]> git.proxmox.com Git - mirror_qemu.git/blame - migration/ram.c
exec.c: get nodes_nb_alloc with one MAX calculation
[mirror_qemu.git] / migration / ram.c
CommitLineData
56e93d26
JQ
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
76cc7b58
JQ
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
56e93d26
JQ
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
e688df6b 28
1393a485 29#include "qemu/osdep.h"
33c11879 30#include "cpu.h"
56e93d26 31#include <zlib.h>
f348b6d1 32#include "qemu/cutils.h"
56e93d26
JQ
33#include "qemu/bitops.h"
34#include "qemu/bitmap.h"
7205c9ec 35#include "qemu/main-loop.h"
56eb90af 36#include "qemu/pmem.h"
709e3fe8 37#include "xbzrle.h"
7b1e1a22 38#include "ram.h"
6666c96a 39#include "migration.h"
71bb07db 40#include "socket.h"
f2a8f0a6 41#include "migration/register.h"
7b1e1a22 42#include "migration/misc.h"
08a0aee1 43#include "qemu-file.h"
be07b0ac 44#include "postcopy-ram.h"
53d37d36 45#include "page_cache.h"
56e93d26 46#include "qemu/error-report.h"
e688df6b 47#include "qapi/error.h"
9af23989 48#include "qapi/qapi-events-migration.h"
8acabf69 49#include "qapi/qmp/qerror.h"
56e93d26 50#include "trace.h"
56e93d26 51#include "exec/ram_addr.h"
f9494614 52#include "exec/target_page.h"
56e93d26 53#include "qemu/rcu_queue.h"
a91246c9 54#include "migration/colo.h"
53d37d36 55#include "block.h"
af8b7d2b
JQ
56#include "sysemu/sysemu.h"
57#include "qemu/uuid.h"
edd090c7 58#include "savevm.h"
b9ee2f7d 59#include "qemu/iov.h"
56e93d26 60
56e93d26
JQ
61/***********************************************************/
62/* ram save/restore */
63
bb890ed5
JQ
64/* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
65 * worked for pages that where filled with the same char. We switched
66 * it to only search for the zero value. And to avoid confusion with
67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
68 */
69
56e93d26 70#define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
bb890ed5 71#define RAM_SAVE_FLAG_ZERO 0x02
56e93d26
JQ
72#define RAM_SAVE_FLAG_MEM_SIZE 0x04
73#define RAM_SAVE_FLAG_PAGE 0x08
74#define RAM_SAVE_FLAG_EOS 0x10
75#define RAM_SAVE_FLAG_CONTINUE 0x20
76#define RAM_SAVE_FLAG_XBZRLE 0x40
77/* 0x80 is reserved in migration.h start with 0x100 next */
78#define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
79
56e93d26
JQ
80static inline bool is_zero_range(uint8_t *p, uint64_t size)
81{
a1febc49 82 return buffer_is_zero(p, size);
56e93d26
JQ
83}
84
9360447d
JQ
85XBZRLECacheStats xbzrle_counters;
86
56e93d26
JQ
87/* struct contains XBZRLE cache and a static page
88 used by the compression */
89static struct {
90 /* buffer used for XBZRLE encoding */
91 uint8_t *encoded_buf;
92 /* buffer for storing page content */
93 uint8_t *current_buf;
94 /* Cache for XBZRLE, Protected by lock. */
95 PageCache *cache;
96 QemuMutex lock;
c00e0928
JQ
97 /* it will store a page full of zeros */
98 uint8_t *zero_target_page;
f265e0e4
JQ
99 /* buffer used for XBZRLE decoding */
100 uint8_t *decoded_buf;
56e93d26
JQ
101} XBZRLE;
102
56e93d26
JQ
103static void XBZRLE_cache_lock(void)
104{
105 if (migrate_use_xbzrle())
106 qemu_mutex_lock(&XBZRLE.lock);
107}
108
109static void XBZRLE_cache_unlock(void)
110{
111 if (migrate_use_xbzrle())
112 qemu_mutex_unlock(&XBZRLE.lock);
113}
114
3d0684b2
JQ
115/**
116 * xbzrle_cache_resize: resize the xbzrle cache
117 *
118 * This function is called from qmp_migrate_set_cache_size in main
119 * thread, possibly while a migration is in progress. A running
120 * migration may be using the cache and might finish during this call,
121 * hence changes to the cache are protected by XBZRLE.lock().
122 *
c9dede2d 123 * Returns 0 for success or -1 for error
3d0684b2
JQ
124 *
125 * @new_size: new cache size
8acabf69 126 * @errp: set *errp if the check failed, with reason
56e93d26 127 */
c9dede2d 128int xbzrle_cache_resize(int64_t new_size, Error **errp)
56e93d26
JQ
129{
130 PageCache *new_cache;
c9dede2d 131 int64_t ret = 0;
56e93d26 132
8acabf69
JQ
133 /* Check for truncation */
134 if (new_size != (size_t)new_size) {
135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
136 "exceeding address space");
137 return -1;
138 }
139
2a313e5c
JQ
140 if (new_size == migrate_xbzrle_cache_size()) {
141 /* nothing to do */
c9dede2d 142 return 0;
2a313e5c
JQ
143 }
144
56e93d26
JQ
145 XBZRLE_cache_lock();
146
147 if (XBZRLE.cache != NULL) {
80f8dfde 148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
56e93d26 149 if (!new_cache) {
56e93d26
JQ
150 ret = -1;
151 goto out;
152 }
153
154 cache_fini(XBZRLE.cache);
155 XBZRLE.cache = new_cache;
156 }
56e93d26
JQ
157out:
158 XBZRLE_cache_unlock();
159 return ret;
160}
161
fbd162e6
YK
162static bool ramblock_is_ignored(RAMBlock *block)
163{
164 return !qemu_ram_is_migratable(block) ||
165 (migrate_ignore_shared() && qemu_ram_is_shared(block));
166}
167
b895de50 168/* Should be holding either ram_list.mutex, or the RCU lock. */
fbd162e6
YK
169#define RAMBLOCK_FOREACH_NOT_IGNORED(block) \
170 INTERNAL_RAMBLOCK_FOREACH(block) \
171 if (ramblock_is_ignored(block)) {} else
172
b895de50 173#define RAMBLOCK_FOREACH_MIGRATABLE(block) \
343f632c 174 INTERNAL_RAMBLOCK_FOREACH(block) \
b895de50
CLG
175 if (!qemu_ram_is_migratable(block)) {} else
176
343f632c
DDAG
177#undef RAMBLOCK_FOREACH
178
fbd162e6
YK
179int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
180{
181 RAMBlock *block;
182 int ret = 0;
183
184 rcu_read_lock();
185 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
186 ret = func(block, opaque);
187 if (ret) {
188 break;
189 }
190 }
191 rcu_read_unlock();
192 return ret;
193}
194
f9494614
AP
195static void ramblock_recv_map_init(void)
196{
197 RAMBlock *rb;
198
fbd162e6 199 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
f9494614
AP
200 assert(!rb->receivedmap);
201 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
202 }
203}
204
205int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
206{
207 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
208 rb->receivedmap);
209}
210
1cba9f6e
DDAG
211bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
212{
213 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
214}
215
f9494614
AP
216void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
217{
218 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
219}
220
221void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
222 size_t nr)
223{
224 bitmap_set_atomic(rb->receivedmap,
225 ramblock_recv_bitmap_offset(host_addr, rb),
226 nr);
227}
228
a335debb
PX
229#define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
230
231/*
232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
233 *
234 * Returns >0 if success with sent bytes, or <0 if error.
235 */
236int64_t ramblock_recv_bitmap_send(QEMUFile *file,
237 const char *block_name)
238{
239 RAMBlock *block = qemu_ram_block_by_name(block_name);
240 unsigned long *le_bitmap, nbits;
241 uint64_t size;
242
243 if (!block) {
244 error_report("%s: invalid block name: %s", __func__, block_name);
245 return -1;
246 }
247
248 nbits = block->used_length >> TARGET_PAGE_BITS;
249
250 /*
251 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
252 * machines we may need 4 more bytes for padding (see below
253 * comment). So extend it a bit before hand.
