]> git.proxmox.com Git - mirror_qemu.git/blame - linux-user/elfload.c
x86/cpu: use FeatureWordArray to define filtered_features
[mirror_qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
30ab9ef2 6#include <sys/shm.h>
31e31b8a 7
3ef693a0 8#include "qemu.h"
76cad711 9#include "disas/disas.h"
f348b6d1 10#include "qemu/path.h"
c6a2377f 11#include "qemu/guest-random.h"
31e31b8a 12
e58ffeb3 13#ifdef _ARCH_PPC64
a6cc84f4 14#undef ARCH_DLINFO
15#undef ELF_PLATFORM
16#undef ELF_HWCAP
ad6919dc 17#undef ELF_HWCAP2
a6cc84f4 18#undef ELF_CLASS
19#undef ELF_DATA
20#undef ELF_ARCH
21#endif
22
edf8e2af
MW
23#define ELF_OSABI ELFOSABI_SYSV
24
cb33da57
BS
25/* from personality.h */
26
27/*
28 * Flags for bug emulation.
29 *
30 * These occupy the top three bytes.
31 */
32enum {
d97ef72e
RH
33 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
34 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
35 descriptors (signal handling) */
36 MMAP_PAGE_ZERO = 0x0100000,
37 ADDR_COMPAT_LAYOUT = 0x0200000,
38 READ_IMPLIES_EXEC = 0x0400000,
39 ADDR_LIMIT_32BIT = 0x0800000,
40 SHORT_INODE = 0x1000000,
41 WHOLE_SECONDS = 0x2000000,
42 STICKY_TIMEOUTS = 0x4000000,
43 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
44};
45
46/*
47 * Personality types.
48 *
49 * These go in the low byte. Avoid using the top bit, it will
50 * conflict with error returns.
51 */
52enum {
d97ef72e
RH
53 PER_LINUX = 0x0000,
54 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
55 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
56 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
57 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
58 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
59 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
60 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
61 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
62 PER_BSD = 0x0006,
63 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
64 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
65 PER_LINUX32 = 0x0008,
66 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
67 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
68 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
69 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
70 PER_RISCOS = 0x000c,
71 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
72 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
73 PER_OSF4 = 0x000f, /* OSF/1 v4 */
74 PER_HPUX = 0x0010,
75 PER_MASK = 0x00ff,
cb33da57
BS
76};
77
78/*
79 * Return the base personality without flags.
80 */
d97ef72e 81#define personality(pers) (pers & PER_MASK)
cb33da57 82
3cb10cfa
CL
83int info_is_fdpic(struct image_info *info)
84{
85 return info->personality == PER_LINUX_FDPIC;
86}
87
83fb7adf
FB
88/* this flag is uneffective under linux too, should be deleted */
89#ifndef MAP_DENYWRITE
90#define MAP_DENYWRITE 0
91#endif
92
93/* should probably go in elf.h */
94#ifndef ELIBBAD
95#define ELIBBAD 80
96#endif
97
28490231
RH
98#ifdef TARGET_WORDS_BIGENDIAN
99#define ELF_DATA ELFDATA2MSB
100#else
101#define ELF_DATA ELFDATA2LSB
102#endif
103
a29f998d 104#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
105typedef abi_ullong target_elf_greg_t;
106#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
107#else
108typedef abi_ulong target_elf_greg_t;
109#define tswapreg(ptr) tswapal(ptr)
110#endif
111
21e807fa 112#ifdef USE_UID16
1ddd592f
PB
113typedef abi_ushort target_uid_t;
114typedef abi_ushort target_gid_t;
21e807fa 115#else
f8fd4fc4
PB
116typedef abi_uint target_uid_t;
117typedef abi_uint target_gid_t;
21e807fa 118#endif
f8fd4fc4 119typedef abi_int target_pid_t;
21e807fa 120
30ac07d4
FB
121#ifdef TARGET_I386
122
15338fd7
FB
123#define ELF_PLATFORM get_elf_platform()
124
125static const char *get_elf_platform(void)
126{
127 static char elf_platform[] = "i386";
a2247f8e 128 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
15338fd7
FB
129 if (family > 6)
130 family = 6;
131 if (family >= 3)
132 elf_platform[1] = '0' + family;
133 return elf_platform;
134}
135
136#define ELF_HWCAP get_elf_hwcap()
137
138static uint32_t get_elf_hwcap(void)
139{
a2247f8e
AF
140 X86CPU *cpu = X86_CPU(thread_cpu);
141
142 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
143}
144
84409ddb
JM
145#ifdef TARGET_X86_64
146#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
147
148#define ELF_CLASS ELFCLASS64
84409ddb
JM
149#define ELF_ARCH EM_X86_64
150
151static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
152{
153 regs->rax = 0;
154 regs->rsp = infop->start_stack;
155 regs->rip = infop->entry;
156}
157
9edc5d79 158#define ELF_NREG 27
c227f099 159typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
160
161/*
162 * Note that ELF_NREG should be 29 as there should be place for
163 * TRAPNO and ERR "registers" as well but linux doesn't dump
164 * those.
165 *
166 * See linux kernel: arch/x86/include/asm/elf.h
167 */
05390248 168static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
169{
170 (*regs)[0] = env->regs[15];
171 (*regs)[1] = env->regs[14];
172 (*regs)[2] = env->regs[13];
173 (*regs)[3] = env->regs[12];
174 (*regs)[4] = env->regs[R_EBP];
175 (*regs)[5] = env->regs[R_EBX];
176 (*regs)[6] = env->regs[11];
177 (*regs)[7] = env->regs[10];
178 (*regs)[8] = env->regs[9];
179 (*regs)[9] = env->regs[8];
180 (*regs)[10] = env->regs[R_EAX];
181 (*regs)[11] = env->regs[R_ECX];
182 (*regs)[12] = env->regs[R_EDX];
183 (*regs)[13] = env->regs[R_ESI];
184 (*regs)[14] = env->regs[R_EDI];
185 (*regs)[15] = env->regs[R_EAX]; /* XXX */
186 (*regs)[16] = env->eip;
187 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
188 (*regs)[18] = env->eflags;
189 (*regs)[19] = env->regs[R_ESP];
190 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
191 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
192 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
193 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
194 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
195 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
196 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
197}
198
84409ddb
JM
199#else
200
30ac07d4
FB
201#define ELF_START_MMAP 0x80000000
202
30ac07d4
FB
203/*
204 * This is used to ensure we don't load something for the wrong architecture.
205 */
206#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
207
208/*
209 * These are used to set parameters in the core dumps.
210 */
d97ef72e 211#define ELF_CLASS ELFCLASS32
d97ef72e 212#define ELF_ARCH EM_386
30ac07d4 213
d97ef72e
RH
214static inline void init_thread(struct target_pt_regs *regs,
215 struct image_info *infop)
b346ff46
FB
216{
217 regs->esp = infop->start_stack;
218 regs->eip = infop->entry;
e5fe0c52
PB
219
220 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
221 starts %edx contains a pointer to a function which might be
222 registered using `atexit'. This provides a mean for the
223 dynamic linker to call DT_FINI functions for shared libraries
224 that have been loaded before the code runs.
225
226 A value of 0 tells we have no such handler. */
227 regs->edx = 0;
b346ff46 228}
9edc5d79 229
9edc5d79 230#define ELF_NREG 17
c227f099 231typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
232
233/*
234 * Note that ELF_NREG should be 19 as there should be place for
235 * TRAPNO and ERR "registers" as well but linux doesn't dump
236 * those.
237 *
238 * See linux kernel: arch/x86/include/asm/elf.h
239 */
05390248 240static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
241{
242 (*regs)[0] = env->regs[R_EBX];
243 (*regs)[1] = env->regs[R_ECX];
244 (*regs)[2] = env->regs[R_EDX];
245 (*regs)[3] = env->regs[R_ESI];
246 (*regs)[4] = env->regs[R_EDI];
247 (*regs)[5] = env->regs[R_EBP];
248 (*regs)[6] = env->regs[R_EAX];
249 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
250 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
251 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
252 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
253 (*regs)[11] = env->regs[R_EAX]; /* XXX */
254 (*regs)[12] = env->eip;
255 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
256 (*regs)[14] = env->eflags;
257 (*regs)[15] = env->regs[R_ESP];
258 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
259}
84409ddb 260#endif
b346ff46 261
9edc5d79 262#define USE_ELF_CORE_DUMP
d97ef72e 263#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
264
265#endif
266
267#ifdef TARGET_ARM
268
24e76ff0
PM
269#ifndef TARGET_AARCH64
270/* 32 bit ARM definitions */
271
b346ff46
FB
272#define ELF_START_MMAP 0x80000000
273
b597c3f7 274#define ELF_ARCH EM_ARM
d97ef72e 275#define ELF_CLASS ELFCLASS32
b346ff46 276
d97ef72e
RH
277static inline void init_thread(struct target_pt_regs *regs,
278 struct image_info *infop)
b346ff46 279{
992f48a0 280 abi_long stack = infop->start_stack;
b346ff46 281 memset(regs, 0, sizeof(*regs));
99033cae 282
167e4cdc
PM
283 regs->uregs[16] = ARM_CPU_MODE_USR;
284 if (infop->entry & 1) {
285 regs->uregs[16] |= CPSR_T;
286 }
287 regs->uregs[15] = infop->entry & 0xfffffffe;
288 regs->uregs[13] = infop->start_stack;
2f619698 289 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
290 get_user_ual(regs->uregs[2], stack + 8); /* envp */
291 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 292 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 293 regs->uregs[0] = 0;
e5fe0c52 294 /* For uClinux PIC binaries. */
863cf0b7 295 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 296 regs->uregs[10] = infop->start_data;
3cb10cfa
CL
297
298 /* Support ARM FDPIC. */
299 if (info_is_fdpic(infop)) {
300 /* As described in the ABI document, r7 points to the loadmap info
301 * prepared by the kernel. If an interpreter is needed, r8 points
302 * to the interpreter loadmap and r9 points to the interpreter
303 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
304 * r9 points to the main program PT_DYNAMIC info.
305 */
306 regs->uregs[7] = infop->loadmap_addr;
307 if (infop->interpreter_loadmap_addr) {
308 /* Executable is dynamically loaded. */
309 regs->uregs[8] = infop->interpreter_loadmap_addr;
310 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
311 } else {
312 regs->uregs[8] = 0;
313 regs->uregs[9] = infop->pt_dynamic_addr;
314 }
315 }
b346ff46
FB
316}
317
edf8e2af 318#define ELF_NREG 18
c227f099 319typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 320
05390248 321static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 322{
86cd7b2d
PB
323 (*regs)[0] = tswapreg(env->regs[0]);
324 (*regs)[1] = tswapreg(env->regs[1]);
325 (*regs)[2] = tswapreg(env->regs[2]);
326 (*regs)[3] = tswapreg(env->regs[3]);
327 (*regs)[4] = tswapreg(env->regs[4]);
328 (*regs)[5] = tswapreg(env->regs[5]);
329 (*regs)[6] = tswapreg(env->regs[6]);
330 (*regs)[7] = tswapreg(env->regs[7]);
331 (*regs)[8] = tswapreg(env->regs[8]);
332 (*regs)[9] = tswapreg(env->regs[9]);
333 (*regs)[10] = tswapreg(env->regs[10]);
334 (*regs)[11] = tswapreg(env->regs[11]);
335 (*regs)[12] = tswapreg(env->regs[12]);
336 (*regs)[13] = tswapreg(env->regs[13]);
337 (*regs)[14] = tswapreg(env->regs[14]);
338 (*regs)[15] = tswapreg(env->regs[15]);
339
340 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
341 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
342}
343
30ac07d4 344#define USE_ELF_CORE_DUMP
d97ef72e 345#define ELF_EXEC_PAGESIZE 4096
30ac07d4 346
afce2927
FB
347enum
348{
d97ef72e
RH
349 ARM_HWCAP_ARM_SWP = 1 << 0,
350 ARM_HWCAP_ARM_HALF = 1 << 1,
351 ARM_HWCAP_ARM_THUMB = 1 << 2,
352 ARM_HWCAP_ARM_26BIT = 1 << 3,
353 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
354 ARM_HWCAP_ARM_FPA = 1 << 5,
355 ARM_HWCAP_ARM_VFP = 1 << 6,
356 ARM_HWCAP_ARM_EDSP = 1 << 7,
357 ARM_HWCAP_ARM_JAVA = 1 << 8,
358 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
359 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
360 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
361 ARM_HWCAP_ARM_NEON = 1 << 12,
362 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
363 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
364 ARM_HWCAP_ARM_TLS = 1 << 15,
365 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
366 ARM_HWCAP_ARM_IDIVA = 1 << 17,
367 ARM_HWCAP_ARM_IDIVT = 1 << 18,
368 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
369 ARM_HWCAP_ARM_LPAE = 1 << 20,
370 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
371};
372
ad6919dc
PM
373enum {
374 ARM_HWCAP2_ARM_AES = 1 << 0,
375 ARM_HWCAP2_ARM_PMULL = 1 << 1,
376 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
377 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
378 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
379};
380
6b1275ff
PM
381/* The commpage only exists for 32 bit kernels */
382
806d1021
MI
383/* Return 1 if the proposed guest space is suitable for the guest.
384 * Return 0 if the proposed guest space isn't suitable, but another
385 * address space should be tried.
386 * Return -1 if there is no way the proposed guest space can be
387 * valid regardless of the base.
388 * The guest code may leave a page mapped and populate it if the
389 * address is suitable.
390 */
c3637eaf
LS
391static int init_guest_commpage(unsigned long guest_base,
392 unsigned long guest_size)
97cc7560
DDAG
393{
394 unsigned long real_start, test_page_addr;
395
396 /* We need to check that we can force a fault on access to the
397 * commpage at 0xffff0fxx
398 */
399 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
806d1021
MI
400
401 /* If the commpage lies within the already allocated guest space,
402 * then there is no way we can allocate it.
955e304f
LS
403 *
404 * You may be thinking that that this check is redundant because
405 * we already validated the guest size against MAX_RESERVED_VA;
406 * but if qemu_host_page_mask is unusually large, then
407 * test_page_addr may be lower.
