************************************************/
695/* PCI NE2000 definitions */
69b91039 696
dcb117bf 697void ne2000_setup_io(NE2000State *s, DeviceState *dev, unsigned size)
1ec4e1dd 698{
dcb117bf 699 memory_region_init_io(&s->io, OBJECT(dev), &ne2000_ops, s, "ne2000", size);
69b91039 700}