254 */
255 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
256
257 /*
258 * Always use little endian when sending the bitmap. This is
259 * required that when source and destination VMs are not using the
260 * same endianess. (Note: big endian won't work.)
261 */
262 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
263
264 /* Size of the bitmap, in bytes */
a725ef9f 265 size = DIV_ROUND_UP(nbits, 8);
a335debb
PX
266
267 /*
268 * size is always aligned to 8 bytes for 64bit machines, but it
269 * may not be true for 32bit machines. We need this padding to
270 * make sure the migration can survive even between 32bit and
271 * 64bit machines.
272 */
273 size = ROUND_UP(size, 8);
274
275 qemu_put_be64(file, size);
276 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
277 /*
278 * Mark as an end, in case the middle part is screwed up due to
279 * some "misterious" reason.
280 */
281 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
282 qemu_fflush(file);
283
bf269906 284 g_free(le_bitmap);
a335debb
PX
285
286 if (qemu_file_get_error(file)) {
287 return qemu_file_get_error(file);
288 }
289
290 return size + sizeof(size);
291}
292
ec481c6c
JQ
293/*
294 * An outstanding page request, on the source, having been received
295 * and queued
296 */
297struct RAMSrcPageRequest {
298 RAMBlock *rb;
299 hwaddr offset;
300 hwaddr len;
301
302 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
303};
304
6f37bb8b
JQ
305/* State of RAM for migration */
306struct RAMState {
204b88b8
JQ
307 /* QEMUFile used for this migration */
308 QEMUFile *f;
6f37bb8b
JQ
309 /* Last block that we have visited searching for dirty pages */
310 RAMBlock *last_seen_block;
311 /* Last block from where we have sent data */
312 RAMBlock *last_sent_block;
269ace29
JQ
313 /* Last dirty target page we have sent */
314 ram_addr_t last_page;
6f37bb8b
JQ
315 /* last ram version we have seen */
316 uint32_t last_version;
317 /* We are in the first round */
318 bool ram_bulk_stage;
6eeb63f7
WW
319 /* The free page optimization is enabled */
320 bool fpo_enabled;
8d820d6f
JQ
321 /* How many times we have dirty too many pages */
322 int dirty_rate_high_cnt;
f664da80
JQ
323 /* these variables are used for bitmap sync */
324 /* last time we did a full bitmap_sync */
325 int64_t time_last_bitmap_sync;
eac74159 326 /* bytes transferred at start_time */
c4bdf0cf 327 uint64_t bytes_xfer_prev;
a66cd90c 328 /* number of dirty pages since start_time */
68908ed6 329 uint64_t num_dirty_pages_period;
b5833fde
JQ
330 /* xbzrle misses since the beginning of the period */
331 uint64_t xbzrle_cache_miss_prev;
76e03000
XG
332
333 /* compression statistics since the beginning of the period */
334 /* amount of count that no free thread to compress data */
335 uint64_t compress_thread_busy_prev;
336 /* amount bytes after compression */
337 uint64_t compressed_size_prev;
338 /* amount of compressed pages */
339 uint64_t compress_pages_prev;
340
be8b02ed
XG
341 /* total handled target pages at the beginning of period */
342 uint64_t target_page_count_prev;
343 /* total handled target pages since start */
344 uint64_t target_page_count;
9360447d 345 /* number of dirty bits in the bitmap */
2dfaf12e 346 uint64_t migration_dirty_pages;
386a907b 347 /* Protects modification of the bitmap and migration dirty pages */
108cfae0 348 QemuMutex bitmap_mutex;
68a098f3
JQ
349 /* The RAMBlock used in the last src_page_requests */
350 RAMBlock *last_req_rb;
ec481c6c
JQ
351 /* Queue of outstanding page requests from the destination */
352 QemuMutex src_page_req_mutex;
b58deb34 353 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
6f37bb8b
JQ
354};
355typedef struct RAMState RAMState;
356
53518d94 357static RAMState *ram_state;
6f37bb8b 358
bd227060
WW
359static NotifierWithReturnList precopy_notifier_list;
360
361void precopy_infrastructure_init(void)
362{
363 notifier_with_return_list_init(&precopy_notifier_list);
364}
365
366void precopy_add_notifier(NotifierWithReturn *n)
367{
368 notifier_with_return_list_add(&precopy_notifier_list, n);
369}
370
371void precopy_remove_notifier(NotifierWithReturn *n)
372{
373 notifier_with_return_remove(n);
374}
375
376int precopy_notify(PrecopyNotifyReason reason, Error **errp)
377{
378 PrecopyNotifyData pnd;
379 pnd.reason = reason;
380 pnd.errp = errp;
381
382 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
383}
384
6eeb63f7
WW
385void precopy_enable_free_page_optimization(void)
386{
387 if (!ram_state) {
388 return;
389 }
390
391 ram_state->fpo_enabled = true;
392}
393
9edabd4d 394uint64_t ram_bytes_remaining(void)
2f4fde93 395{
bae416e5
DDAG
396 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
397 0;
2f4fde93
JQ
398}
399
9360447d 400MigrationStats ram_counters;
96506894 401
b8fb8cb7
DDAG
402/* used by the search for pages to send */
403struct PageSearchStatus {
404 /* Current block being searched */
405 RAMBlock *block;
a935e30f
JQ
406 /* Current page to search from */
407 unsigned long page;
b8fb8cb7
DDAG
408 /* Set once we wrap around */
409 bool complete_round;
410};
411typedef struct PageSearchStatus PageSearchStatus;
412
76e03000
XG
413CompressionStats compression_counters;
414
56e93d26 415struct CompressParam {
56e93d26 416 bool done;
90e56fb4 417 bool quit;
5e5fdcff 418 bool zero_page;
56e93d26
JQ
419 QEMUFile *file;
420 QemuMutex mutex;
421 QemuCond cond;
422 RAMBlock *block;
423 ram_addr_t offset;
34ab9e97
XG
424
425 /* internally used fields */
dcaf446e 426 z_stream stream;
34ab9e97 427 uint8_t *originbuf;
56e93d26
JQ
428};
429typedef struct CompressParam CompressParam;
430
431struct DecompressParam {
73a8912b 432 bool done;
90e56fb4 433 bool quit;
56e93d26
JQ
434 QemuMutex mutex;
435 QemuCond cond;
436 void *des;
d341d9f3 437 uint8_t *compbuf;
56e93d26 438 int len;
797ca154 439 z_stream stream;
56e93d26
JQ
440};
441typedef struct DecompressParam DecompressParam;
442
443static CompressParam *comp_param;
444static QemuThread *compress_threads;
445/* comp_done_cond is used to wake up the migration thread when
446 * one of the compression threads has finished the compression.
447 * comp_done_lock is used to co-work with comp_done_cond.