806d1021
MI
408 */
409 if (test_page_addr >= guest_base
e568f9df 410 && test_page_addr < (guest_base + guest_size)) {
806d1021
MI
411 return -1;
412 }
413
97cc7560
DDAG
414 /* Note it needs to be writeable to let us initialise it */
415 real_start = (unsigned long)
416 mmap((void *)test_page_addr, qemu_host_page_size,
417 PROT_READ | PROT_WRITE,
418 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
419
420 /* If we can't map it then try another address */
421 if (real_start == -1ul) {
422 return 0;
423 }
424
425 if (real_start != test_page_addr) {
426 /* OS didn't put the page where we asked - unmap and reject */
427 munmap((void *)real_start, qemu_host_page_size);
428 return 0;
429 }
430
431 /* Leave the page mapped
432 * Populate it (mmap should have left it all 0'd)
433 */
434
435 /* Kernel helper versions */
436 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
437
438 /* Now it's populated make it RO */
439 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
440 perror("Protecting guest commpage");
441 exit(-1);
442 }
443
444 return 1; /* All good */
445}
adf050b1
BC
446
447#define ELF_HWCAP get_elf_hwcap()
ad6919dc 448#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
449
450static uint32_t get_elf_hwcap(void)
451{
a2247f8e 452 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
453 uint32_t hwcaps = 0;
454
455 hwcaps |= ARM_HWCAP_ARM_SWP;
456 hwcaps |= ARM_HWCAP_ARM_HALF;
457 hwcaps |= ARM_HWCAP_ARM_THUMB;
458 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
459
460 /* probe for the extra features */
461#define GET_FEATURE(feat, hwcap) \
a2247f8e 462 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
962fcbf2
RH
463
464#define GET_FEATURE_ID(feat, hwcap) \
465 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
466
24682654
PM
467 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
468 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
469 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
470 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
471 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
472 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
473 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
24682654
PM
474 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
475 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
7e0cf8b4
RH
476 GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA);
477 GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT);
24682654
PM
478 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
479 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
480 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
481 * to our VFP_FP16 feature bit.
482 */
483 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
484 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
adf050b1
BC
485
486 return hwcaps;
487}
afce2927 488
ad6919dc
PM
489static uint32_t get_elf_hwcap2(void)
490{
491 ARMCPU *cpu = ARM_CPU(thread_cpu);
492 uint32_t hwcaps = 0;
493
962fcbf2
RH
494 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
495 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
496 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
497 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
498 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
ad6919dc
PM
499 return hwcaps;
500}
501
502#undef GET_FEATURE
962fcbf2 503#undef GET_FEATURE_ID
ad6919dc 504
13ec4ec3
RH
505#define ELF_PLATFORM get_elf_platform()
506
507static const char *get_elf_platform(void)
508{
509 CPUARMState *env = thread_cpu->env_ptr;
510
511#ifdef TARGET_WORDS_BIGENDIAN
512# define END "b"
513#else
514# define END "l"
515#endif
516
517 if (arm_feature(env, ARM_FEATURE_V8)) {
518 return "v8" END;
519 } else if (arm_feature(env, ARM_FEATURE_V7)) {
520 if (arm_feature(env, ARM_FEATURE_M)) {
521 return "v7m" END;
522 } else {
523 return "v7" END;
524 }
525 } else if (arm_feature(env, ARM_FEATURE_V6)) {
526 return "v6" END;
527 } else if (arm_feature(env, ARM_FEATURE_V5)) {
528 return "v5" END;
529 } else {
530 return "v4" END;
531 }
532
533#undef END
534}
535
24e76ff0
PM
536#else
537/* 64 bit ARM definitions */
538#define ELF_START_MMAP 0x80000000
539
b597c3f7 540#define ELF_ARCH EM_AARCH64
24e76ff0 541#define ELF_CLASS ELFCLASS64
e20e3ec9
RH
542#ifdef TARGET_WORDS_BIGENDIAN
543# define ELF_PLATFORM "aarch64_be"
544#else
545# define ELF_PLATFORM "aarch64"
546#endif
24e76ff0
PM
547
548static inline void init_thread(struct target_pt_regs *regs,
549 struct image_info *infop)
550{
551 abi_long stack = infop->start_stack;
552 memset(regs, 0, sizeof(*regs));
553
554 regs->pc = infop->entry & ~0x3ULL;
555 regs->sp = stack;
556}
557
558#define ELF_NREG 34
559typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
560
561static void elf_core_copy_regs(target_elf_gregset_t *regs,
562 const CPUARMState *env)
563{
564 int i;
565
566 for (i = 0; i < 32; i++) {
567 (*regs)[i] = tswapreg(env->xregs[i]);
568 }
569 (*regs)[32] = tswapreg(env->pc);
570 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
571}
572
573#define USE_ELF_CORE_DUMP
574#define ELF_EXEC_PAGESIZE 4096
575
576enum {
577 ARM_HWCAP_A64_FP = 1 << 0,
578 ARM_HWCAP_A64_ASIMD = 1 << 1,
579 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
580 ARM_HWCAP_A64_AES = 1 << 3,
581 ARM_HWCAP_A64_PMULL = 1 << 4,
582 ARM_HWCAP_A64_SHA1 = 1 << 5,
583 ARM_HWCAP_A64_SHA2 = 1 << 6,
584 ARM_HWCAP_A64_CRC32 = 1 << 7,
955f56d4
AB
585 ARM_HWCAP_A64_ATOMICS = 1 << 8,
586 ARM_HWCAP_A64_FPHP = 1 << 9,
587 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
588 ARM_HWCAP_A64_CPUID = 1 << 11,
589 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
590 ARM_HWCAP_A64_JSCVT = 1 << 13,
591 ARM_HWCAP_A64_FCMA = 1 << 14,
592 ARM_HWCAP_A64_LRCPC = 1 << 15,
593 ARM_HWCAP_A64_DCPOP = 1 << 16,
594 ARM_HWCAP_A64_SHA3 = 1 << 17,
595 ARM_HWCAP_A64_SM3 = 1 << 18,
596 ARM_HWCAP_A64_SM4 = 1 << 19,
597 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
598 ARM_HWCAP_A64_SHA512 = 1 << 21,
599 ARM_HWCAP_A64_SVE = 1 << 22,
0083a1fa
RH
600 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
601 ARM_HWCAP_A64_DIT = 1 << 24,
602 ARM_HWCAP_A64_USCAT = 1 << 25,
603 ARM_HWCAP_A64_ILRCPC = 1 << 26,
604 ARM_HWCAP_A64_FLAGM = 1 << 27,
605 ARM_HWCAP_A64_SSBS = 1 << 28,
606 ARM_HWCAP_A64_SB = 1 << 29,
607 ARM_HWCAP_A64_PACA = 1 << 30,
608 ARM_HWCAP_A64_PACG = 1UL << 31,
24e76ff0
PM
609};
610
611#define ELF_HWCAP get_elf_hwcap()
612
613static uint32_t get_elf_hwcap(void)
614{
615 ARMCPU *cpu = ARM_CPU(thread_cpu);
616 uint32_t hwcaps = 0;
617
618 hwcaps |= ARM_HWCAP_A64_FP;
619 hwcaps |= ARM_HWCAP_A64_ASIMD;
37020ff1 620 hwcaps |= ARM_HWCAP_A64_CPUID;
24e76ff0
PM
621
622 /* probe for the extra features */
962fcbf2
RH
623#define GET_FEATURE_ID(feat, hwcap) \
624 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
625
626 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
627 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
628 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
629 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
630 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
631 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
632 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
633 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
634 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
5763190f 635 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
962fcbf2
RH
636 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
637 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
638 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
639 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
cd208a1c 640 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
29d26ab2 641 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
1c9af3a9
RH
642 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
643 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
9888bd1e 644 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
b89d9c98 645 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
962fcbf2 646
962fcbf2 647#undef GET_FEATURE_ID
24e76ff0
PM
648
649 return hwcaps;
650}
651
652#endif /* not TARGET_AARCH64 */
653#endif /* TARGET_ARM */
30ac07d4 654
853d6f7a 655#ifdef TARGET_SPARC
a315a145 656#ifdef TARGET_SPARC64
853d6f7a
FB
657
658#define ELF_START_MMAP 0x80000000
cf973e46
AT
659#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
660 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 661#ifndef TARGET_ABI32
cb33da57 662#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
663#else
664#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
665#endif
853d6f7a 666
a315a145 667#define ELF_CLASS ELFCLASS64
5ef54116
FB
668#define ELF_ARCH EM_SPARCV9
669
d97ef72e 670#define STACK_BIAS 2047
a315a145 671
d97ef72e
RH
672static inline void init_thread(struct target_pt_regs *regs,
673 struct image_info *infop)
a315a145 674{
992f48a0 675#ifndef TARGET_ABI32
a315a145 676 regs->tstate = 0;
992f48a0 677#endif
a315a145
FB
678 regs->pc = infop->entry;
679 regs->npc = regs->pc + 4;
680 regs->y = 0;
992f48a0
BS
681#ifdef TARGET_ABI32
682 regs->u_regs[14] = infop->start_stack - 16 * 4;
683#else
cb33da57
BS
684 if (personality(infop->personality) == PER_LINUX32)
685 regs->u_regs[14] = infop->start_stack - 16 * 4;
686 else
687 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 688#endif
a315a145
FB
689}
690
691#else
692#define ELF_START_MMAP 0x80000000
cf973e46
AT
693#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
694 | HWCAP_SPARC_MULDIV)
a315a145 695
853d6f7a 696#define ELF_CLASS ELFCLASS32
853d6f7a
FB
697#define ELF_ARCH EM_SPARC
698
d97ef72e
RH
699static inline void init_thread(struct target_pt_regs *regs,
700 struct image_info *infop)
853d6f7a 701{
f5155289
FB
702 regs->psr = 0;
703 regs->pc = infop->entry;
704 regs->npc = regs->pc + 4;
705 regs->y = 0;
706 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
707}
708
a315a145 709#endif
853d6f7a
FB
710#endif
711
67867308
FB
712#ifdef TARGET_PPC
713
4ecd4d16 714#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
715#define ELF_START_MMAP 0x80000000
716
e85e7c6e 717#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
718
719#define elf_check_arch(x) ( (x) == EM_PPC64 )
720
d97ef72e 721#define ELF_CLASS ELFCLASS64
84409ddb
JM
722
723#else
724
d97ef72e 725#define ELF_CLASS ELFCLASS32
84409ddb
JM
726
727#endif
728
d97ef72e 729#define ELF_ARCH EM_PPC
67867308 730
df84e4f3
NF
731/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
732 See arch/powerpc/include/asm/cputable.h. */
733enum {
3efa9a67 734 QEMU_PPC_FEATURE_32 = 0x80000000,
735 QEMU_PPC_FEATURE_64 = 0x40000000,
736 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
737 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
738 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
739 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
740 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
741 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
742 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
743 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
744 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
745 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
746 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
747 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
748 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
749 QEMU_PPC_FEATURE_CELL = 0x00010000,
750 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
751 QEMU_PPC_FEATURE_SMT = 0x00004000,
752 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
753 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
754 QEMU_PPC_FEATURE_PA6T = 0x00000800,
755 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
756 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
757 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
758 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
759 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
760
761 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
762 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
763
764 /* Feature definitions in AT_HWCAP2. */
765 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
766 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
767 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
768 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
769 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
770 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
24c373ec
LV
771 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
772 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
be0c46d4 773 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
24c373ec
LV
774 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
775 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
776 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
777 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
df84e4f3
NF
778};
779
780#define ELF_HWCAP get_elf_hwcap()
781
782static uint32_t get_elf_hwcap(void)
783{
a2247f8e 784 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
785 uint32_t features = 0;
786
787 /* We don't have to be terribly complete here; the high points are
788 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 789#define GET_FEATURE(flag, feature) \
a2247f8e 790 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
58eb5308
MW
791#define GET_FEATURE2(flags, feature) \
792 do { \
793 if ((cpu->env.insns_flags2 & flags) == flags) { \
794 features |= feature; \
795 } \
796 } while (0)
3efa9a67 797 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
798 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
799 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
800 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
801 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
802 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
803 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
804 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
805 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
806 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
807 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
808 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
809 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 810#undef GET_FEATURE
0e019746 811#undef GET_FEATURE2
df84e4f3
NF
812
813 return features;
814}
815
a60438dd
TM
816#define ELF_HWCAP2 get_elf_hwcap2()
817
818static uint32_t get_elf_hwcap2(void)
819{
820 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
821 uint32_t features = 0;
822
823#define GET_FEATURE(flag, feature) \
824 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
825#define GET_FEATURE2(flag, feature) \
826 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
827
828 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
829 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
830 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
24c373ec
LV
831 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
832 QEMU_PPC_FEATURE2_VEC_CRYPTO);
833 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
834 QEMU_PPC_FEATURE2_DARN);
a60438dd
TM
835
836#undef GET_FEATURE
837#undef GET_FEATURE2
838
839 return features;
840}
841
f5155289
FB
842/*
843 * The requirements here are:
844 * - keep the final alignment of sp (sp & 0xf)
845 * - make sure the 32-bit value at the first 16 byte aligned position of
846 * AUXV is greater than 16 for glibc compatibility.
847 * AT_IGNOREPPC is used for that.