448 */
0d9f9a5c
LL
449static QemuMutex comp_done_lock;
450static QemuCond comp_done_cond;
56e93d26
JQ
451/* The empty QEMUFileOps will be used by file in CompressParam */
452static const QEMUFileOps empty_ops = { };
453
34ab9e97 454static QEMUFile *decomp_file;
56e93d26
JQ
455static DecompressParam *decomp_param;
456static QemuThread *decompress_threads;
73a8912b
LL
457static QemuMutex decomp_done_lock;
458static QemuCond decomp_done_cond;
56e93d26 459
5e5fdcff 460static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
6ef3771c 461 ram_addr_t offset, uint8_t *source_buf);
56e93d26
JQ
462
463static void *do_data_compress(void *opaque)
464{
465 CompressParam *param = opaque;
a7a9a88f
LL
466 RAMBlock *block;
467 ram_addr_t offset;
5e5fdcff 468 bool zero_page;
56e93d26 469
a7a9a88f 470 qemu_mutex_lock(&param->mutex);
90e56fb4 471 while (!param->quit) {
a7a9a88f
LL
472 if (param->block) {
473 block = param->block;
474 offset = param->offset;
475 param->block = NULL;
476 qemu_mutex_unlock(&param->mutex);
477
5e5fdcff
XG
478 zero_page = do_compress_ram_page(param->file, &param->stream,
479 block, offset, param->originbuf);
a7a9a88f 480
0d9f9a5c 481 qemu_mutex_lock(&comp_done_lock);
a7a9a88f 482 param->done = true;
5e5fdcff 483 param->zero_page = zero_page;
0d9f9a5c
LL
484 qemu_cond_signal(&comp_done_cond);
485 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
486
487 qemu_mutex_lock(&param->mutex);
488 } else {
56e93d26
JQ
489 qemu_cond_wait(&param->cond, &param->mutex);
490 }
56e93d26 491 }
a7a9a88f 492 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
493
494 return NULL;
495}
496
f0afa331 497static void compress_threads_save_cleanup(void)
56e93d26
JQ
498{
499 int i, thread_count;
500
05306935 501 if (!migrate_use_compression() || !comp_param) {
56e93d26
JQ
502 return;
503 }
05306935 504
56e93d26
JQ
505 thread_count = migrate_compress_threads();
506 for (i = 0; i < thread_count; i++) {
dcaf446e
XG
507 /*
508 * we use it as a indicator which shows if the thread is
509 * properly init'd or not
510 */
511 if (!comp_param[i].file) {
512 break;
513 }
05306935
FL
514
515 qemu_mutex_lock(&comp_param[i].mutex);
516 comp_param[i].quit = true;
517 qemu_cond_signal(&comp_param[i].cond);
518 qemu_mutex_unlock(&comp_param[i].mutex);
519
56e93d26 520 qemu_thread_join(compress_threads + i);
56e93d26
JQ
521 qemu_mutex_destroy(&comp_param[i].mutex);
522 qemu_cond_destroy(&comp_param[i].cond);
dcaf446e 523 deflateEnd(&comp_param[i].stream);
34ab9e97 524 g_free(comp_param[i].originbuf);
dcaf446e
XG
525 qemu_fclose(comp_param[i].file);
526 comp_param[i].file = NULL;
56e93d26 527 }
0d9f9a5c
LL
528 qemu_mutex_destroy(&comp_done_lock);
529 qemu_cond_destroy(&comp_done_cond);
56e93d26
JQ
530 g_free(compress_threads);
531 g_free(comp_param);
56e93d26
JQ
532 compress_threads = NULL;
533 comp_param = NULL;
56e93d26
JQ
534}
535
dcaf446e 536static int compress_threads_save_setup(void)
56e93d26
JQ
537{
538 int i, thread_count;
539
540 if (!migrate_use_compression()) {
dcaf446e 541 return 0;
56e93d26 542 }
56e93d26
JQ
543 thread_count = migrate_compress_threads();
544 compress_threads = g_new0(QemuThread, thread_count);
545 comp_param = g_new0(CompressParam, thread_count);
0d9f9a5c
LL
546 qemu_cond_init(&comp_done_cond);
547 qemu_mutex_init(&comp_done_lock);
56e93d26 548 for (i = 0; i < thread_count; i++) {
34ab9e97
XG
549 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
550 if (!comp_param[i].originbuf) {
551 goto exit;
552 }
553
dcaf446e
XG
554 if (deflateInit(&comp_param[i].stream,
555 migrate_compress_level()) != Z_OK) {
34ab9e97 556 g_free(comp_param[i].originbuf);
dcaf446e
XG
557 goto exit;
558 }
559
e110aa91
C
560 /* comp_param[i].file is just used as a dummy buffer to save data,
561 * set its ops to empty.
56e93d26
JQ
562 */
563 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
564 comp_param[i].done = true;
90e56fb4 565 comp_param[i].quit = false;
56e93d26
JQ
566 qemu_mutex_init(&comp_param[i].mutex);
567 qemu_cond_init(&comp_param[i].cond);
568 qemu_thread_create(compress_threads + i, "compress",
569 do_data_compress, comp_param + i,
570 QEMU_THREAD_JOINABLE);
571 }
dcaf446e
XG
572 return 0;
573
574exit:
575 compress_threads_save_cleanup();
576 return -1;
56e93d26
JQ
577}
578
f986c3d2
JQ
579/* Multiple fd's */
580
af8b7d2b
JQ
581#define MULTIFD_MAGIC 0x11223344U
582#define MULTIFD_VERSION 1
583
6df264ac
JQ
584#define MULTIFD_FLAG_SYNC (1 << 0)
585
efd1a1d6 586/* This value needs to be a multiple of qemu_target_page_size() */
4b0c7264 587#define MULTIFD_PACKET_SIZE (512 * 1024)
efd1a1d6 588
af8b7d2b
JQ
589typedef struct {
590 uint32_t magic;
591 uint32_t version;
592 unsigned char uuid[16]; /* QemuUUID */
593 uint8_t id;
5fbd8b4b
JQ
594 uint8_t unused1[7]; /* Reserved for future use */
595 uint64_t unused2[4]; /* Reserved for future use */
af8b7d2b
JQ
596} __attribute__((packed)) MultiFDInit_t;
597
2a26c979
JQ
598typedef struct {
599 uint32_t magic;
600 uint32_t version;
601 uint32_t flags;
6f862692
JQ
602 /* maximum number of allocated pages */
603 uint32_t pages_alloc;
604 uint32_t pages_used;
2a34ee59
JQ
605 /* size of the next packet that contains pages */
606 uint32_t next_packet_size;
2a26c979 607 uint64_t packet_num;
5fbd8b4b 608 uint64_t unused[4]; /* Reserved for future use */
2a26c979
JQ
609 char ramblock[256];
610 uint64_t offset[];
611} __attribute__((packed)) MultiFDPacket_t;
612
34c55a94
JQ
613typedef struct {
614 /* number of used pages */
615 uint32_t used;
616 /* number of allocated pages */
617 uint32_t allocated;
618 /* global number of generated multifd packets */
619 uint64_t packet_num;
620 /* offset of each page */
621 ram_addr_t *offset;
622 /* pointer to each page */
623 struct iovec *iov;
624 RAMBlock *block;
625} MultiFDPages_t;
626
8c4598f2
JQ
627typedef struct {
628 /* this fields are not changed once the thread is created */
629 /* channel number */
f986c3d2 630 uint8_t id;
8c4598f2 631 /* channel thread name */
f986c3d2 632 char *name;
8c4598f2 633 /* channel thread id */
f986c3d2 634 QemuThread thread;
8c4598f2 635 /* communication channel */
60df2d4a 636 QIOChannel *c;
8c4598f2 637 /* sem where to wait for more work */
f986c3d2 638 QemuSemaphore sem;
8c4598f2 639 /* this mutex protects the following parameters */
f986c3d2 640 QemuMutex mutex;
8c4598f2 641 /* is this channel thread running */
66770707 642 bool running;
8c4598f2 643 /* should this thread finish */
f986c3d2 644 bool quit;
0beb5ed3
JQ
645 /* thread has work to do */
646 int pending_job;
34c55a94
JQ
647 /* array of pages to sent */
648 MultiFDPages_t *pages;
2a26c979
JQ
649 /* packet allocated len */
650 uint32_t packet_len;
651 /* pointer to the packet */
652 MultiFDPacket_t *packet;
653 /* multifd flags for each packet */
654 uint32_t flags;
2a34ee59
JQ
655 /* size of the next packet that contains pages */
656 uint32_t next_packet_size;
2a26c979
JQ
657 /* global number of generated multifd packets */
658 uint64_t packet_num;
408ea6ae
JQ
659 /* thread local variables */
660 /* packets sent through this channel */
661 uint64_t num_packets;
662 /* pages sent through this channel */
663 uint64_t num_pages;
18cdcea3
JQ
664 /* syncs main thread and channels */
665 QemuSemaphore sem_sync;
8c4598f2
JQ
666} MultiFDSendParams;
667
668typedef struct {
669 /* this fields are not changed once the thread is created */
670 /* channel number */
671 uint8_t id;
672 /* channel thread name */
673 char *name;
674 /* channel thread id */
675 QemuThread thread;
676 /* communication channel */
677 QIOChannel *c;
8c4598f2
JQ
678 /* this mutex protects the following parameters */
679 QemuMutex mutex;
680 /* is this channel thread running */
681 bool running;
3c3ca25d
JQ
682 /* should this thread finish */
683 bool quit;
34c55a94
JQ
684 /* array of pages to receive */
685 MultiFDPages_t *pages;
2a26c979
JQ
686 /* packet allocated len */
687 uint32_t packet_len;
688 /* pointer to the packet */
689 MultiFDPacket_t *packet;
690 /* multifd flags for each packet */
691 uint32_t flags;
692 /* global number of generated multifd packets */
693 uint64_t packet_num;
408ea6ae 694 /* thread local variables */
2a34ee59
JQ
695 /* size of the next packet that contains pages */
696 uint32_t next_packet_size;
408ea6ae
JQ
697 /* packets sent through this channel */
698 uint64_t num_packets;
699 /* pages sent through this channel */
700 uint64_t num_pages;
6df264ac
JQ
701 /* syncs main thread and channels */
702 QemuSemaphore sem_sync;
8c4598f2 703} MultiFDRecvParams;
f986c3d2 704
af8b7d2b
JQ
705static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
706{
707 MultiFDInit_t msg;
708 int ret;
709
710 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
711 msg.version = cpu_to_be32(MULTIFD_VERSION);
712 msg.id = p->id;
713 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
714
715 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
716 if (ret != 0) {
717 return -1;
718 }
719 return 0;
720}
721
722static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
723{
724 MultiFDInit_t msg;
725 int ret;
726
727 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
728 if (ret != 0) {
729 return -1;
730 }
731
341ba0df
PM
732 msg.magic = be32_to_cpu(msg.magic);
733 msg.version = be32_to_cpu(msg.version);
af8b7d2b
JQ
734
735 if (msg.magic != MULTIFD_MAGIC) {
736 error_setg(errp, "multifd: received packet magic %x "
737 "expected %x", msg.magic, MULTIFD_MAGIC);
738 return -1;
739 }
740
741 if (msg.version != MULTIFD_VERSION) {
742 error_setg(errp, "multifd: received packet version %d "
743 "expected %d", msg.version, MULTIFD_VERSION);
744 return -1;
745 }
746
747 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
748 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
749 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
750
751 error_setg(errp, "multifd: received uuid '%s' and expected "
752 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
753 g_free(uuid);
754 g_free(msg_uuid);
755 return -1;
756 }
757
758 if (msg.id > migrate_multifd_channels()) {
759 error_setg(errp, "multifd: received channel version %d "
760 "expected %d", msg.version, MULTIFD_VERSION);
761 return -1;
762 }
763
764 return msg.id;
765}
766
34c55a94
JQ
767static MultiFDPages_t *multifd_pages_init(size_t size)
768{
769 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
770
771 pages->allocated = size;
772 pages->iov = g_new0(struct iovec, size);
773 pages->offset = g_new0(ram_addr_t, size);
774
775 return pages;
776}
777
778static void multifd_pages_clear(MultiFDPages_t *pages)
779{
780 pages->used = 0;
781 pages->allocated = 0;
782 pages->packet_num = 0;
783 pages->block = NULL;
784 g_free(pages->iov);
785 pages->iov = NULL;
786 g_free(pages->offset);
787 pages->offset = NULL;
788 g_free(pages);
789}
790
2a26c979
JQ
791static void multifd_send_fill_packet(MultiFDSendParams *p)
792{
793 MultiFDPacket_t *packet = p->packet;
7ed379b2 794 uint32_t page_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
2a26c979
JQ
795 int i;
796
797 packet->magic = cpu_to_be32(MULTIFD_MAGIC);
798 packet->version = cpu_to_be32(MULTIFD_VERSION);
799 packet->flags = cpu_to_be32(p->flags);
7ed379b2 800 packet->pages_alloc = cpu_to_be32(page_max);
6f862692 801 packet->pages_used = cpu_to_be32(p->pages->used);
2a34ee59 802 packet->next_packet_size = cpu_to_be32(p->next_packet_size);
2a26c979
JQ
803 packet->packet_num = cpu_to_be64(p->packet_num);
804
805 if (p->pages->block) {
806 strncpy(packet->ramblock, p->pages->block->idstr, 256);
807 }
808
809 for (i = 0; i < p->pages->used; i++) {
810 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
811 }
812}
813
814static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
815{
816 MultiFDPacket_t *packet = p->packet;
7ed379b2 817 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
2a26c979
JQ
818 RAMBlock *block;
819 int i;
820
341ba0df 821 packet->magic = be32_to_cpu(packet->magic);
2a26c979
JQ
822 if (packet->magic != MULTIFD_MAGIC) {
823 error_setg(errp, "multifd: received packet "
824 "magic %x and expected magic %x",
825 packet->magic, MULTIFD_MAGIC);
826 return -1;
827 }
828
341ba0df 829 packet->version = be32_to_cpu(packet->version);
2a26c979
JQ
830 if (packet->version != MULTIFD_VERSION) {
831 error_setg(errp, "multifd: received packet "
832 "version %d and expected version %d",
833 packet->version, MULTIFD_VERSION);
834 return -1;
835 }
836
837 p->flags = be32_to_cpu(packet->flags);
838
6f862692 839 packet->pages_alloc = be32_to_cpu(packet->pages_alloc);
7ed379b2
JQ
840 /*
841 * If we recevied a packet that is 100 times bigger than expected
842 * just stop migration. It is a magic number.
843 */
844 if (packet->pages_alloc > pages_max * 100) {
2a26c979 845 error_setg(errp, "multifd: received packet "
7ed379b2
JQ
846 "with size %d and expected a maximum size of %d",
847 packet->pages_alloc, pages_max * 100) ;
2a26c979
JQ
848 return -1;
849 }
7ed379b2
JQ
850 /*
851 * We received a packet that is bigger than expected but inside
852 * reasonable limits (see previous comment). Just reallocate.
853 */
854 if (packet->pages_alloc > p->pages->allocated) {
855 multifd_pages_clear(p->pages);
f151f8ac 856 p->pages = multifd_pages_init(packet->pages_alloc);
7ed379b2 857 }
2a26c979 858
6f862692
JQ
859 p->pages->used = be32_to_cpu(packet->pages_used);
860 if (p->pages->used > packet->pages_alloc) {
2a26c979 861 error_setg(errp, "multifd: received packet "
6f862692
JQ
862 "with %d pages and expected maximum pages are %d",
863 p->pages->used, packet->pages_alloc) ;
2a26c979
JQ
864 return -1;
865 }
866
2a34ee59 867 p->next_packet_size = be32_to_cpu(packet->next_packet_size);
2a26c979
JQ
868 p->packet_num = be64_to_cpu(packet->packet_num);
869
870 if (p->pages->used) {
871 /* make sure that ramblock is 0 terminated */
872 packet->ramblock[255] = 0;
873 block = qemu_ram_block_by_name(packet->ramblock);
874 if (!block) {
875 error_setg(errp, "multifd: unknown ram block %s",
876 packet->ramblock);
877 return -1;
878 }
879 }
880
881 for (i = 0; i < p->pages->used; i++) {
882 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
883
884 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
885 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
886 " (max " RAM_ADDR_FMT ")",
887 offset, block->max_length);
888 return -1;
889 }
890 p->pages->iov[i].iov_base = block->host + offset;
891 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
892 }
893
894 return 0;
895}
896
f986c3d2
JQ
897struct {
898 MultiFDSendParams *params;
34c55a94
JQ
899 /* array of pages to sent */
900 MultiFDPages_t *pages;
6df264ac
JQ
901 /* global number of generated multifd packets */
902 uint64_t packet_num;
b9ee2f7d
JQ
903 /* send channels ready */
904 QemuSemaphore channels_ready;
f986c3d2
JQ
905} *multifd_send_state;
906
b9ee2f7d
JQ
907/*
908 * How we use multifd_send_state->pages and channel->pages?