848 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
849 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
850 */
0bccf03d 851#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
852#define ARCH_DLINFO \
853 do { \
623e250a 854 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
d97ef72e 855 /* \
82991bed
PM
856 * Handle glibc compatibility: these magic entries must \
857 * be at the lowest addresses in the final auxv. \
d97ef72e
RH
858 */ \
859 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
860 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
82991bed
PM
861 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
862 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
863 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
d97ef72e 864 } while (0)
f5155289 865
67867308
FB
866static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
867{
67867308 868 _regs->gpr[1] = infop->start_stack;
e85e7c6e 869#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
d90b94cd 870 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
871 uint64_t val;
872 get_user_u64(val, infop->entry + 8);
873 _regs->gpr[2] = val + infop->load_bias;
874 get_user_u64(val, infop->entry);
875 infop->entry = val + infop->load_bias;
d90b94cd
DK
876 } else {
877 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
878 }
84409ddb 879#endif
67867308
FB
880 _regs->nip = infop->entry;
881}
882
e2f3e741
NF
883/* See linux kernel: arch/powerpc/include/asm/elf.h. */
884#define ELF_NREG 48
885typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
886
05390248 887static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
888{
889 int i;
890 target_ulong ccr = 0;
891
892 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 893 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
894 }
895
86cd7b2d
PB
896 (*regs)[32] = tswapreg(env->nip);
897 (*regs)[33] = tswapreg(env->msr);
898 (*regs)[35] = tswapreg(env->ctr);
899 (*regs)[36] = tswapreg(env->lr);
900 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
901
902 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
903 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
904 }
86cd7b2d 905 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
906}
907
908#define USE_ELF_CORE_DUMP
d97ef72e 909#define ELF_EXEC_PAGESIZE 4096
67867308
FB
910
911#endif
912
048f6b4d
FB
913#ifdef TARGET_MIPS
914
915#define ELF_START_MMAP 0x80000000
916
388bb21a
TS
917#ifdef TARGET_MIPS64
918#define ELF_CLASS ELFCLASS64
919#else
048f6b4d 920#define ELF_CLASS ELFCLASS32
388bb21a 921#endif
048f6b4d
FB
922#define ELF_ARCH EM_MIPS
923
f72541f3
AM
924#define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
925
d97ef72e
RH
926static inline void init_thread(struct target_pt_regs *regs,
927 struct image_info *infop)
048f6b4d 928{
623a930e 929 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
930 regs->cp0_epc = infop->entry;
931 regs->regs[29] = infop->start_stack;
932}
933
51e52606
NF
934/* See linux kernel: arch/mips/include/asm/elf.h. */
935#define ELF_NREG 45
936typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
937
938/* See linux kernel: arch/mips/include/asm/reg.h. */
939enum {
940#ifdef TARGET_MIPS64
941 TARGET_EF_R0 = 0,
942#else
943 TARGET_EF_R0 = 6,
944#endif
945 TARGET_EF_R26 = TARGET_EF_R0 + 26,
946 TARGET_EF_R27 = TARGET_EF_R0 + 27,
947 TARGET_EF_LO = TARGET_EF_R0 + 32,
948 TARGET_EF_HI = TARGET_EF_R0 + 33,
949 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
950 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
951 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
952 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
953};
954
955/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 956static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
957{
958 int i;
959
960 for (i = 0; i < TARGET_EF_R0; i++) {
961 (*regs)[i] = 0;
962 }
963 (*regs)[TARGET_EF_R0] = 0;
964
965 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 966 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
967 }
968
969 (*regs)[TARGET_EF_R26] = 0;
970 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
971 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
972 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
973 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
974 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
975 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
976 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
977}
978
979#define USE_ELF_CORE_DUMP
388bb21a
TS
980#define ELF_EXEC_PAGESIZE 4096
981
46a1ee4f
JC
982/* See arch/mips/include/uapi/asm/hwcap.h. */
983enum {
984 HWCAP_MIPS_R6 = (1 << 0),
985 HWCAP_MIPS_MSA = (1 << 1),
986};
987
988#define ELF_HWCAP get_elf_hwcap()
989
990static uint32_t get_elf_hwcap(void)
991{
992 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
993 uint32_t hwcaps = 0;
994
995#define GET_FEATURE(flag, hwcap) \
996 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
997
998 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
999 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
1000
1001#undef GET_FEATURE
1002
1003 return hwcaps;
1004}
1005
048f6b4d
FB
1006#endif /* TARGET_MIPS */
1007
b779e29e
EI
1008#ifdef TARGET_MICROBLAZE
1009
1010#define ELF_START_MMAP 0x80000000
1011
0d5d4699 1012#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
1013
1014#define ELF_CLASS ELFCLASS32
0d5d4699 1015#define ELF_ARCH EM_MICROBLAZE
b779e29e 1016
d97ef72e
RH
1017static inline void init_thread(struct target_pt_regs *regs,
1018 struct image_info *infop)
b779e29e
EI
1019{
1020 regs->pc = infop->entry;
1021 regs->r1 = infop->start_stack;
1022
1023}
1024
b779e29e
EI
1025#define ELF_EXEC_PAGESIZE 4096
1026
e4cbd44d
EI
1027#define USE_ELF_CORE_DUMP
1028#define ELF_NREG 38
1029typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1030
1031/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 1032static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
1033{
1034 int i, pos = 0;
1035
1036 for (i = 0; i < 32; i++) {
86cd7b2d 1037 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
1038 }
1039
1040 for (i = 0; i < 6; i++) {
86cd7b2d 1041 (*regs)[pos++] = tswapreg(env->sregs[i]);
e4cbd44d
EI
1042 }
1043}
1044
b779e29e
EI
1045#endif /* TARGET_MICROBLAZE */
1046
a0a839b6
MV
1047#ifdef TARGET_NIOS2
1048
1049#define ELF_START_MMAP 0x80000000
1050
1051#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1052
1053#define ELF_CLASS ELFCLASS32
1054#define ELF_ARCH EM_ALTERA_NIOS2
1055
1056static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1057{
1058 regs->ea = infop->entry;
1059 regs->sp = infop->start_stack;
1060 regs->estatus = 0x3;
1061}
1062
1063#define ELF_EXEC_PAGESIZE 4096
1064
1065#define USE_ELF_CORE_DUMP
1066#define ELF_NREG 49
1067typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1068
1069/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1070static void elf_core_copy_regs(target_elf_gregset_t *regs,
1071 const CPUNios2State *env)
1072{
1073 int i;
1074
1075 (*regs)[0] = -1;
1076 for (i = 1; i < 8; i++) /* r0-r7 */
1077 (*regs)[i] = tswapreg(env->regs[i + 7]);
1078
1079 for (i = 8; i < 16; i++) /* r8-r15 */
1080 (*regs)[i] = tswapreg(env->regs[i - 8]);
1081
1082 for (i = 16; i < 24; i++) /* r16-r23 */
1083 (*regs)[i] = tswapreg(env->regs[i + 7]);
1084 (*regs)[24] = -1; /* R_ET */
1085 (*regs)[25] = -1; /* R_BT */
1086 (*regs)[26] = tswapreg(env->regs[R_GP]);
1087 (*regs)[27] = tswapreg(env->regs[R_SP]);
1088 (*regs)[28] = tswapreg(env->regs[R_FP]);
1089 (*regs)[29] = tswapreg(env->regs[R_EA]);
1090 (*regs)[30] = -1; /* R_SSTATUS */
1091 (*regs)[31] = tswapreg(env->regs[R_RA]);
1092
1093 (*regs)[32] = tswapreg(env->regs[R_PC]);
1094
1095 (*regs)[33] = -1; /* R_STATUS */
1096 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1097
1098 for (i = 35; i < 49; i++) /* ... */
1099 (*regs)[i] = -1;
1100}
1101
1102#endif /* TARGET_NIOS2 */
1103
d962783e
JL
1104#ifdef TARGET_OPENRISC
1105
1106#define ELF_START_MMAP 0x08000000
1107
d962783e
JL
1108#define ELF_ARCH EM_OPENRISC
1109#define ELF_CLASS ELFCLASS32
1110#define ELF_DATA ELFDATA2MSB
1111
1112static inline void init_thread(struct target_pt_regs *regs,
1113 struct image_info *infop)
1114{
1115 regs->pc = infop->entry;
1116 regs->gpr[1] = infop->start_stack;
1117}
1118
1119#define USE_ELF_CORE_DUMP
1120#define ELF_EXEC_PAGESIZE 8192
1121
1122/* See linux kernel arch/openrisc/include/asm/elf.h. */
1123#define ELF_NREG 34 /* gprs and pc, sr */
1124typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1125
1126static void elf_core_copy_regs(target_elf_gregset_t *regs,
1127 const CPUOpenRISCState *env)
1128{
1129 int i;
1130
1131 for (i = 0; i < 32; i++) {
d89e71e8 1132 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
d962783e 1133 }
86cd7b2d 1134 (*regs)[32] = tswapreg(env->pc);
84775c43 1135 (*regs)[33] = tswapreg(cpu_get_sr(env));
d962783e
JL
1136}
1137#define ELF_HWCAP 0
1138#define ELF_PLATFORM NULL
1139
1140#endif /* TARGET_OPENRISC */
1141
fdf9b3e8
FB
1142#ifdef TARGET_SH4
1143
1144#define ELF_START_MMAP 0x80000000
1145
fdf9b3e8 1146#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1147#define ELF_ARCH EM_SH
1148
d97ef72e
RH
1149static inline void init_thread(struct target_pt_regs *regs,
1150 struct image_info *infop)
fdf9b3e8 1151{
d97ef72e
RH
1152 /* Check other registers XXXXX */
1153 regs->pc = infop->entry;
1154 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1155}
1156
7631c97e
NF
1157/* See linux kernel: arch/sh/include/asm/elf.h. */
1158#define ELF_NREG 23
1159typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1160
1161/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1162enum {
1163 TARGET_REG_PC = 16,
1164 TARGET_REG_PR = 17,
1165 TARGET_REG_SR = 18,
1166 TARGET_REG_GBR = 19,
1167 TARGET_REG_MACH = 20,
1168 TARGET_REG_MACL = 21,
1169 TARGET_REG_SYSCALL = 22
1170};
1171
d97ef72e 1172static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1173 const CPUSH4State *env)
7631c97e
NF
1174{
1175 int i;
1176
1177 for (i = 0; i < 16; i++) {
72cd500b 1178 (*regs)[i] = tswapreg(env->gregs[i]);
7631c97e
NF
1179 }
1180
86cd7b2d
PB
1181 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1182 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1183 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1184 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1185 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1186 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1187 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1188}
1189
1190#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1191#define ELF_EXEC_PAGESIZE 4096
1192
e42fd944
RH
1193enum {
1194 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1195 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1196 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1197 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1198 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1199 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1200 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1201 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1202 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1203 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1204};
1205
1206#define ELF_HWCAP get_elf_hwcap()
1207
1208static uint32_t get_elf_hwcap(void)
1209{
1210 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1211 uint32_t hwcap = 0;
1212
1213 hwcap |= SH_CPU_HAS_FPU;
1214
1215 if (cpu->env.features & SH_FEATURE_SH4A) {
1216 hwcap |= SH_CPU_HAS_LLSC;
1217 }
1218
1219 return hwcap;
1220}
1221
fdf9b3e8
FB
1222#endif
1223
48733d19
TS
1224#ifdef TARGET_CRIS
1225
1226#define ELF_START_MMAP 0x80000000
1227
48733d19 1228#define ELF_CLASS ELFCLASS32
48733d19
TS
1229#define ELF_ARCH EM_CRIS
1230
d97ef72e
RH
1231static inline void init_thread(struct target_pt_regs *regs,
1232 struct image_info *infop)
48733d19 1233{
d97ef72e 1234 regs->erp = infop->entry;
48733d19
TS
1235}
1236
48733d19
TS
1237#define ELF_EXEC_PAGESIZE 8192
1238
1239#endif
1240
e6e5906b
PB
1241#ifdef TARGET_M68K
1242
1243#define ELF_START_MMAP 0x80000000
1244
d97ef72e 1245#define ELF_CLASS ELFCLASS32
d97ef72e 1246#define ELF_ARCH EM_68K
e6e5906b
PB
1247
1248/* ??? Does this need to do anything?
d97ef72e 1249 #define ELF_PLAT_INIT(_r) */
e6e5906b 1250
d97ef72e
RH
1251static inline void init_thread(struct target_pt_regs *regs,
1252 struct image_info *infop)
e6e5906b
PB
1253{
1254 regs->usp = infop->start_stack;
1255 regs->sr = 0;
1256 regs->pc = infop->entry;
1257}
1258
7a93cc55
NF
1259/* See linux kernel: arch/m68k/include/asm/elf.h. */
1260#define ELF_NREG 20
1261typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1262
05390248 1263static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1264{
86cd7b2d
PB
1265 (*regs)[0] = tswapreg(env->dregs[1]);
1266 (*regs)[1] = tswapreg(env->dregs[2]);
1267 (*regs)[2] = tswapreg(env->dregs[3]);
1268 (*regs)[3] = tswapreg(env->dregs[4]);
1269 (*regs)[4] = tswapreg(env->dregs[5]);
1270 (*regs)[5] = tswapreg(env->dregs[6]);
1271 (*regs)[6] = tswapreg(env->dregs[7]);
1272 (*regs)[7] = tswapreg(env->aregs[0]);
1273 (*regs)[8] = tswapreg(env->aregs[1]);
1274 (*regs)[9] = tswapreg(env->aregs[2]);
1275 (*regs)[10] = tswapreg(env->aregs[3]);
1276 (*regs)[11] = tswapreg(env->aregs[4]);
1277 (*regs)[12] = tswapreg(env->aregs[5]);
1278 (*regs)[13] = tswapreg(env->aregs[6]);
1279 (*regs)[14] = tswapreg(env->dregs[0]);
1280 (*regs)[15] = tswapreg(env->aregs[7]);
1281 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1282 (*regs)[17] = tswapreg(env->sr);
1283 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1284 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1285}
1286
1287#define USE_ELF_CORE_DUMP
d97ef72e 1288#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1289
1290#endif
1291
7a3148a9
JM
1292#ifdef TARGET_ALPHA
1293
1294#define ELF_START_MMAP (0x30000000000ULL)
1295
7a3148a9 1296#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1297#define ELF_ARCH EM_ALPHA
1298
d97ef72e
RH
1299static inline void init_thread(struct target_pt_regs *regs,
1300 struct image_info *infop)
7a3148a9
JM
1301{
1302 regs->pc = infop->entry;
1303 regs->ps = 8;
1304 regs->usp = infop->start_stack;
7a3148a9
JM
1305}
1306
7a3148a9
JM
1307#define ELF_EXEC_PAGESIZE 8192
1308
1309#endif /* TARGET_ALPHA */
1310
a4c075f1
UH
1311#ifdef TARGET_S390X
1312
1313#define ELF_START_MMAP (0x20000000000ULL)
1314
a4c075f1
UH
1315#define ELF_CLASS ELFCLASS64
1316#define ELF_DATA ELFDATA2MSB
1317#define ELF_ARCH EM_S390
1318
6d88baf1
DH
1319#include "elf.h"
1320
1321#define ELF_HWCAP get_elf_hwcap()
1322
1323#define GET_FEATURE(_feat, _hwcap) \
1324 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1325
1326static uint32_t get_elf_hwcap(void)
1327{
1328 /*
1329 * Let's assume we always have esan3 and zarch.
1330 * 31-bit processes can use 64-bit registers (high gprs).