909 *
910 * We create a pages for each channel, and a main one. Each time that
911 * we need to send a batch of pages we interchange the ones between
912 * multifd_send_state and the channel that is sending it. There are
913 * two reasons for that:
914 * - to not have to do so many mallocs during migration
915 * - to make easier to know what to free at the end of migration
916 *
917 * This way we always know who is the owner of each "pages" struct,
a5f7b1a6 918 * and we don't need any locking. It belongs to the migration thread
b9ee2f7d
JQ
919 * or to the channel thread. Switching is safe because the migration
920 * thread is using the channel mutex when changing it, and the channel
921 * have to had finish with its own, otherwise pending_job can't be
922 * false.
923 */
924
1b81c974 925static int multifd_send_pages(RAMState *rs)
b9ee2f7d
JQ
926{
927 int i;
928 static int next_channel;
929 MultiFDSendParams *p = NULL; /* make happy gcc */
930 MultiFDPages_t *pages = multifd_send_state->pages;
931 uint64_t transferred;
932
933 qemu_sem_wait(&multifd_send_state->channels_ready);
934 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
935 p = &multifd_send_state->params[i];
936
937 qemu_mutex_lock(&p->mutex);
713f762a
IR
938 if (p->quit) {
939 error_report("%s: channel %d has already quit!", __func__, i);
940 qemu_mutex_unlock(&p->mutex);
941 return -1;
942 }
b9ee2f7d
JQ
943 if (!p->pending_job) {
944 p->pending_job++;
945 next_channel = (i + 1) % migrate_multifd_channels();
946 break;
947 }
948 qemu_mutex_unlock(&p->mutex);
949 }
950 p->pages->used = 0;
951
952 p->packet_num = multifd_send_state->packet_num++;
953 p->pages->block = NULL;
954 multifd_send_state->pages = p->pages;
955 p->pages = pages;
4fcefd44 956 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
1b81c974 957 qemu_file_update_transfer(rs->f, transferred);
b9ee2f7d
JQ
958 ram_counters.multifd_bytes += transferred;
959 ram_counters.transferred += transferred;;
960 qemu_mutex_unlock(&p->mutex);
961 qemu_sem_post(&p->sem);
713f762a
IR
962
963 return 1;
b9ee2f7d
JQ
964}
965
1b81c974 966static int multifd_queue_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
b9ee2f7d
JQ
967{
968 MultiFDPages_t *pages = multifd_send_state->pages;
969
970 if (!pages->block) {
971 pages->block = block;
972 }
973
974 if (pages->block == block) {
975 pages->offset[pages->used] = offset;
976 pages->iov[pages->used].iov_base = block->host + offset;
977 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
978 pages->used++;
979
980 if (pages->used < pages->allocated) {
713f762a 981 return 1;
b9ee2f7d
JQ
982 }
983 }
984
1b81c974 985 if (multifd_send_pages(rs) < 0) {
713f762a
IR
986 return -1;
987 }
b9ee2f7d
JQ
988
989 if (pages->block != block) {
1b81c974 990 return multifd_queue_page(rs, block, offset);
b9ee2f7d 991 }
713f762a
IR
992
993 return 1;
b9ee2f7d
JQ
994}
995
66770707 996static void multifd_send_terminate_threads(Error *err)
f986c3d2
JQ
997{
998 int i;
999
5558c91a
JQ
1000 trace_multifd_send_terminate_threads(err != NULL);
1001
7a169d74
JQ
1002 if (err) {
1003 MigrationState *s = migrate_get_current();
1004 migrate_set_error(s, err);
1005 if (s->state == MIGRATION_STATUS_SETUP ||
1006 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
1007 s->state == MIGRATION_STATUS_DEVICE ||
1008 s->state == MIGRATION_STATUS_ACTIVE) {
1009 migrate_set_state(&s->state, s->state,
1010 MIGRATION_STATUS_FAILED);
1011 }
1012 }
1013
66770707 1014 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1015 MultiFDSendParams *p = &multifd_send_state->params[i];
1016
1017 qemu_mutex_lock(&p->mutex);
1018 p->quit = true;
1019 qemu_sem_post(&p->sem);
1020 qemu_mutex_unlock(&p->mutex);
1021 }
1022}
1023
1398b2e3 1024void multifd_save_cleanup(void)
f986c3d2
JQ
1025{
1026 int i;
f986c3d2
JQ
1027
1028 if (!migrate_use_multifd()) {
1398b2e3 1029 return;
f986c3d2 1030 }
66770707
JQ
1031 multifd_send_terminate_threads(NULL);
1032 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1033 MultiFDSendParams *p = &multifd_send_state->params[i];
1034
66770707
JQ
1035 if (p->running) {
1036 qemu_thread_join(&p->thread);
1037 }
60df2d4a
JQ
1038 socket_send_channel_destroy(p->c);
1039 p->c = NULL;
f986c3d2
JQ
1040 qemu_mutex_destroy(&p->mutex);
1041 qemu_sem_destroy(&p->sem);
18cdcea3 1042 qemu_sem_destroy(&p->sem_sync);
f986c3d2
JQ
1043 g_free(p->name);
1044 p->name = NULL;
34c55a94
JQ
1045 multifd_pages_clear(p->pages);
1046 p->pages = NULL;
2a26c979
JQ
1047 p->packet_len = 0;
1048 g_free(p->packet);
1049 p->packet = NULL;
f986c3d2 1050 }
b9ee2f7d 1051 qemu_sem_destroy(&multifd_send_state->channels_ready);
f986c3d2
JQ
1052 g_free(multifd_send_state->params);
1053 multifd_send_state->params = NULL;
34c55a94
JQ
1054 multifd_pages_clear(multifd_send_state->pages);
1055 multifd_send_state->pages = NULL;
f986c3d2
JQ
1056 g_free(multifd_send_state);
1057 multifd_send_state = NULL;
f986c3d2
JQ
1058}
1059
1b81c974 1060static void multifd_send_sync_main(RAMState *rs)
6df264ac
JQ
1061{
1062 int i;
1063
1064 if (!migrate_use_multifd()) {
1065 return;
1066 }
b9ee2f7d 1067 if (multifd_send_state->pages->used) {
1b81c974 1068 if (multifd_send_pages(rs) < 0) {
713f762a
IR
1069 error_report("%s: multifd_send_pages fail", __func__);
1070 return;
1071 }
b9ee2f7d 1072 }
6df264ac
JQ
1073 for (i = 0; i < migrate_multifd_channels(); i++) {
1074 MultiFDSendParams *p = &multifd_send_state->params[i];
1075
1076 trace_multifd_send_sync_main_signal(p->id);
1077
1078 qemu_mutex_lock(&p->mutex);
b9ee2f7d 1079
713f762a
IR
1080 if (p->quit) {
1081 error_report("%s: channel %d has already quit", __func__, i);
1082 qemu_mutex_unlock(&p->mutex);
1083 return;
1084 }
1085
b9ee2f7d 1086 p->packet_num = multifd_send_state->packet_num++;
6df264ac
JQ
1087 p->flags |= MULTIFD_FLAG_SYNC;
1088 p->pending_job++;
1b81c974 1089 qemu_file_update_transfer(rs->f, p->packet_len);
81507f6b
IR
1090 ram_counters.multifd_bytes += p->packet_len;
1091 ram_counters.transferred += p->packet_len;
6df264ac
JQ
1092 qemu_mutex_unlock(&p->mutex);
1093 qemu_sem_post(&p->sem);
1094 }
1095 for (i = 0; i < migrate_multifd_channels(); i++) {
1096 MultiFDSendParams *p = &multifd_send_state->params[i];
1097
1098 trace_multifd_send_sync_main_wait(p->id);
18cdcea3 1099 qemu_sem_wait(&p->sem_sync);
6df264ac
JQ
1100 }
1101 trace_multifd_send_sync_main(multifd_send_state->packet_num);
1102}
1103
f986c3d2
JQ
1104static void *multifd_send_thread(void *opaque)