1331 */
1332 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1333
1334 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1335 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1336 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1337 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1338 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1339 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1340 hwcap |= HWCAP_S390_ETF3EH;
1341 }
1342 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1343
1344 return hwcap;
1345}
1346
a4c075f1
UH
1347static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1348{
1349 regs->psw.addr = infop->entry;
1350 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1351 regs->gprs[15] = infop->start_stack;
1352}
1353
1354#endif /* TARGET_S390X */
1355
b16189b2
CG
1356#ifdef TARGET_TILEGX
1357
1358/* 42 bits real used address, a half for user mode */
1359#define ELF_START_MMAP (0x00000020000000000ULL)
1360
1361#define elf_check_arch(x) ((x) == EM_TILEGX)
1362
1363#define ELF_CLASS ELFCLASS64
1364#define ELF_DATA ELFDATA2LSB
1365#define ELF_ARCH EM_TILEGX
1366
1367static inline void init_thread(struct target_pt_regs *regs,
1368 struct image_info *infop)
1369{
1370 regs->pc = infop->entry;
1371 regs->sp = infop->start_stack;
1372
1373}
1374
1375#define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1376
1377#endif /* TARGET_TILEGX */
1378
47ae93cd
MC
1379#ifdef TARGET_RISCV
1380
1381#define ELF_START_MMAP 0x80000000
1382#define ELF_ARCH EM_RISCV
1383
1384#ifdef TARGET_RISCV32
1385#define ELF_CLASS ELFCLASS32
1386#else
1387#define ELF_CLASS ELFCLASS64
1388#endif
1389
1390static inline void init_thread(struct target_pt_regs *regs,
1391 struct image_info *infop)
1392{
1393 regs->sepc = infop->entry;
1394 regs->sp = infop->start_stack;
1395}
1396
1397#define ELF_EXEC_PAGESIZE 4096
1398
1399#endif /* TARGET_RISCV */
1400
7c248bcd
RH
1401#ifdef TARGET_HPPA
1402
1403#define ELF_START_MMAP 0x80000000
1404#define ELF_CLASS ELFCLASS32
1405#define ELF_ARCH EM_PARISC
1406#define ELF_PLATFORM "PARISC"
1407#define STACK_GROWS_DOWN 0
1408#define STACK_ALIGNMENT 64
1409
1410static inline void init_thread(struct target_pt_regs *regs,
1411 struct image_info *infop)
1412{
1413 regs->iaoq[0] = infop->entry;
1414 regs->iaoq[1] = infop->entry + 4;
1415 regs->gr[23] = 0;
1416 regs->gr[24] = infop->arg_start;
1417 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1418 /* The top-of-stack contains a linkage buffer. */
1419 regs->gr[30] = infop->start_stack + 64;
1420 regs->gr[31] = infop->entry;
1421}
1422
1423#endif /* TARGET_HPPA */
1424
ba7651fb
MF
1425#ifdef TARGET_XTENSA
1426
1427#define ELF_START_MMAP 0x20000000
1428
1429#define ELF_CLASS ELFCLASS32
1430#define ELF_ARCH EM_XTENSA
1431
1432static inline void init_thread(struct target_pt_regs *regs,
1433 struct image_info *infop)
1434{
1435 regs->windowbase = 0;
1436 regs->windowstart = 1;
1437 regs->areg[1] = infop->start_stack;
1438 regs->pc = infop->entry;
1439}
1440
1441/* See linux kernel: arch/xtensa/include/asm/elf.h. */
1442#define ELF_NREG 128
1443typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1444
1445enum {
1446 TARGET_REG_PC,
1447 TARGET_REG_PS,
1448 TARGET_REG_LBEG,
1449 TARGET_REG_LEND,
1450 TARGET_REG_LCOUNT,
1451 TARGET_REG_SAR,
1452 TARGET_REG_WINDOWSTART,
1453 TARGET_REG_WINDOWBASE,
1454 TARGET_REG_THREADPTR,
1455 TARGET_REG_AR0 = 64,
1456};
1457
1458static void elf_core_copy_regs(target_elf_gregset_t *regs,
1459 const CPUXtensaState *env)
1460{
1461 unsigned i;
1462
1463 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1464 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1465 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1466 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1467 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1468 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1469 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1470 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1471 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1472 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1473 for (i = 0; i < env->config->nareg; ++i) {
1474 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1475 }
1476}
1477
1478#define USE_ELF_CORE_DUMP
1479#define ELF_EXEC_PAGESIZE 4096
1480
1481#endif /* TARGET_XTENSA */
1482
15338fd7
FB
1483#ifndef ELF_PLATFORM
1484#define ELF_PLATFORM (NULL)
1485#endif
1486
75be901c
PC
1487#ifndef ELF_MACHINE
1488#define ELF_MACHINE ELF_ARCH
1489#endif
1490
d276a604
PC
1491#ifndef elf_check_arch
1492#define elf_check_arch(x) ((x) == ELF_ARCH)
1493#endif
1494
15338fd7
FB
1495#ifndef ELF_HWCAP
1496#define ELF_HWCAP 0
1497#endif
1498
7c4ee5bc
RH
1499#ifndef STACK_GROWS_DOWN
1500#define STACK_GROWS_DOWN 1
1501#endif
1502
1503#ifndef STACK_ALIGNMENT
1504#define STACK_ALIGNMENT 16
1505#endif
1506
992f48a0 1507#ifdef TARGET_ABI32
cb33da57 1508#undef ELF_CLASS
992f48a0 1509#define ELF_CLASS ELFCLASS32
cb33da57
BS
1510#undef bswaptls
1511#define bswaptls(ptr) bswap32s(ptr)
1512#endif
1513
31e31b8a 1514#include "elf.h"
09bfb054 1515
09bfb054
FB
1516struct exec
1517{
d97ef72e
RH
1518 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1519 unsigned int a_text; /* length of text, in bytes */
1520 unsigned int a_data; /* length of data, in bytes */
1521 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1522 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1523 unsigned int a_entry; /* start address */
1524 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1525 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1526};
1527
1528
1529#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1530#define OMAGIC 0407
1531#define NMAGIC 0410
1532#define ZMAGIC 0413
1533#define QMAGIC 0314
1534
31e31b8a 1535/* Necessary parameters */
94894ff2
SB
1536#define TARGET_ELF_EXEC_PAGESIZE \
1537 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1538 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1539#define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
79cb1f1d
YK
1540#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1541 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1542#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1543
444cd5c3 1544#define DLINFO_ITEMS 15
31e31b8a 1545
09bfb054
FB
1546static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1547{
d97ef72e 1548 memcpy(to, from, n);
09bfb054 1549}
d691f669 1550
31e31b8a 1551#ifdef BSWAP_NEEDED
92a31b1f 1552static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1553{
d97ef72e
RH
1554 bswap16s(&ehdr->e_type); /* Object file type */
1555 bswap16s(&ehdr->e_machine); /* Architecture */
1556 bswap32s(&ehdr->e_version); /* Object file version */
1557 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1558 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1559 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1560 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1561 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1562 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1563 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1564 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1565 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1566 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1567}
1568
991f8f0c 1569static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1570{
991f8f0c
RH
1571 int i;
1572 for (i = 0; i < phnum; ++i, ++phdr) {
1573 bswap32s(&phdr->p_type); /* Segment type */
1574 bswap32s(&phdr->p_flags); /* Segment flags */
1575 bswaptls(&phdr->p_offset); /* Segment file offset */
1576 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1577 bswaptls(&phdr->p_paddr); /* Segment physical address */
1578 bswaptls(&phdr->p_filesz); /* Segment size in file */
1579 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1580 bswaptls(&phdr->p_align); /* Segment alignment */
1581 }
31e31b8a 1582}
689f936f 1583
991f8f0c 1584static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1585{
991f8f0c
RH
1586 int i;
1587 for (i = 0; i < shnum; ++i, ++shdr) {
1588 bswap32s(&shdr->sh_name);
1589 bswap32s(&shdr->sh_type);
1590 bswaptls(&shdr->sh_flags);
1591 bswaptls(&shdr->sh_addr);
1592 bswaptls(&shdr->sh_offset);
1593 bswaptls(&shdr->sh_size);
1594 bswap32s(&shdr->sh_link);
1595 bswap32s(&shdr->sh_info);
1596 bswaptls(&shdr->sh_addralign);
1597 bswaptls(&shdr->sh_entsize);
1598 }
689f936f
FB
1599}
1600
7a3148a9 1601static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1602{
1603 bswap32s(&sym->st_name);
7a3148a9
JM
1604 bswaptls(&sym->st_value);
1605 bswaptls(&sym->st_size);
689f936f
FB
1606 bswap16s(&sym->st_shndx);
1607}
5dd0db52
SM
1608
1609#ifdef TARGET_MIPS
1610static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1611{
1612 bswap16s(&abiflags->version);
1613 bswap32s(&abiflags->ases);
1614 bswap32s(&abiflags->isa_ext);
1615 bswap32s(&abiflags->flags1);
1616 bswap32s(&abiflags->flags2);
1617}
1618#endif
991f8f0c
RH
1619#else
1620static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1621static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1622static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1623static inline void bswap_sym(struct elf_sym *sym) { }
5dd0db52
SM
1624#ifdef TARGET_MIPS
1625static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1626#endif
31e31b8a
FB
1627#endif
1628
edf8e2af 1629#ifdef USE_ELF_CORE_DUMP
9349b4f9 1630static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1631#endif /* USE_ELF_CORE_DUMP */
682674b8 1632static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1633
9058abdd
RH
1634/* Verify the portions of EHDR within E_IDENT for the target.
1635 This can be performed before bswapping the entire header. */
1636static bool elf_check_ident(struct elfhdr *ehdr)
1637{
1638 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1639 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1640 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1641 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1642 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1643 && ehdr->e_ident[EI_DATA] == ELF_DATA
1644 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1645}
1646
1647/* Verify the portions of EHDR outside of E_IDENT for the target.
1648 This has to wait until after bswapping the header. */
1649static bool elf_check_ehdr(struct elfhdr *ehdr)
1650{
1651 return (elf_check_arch(ehdr->e_machine)
1652 && ehdr->e_ehsize == sizeof(struct elfhdr)
1653 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
1654 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1655}
1656
31e31b8a 1657/*
e5fe0c52 1658 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1659 * memory to free pages in kernel mem. These are in a format ready
1660 * to be put directly into the top of new user memory.
1661 *
1662 */
59baae9a
SB
1663static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1664 abi_ulong p, abi_ulong stack_limit)
31e31b8a 1665{
59baae9a 1666 char *tmp;
7c4ee5bc 1667 int len, i;
59baae9a 1668 abi_ulong top = p;
31e31b8a
FB
1669
1670 if (!p) {
d97ef72e 1671 return 0; /* bullet-proofing */
31e31b8a 1672 }
59baae9a 1673
7c4ee5bc
RH
1674 if (STACK_GROWS_DOWN) {
1675 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1676 for (i = argc - 1; i >= 0; --i) {
1677 tmp = argv[i];
1678 if (!tmp) {
1679 fprintf(stderr, "VFS: argc is wrong");
1680 exit(-1);
1681 }
1682 len = strlen(tmp) + 1;
1683 tmp += len;
59baae9a 1684
7c4ee5bc
RH
1685 if (len > (p - stack_limit)) {
1686 return 0;
1687 }
1688 while (len) {
1689 int bytes_to_copy = (len > offset) ? offset : len;
1690 tmp -= bytes_to_copy;
1691 p -= bytes_to_copy;
1692 offset -= bytes_to_copy;
1693 len -= bytes_to_copy;
1694
1695 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1696
1697 if (offset == 0) {
1698 memcpy_to_target(p, scratch, top - p);
1699 top = p;
1700 offset = TARGET_PAGE_SIZE;
1701 }
1702 }
d97ef72e 1703 }
7c4ee5bc
RH
1704 if (p != top) {
1705 memcpy_to_target(p, scratch + offset, top - p);
d97ef72e 1706 }
7c4ee5bc
RH
1707 } else {
1708 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1709 for (i = 0; i < argc; ++i) {
1710 tmp = argv[i];
1711 if (!tmp) {
1712 fprintf(stderr, "VFS: argc is wrong");
1713 exit(-1);
1714 }
1715 len = strlen(tmp) + 1;
1716 if (len > (stack_limit - p)) {
1717 return 0;
1718 }
1719 while (len) {
1720 int bytes_to_copy = (len > remaining) ? remaining : len;
1721
1722 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1723
1724 tmp += bytes_to_copy;
1725 remaining -= bytes_to_copy;
1726 p += bytes_to_copy;
1727 len -= bytes_to_copy;
1728
1729 if (remaining == 0) {
1730 memcpy_to_target(top, scratch, p - top);
1731 top = p;
1732 remaining = TARGET_PAGE_SIZE;
1733 }
d97ef72e
RH
1734 }
1735 }
7c4ee5bc
RH
1736 if (p != top) {
1737 memcpy_to_target(top, scratch, p - top);
1738 }
59baae9a
SB
1739 }
1740
31e31b8a
FB
1741 return p;
1742}
1743
59baae9a
SB
1744/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1745 * argument/environment space. Newer kernels (>2.6.33) allow more,
1746 * dependent on stack size, but guarantee at least 32 pages for
1747 * backwards compatibility.
1748 */
1749#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1750
1751static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 1752 struct image_info *info)
53a5960a 1753{
59baae9a 1754 abi_ulong size, error, guard;
31e31b8a 1755
703e0e89 1756 size = guest_stack_size;
59baae9a
SB
1757 if (size < STACK_LOWER_LIMIT) {
1758 size = STACK_LOWER_LIMIT;
60dcbcb5
RH
1759 }
1760 guard = TARGET_PAGE_SIZE;
1761 if (guard < qemu_real_host_page_size) {
1762 guard = qemu_real_host_page_size;
1763 }
1764
1765 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1766 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1767 if (error == -1) {
60dcbcb5 1768 perror("mmap stack");
09bfb054
FB
1769 exit(-1);
1770 }
31e31b8a 1771
60dcbcb5 1772 /* We reserve one extra page at the top of the stack as guard. */
7c4ee5bc
RH
1773 if (STACK_GROWS_DOWN) {
1774 target_mprotect(error, guard, PROT_NONE);
1775 info->stack_limit = error + guard;
1776 return info->stack_limit + size - sizeof(void *);
1777 } else {
1778 target_mprotect(error + size, guard, PROT_NONE);
1779 info->stack_limit = error + size;
1780 return error;
1781 }
31e31b8a
FB
1782}
1783
cf129f3a
RH
1784/* Map and zero the bss. We need to explicitly zero any fractional pages
1785 after the data section (i.e. bss). */
1786static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1787{
cf129f3a
RH
1788 uintptr_t host_start, host_map_start, host_end;
1789
1790 last_bss = TARGET_PAGE_ALIGN(last_bss);
1791
1792 /* ??? There is confusion between qemu_real_host_page_size and
1793 qemu_host_page_size here and elsewhere in target_mmap, which
1794 may lead to the end of the data section mapping from the file
1795 not being mapped. At least there was an explicit test and
1796 comment for that here, suggesting that "the file size must
1797 be known". The comment probably pre-dates the introduction
1798 of the fstat system call in target_mmap which does in fact
1799 find out the size. What isn't clear is if the workaround
1800 here is still actually needed. For now, continue with it,
1801 but merge it with the "normal" mmap that would allocate the bss. */
1802
1803 host_start = (uintptr_t) g2h(elf_bss);
1804 host_end = (uintptr_t) g2h(last_bss);
0c2d70c4 1805 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
1806
1807 if (host_map_start < host_end) {
1808 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1809 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1810 if (p == MAP_FAILED) {
1811 perror("cannot mmap brk");
1812 exit(-1);
853d6f7a 1813 }
f46e9a0b 1814 }
853d6f7a 1815
f46e9a0b
TM
1816 /* Ensure that the bss page(s) are valid */
1817 if ((page_get_flags(last_bss-1) & prot) != prot) {
1818 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 1819 }
31e31b8a 1820
cf129f3a
RH
1821 if (host_start < host_map_start) {
1822 memset((void *)host_start, 0, host_map_start - host_start);
1823 }
1824}
53a5960a 1825
cf58affe
CL
1826#ifdef TARGET_ARM
1827static int elf_is_fdpic(struct elfhdr *exec)
1828{
1829 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1830}
1831#else
a99856cd
CL
1832/* Default implementation, always false. */
1833static int elf_is_fdpic(struct elfhdr *exec)
1834{
1835 return 0;
1836}
cf58affe 1837#endif
a99856cd 1838
1af02e83
MF
1839static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1840{
1841 uint16_t n;
1842 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1843
1844 /* elf32_fdpic_loadseg */
1845 n = info->nsegs;
1846 while (n--) {
1847 sp -= 12;
1848 put_user_u32(loadsegs[n].addr, sp+0);
1849 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1850 put_user_u32(loadsegs[n].p_memsz, sp+8);
1851 }
1852
1853 /* elf32_fdpic_loadmap */
1854 sp -= 4;
1855 put_user_u16(0, sp+0); /* version */
1856 put_user_u16(info->nsegs, sp+2); /* nsegs */
1857
1858 info->personality = PER_LINUX_FDPIC;
1859 info->loadmap_addr = sp;
1860
1861 return sp;
1862}
1af02e83 1863
992f48a0 1864static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1865 struct elfhdr *exec,
1866 struct image_info *info,
1867 struct image_info *interp_info)
31e31b8a 1868{
d97ef72e 1869 abi_ulong sp;
7c4ee5bc 1870 abi_ulong u_argc, u_argv, u_envp, u_auxv;
d97ef72e 1871 int size;
14322bad
LA
1872 int i;
1873 abi_ulong u_rand_bytes;
1874 uint8_t k_rand_bytes[16];
d97ef72e
RH
1875 abi_ulong u_platform;
1876 const char *k_platform;
1877 const int n = sizeof(elf_addr_t);
1878
1879 sp = p;
1af02e83 1880
1af02e83
MF
1881 /* Needs to be before we load the env/argc/... */
1882 if (elf_is_fdpic(exec)) {
1883 /* Need 4 byte alignment for these structs */
1884 sp &= ~3;
1885 sp = loader_build_fdpic_loadmap(info, sp);
1886 info->other_info = interp_info;
1887 if (interp_info) {
1888 interp_info->other_info = info;
1889 sp = loader_build_fdpic_loadmap(interp_info, sp);
3cb10cfa
CL
1890 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1891 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1892 } else {
1893 info->interpreter_loadmap_addr = 0;
1894 info->interpreter_pt_dynamic_addr = 0;
1af02e83
MF
1895 }
1896 }
1af02e83 1897
d97ef72e
RH
1898 u_platform = 0;
1899 k_platform = ELF_PLATFORM;
1900 if (k_platform) {
1901 size_t len = strlen(k_platform) + 1;
7c4ee5bc
RH
1902 if (STACK_GROWS_DOWN) {
1903 sp -= (len + n - 1) & ~(n - 1);
1904 u_platform = sp;
1905 /* FIXME - check return value of memcpy_to_target() for failure */
1906 memcpy_to_target(sp, k_platform, len);
1907 } else {
1908 memcpy_to_target(sp, k_platform, len);
1909 u_platform = sp;
1910 sp += len + 1;
1911 }
1912 }
1913
1914 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1915 * the argv and envp pointers.