1105{
1106 MultiFDSendParams *p = opaque;
af8b7d2b 1107 Error *local_err = NULL;
a3ec6b7d
IR
1108 int ret = 0;
1109 uint32_t flags = 0;
af8b7d2b 1110
408ea6ae 1111 trace_multifd_send_thread_start(p->id);
74637e6f 1112 rcu_register_thread();
408ea6ae 1113
af8b7d2b 1114 if (multifd_send_initial_packet(p, &local_err) < 0) {
2f4aefd3 1115 ret = -1;
af8b7d2b
JQ
1116 goto out;
1117 }
408ea6ae
JQ
1118 /* initial packet */
1119 p->num_packets = 1;
f986c3d2
JQ
1120
1121 while (true) {
d82628e4 1122 qemu_sem_wait(&p->sem);
f986c3d2 1123 qemu_mutex_lock(&p->mutex);
0beb5ed3
JQ
1124
1125 if (p->pending_job) {
1126 uint32_t used = p->pages->used;
1127 uint64_t packet_num = p->packet_num;
a3ec6b7d 1128 flags = p->flags;
0beb5ed3 1129
2a34ee59 1130 p->next_packet_size = used * qemu_target_page_size();
0beb5ed3
JQ
1131 multifd_send_fill_packet(p);
1132 p->flags = 0;
1133 p->num_packets++;
1134 p->num_pages += used;
1135 p->pages->used = 0;
1136 qemu_mutex_unlock(&p->mutex);
1137
2a34ee59
JQ
1138 trace_multifd_send(p->id, packet_num, used, flags,
1139 p->next_packet_size);
0beb5ed3 1140
8b2db7f5
JQ
1141 ret = qio_channel_write_all(p->c, (void *)p->packet,
1142 p->packet_len, &local_err);
1143 if (ret != 0) {
1144 break;
1145 }
1146
ad24c7cb
JQ
1147 if (used) {
1148 ret = qio_channel_writev_all(p->c, p->pages->iov,
1149 used, &local_err);
1150 if (ret != 0) {
1151 break;
1152 }
8b2db7f5 1153 }
0beb5ed3
JQ
1154
1155 qemu_mutex_lock(&p->mutex);
1156 p->pending_job--;
1157 qemu_mutex_unlock(&p->mutex);
6df264ac
JQ
1158
1159 if (flags & MULTIFD_FLAG_SYNC) {
18cdcea3 1160 qemu_sem_post(&p->sem_sync);
6df264ac 1161 }
b9ee2f7d 1162 qemu_sem_post(&multifd_send_state->channels_ready);
0beb5ed3 1163 } else if (p->quit) {
f986c3d2
JQ
1164 qemu_mutex_unlock(&p->mutex);
1165 break;
6df264ac
JQ
1166 } else {
1167 qemu_mutex_unlock(&p->mutex);
1168 /* sometimes there are spurious wakeups */
f986c3d2 1169 }
f986c3d2
JQ
1170 }
1171
af8b7d2b
JQ
1172out:
1173 if (local_err) {
7dd59d01 1174 trace_multifd_send_error(p->id);
af8b7d2b
JQ
1175 multifd_send_terminate_threads(local_err);
1176 }
1177
a3ec6b7d
IR
1178 /*
1179 * Error happen, I will exit, but I can't just leave, tell
1180 * who pay attention to me.
1181 */
1182 if (ret != 0) {
2f4aefd3 1183 qemu_sem_post(&p->sem_sync);
a3ec6b7d
IR
1184 qemu_sem_post(&multifd_send_state->channels_ready);
1185 }
1186
66770707
JQ
1187 qemu_mutex_lock(&p->mutex);
1188 p->running = false;
1189 qemu_mutex_unlock(&p->mutex);
1190
74637e6f 1191 rcu_unregister_thread();
408ea6ae
JQ
1192 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1193
f986c3d2
JQ
1194 return NULL;
1195}
1196
60df2d4a
JQ
1197static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1198{
1199 MultiFDSendParams *p = opaque;
1200 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1201 Error *local_err = NULL;
1202
7dd59d01 1203 trace_multifd_new_send_channel_async(p->id);
60df2d4a 1204 if (qio_task_propagate_error(task, &local_err)) {
1398b2e3
FL
1205 migrate_set_error(migrate_get_current(), local_err);
1206 multifd_save_cleanup();
60df2d4a
JQ
1207 } else {
1208 p->c = QIO_CHANNEL(sioc);
1209 qio_channel_set_delay(p->c, false);
1210 p->running = true;
1211 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1212 QEMU_THREAD_JOINABLE);
60df2d4a
JQ
1213 }
1214}
1215
f986c3d2
JQ
1216int multifd_save_setup(void)
1217{
1218 int thread_count;
efd1a1d6 1219 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
f986c3d2
JQ
1220 uint8_t i;
1221
1222 if (!migrate_use_multifd()) {
1223 return 0;
1224 }
1225 thread_count = migrate_multifd_channels();
1226 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1227 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
34c55a94 1228 multifd_send_state->pages = multifd_pages_init(page_count);
b9ee2f7d 1229 qemu_sem_init(&multifd_send_state->channels_ready, 0);
34c55a94 1230
f986c3d2
JQ
1231 for (i = 0; i < thread_count; i++) {
1232 MultiFDSendParams *p = &multifd_send_state->params[i];
1233
1234 qemu_mutex_init(&p->mutex);
1235 qemu_sem_init(&p->sem, 0);
18cdcea3 1236 qemu_sem_init(&p->sem_sync, 0);
f986c3d2 1237 p->quit = false;
0beb5ed3 1238 p->pending_job = 0;
f986c3d2 1239 p->id = i;
34c55a94 1240 p->pages = multifd_pages_init(page_count);
2a26c979
JQ
1241 p->packet_len = sizeof(MultiFDPacket_t)
1242 + sizeof(ram_addr_t) * page_count;
1243 p->packet = g_malloc0(p->packet_len);
f986c3d2 1244 p->name = g_strdup_printf("multifdsend_%d", i);
60df2d4a 1245 socket_send_channel_create(multifd_new_send_channel_async, p);
f986c3d2
JQ
1246 }
1247 return 0;
1248}
1249
f986c3d2
JQ
1250struct {
1251 MultiFDRecvParams *params;
1252 /* number of created threads */
1253 int count;
6df264ac
JQ
1254 /* syncs main thread and channels */
1255 QemuSemaphore sem_sync;
1256 /* global number of generated multifd packets */
1257 uint64_t packet_num;
f986c3d2
JQ
1258} *multifd_recv_state;
1259
66770707 1260static void multifd_recv_terminate_threads(Error *err)
f986c3d2
JQ
1261{
1262 int i;
1263
5558c91a
JQ
1264 trace_multifd_recv_terminate_threads(err != NULL);
1265
7a169d74
JQ
1266 if (err) {
1267 MigrationState *s = migrate_get_current();
1268 migrate_set_error(s, err);
1269 if (s->state == MIGRATION_STATUS_SETUP ||
1270 s->state == MIGRATION_STATUS_ACTIVE) {
1271 migrate_set_state(&s->state, s->state,
1272 MIGRATION_STATUS_FAILED);
1273 }
1274 }
1275
66770707 1276 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1277 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1278
1279 qemu_mutex_lock(&p->mutex);
3c3ca25d 1280 p->quit = true;
7a5cc33c
JQ
1281 /* We could arrive here for two reasons:
1282 - normal quit, i.e. everything went fine, just finished
1283 - error quit: We close the channels so the channel threads
1284 finish the qio_channel_read_all_eof() */
1285 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
f986c3d2
JQ
1286 qemu_mutex_unlock(&p->mutex);
1287 }
1288}
1289
1290int multifd_load_cleanup(Error **errp)
1291{
1292 int i;
1293 int ret = 0;
1294
1295 if (!migrate_use_multifd()) {
1296 return 0;
1297 }
66770707
JQ
1298 multifd_recv_terminate_threads(NULL);
1299 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1300 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1301
66770707 1302 if (p->running) {
3c3ca25d 1303 p->quit = true;
f193bc0c
IR
1304 /*
1305 * multifd_recv_thread may hung at MULTIFD_FLAG_SYNC handle code,
1306 * however try to wakeup it without harm in cleanup phase.
1307 */
1308 qemu_sem_post(&p->sem_sync);
66770707
JQ
1309 qemu_thread_join(&p->thread);
1310 }
60df2d4a
JQ
1311 object_unref(OBJECT(p->c));
1312 p->c = NULL;
f986c3d2 1313 qemu_mutex_destroy(&p->mutex);
6df264ac 1314 qemu_sem_destroy(&p->sem_sync);
f986c3d2
JQ
1315 g_free(p->name);
1316 p->name = NULL;
34c55a94
JQ
1317 multifd_pages_clear(p->pages);
1318 p->pages = NULL;
2a26c979
JQ
1319 p->packet_len = 0;
1320 g_free(p->packet);
1321 p->packet = NULL;
f986c3d2 1322 }
6df264ac 1323 qemu_sem_destroy(&multifd_recv_state->sem_sync);
f986c3d2
JQ
1324 g_free(multifd_recv_state->params);
1325 multifd_recv_state->params = NULL;
1326 g_free(multifd_recv_state);
1327 multifd_recv_state = NULL;
1328
1329 return ret;
1330}
1331
6df264ac
JQ
1332static void multifd_recv_sync_main(void)
1333{
1334 int i;
1335
1336 if (!migrate_use_multifd()) {
1337 return;
1338 }
1339 for (i = 0; i < migrate_multifd_channels(); i++) {
1340 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1341
6df264ac
JQ
1342 trace_multifd_recv_sync_main_wait(p->id);
1343 qemu_sem_wait(&multifd_recv_state->sem_sync);
77568ea7
WY
1344 }
1345 for (i = 0; i < migrate_multifd_channels(); i++) {
1346 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1347
6df264ac
JQ
1348 qemu_mutex_lock(&p->mutex);
1349 if (multifd_recv_state->packet_num < p->packet_num) {
1350 multifd_recv_state->packet_num = p->packet_num;
1351 }
1352 qemu_mutex_unlock(&p->mutex);
6df264ac 1353 trace_multifd_recv_sync_main_signal(p->id);
6df264ac
JQ
1354 qemu_sem_post(&p->sem_sync);
1355 }
1356 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1357}
1358
f986c3d2
JQ
1359static void *multifd_recv_thread(void *opaque)
1360{
1361 MultiFDRecvParams *p = opaque;
2a26c979
JQ
1362 Error *local_err = NULL;
1363 int ret;
f986c3d2 1364
408ea6ae 1365 trace_multifd_recv_thread_start(p->id);
74637e6f 1366 rcu_register_thread();
408ea6ae 1367
f986c3d2 1368 while (true) {
6df264ac
JQ
1369 uint32_t used;
1370 uint32_t flags;
0beb5ed3 1371
3c3ca25d
JQ
1372 if (p->quit) {
1373 break;
1374 }
1375
8b2db7f5
JQ
1376 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1377 p->packet_len, &local_err);
1378 if (ret == 0) { /* EOF */
1379 break;
1380 }
1381 if (ret == -1) { /* Error */
1382 break;
1383 }
2a26c979 1384
6df264ac
JQ
1385 qemu_mutex_lock(&p->mutex);
1386 ret = multifd_recv_unfill_packet(p, &local_err);
1387 if (ret) {
f986c3d2
JQ
1388 qemu_mutex_unlock(&p->mutex);
1389 break;
1390 }
6df264ac
JQ
1391
1392 used = p->pages->used;
1393 flags = p->flags;
2a34ee59
JQ
1394 trace_multifd_recv(p->id, p->packet_num, used, flags,
1395 p->next_packet_size);
6df264ac
JQ
1396 p->num_packets++;
1397 p->num_pages += used;
f986c3d2 1398 qemu_mutex_unlock(&p->mutex);
6df264ac 1399
ad24c7cb
JQ
1400 if (used) {
1401 ret = qio_channel_readv_all(p->c, p->pages->iov,
1402 used, &local_err);
1403 if (ret != 0) {
1404 break;
1405 }
8b2db7f5
JQ
1406 }
1407
6df264ac
JQ
1408 if (flags & MULTIFD_FLAG_SYNC) {
1409 qemu_sem_post(&multifd_recv_state->sem_sync);
1410 qemu_sem_wait(&p->sem_sync);
1411 }
f986c3d2
JQ
1412 }
1413
d82628e4
JQ
1414 if (local_err) {
1415 multifd_recv_terminate_threads(local_err);
1416 }
66770707
JQ
1417 qemu_mutex_lock(&p->mutex);
1418 p->running = false;
1419 qemu_mutex_unlock(&p->mutex);
1420
74637e6f 1421 rcu_unregister_thread();
408ea6ae
JQ
1422 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1423
f986c3d2
JQ
1424 return NULL;
1425}
1426
1427int multifd_load_setup(void)
1428{
1429 int thread_count;
efd1a1d6 1430 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
f986c3d2
JQ
1431 uint8_t i;
1432
1433 if (!migrate_use_multifd()) {
1434 return 0;
1435 }
1436 thread_count = migrate_multifd_channels();
1437 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1438 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
66770707 1439 atomic_set(&multifd_recv_state->count, 0);
6df264ac 1440 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
34c55a94 1441
f986c3d2
JQ
1442 for (i = 0; i < thread_count; i++) {
1443 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1444
1445 qemu_mutex_init(&p->mutex);
6df264ac 1446 qemu_sem_init(&p->sem_sync, 0);
3c3ca25d 1447 p->quit = false;
f986c3d2 1448 p->id = i;
34c55a94 1449 p->pages = multifd_pages_init(page_count);
2a26c979
JQ
1450 p->packet_len = sizeof(MultiFDPacket_t)
1451 + sizeof(ram_addr_t) * page_count;
1452 p->packet = g_malloc0(p->packet_len);
f986c3d2 1453 p->name = g_strdup_printf("multifdrecv_%d", i);
f986c3d2
JQ
1454 }
1455 return 0;
1456}
1457
62c1e0ca
JQ
1458bool multifd_recv_all_channels_created(void)
1459{
1460 int thread_count = migrate_multifd_channels();
1461
1462 if (!migrate_use_multifd()) {
1463 return true;
1464 }
1465
1466 return thread_count == atomic_read(&multifd_recv_state->count);
1467}
1468
49ed0d24
FL
1469/*
1470 * Try to receive all multifd channels to get ready for the migration.
1471 * - Return true and do not set @errp when correctly receving all channels;
1472 * - Return false and do not set @errp when correctly receiving the current one;
1473 * - Return false and set @errp when failing to receive the current channel.