1916 */
1917 if (STACK_GROWS_DOWN) {
1918 sp = QEMU_ALIGN_DOWN(sp, 16);
1919 } else {
1920 sp = QEMU_ALIGN_UP(sp, 16);
d97ef72e 1921 }
14322bad
LA
1922
1923 /*
c6a2377f 1924 * Generate 16 random bytes for userspace PRNG seeding.
14322bad 1925 */
c6a2377f 1926 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
7c4ee5bc
RH
1927 if (STACK_GROWS_DOWN) {
1928 sp -= 16;
1929 u_rand_bytes = sp;
1930 /* FIXME - check return value of memcpy_to_target() for failure */
1931 memcpy_to_target(sp, k_rand_bytes, 16);
1932 } else {
1933 memcpy_to_target(sp, k_rand_bytes, 16);
1934 u_rand_bytes = sp;
1935 sp += 16;
1936 }
14322bad 1937
d97ef72e
RH
1938 size = (DLINFO_ITEMS + 1) * 2;
1939 if (k_platform)
1940 size += 2;
f5155289 1941#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1942 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
1943#endif
1944#ifdef ELF_HWCAP2
1945 size += 2;
f5155289 1946#endif
f516511e
PM
1947 info->auxv_len = size * n;
1948
d97ef72e 1949 size += envc + argc + 2;
b9329d4b 1950 size += 1; /* argc itself */
d97ef72e 1951 size *= n;
7c4ee5bc
RH
1952
1953 /* Allocate space and finalize stack alignment for entry now. */
1954 if (STACK_GROWS_DOWN) {
1955 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1956 sp = u_argc;
1957 } else {
1958 u_argc = sp;
1959 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1960 }
1961
1962 u_argv = u_argc + n;
1963 u_envp = u_argv + (argc + 1) * n;
1964 u_auxv = u_envp + (envc + 1) * n;
1965 info->saved_auxv = u_auxv;
1966 info->arg_start = u_argv;
1967 info->arg_end = u_argv + argc * n;
d97ef72e
RH
1968
1969 /* This is correct because Linux defines
1970 * elf_addr_t as Elf32_Off / Elf64_Off
1971 */
1972#define NEW_AUX_ENT(id, val) do { \
7c4ee5bc
RH
1973 put_user_ual(id, u_auxv); u_auxv += n; \
1974 put_user_ual(val, u_auxv); u_auxv += n; \
d97ef72e
RH
1975 } while(0)
1976
82991bed
PM
1977#ifdef ARCH_DLINFO
1978 /*
1979 * ARCH_DLINFO must come first so platform specific code can enforce
1980 * special alignment requirements on the AUXV if necessary (eg. PPC).
1981 */
1982 ARCH_DLINFO;
1983#endif
f516511e
PM
1984 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1985 * on info->auxv_len will trigger.
1986 */
8e62a717 1987 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
1988 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1989 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
33143c44
LV
1990 if ((info->alignment & ~qemu_host_page_mask) != 0) {
1991 /* Target doesn't support host page size alignment */
1992 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1993 } else {
1994 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1995 qemu_host_page_size)));
1996 }
8e62a717 1997 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 1998 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 1999 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
2000 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2001 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2002 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2003 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2004 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2005 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad 2006 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
444cd5c3 2007 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
14322bad 2008
ad6919dc
PM
2009#ifdef ELF_HWCAP2
2010 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2011#endif
2012
7c4ee5bc 2013 if (u_platform) {
d97ef72e 2014 NEW_AUX_ENT(AT_PLATFORM, u_platform);
7c4ee5bc 2015 }
7c4ee5bc 2016 NEW_AUX_ENT (AT_NULL, 0);
f5155289
FB
2017#undef NEW_AUX_ENT
2018
f516511e
PM
2019 /* Check that our initial calculation of the auxv length matches how much
2020 * we actually put into it.
2021 */
2022 assert(info->auxv_len == u_auxv - info->saved_auxv);
7c4ee5bc
RH
2023
2024 put_user_ual(argc, u_argc);
2025
2026 p = info->arg_strings;
2027 for (i = 0; i < argc; ++i) {
2028 put_user_ual(p, u_argv);
2029 u_argv += n;
2030 p += target_strlen(p) + 1;
2031 }
2032 put_user_ual(0, u_argv);
2033
2034 p = info->env_strings;
2035 for (i = 0; i < envc; ++i) {
2036 put_user_ual(p, u_envp);
2037 u_envp += n;
2038 p += target_strlen(p) + 1;
2039 }
2040 put_user_ual(0, u_envp);
edf8e2af 2041
d97ef72e 2042 return sp;
31e31b8a
FB
2043}
2044
dce10401
MI
2045unsigned long init_guest_space(unsigned long host_start,
2046 unsigned long host_size,
2047 unsigned long guest_start,
2048 bool fixed)
2049{
30ab9ef2
RH
2050 /* In order to use host shmat, we must be able to honor SHMLBA. */
2051 unsigned long align = MAX(SHMLBA, qemu_host_page_size);
293f2060 2052 unsigned long current_start, aligned_start;
dce10401
MI
2053 int flags;
2054
2055 assert(host_start || host_size);
2056
2057 /* If just a starting address is given, then just verify that
2058 * address. */
2059 if (host_start && !host_size) {
8756e136 2060#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
c3637eaf 2061 if (init_guest_commpage(host_start, host_size) != 1) {
dce10401
MI
2062 return (unsigned long)-1;
2063 }
8756e136
LS
2064#endif
2065 return host_start;
dce10401
MI
2066 }
2067
2068 /* Setup the initial flags and start address. */
30ab9ef2 2069 current_start = host_start & -align;
dce10401
MI
2070 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2071 if (fixed) {
2072 flags |= MAP_FIXED;
2073 }
2074
2075 /* Otherwise, a non-zero size region of memory needs to be mapped
2076 * and validated. */
2a53535a
LS
2077
2078#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2079 /* On 32-bit ARM, we need to map not just the usable memory, but
2080 * also the commpage. Try to find a suitable place by allocating
2081 * a big chunk for all of it. If host_start, then the naive
2082 * strategy probably does good enough.
2083 */
2084 if (!host_start) {
2085 unsigned long guest_full_size, host_full_size, real_start;
2086
2087 guest_full_size =
2088 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
2089 host_full_size = guest_full_size - guest_start;
2090 real_start = (unsigned long)
2091 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
2092 if (real_start == (unsigned long)-1) {
2093 if (host_size < host_full_size - qemu_host_page_size) {
2094 /* We failed to map a continous segment, but we're
2095 * allowed to have a gap between the usable memory and
2096 * the commpage where other things can be mapped.
2097 * This sparseness gives us more flexibility to find
2098 * an address range.
2099 */
2100 goto naive;
2101 }
2102 return (unsigned long)-1;
2103 }
2104 munmap((void *)real_start, host_full_size);
30ab9ef2
RH
2105 if (real_start & (align - 1)) {
2106 /* The same thing again, but with extra
2a53535a
LS
2107 * so that we can shift around alignment.
2108 */
2109 unsigned long real_size = host_full_size + qemu_host_page_size;
2110 real_start = (unsigned long)
2111 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2112 if (real_start == (unsigned long)-1) {
2113 if (host_size < host_full_size - qemu_host_page_size) {
2114 goto naive;
2115 }
2116 return (unsigned long)-1;
2117 }
2118 munmap((void *)real_start, real_size);
30ab9ef2 2119 real_start = ROUND_UP(real_start, align);
2a53535a
LS
2120 }
2121 current_start = real_start;
2122 }
2123 naive:
2124#endif
2125
dce10401 2126 while (1) {
293f2060
LS
2127 unsigned long real_start, real_size, aligned_size;
2128 aligned_size = real_size = host_size;
806d1021 2129
dce10401
MI
2130 /* Do not use mmap_find_vma here because that is limited to the
2131 * guest address space. We are going to make the
2132 * guest address space fit whatever we're given.
2133 */
2134 real_start = (unsigned long)
2135 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2136 if (real_start == (unsigned long)-1) {
2137 return (unsigned long)-1;
2138 }
2139
aac362e4
LS
2140 /* Check to see if the address is valid. */
2141 if (host_start && real_start != current_start) {
2142 goto try_again;
2143 }
2144
806d1021 2145 /* Ensure the address is properly aligned. */
30ab9ef2 2146 if (real_start & (align - 1)) {
293f2060
LS
2147 /* Ideally, we adjust like
2148 *
2149 * pages: [ ][ ][ ][ ][ ]
2150 * old: [ real ]
2151 * [ aligned ]
2152 * new: [ real ]
2153 * [ aligned ]
2154 *
2155 * But if there is something else mapped right after it,
2156 * then obviously it won't have room to grow, and the
2157 * kernel will put the new larger real someplace else with
2158 * unknown alignment (if we made it to here, then
2159 * fixed=false). Which is why we grow real by a full page
2160 * size, instead of by part of one; so that even if we get
2161 * moved, we can still guarantee alignment. But this does
2162 * mean that there is a padding of < 1 page both before
2163 * and after the aligned range; the "after" could could
2164 * cause problems for ARM emulation where it could butt in
2165 * to where we need to put the commpage.
2166 */
806d1021 2167 munmap((void *)real_start, host_size);
293f2060 2168 real_size = aligned_size + qemu_host_page_size;
806d1021
MI
2169 real_start = (unsigned long)
2170 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2171 if (real_start == (unsigned long)-1) {
2172 return (unsigned long)-1;
2173 }
30ab9ef2 2174 aligned_start = ROUND_UP(real_start, align);
293f2060
LS
2175 } else {
2176 aligned_start = real_start;
806d1021
MI
2177 }
2178
8756e136 2179#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
7ad75eea
LS
2180 /* On 32-bit ARM, we need to also be able to map the commpage. */
2181 int valid = init_guest_commpage(aligned_start - guest_start,
2182 aligned_size + guest_start);
2183 if (valid == -1) {
2184 munmap((void *)real_start, real_size);
2185 return (unsigned long)-1;
2186 } else if (valid == 0) {
2187 goto try_again;
dce10401 2188 }
7ad75eea
LS
2189#endif
2190
2191 /* If nothing has said `return -1` or `goto try_again` yet,
2192 * then the address we have is good.
2193 */
2194 break;
dce10401 2195
7ad75eea 2196 try_again:
dce10401
MI
2197 /* That address didn't work. Unmap and try a different one.
2198 * The address the host picked because is typically right at
2199 * the top of the host address space and leaves the guest with
2200 * no usable address space. Resort to a linear search. We
2201 * already compensated for mmap_min_addr, so this should not
2202 * happen often. Probably means we got unlucky and host
2203 * address space randomization put a shared library somewhere
2204 * inconvenient.
8c17d862
LS
2205 *
2206 * This is probably a good strategy if host_start, but is
2207 * probably a bad strategy if not, which means we got here
2208 * because of trouble with ARM commpage setup.
dce10401 2209 */
293f2060 2210 munmap((void *)real_start, real_size);
30ab9ef2 2211 current_start += align;
dce10401
MI
2212 if (host_start == current_start) {
2213 /* Theoretically possible if host doesn't have any suitably
2214 * aligned areas. Normally the first mmap will fail.
2215 */
2216 return (unsigned long)-1;
2217 }
2218 }
2219
13829020 2220 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
806d1021 2221
293f2060 2222 return aligned_start;
dce10401
MI
2223}
2224
f3ed1f5d
PM
2225static void probe_guest_base(const char *image_name,
2226 abi_ulong loaddr, abi_ulong hiaddr)
2227{
2228 /* Probe for a suitable guest base address, if the user has not set
2229 * it explicitly, and set guest_base appropriately.
2230 * In case of error we will print a suitable message and exit.
2231 */
f3ed1f5d
PM
2232 const char *errmsg;
2233 if (!have_guest_base && !reserved_va) {
2234 unsigned long host_start, real_start, host_size;
2235
2236 /* Round addresses to page boundaries. */
2237 loaddr &= qemu_host_page_mask;
2238 hiaddr = HOST_PAGE_ALIGN(hiaddr);
2239
2240 if (loaddr < mmap_min_addr) {
2241 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2242 } else {
2243 host_start = loaddr;
2244 if (host_start != loaddr) {
2245 errmsg = "Address overflow loading ELF binary";
2246 goto exit_errmsg;
2247 }
2248 }
2249 host_size = hiaddr - loaddr;
dce10401
MI
2250
2251 /* Setup the initial guest memory space with ranges gleaned from
2252 * the ELF image that is being loaded.
2253 */
2254 real_start = init_guest_space(host_start, host_size, loaddr, false);
2255 if (real_start == (unsigned long)-1) {
2256 errmsg = "Unable to find space for application";
2257 goto exit_errmsg;
f3ed1f5d 2258 }
dce10401
MI
2259 guest_base = real_start - loaddr;
2260
13829020
PB
2261 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2262 TARGET_ABI_FMT_lx " to 0x%lx\n",
2263 loaddr, real_start);
f3ed1f5d
PM
2264 }
2265 return;
2266
f3ed1f5d
PM
2267exit_errmsg:
2268 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2269 exit(-1);
f3ed1f5d
PM
2270}
2271
2272
8e62a717 2273/* Load an ELF image into the address space.
31e31b8a 2274
8e62a717
RH
2275 IMAGE_NAME is the filename of the image, to use in error messages.
2276 IMAGE_FD is the open file descriptor for the image.
2277
2278 BPRM_BUF is a copy of the beginning of the file; this of course
2279 contains the elf file header at offset 0. It is assumed that this
2280 buffer is sufficiently aligned to present no problems to the host
2281 in accessing data at aligned offsets within the buffer.
2282
2283 On return: INFO values will be filled in, as necessary or available. */
2284
2285static void load_elf_image(const char *image_name, int image_fd,
bf858897 2286 struct image_info *info, char **pinterp_name,
8e62a717 2287 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 2288{
8e62a717
RH
2289 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2290 struct elf_phdr *phdr;
2291 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2292 int i, retval;
2293 const char *errmsg;
5fafdf24 2294
8e62a717
RH
2295 /* First of all, some simple consistency checks */
2296 errmsg = "Invalid ELF image for this architecture";
2297 if (!elf_check_ident(ehdr)) {
2298 goto exit_errmsg;
2299 }
2300 bswap_ehdr(ehdr);
2301 if (!elf_check_ehdr(ehdr)) {
2302 goto exit_errmsg;
d97ef72e 2303 }
5fafdf24 2304
8e62a717
RH
2305 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2306 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2307 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 2308 } else {
8e62a717
RH
2309 phdr = (struct elf_phdr *) alloca(i);
2310 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 2311 if (retval != i) {
8e62a717 2312 goto exit_read;
9955ffac 2313 }
d97ef72e 2314 }
8e62a717 2315 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 2316
1af02e83
MF
2317 info->nsegs = 0;
2318 info->pt_dynamic_addr = 0;
1af02e83 2319
98c1076c
AB
2320 mmap_lock();
2321
682674b8
RH
2322 /* Find the maximum size of the image and allocate an appropriate
2323 amount of memory to handle that. */
2324 loaddr = -1, hiaddr = 0;
33143c44 2325 info->alignment = 0;
8e62a717
RH
2326 for (i = 0; i < ehdr->e_phnum; ++i) {
2327 if (phdr[i].p_type == PT_LOAD) {
a93934fe 2328 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
682674b8
RH
2329 if (a < loaddr) {
2330 loaddr = a;
2331 }
ccf661f8 2332 a = phdr[i].p_vaddr + phdr[i].p_memsz;
682674b8
RH
2333 if (a > hiaddr) {
2334 hiaddr = a;
2335 }
1af02e83 2336 ++info->nsegs;
33143c44 2337 info->alignment |= phdr[i].p_align;
682674b8
RH
2338 }
2339 }
2340
2341 load_addr = loaddr;
8e62a717 2342 if (ehdr->e_type == ET_DYN) {
682674b8
RH
2343 /* The image indicates that it can be loaded anywhere. Find a
2344 location that can hold the memory space required. If the
2345 image is pre-linked, LOADDR will be non-zero. Since we do
2346 not supply MAP_FIXED here we'll use that address if and
2347 only if it remains available. */
2348 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2349 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2350 -1, 0);
2351 if (load_addr == -1) {
8e62a717 2352 goto exit_perror;
d97ef72e 2353 }
bf858897
RH
2354 } else if (pinterp_name != NULL) {
2355 /* This is the main executable. Make sure that the low
2356 address does not conflict with MMAP_MIN_ADDR or the
2357 QEMU application itself. */
f3ed1f5d 2358 probe_guest_base(image_name, loaddr, hiaddr);
d97ef72e 2359 }
682674b8 2360 load_bias = load_addr - loaddr;
d97ef72e 2361
a99856cd 2362 if (elf_is_fdpic(ehdr)) {
1af02e83 2363 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 2364 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
2365
2366 for (i = 0; i < ehdr->e_phnum; ++i) {
2367 switch (phdr[i].p_type) {
2368 case PT_DYNAMIC:
2369 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2370 break;
2371 case PT_LOAD:
2372 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2373 loadsegs->p_vaddr = phdr[i].p_vaddr;
2374 loadsegs->p_memsz = phdr[i].p_memsz;
2375 ++loadsegs;
2376 break;
2377 }
2378 }
2379 }
1af02e83 2380
8e62a717
RH
2381 info->load_bias = load_bias;
2382 info->load_addr = load_addr;
2383 info->entry = ehdr->e_entry + load_bias;
2384 info->start_code = -1;
2385 info->end_code = 0;
2386 info->start_data = -1;
2387 info->end_data = 0;
2388 info->brk = 0;
d8fd2954 2389 info->elf_flags = ehdr->e_flags;
8e62a717
RH
2390
2391 for (i = 0; i < ehdr->e_phnum; i++) {
2392 struct elf_phdr *eppnt = phdr + i;
d97ef72e 2393 if (eppnt->p_type == PT_LOAD) {
94894ff2 2394 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
d97ef72e 2395 int elf_prot = 0;
d97ef72e
RH
2396
2397 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2398 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2399 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 2400
682674b8
RH
2401 vaddr = load_bias + eppnt->p_vaddr;
2402 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2403 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
94894ff2 2404 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
682674b8 2405
d87146bc
GM
2406 /*
2407 * Some segments may be completely empty without any backing file
2408 * segment, in that case just let zero_bss allocate an empty buffer
2409 * for it.
2410 */
2411 if (eppnt->p_filesz != 0) {
2412 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2413 MAP_PRIVATE | MAP_FIXED,
2414 image_fd, eppnt->p_offset - vaddr_po);
2415
2416 if (error == -1) {
2417 goto exit_perror;
2418 }
09bfb054 2419 }
09bfb054 2420
682674b8
RH
2421 vaddr_ef = vaddr + eppnt->p_filesz;
2422 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 2423
cf129f3a 2424 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
2425 if (vaddr_ef < vaddr_em) {
2426 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 2427 }
8e62a717
RH
2428
2429 /* Find the full program boundaries. */
2430 if (elf_prot & PROT_EXEC) {
2431 if (vaddr < info->start_code) {
2432 info->start_code = vaddr;
2433 }
2434 if (vaddr_ef > info->end_code) {
2435 info->end_code = vaddr_ef;
2436 }
2437 }
2438 if (elf_prot & PROT_WRITE) {
2439 if (vaddr < info->start_data) {
2440 info->start_data = vaddr;
2441 }
2442 if (vaddr_ef > info->end_data) {
2443 info->end_data = vaddr_ef;
2444 }
2445 if (vaddr_em > info->brk) {
2446 info->brk = vaddr_em;
2447 }
2448 }
bf858897
RH
2449 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2450 char *interp_name;
2451
2452 if (*pinterp_name) {
2453 errmsg = "Multiple PT_INTERP entries";
2454 goto exit_errmsg;
2455 }
2456 interp_name = malloc(eppnt->p_filesz);
2457 if (!interp_name) {
2458 goto exit_perror;
2459 }
2460
2461 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2462 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2463 eppnt->p_filesz);
2464 } else {
2465 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2466 eppnt->p_offset);
2467 if (retval != eppnt->p_filesz) {
2468 goto exit_perror;
2469 }
2470 }
2471 if (interp_name[eppnt->p_filesz - 1] != 0) {
2472 errmsg = "Invalid PT_INTERP entry";
2473 goto exit_errmsg;
2474 }
2475 *pinterp_name = interp_name;
5dd0db52
SM
2476#ifdef TARGET_MIPS
2477 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2478 Mips_elf_abiflags_v0 abiflags;
2479 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2480 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2481 goto exit_errmsg;
2482 }
2483 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2484 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2485 sizeof(Mips_elf_abiflags_v0));
2486 } else {
2487 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2488 eppnt->p_offset);
2489 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2490 goto exit_perror;
2491 }
2492 }
2493 bswap_mips_abiflags(&abiflags);
c94cb6c9 2494 info->fp_abi = abiflags.fp_abi;
5dd0db52 2495#endif
d97ef72e 2496 }
682674b8 2497 }
5fafdf24 2498
8e62a717
RH
2499 if (info->end_data == 0) {
2500 info->start_data = info->end_code;
2501 info->end_data = info->end_code;
2502 info->brk = info->end_code;
2503 }
2504
682674b8 2505 if (qemu_log_enabled()) {
8e62a717 2506 load_symbols(ehdr, image_fd, load_bias);
682674b8 2507 }
31e31b8a 2508
98c1076c
AB
2509 mmap_unlock();
2510
8e62a717
RH
2511 close(image_fd);
2512 return;
2513
2514 exit_read:
2515 if (retval >= 0) {
2516 errmsg = "Incomplete read of file header";
2517 goto exit_errmsg;
2518 }
2519 exit_perror:
2520 errmsg = strerror(errno);
2521 exit_errmsg:
2522 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2523 exit(-1);
2524}
2525
2526static void load_elf_interp(const char *filename, struct image_info *info,
2527 char bprm_buf[BPRM_BUF_SIZE])
2528{
2529 int fd, retval;
2530
2531 fd = open(path(filename), O_RDONLY);
2532 if (fd < 0) {
2533 goto exit_perror;
2534 }
31e31b8a 2535
8e62a717
RH
2536 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2537 if (retval < 0) {
2538 goto exit_perror;
2539 }
2540 if (retval < BPRM_BUF_SIZE) {
2541 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2542 }
2543
bf858897 2544 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
2545 return;
2546
2547 exit_perror:
2548 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2549 exit(-1);
31e31b8a
FB
2550}
2551
49918a75
PB
2552static int symfind(const void *s0, const void *s1)
2553{
c7c530cd 2554 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
2555 struct elf_sym *sym = (struct elf_sym *)s1;
2556 int result = 0;
c7c530cd 2557 if (addr < sym->st_value) {
49918a75 2558 result = -1;
c7c530cd 2559 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
2560 result = 1;
2561 }
2562 return result;
2563}
2564
2565static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2566{
2567#if ELF_CLASS == ELFCLASS32
2568 struct elf_sym *syms = s->disas_symtab.elf32;
2569#else
2570 struct elf_sym *syms = s->disas_symtab.elf64;
2571#endif
2572
2573 // binary search
49918a75
PB
2574 struct elf_sym *sym;
2575
c7c530cd 2576 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 2577 if (sym != NULL) {
49918a75
PB
2578 return s->disas_strtab + sym->st_name;
2579 }
2580
2581 return "";
2582}
2583
2584/* FIXME: This should use elf_ops.h */
2585static int symcmp(const void *s0, const void *s1)
2586{
2587 struct elf_sym *sym0 = (struct elf_sym *)s0;
2588 struct elf_sym *sym1 = (struct elf_sym *)s1;
2589 return (sym0->st_value < sym1->st_value)
2590 ? -1
2591 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2592}
2593
689f936f 2594/* Best attempt to load symbols from this ELF object. */
682674b8 2595static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 2596{
682674b8 2597 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1e06262d 2598 uint64_t segsz;
682674b8 2599 struct elf_shdr *shdr;
b9475279
CV
2600 char *strings = NULL;
2601 struct syminfo *s = NULL;
2602 struct elf_sym *new_syms, *syms = NULL;
689f936f 2603
682674b8
RH
2604 shnum = hdr->e_shnum;
2605 i = shnum * sizeof(struct elf_shdr);
2606 shdr = (struct elf_shdr *)alloca(i);
2607 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2608 return;
2609 }
2610
2611 bswap_shdr(shdr, shnum);
2612 for (i = 0; i < shnum; ++i) {
2613 if (shdr[i].sh_type == SHT_SYMTAB) {
2614 sym_idx = i;
2615 str_idx = shdr[i].sh_link;
49918a75
PB
2616 goto found;
2617 }
689f936f 2618 }
682674b8
RH
2619
2620 /* There will be no symbol table if the file was stripped. */
2621 return;
689f936f
FB
2622
2623 found:
682674b8 2624 /* Now know where the strtab and symtab are. Snarf them. */
0ef9ea29 2625 s = g_try_new(struct syminfo, 1);
682674b8 2626 if (!s) {
b9475279 2627 goto give_up;
682674b8 2628 }
5fafdf24 2629
1e06262d
PM
2630 segsz = shdr[str_idx].sh_size;
2631 s->disas_strtab = strings = g_try_malloc(segsz);
2632 if (!strings ||
2633 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
b9475279 2634 goto give_up;
682674b8 2635 }
49918a75 2636
1e06262d
PM
2637 segsz = shdr[sym_idx].sh_size;
2638 syms = g_try_malloc(segsz);
2639 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
b9475279 2640 goto give_up;
682674b8 2641 }
31e31b8a 2642
1e06262d
PM
2643 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2644 /* Implausibly large symbol table: give up rather than ploughing
2645 * on with the number of symbols calculation overflowing
2646 */
2647 goto give_up;
2648 }
2649 nsyms = segsz / sizeof(struct elf_sym);
682674b8 2650 for (i = 0; i < nsyms; ) {
49918a75 2651 bswap_sym(syms + i);
682674b8
RH
2652 /* Throw away entries which we do not need. */
2653 if (syms[i].st_shndx == SHN_UNDEF
2654 || syms[i].st_shndx >= SHN_LORESERVE
2655 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2656 if (i < --nsyms) {
49918a75
PB
2657 syms[i] = syms[nsyms];
2658 }
682674b8 2659 } else {
49918a75 2660#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
2661 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2662 syms[i].st_value &= ~(target_ulong)1;
0774bed1 2663#endif
682674b8
RH
2664 syms[i].st_value += load_bias;
2665 i++;
2666 }
0774bed1 2667 }
49918a75 2668
b9475279
CV
2669 /* No "useful" symbol. */
2670 if (nsyms == 0) {
2671 goto give_up;
2672 }
2673
5d5c9930
RH
2674 /* Attempt to free the storage associated with the local symbols
2675 that we threw away. Whether or not this has any effect on the
2676 memory allocation depends on the malloc implementation and how
2677 many symbols we managed to discard. */
0ef9ea29 2678 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
8d79de6e 2679 if (new_syms == NULL) {
b9475279 2680 goto give_up;
5d5c9930 2681 }
8d79de6e 2682 syms = new_syms;
5d5c9930 2683
49918a75 2684 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 2685
49918a75
PB
2686 s->disas_num_syms = nsyms;
2687#if ELF_CLASS == ELFCLASS32
2688 s->disas_symtab.elf32 = syms;
49918a75
PB
2689#else
2690 s->disas_symtab.elf64 = syms;
49918a75 2691#endif
682674b8 2692 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
2693 s->next = syminfos;
2694 syminfos = s;
b9475279
CV
2695
2696 return;
2697
2698give_up:
0ef9ea29
PM
2699 g_free(s);
2700 g_free(strings);
2701 g_free(syms);
689f936f 2702}
31e31b8a 2703
768fe76e
YS
2704uint32_t get_elf_eflags(int fd)
2705{
2706 struct elfhdr ehdr;
2707 off_t offset;
2708 int ret;
2709
2710 /* Read ELF header */
2711 offset = lseek(fd, 0, SEEK_SET);
2712 if (offset == (off_t) -1) {
2713 return 0;
2714 }
2715 ret = read(fd, &ehdr, sizeof(ehdr));
2716 if (ret < sizeof(ehdr)) {
2717 return 0;
2718 }
2719 offset = lseek(fd, offset, SEEK_SET);
2720 if (offset == (off_t) -1) {
2721 return 0;
2722 }
2723
2724 /* Check ELF signature */
2725 if (!elf_check_ident(&ehdr)) {
2726 return 0;
2727 }
2728
2729 /* check header */
2730 bswap_ehdr(&ehdr);
2731 if (!elf_check_ehdr(&ehdr)) {
2732 return 0;
2733 }
2734
2735 /* return architecture id */
2736 return ehdr.e_flags;
2737}
2738
f0116c54 2739int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 2740{
8e62a717 2741 struct image_info interp_info;
31e31b8a 2742 struct elfhdr elf_ex;
8e62a717 2743 char *elf_interpreter = NULL;
59baae9a 2744 char *scratch;
31e31b8a 2745
abcac736
DS
2746 memset(&interp_info, 0, sizeof(interp_info));
2747#ifdef TARGET_MIPS
2748 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
2749#endif
2750
bf858897 2751 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
2752
2753 load_elf_image(bprm->filename, bprm->fd, info,
2754 &elf_interpreter, bprm->buf);
31e31b8a 2755
bf858897
RH
2756 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2757 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2758 when we load the interpreter. */
2759 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 2760
59baae9a
SB
2761 /* Do this so that we can load the interpreter, if need be. We will
2762 change some of these later */
2763 bprm->p = setup_arg_pages(bprm, info);
2764
2765 scratch = g_new0(char, TARGET_PAGE_SIZE);
7c4ee5bc
RH
2766 if (STACK_GROWS_DOWN) {
2767 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2768 bprm->p, info->stack_limit);
2769 info->file_string = bprm->p;
2770 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2771 bprm->p, info->stack_limit);
2772 info->env_strings = bprm->p;
2773 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2774 bprm->p, info->stack_limit);
2775 info->arg_strings = bprm->p;
2776 } else {
2777 info->arg_strings = bprm->p;
2778 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2779 bprm->p, info->stack_limit);
2780 info->env_strings = bprm->p;
2781 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2782 bprm->p, info->stack_limit);
2783 info->file_string = bprm->p;
2784 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2785 bprm->p, info->stack_limit);
2786 }
2787
59baae9a
SB
2788 g_free(scratch);
2789
e5fe0c52 2790 if (!bprm->p) {
bf858897
RH
2791 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2792 exit(-1);
379f6698 2793 }
379f6698 2794
8e62a717
RH
2795 if (elf_interpreter) {
2796 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 2797
8e62a717
RH
2798 /* If the program interpreter is one of these two, then assume
2799 an iBCS2 image. Otherwise assume a native linux image. */
2800
2801 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2802 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2803 info->personality = PER_SVR4;
31e31b8a 2804
8e62a717
RH
2805 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2806 and some applications "depend" upon this behavior. Since
2807 we do not have the power to recompile these, we emulate
2808 the SVr4 behavior. Sigh. */
2809 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
68754b44 2810 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
8e62a717 2811 }
c94cb6c9
SM
2812#ifdef TARGET_MIPS
2813 info->interp_fp_abi = interp_info.fp_abi;
2814#endif
31e31b8a
FB
2815 }
2816
8e62a717
RH
2817 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2818 info, (elf_interpreter ? &interp_info : NULL));
2819 info->start_stack = bprm->p;
2820
2821 /* If we have an interpreter, set that as the program's entry point.
8e78064e 2822 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
2823 point as a function descriptor. Do this after creating elf tables
2824 so that we copy the original program entry point into the AUXV. */
2825 if (elf_interpreter) {
8e78064e 2826 info->load_bias = interp_info.load_bias;
8e62a717 2827 info->entry = interp_info.entry;
bf858897 2828 free(elf_interpreter);
8e62a717 2829 }
31e31b8a 2830
edf8e2af
MW
2831#ifdef USE_ELF_CORE_DUMP
2832 bprm->core_dump = &elf_core_dump;
2833#endif
2834
31e31b8a
FB
2835 return 0;
2836}
2837
edf8e2af 2838#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
2839/*
2840 * Definitions to generate Intel SVR4-like core files.
a2547a13 2841 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
2842 * tacked on the front to prevent clashes with linux definitions,
2843 * and the typedef forms have been avoided. This is mostly like
2844 * the SVR4 structure, but more Linuxy, with things that Linux does
2845 * not support and which gdb doesn't really use excluded.
2846 *
2847 * Fields we don't dump (their contents is zero) in linux-user qemu
2848 * are marked with XXX.
2849 *
2850 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2851 *
2852 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 2853 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
2854 * the target resides):
2855 *
2856 * #define USE_ELF_CORE_DUMP
2857 *
2858 * Next you define type of register set used for dumping. ELF specification
2859 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2860 *
c227f099 2861 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 2862 * #define ELF_NREG <number of registers>
c227f099 2863 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 2864 *
edf8e2af
MW
2865 * Last step is to implement target specific function that copies registers
2866 * from given cpu into just specified register set. Prototype is:
2867 *
c227f099 2868 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 2869 * const CPUArchState *env);
edf8e2af
MW
2870 *
2871 * Parameters:
2872 * regs - copy register values into here (allocated and zeroed by caller)
2873 * env - copy registers from here
2874 *
2875 * Example for ARM target is provided in this file.
2876 */
2877
2878/* An ELF note in memory */
2879struct memelfnote {
2880 const char *name;
2881 size_t namesz;
2882 size_t namesz_rounded;
2883 int type;
2884 size_t datasz;
80f5ce75 2885 size_t datasz_rounded;
edf8e2af
MW
2886 void *data;
2887 size_t notesz;
2888};
2889
a2547a13 2890struct target_elf_siginfo {
f8fd4fc4
PB
2891 abi_int si_signo; /* signal number */
2892 abi_int si_code; /* extra code */
2893 abi_int si_errno; /* errno */
edf8e2af
MW
2894};
2895
a2547a13
LD
2896struct target_elf_prstatus {
2897 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 2898 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
2899 abi_ulong pr_sigpend; /* XXX */
2900 abi_ulong pr_sighold; /* XXX */
c227f099
AL
2901 target_pid_t pr_pid;
2902 target_pid_t pr_ppid;
2903 target_pid_t pr_pgrp;
2904 target_pid_t pr_sid;
edf8e2af
MW
2905 struct target_timeval pr_utime; /* XXX User time */
2906 struct target_timeval pr_stime; /* XXX System time */
2907 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2908 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 2909 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 2910 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
2911};
2912
2913#define ELF_PRARGSZ (80) /* Number of chars for args */
2914
a2547a13 2915struct target_elf_prpsinfo {
edf8e2af
MW
2916 char pr_state; /* numeric process state */
2917 char pr_sname; /* char for pr_state */
2918 char pr_zomb; /* zombie */
2919 char pr_nice; /* nice val */
ca98ac83 2920 abi_ulong pr_flag; /* flags */
c227f099
AL
2921 target_uid_t pr_uid;
2922 target_gid_t pr_gid;
2923 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af 2924 /* Lots missing */
d7eb2b92 2925 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
edf8e2af
MW
2926 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2927};
2928
2929/* Here is the structure in which status of each thread is captured. */
2930struct elf_thread_status {
72cf2d4f 2931 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 2932 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
2933#if 0
2934 elf_fpregset_t fpu; /* NT_PRFPREG */
2935 struct task_struct *thread;
2936 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2937#endif
2938 struct memelfnote notes[1];
2939 int num_notes;
2940};
2941
2942struct elf_note_info {
2943 struct memelfnote *notes;
a2547a13
LD
2944 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2945 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 2946
b58deb34 2947 QTAILQ_HEAD(, elf_thread_status) thread_list;
edf8e2af
MW
2948#if 0
2949 /*
2950 * Current version of ELF coredump doesn't support
2951 * dumping fp regs etc.
2952 */
2953 elf_fpregset_t *fpu;
2954 elf_fpxregset_t *xfpu;
2955 int thread_status_size;
2956#endif
2957 int notes_size;
2958 int numnote;
2959};
2960
2961struct vm_area_struct {
1a1c4db9
MI
2962 target_ulong vma_start; /* start vaddr of memory region */
2963 target_ulong vma_end; /* end vaddr of memory region */
2964 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 2965 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
2966};
2967
2968struct mm_struct {
72cf2d4f 2969 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
2970 int mm_count; /* number of mappings */
2971};
2972
2973static struct mm_struct *vma_init(void);
2974static void vma_delete(struct mm_struct *);
1a1c4db9
MI
2975static int vma_add_mapping(struct mm_struct *, target_ulong,
2976 target_ulong, abi_ulong);
edf8e2af
MW
2977static int vma_get_mapping_count(const struct mm_struct *);
2978static struct vm_area_struct *vma_first(const struct mm_struct *);
2979static struct vm_area_struct *vma_next(struct vm_area_struct *);
2980static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 2981static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2982 unsigned long flags);
edf8e2af
MW
2983
2984static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2985static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 2986 unsigned int, void *);
a2547a13
LD
2987static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2988static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
2989static void fill_auxv_note(struct memelfnote *, const TaskState *);
2990static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2991static size_t note_size(const struct memelfnote *);
2992static void free_note_info(struct elf_note_info *);
9349b4f9
AF
2993static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2994static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
2995static int core_dump_filename(const TaskState *, char *, size_t);
2996
2997static int dump_write(int, const void *, size_t);
2998static int write_note(struct memelfnote *, int);
2999static int write_note_info(struct elf_note_info *, int);
3000
3001#ifdef BSWAP_NEEDED
a2547a13 3002static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 3003{
ca98ac83
PB
3004 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3005 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3006 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 3007 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
3008 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3009 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
3010 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3011 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3012 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3013 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3014 /* cpu times are not filled, so we skip them */
3015 /* regs should be in correct format already */
3016 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3017}
3018
a2547a13 3019static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 3020{
ca98ac83 3021 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
3022 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3023 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3024 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3025 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3026 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3027 psinfo->pr_sid = tswap32(psinfo->pr_sid);
3028}
991f8f0c
RH
3029
3030static void bswap_note(struct elf_note *en)
3031{
3032 bswap32s(&en->n_namesz);
3033 bswap32s(&en->n_descsz);
3034 bswap32s(&en->n_type);
3035}
3036#else
3037static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3038static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3039static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
3040#endif /* BSWAP_NEEDED */
3041
3042/*
3043 * Minimal support for linux memory regions. These are needed
3044 * when we are finding out what memory exactly belongs to
3045 * emulated process. No locks needed here, as long as
3046 * thread that received the signal is stopped.
3047 */
3048
3049static struct mm_struct *vma_init(void)
3050{
3051 struct mm_struct *mm;
3052
7267c094 3053 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
3054 return (NULL);
3055
3056 mm->mm_count = 0;
72cf2d4f 3057 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
3058
3059 return (mm);
3060}
3061
3062static void vma_delete(struct mm_struct *mm)
3063{
3064 struct vm_area_struct *vma;
3065
3066 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 3067 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 3068 g_free(vma);
edf8e2af 3069 }
7267c094 3070 g_free(mm);
edf8e2af
MW
3071}
3072
1a1c4db9
MI
3073static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3074 target_ulong end, abi_ulong flags)
edf8e2af
MW
3075{
3076 struct vm_area_struct *vma;
3077
7267c094 3078 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
3079 return (-1);
3080
3081 vma->vma_start = start;
3082 vma->vma_end = end;
3083 vma->vma_flags = flags;
3084
72cf2d4f 3085 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
3086 mm->mm_count++;
3087
3088 return (0);
3089}
3090
3091static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3092{
72cf2d4f 3093 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
3094}
3095
3096static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3097{
72cf2d4f 3098 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
3099}
3100
3101static int vma_get_mapping_count(const struct mm_struct *mm)
3102{
3103 return (mm->mm_count);
3104}
3105
3106/*
3107 * Calculate file (dump) size of given memory region.
3108 */
3109static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3110{
3111 /* if we cannot even read the first page, skip it */
3112 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3113 return (0);
3114
3115 /*
3116 * Usually we don't dump executable pages as they contain
3117 * non-writable code that debugger can read directly from
3118 * target library etc. However, thread stacks are marked
3119 * also executable so we read in first page of given region
3120 * and check whether it contains elf header. If there is
3121 * no elf header, we dump it.
3122 */
3123 if (vma->vma_flags & PROT_EXEC) {
3124 char page[TARGET_PAGE_SIZE];
3125
3126 copy_from_user(page, vma->vma_start, sizeof (page));
3127 if ((page[EI_MAG0] == ELFMAG0) &&
3128 (page[EI_MAG1] == ELFMAG1) &&
3129 (page[EI_MAG2] == ELFMAG2) &&
3130 (page[EI_MAG3] == ELFMAG3)) {
3131 /*
3132 * Mappings are possibly from ELF binary. Don't dump
3133 * them.
3134 */
3135 return (0);
3136 }
3137 }
3138
3139 return (vma->vma_end - vma->vma_start);
3140}
3141
1a1c4db9 3142static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3143 unsigned long flags)
edf8e2af
MW
3144{
3145 struct mm_struct *mm = (struct mm_struct *)priv;
3146
edf8e2af
MW
3147 vma_add_mapping(mm, start, end, flags);
3148 return (0);
3149}
3150
3151static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 3152 unsigned int sz, void *data)
edf8e2af
MW
3153{
3154 unsigned int namesz;
3155
3156 namesz = strlen(name) + 1;
3157 note->name = name;
3158 note->namesz = namesz;
3159 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3160 note->type = type;
80f5ce75
LV
3161 note->datasz = sz;
3162 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3163
edf8e2af
MW
3164 note->data = data;
3165
3166 /*
3167 * We calculate rounded up note size here as specified by
3168 * ELF document.
3169 */
3170 note->notesz = sizeof (struct elf_note) +
80f5ce75 3171 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
3172}
3173
3174static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 3175 uint32_t flags)
edf8e2af
MW
3176{
3177 (void) memset(elf, 0, sizeof(*elf));
3178
3179 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3180 elf->e_ident[EI_CLASS] = ELF_CLASS;
3181 elf->e_ident[EI_DATA] = ELF_DATA;
3182 elf->e_ident[EI_VERSION] = EV_CURRENT;
3183 elf->e_ident[EI_OSABI] = ELF_OSABI;
3184
3185 elf->e_type = ET_CORE;
3186 elf->e_machine = machine;
3187 elf->e_version = EV_CURRENT;
3188 elf->e_phoff = sizeof(struct elfhdr);
3189 elf->e_flags = flags;
3190 elf->e_ehsize = sizeof(struct elfhdr);
3191 elf->e_phentsize = sizeof(struct elf_phdr);
3192 elf->e_phnum = segs;
3193
edf8e2af 3194 bswap_ehdr(elf);
edf8e2af
MW
3195}
3196
3197static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3198{
3199 phdr->p_type = PT_NOTE;
3200 phdr->p_offset = offset;
3201 phdr->p_vaddr = 0;
3202 phdr->p_paddr = 0;
3203 phdr->p_filesz = sz;
3204 phdr->p_memsz = 0;
3205 phdr->p_flags = 0;
3206 phdr->p_align = 0;
3207
991f8f0c 3208 bswap_phdr(phdr, 1);
edf8e2af
MW
3209}
3210
3211static size_t note_size(const struct memelfnote *note)
3212{
3213 return (note->notesz);
3214}
3215
a2547a13 3216static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 3217 const TaskState *ts, int signr)
edf8e2af
MW
3218{
3219 (void) memset(prstatus, 0, sizeof (*prstatus));
3220 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3221 prstatus->pr_pid = ts->ts_tid;
3222 prstatus->pr_ppid = getppid();
3223 prstatus->pr_pgrp = getpgrp();
3224 prstatus->pr_sid = getsid(0);
3225
edf8e2af 3226 bswap_prstatus(prstatus);
edf8e2af
MW
3227}
3228
a2547a13 3229static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 3230{
900cfbca 3231 char *base_filename;
edf8e2af
MW
3232 unsigned int i, len;
3233
3234 (void) memset(psinfo, 0, sizeof (*psinfo));
3235
3236 len = ts->info->arg_end - ts->info->arg_start;
3237 if (len >= ELF_PRARGSZ)
3238 len = ELF_PRARGSZ - 1;
3239 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3240 return -EFAULT;
3241 for (i = 0; i < len; i++)
3242 if (psinfo->pr_psargs[i] == 0)
3243 psinfo->pr_psargs[i] = ' ';
3244 psinfo->pr_psargs[len] = 0;
3245
3246 psinfo->pr_pid = getpid();
3247 psinfo->pr_ppid = getppid();
3248 psinfo->pr_pgrp = getpgrp();
3249 psinfo->pr_sid = getsid(0);
3250 psinfo->pr_uid = getuid();
3251 psinfo->pr_gid = getgid();
3252
900cfbca
JM
3253 base_filename = g_path_get_basename(ts->bprm->filename);
3254 /*
3255 * Using strncpy here is fine: at max-length,
3256 * this field is not NUL-terminated.
3257 */
edf8e2af 3258 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 3259 sizeof(psinfo->pr_fname));
edf8e2af 3260
900cfbca 3261 g_free(base_filename);
edf8e2af 3262 bswap_psinfo(psinfo);
edf8e2af
MW
3263 return (0);
3264}
3265
3266static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3267{
3268 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3269 elf_addr_t orig_auxv = auxv;
edf8e2af 3270 void *ptr;
125b0f55 3271 int len = ts->info->auxv_len;
edf8e2af
MW
3272
3273 /*
3274 * Auxiliary vector is stored in target process stack. It contains
3275 * {type, value} pairs that we need to dump into note. This is not
3276 * strictly necessary but we do it here for sake of completeness.
3277 */
3278
edf8e2af
MW
3279 /* read in whole auxv vector and copy it to memelfnote */
3280 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3281 if (ptr != NULL) {
3282 fill_note(note, "CORE", NT_AUXV, len, ptr);
3283 unlock_user(ptr, auxv, len);
3284 }
3285}
3286
3287/*
3288 * Constructs name of coredump file. We have following convention
3289 * for the name:
3290 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3291 *
3292 * Returns 0 in case of success, -1 otherwise (errno is set).
3293 */
3294static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 3295 size_t bufsize)
edf8e2af
MW
3296{
3297 char timestamp[64];
edf8e2af
MW
3298 char *base_filename = NULL;
3299 struct timeval tv;
3300 struct tm tm;
3301
3302 assert(bufsize >= PATH_MAX);
3303
3304 if (gettimeofday(&tv, NULL) < 0) {
3305 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 3306 strerror(errno));
edf8e2af
MW
3307 return (-1);
3308 }
3309
b8da57fa 3310 base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 3311 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 3312 localtime_r(&tv.tv_sec, &tm));
edf8e2af 3313 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 3314 base_filename, timestamp, (int)getpid());
b8da57fa 3315 g_free(base_filename);
edf8e2af
MW
3316
3317 return (0);
3318}
3319
3320static int dump_write(int fd, const void *ptr, size_t size)
3321{
3322 const char *bufp = (const char *)ptr;
3323 ssize_t bytes_written, bytes_left;
3324 struct rlimit dumpsize;
3325 off_t pos;
3326
3327 bytes_written = 0;
3328 getrlimit(RLIMIT_CORE, &dumpsize);
3329 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3330 if (errno == ESPIPE) { /* not a seekable stream */
3331 bytes_left = size;
3332 } else {
3333 return pos;
3334 }
3335 } else {
3336 if (dumpsize.rlim_cur <= pos) {
3337 return -1;
3338 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3339 bytes_left = size;
3340 } else {
3341 size_t limit_left=dumpsize.rlim_cur - pos;
3342 bytes_left = limit_left >= size ? size : limit_left ;
3343 }
3344 }
3345
3346 /*
3347 * In normal conditions, single write(2) should do but
3348 * in case of socket etc. this mechanism is more portable.
3349 */
3350 do {
3351 bytes_written = write(fd, bufp, bytes_left);
3352 if (bytes_written < 0) {
3353 if (errno == EINTR)
3354 continue;
3355 return (-1);
3356 } else if (bytes_written == 0) { /* eof */
3357 return (-1);
3358 }
3359 bufp += bytes_written;
3360 bytes_left -= bytes_written;
3361 } while (bytes_left > 0);
3362
3363 return (0);
3364}
3365
3366static int write_note(struct memelfnote *men, int fd)
3367{
3368 struct elf_note en;
3369
3370 en.n_namesz = men->namesz;
3371 en.n_type = men->type;
3372 en.n_descsz = men->datasz;
3373
edf8e2af 3374 bswap_note(&en);
edf8e2af
MW
3375
3376 if (dump_write(fd, &en, sizeof(en)) != 0)
3377 return (-1);
3378 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3379 return (-1);
80f5ce75 3380 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
3381 return (-1);
3382
3383 return (0);
3384}
3385
9349b4f9 3386static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 3387{
29a0af61 3388 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3389 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3390 struct elf_thread_status *ets;
3391
7267c094 3392 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
3393 ets->num_notes = 1; /* only prstatus is dumped */
3394 fill_prstatus(&ets->prstatus, ts, 0);
3395 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3396 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 3397 &ets->prstatus);
edf8e2af 3398
72cf2d4f 3399 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
3400
3401 info->notes_size += note_size(&ets->notes[0]);
3402}
3403
6afafa86
PM
3404static void init_note_info(struct elf_note_info *info)
3405{
3406 /* Initialize the elf_note_info structure so that it is at
3407 * least safe to call free_note_info() on it. Must be
3408 * called before calling fill_note_info().
3409 */
3410 memset(info, 0, sizeof (*info));
3411 QTAILQ_INIT(&info->thread_list);
3412}
3413
edf8e2af 3414static int fill_note_info(struct elf_note_info *info,
9349b4f9 3415 long signr, const CPUArchState *env)
edf8e2af
MW
3416{
3417#define NUMNOTES 3
29a0af61 3418 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3419 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3420 int i;
3421
c78d65e8 3422 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
3423 if (info->notes == NULL)
3424 return (-ENOMEM);
7267c094 3425 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
3426 if (info->prstatus == NULL)
3427 return (-ENOMEM);
7267c094 3428 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
3429 if (info->prstatus == NULL)
3430 return (-ENOMEM);
3431
3432 /*
3433 * First fill in status (and registers) of current thread
3434 * including process info & aux vector.
3435 */
3436 fill_prstatus(info->prstatus, ts, signr);
3437 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3438 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 3439 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
3440 fill_psinfo(info->psinfo, ts);
3441 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 3442 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
3443 fill_auxv_note(&info->notes[2], ts);
3444 info->numnote = 3;
3445
3446 info->notes_size = 0;
3447 for (i = 0; i < info->numnote; i++)
3448 info->notes_size += note_size(&info->notes[i]);
3449
3450 /* read and fill status of all threads */
3451 cpu_list_lock();
bdc44640 3452 CPU_FOREACH(cpu) {
a2247f8e 3453 if (cpu == thread_cpu) {
edf8e2af 3454 continue;
182735ef
AF
3455 }
3456 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
edf8e2af
MW
3457 }
3458 cpu_list_unlock();
3459
3460 return (0);
3461}
3462
3463static void free_note_info(struct elf_note_info *info)
3464{
3465 struct elf_thread_status *ets;
3466
72cf2d4f
BS
3467 while (!QTAILQ_EMPTY(&info->thread_list)) {
3468 ets = QTAILQ_FIRST(&info->thread_list);
3469 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 3470 g_free(ets);
edf8e2af
MW
3471 }
3472
7267c094
AL
3473 g_free(info->prstatus);
3474 g_free(info->psinfo);
3475 g_free(info->notes);
edf8e2af
MW
3476}
3477
3478static int write_note_info(struct elf_note_info *info, int fd)
3479{
3480 struct elf_thread_status *ets;
3481 int i, error = 0;
3482
3483 /* write prstatus, psinfo and auxv for current thread */
3484 for (i = 0; i < info->numnote; i++)
3485 if ((error = write_note(&info->notes[i], fd)) != 0)
3486 return (error);
3487
3488 /* write prstatus for each thread */
52a53afe 3489 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
3490 if ((error = write_note(&ets->notes[0], fd)) != 0)
3491 return (error);
3492 }
3493
3494 return (0);
3495}
3496
3497/*
3498 * Write out ELF coredump.
3499 *
3500 * See documentation of ELF object file format in:
3501 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3502 *
3503 * Coredump format in linux is following:
3504 *
3505 * 0 +----------------------+ \
3506 * | ELF header | ET_CORE |
3507 * +----------------------+ |
3508 * | ELF program headers | |--- headers
3509 * | - NOTE section | |
3510 * | - PT_LOAD sections | |
3511 * +----------------------+ /
3512 * | NOTEs: |
3513 * | - NT_PRSTATUS |
3514 * | - NT_PRSINFO |
3515 * | - NT_AUXV |
3516 * +----------------------+ <-- aligned to target page
3517 * | Process memory dump |
3518 * : :
3519 * . .
3520 * : :
3521 * | |
3522 * +----------------------+
3523 *
3524 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3525 * NT_PRSINFO -> struct elf_prpsinfo
3526 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3527 *
3528 * Format follows System V format as close as possible. Current
3529 * version limitations are as follows:
3530 * - no floating point registers are dumped
3531 *
3532 * Function returns 0 in case of success, negative errno otherwise.
3533 *
3534 * TODO: make this work also during runtime: it should be
3535 * possible to force coredump from running process and then
3536 * continue processing. For example qemu could set up SIGUSR2
3537 * handler (provided that target process haven't registered
3538 * handler for that) that does the dump when signal is received.
3539 */
9349b4f9 3540static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 3541{
29a0af61 3542 const CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3543 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af
MW
3544 struct vm_area_struct *vma = NULL;
3545 char corefile[PATH_MAX];
3546 struct elf_note_info info;
3547 struct elfhdr elf;
3548 struct elf_phdr phdr;
3549 struct rlimit dumpsize;
3550 struct mm_struct *mm = NULL;
3551 off_t offset = 0, data_offset = 0;
3552 int segs = 0;
3553 int fd = -1;
3554
6afafa86
PM
3555 init_note_info(&info);
3556
edf8e2af
MW
3557 errno = 0;
3558 getrlimit(RLIMIT_CORE, &dumpsize);
3559 if (dumpsize.rlim_cur == 0)
d97ef72e 3560 return 0;
edf8e2af
MW
3561
3562 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3563 return (-errno);
3564
3565 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 3566 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
3567 return (-errno);
3568
3569 /*
3570 * Walk through target process memory mappings and
3571 * set up structure containing this information. After
3572 * this point vma_xxx functions can be used.
3573 */
3574 if ((mm = vma_init()) == NULL)
3575 goto out;
3576
3577 walk_memory_regions(mm, vma_walker);
3578 segs = vma_get_mapping_count(mm);
3579
3580 /*
3581 * Construct valid coredump ELF header. We also
3582 * add one more segment for notes.
3583 */
3584 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3585 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3586 goto out;
3587
b6af0975 3588 /* fill in the in-memory version of notes */
edf8e2af
MW
3589 if (fill_note_info(&info, signr, env) < 0)
3590 goto out;
3591
3592 offset += sizeof (elf); /* elf header */
3593 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3594
3595 /* write out notes program header */
3596 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3597
3598 offset += info.notes_size;
3599 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3600 goto out;
3601
3602 /*
3603 * ELF specification wants data to start at page boundary so
3604 * we align it here.
3605 */
80f5ce75 3606 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
3607
3608 /*
3609 * Write program headers for memory regions mapped in
3610 * the target process.
3611 */
3612 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3613 (void) memset(&phdr, 0, sizeof (phdr));
3614
3615 phdr.p_type = PT_LOAD;
3616 phdr.p_offset = offset;
3617 phdr.p_vaddr = vma->vma_start;
3618 phdr.p_paddr = 0;
3619 phdr.p_filesz = vma_dump_size(vma);
3620 offset += phdr.p_filesz;
3621 phdr.p_memsz = vma->vma_end - vma->vma_start;
3622 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3623 if (vma->vma_flags & PROT_WRITE)
3624 phdr.p_flags |= PF_W;
3625 if (vma->vma_flags & PROT_EXEC)
3626 phdr.p_flags |= PF_X;
3627 phdr.p_align = ELF_EXEC_PAGESIZE;
3628
80f5ce75 3629 bswap_phdr(&phdr, 1);
772034b6
PM
3630 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3631 goto out;
3632 }
edf8e2af
MW
3633 }
3634
3635 /*
3636 * Next we write notes just after program headers. No
3637 * alignment needed here.
3638 */
3639 if (write_note_info(&info, fd) < 0)
3640 goto out;
3641
3642 /* align data to page boundary */
edf8e2af
MW
3643 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3644 goto out;
3645
3646 /*
3647 * Finally we can dump process memory into corefile as well.
3648 */
3649 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3650 abi_ulong addr;
3651 abi_ulong end;
3652
3653 end = vma->vma_start + vma_dump_size(vma);
3654
3655 for (addr = vma->vma_start; addr < end;
d97ef72e 3656 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
3657 char page[TARGET_PAGE_SIZE];
3658 int error;
3659
3660 /*
3661 * Read in page from target process memory and
3662 * write it to coredump file.
3663 */
3664 error = copy_from_user(page, addr, sizeof (page));
3665 if (error != 0) {
49995e17 3666 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 3667 addr);
edf8e2af
MW
3668 errno = -error;
3669 goto out;
3670 }
3671 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3672 goto out;
3673 }
3674 }
3675
d97ef72e 3676 out:
edf8e2af
MW
3677 free_note_info(&info);
3678 if (mm != NULL)
3679 vma_delete(mm);
3680 (void) close(fd);
3681
3682 if (errno != 0)
3683 return (-errno);
3684 return (0);
3685}
edf8e2af
MW
3686#endif /* USE_ELF_CORE_DUMP */
3687
e5fe0c52
PB
3688void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3689{
3690 init_thread(regs, infop);
3691}