1474 */
1475bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
71bb07db 1476{
60df2d4a 1477 MultiFDRecvParams *p;
af8b7d2b
JQ
1478 Error *local_err = NULL;
1479 int id;
60df2d4a 1480
af8b7d2b
JQ
1481 id = multifd_recv_initial_packet(ioc, &local_err);
1482 if (id < 0) {
1483 multifd_recv_terminate_threads(local_err);
49ed0d24
FL
1484 error_propagate_prepend(errp, local_err,
1485 "failed to receive packet"
1486 " via multifd channel %d: ",
1487 atomic_read(&multifd_recv_state->count));
81e62053 1488 return false;
af8b7d2b 1489 }
7dd59d01 1490 trace_multifd_recv_new_channel(id);
af8b7d2b
JQ
1491
1492 p = &multifd_recv_state->params[id];
1493 if (p->c != NULL) {
1494 error_setg(&local_err, "multifd: received id '%d' already setup'",
1495 id);
1496 multifd_recv_terminate_threads(local_err);
49ed0d24 1497 error_propagate(errp, local_err);
81e62053 1498 return false;
af8b7d2b 1499 }
60df2d4a
JQ
1500 p->c = ioc;
1501 object_ref(OBJECT(ioc));
408ea6ae
JQ
1502 /* initial packet */
1503 p->num_packets = 1;
60df2d4a
JQ
1504
1505 p->running = true;
1506 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1507 QEMU_THREAD_JOINABLE);
1508 atomic_inc(&multifd_recv_state->count);
49ed0d24
FL
1509 return atomic_read(&multifd_recv_state->count) ==
1510 migrate_multifd_channels();
71bb07db
JQ
1511}
1512
56e93d26 1513/**
3d0684b2 1514 * save_page_header: write page header to wire
56e93d26
JQ
1515 *
1516 * If this is the 1st block, it also writes the block identification
1517 *
3d0684b2 1518 * Returns the number of bytes written
56e93d26
JQ
1519 *
1520 * @f: QEMUFile where to send the data
1521 * @block: block that contains the page we want to send
1522 * @offset: offset inside the block for the page
1523 * in the lower bits, it contains flags
1524 */
2bf3aa85
JQ
1525static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1526 ram_addr_t offset)
56e93d26 1527{
9f5f380b 1528 size_t size, len;
56e93d26 1529
24795694
JQ
1530 if (block == rs->last_sent_block) {
1531 offset |= RAM_SAVE_FLAG_CONTINUE;
1532 }
2bf3aa85 1533 qemu_put_be64(f, offset);
56e93d26
JQ
1534 size = 8;
1535
1536 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
9f5f380b 1537 len = strlen(block->idstr);
2bf3aa85
JQ
1538 qemu_put_byte(f, len);
1539 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
9f5f380b 1540 size += 1 + len;
24795694 1541 rs->last_sent_block = block;
56e93d26
JQ
1542 }
1543 return size;
1544}
1545
3d0684b2
JQ
1546/**
1547 * mig_throttle_guest_down: throotle down the guest
1548 *
1549 * Reduce amount of guest cpu execution to hopefully slow down memory
1550 * writes. If guest dirty memory rate is reduced below the rate at
1551 * which we can transfer pages to the destination then we should be
1552 * able to complete migration. Some workloads dirty memory way too
1553 * fast and will not effectively converge, even with auto-converge.
070afca2
JH
1554 */
1555static void mig_throttle_guest_down(void)
1556{
1557 MigrationState *s = migrate_get_current();
2594f56d
DB
1558 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1559 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
4cbc9c7f 1560 int pct_max = s->parameters.max_cpu_throttle;
070afca2
JH
1561
1562 /* We have not started throttling yet. Let's start it. */
1563 if (!cpu_throttle_active()) {
1564 cpu_throttle_set(pct_initial);
1565 } else {
1566 /* Throttling already on, just increase the rate */
4cbc9c7f
LQ
1567 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1568 pct_max));
070afca2
JH
1569 }
1570}
1571
3d0684b2
JQ
1572/**
1573 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1574 *
6f37bb8b 1575 * @rs: current RAM state
3d0684b2
JQ
1576 * @current_addr: address for the zero page
1577 *
1578 * Update the xbzrle cache to reflect a page that's been sent as all 0.
56e93d26
JQ
1579 * The important thing is that a stale (not-yet-0'd) page be replaced
1580 * by the new data.
1581 * As a bonus, if the page wasn't in the cache it gets added so that
3d0684b2 1582 * when a small write is made into the 0'd page it gets XBZRLE sent.
56e93d26 1583 */
6f37bb8b 1584static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
56e93d26 1585{
6f37bb8b 1586 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
56e93d26
JQ
1587 return;
1588 }
1589
1590 /* We don't care if this fails to allocate a new cache page
1591 * as long as it updated an old one */
c00e0928 1592 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
9360447d 1593 ram_counters.dirty_sync_count);
56e93d26
JQ
1594}
1595
1596#define ENCODING_FLAG_XBZRLE 0x1
1597
1598/**
1599 * save_xbzrle_page: compress and send current page
1600 *
1601 * Returns: 1 means that we wrote the page
1602 * 0 means that page is identical to the one already sent
1603 * -1 means that xbzrle would be longer than normal
1604 *
5a987738 1605 * @rs: current RAM state
3d0684b2
JQ
1606 * @current_data: pointer to the address of the page contents
1607 * @current_addr: addr of the page
56e93d26
JQ
1608 * @block: block that contains the page we want to send
1609 * @offset: offset inside the block for the page
1610 * @last_stage: if we are at the completion stage
56e93d26 1611 */
204b88b8 1612static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
56e93d26 1613 ram_addr_t current_addr, RAMBlock *block,
072c2511 1614 ram_addr_t offset, bool last_stage)
56e93d26
JQ
1615{
1616 int encoded_len = 0, bytes_xbzrle;
1617 uint8_t *prev_cached_page;
1618
9360447d
JQ
1619 if (!cache_is_cached(XBZRLE.cache, current_addr,
1620 ram_counters.dirty_sync_count)) {
1621 xbzrle_counters.cache_miss++;
56e93d26
JQ
1622 if (!last_stage) {
1623 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
9360447d 1624 ram_counters.dirty_sync_count) == -1) {
56e93d26
JQ
1625 return -1;
1626 } else {
1627 /* update *current_data when the page has been
1628 inserted into cache */
1629 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1630 }
1631 }
1632 return -1;
1633 }
1634
1635 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1636
1637 /* save current buffer into memory */
1638 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1639
1640 /* XBZRLE encoding (if there is no overflow) */
1641 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1642 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1643 TARGET_PAGE_SIZE);
ca353803
WY
1644
1645 /*
1646 * Update the cache contents, so that it corresponds to the data
1647 * sent, in all cases except where we skip the page.
1648 */
1649 if (!last_stage && encoded_len != 0) {
1650 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1651 /*
1652 * In the case where we couldn't compress, ensure that the caller
1653 * sends the data from the cache, since the guest might have
1654 * changed the RAM since we copied it.
1655 */
1656 *current_data = prev_cached_page;
1657 }
1658
56e93d26 1659 if (encoded_len == 0) {
55c4446b 1660 trace_save_xbzrle_page_skipping();
56e93d26
JQ
1661 return 0;
1662 } else if (encoded_len == -1) {
55c4446b 1663 trace_save_xbzrle_page_overflow();
9360447d 1664 xbzrle_counters.overflow++;
56e93d26
JQ
1665 return -1;
1666 }
1667
56e93d26 1668 /* Send XBZRLE based compressed page */
2bf3aa85 1669 bytes_xbzrle = save_page_header(rs, rs->f, block,
204b88b8
JQ
1670 offset | RAM_SAVE_FLAG_XBZRLE);
1671 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1672 qemu_put_be16(rs->f, encoded_len);
1673 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
56e93d26 1674 bytes_xbzrle += encoded_len + 1 + 2;
9360447d
JQ
1675 xbzrle_counters.pages++;
1676 xbzrle_counters.bytes += bytes_xbzrle;
1677 ram_counters.transferred += bytes_xbzrle;
56e93d26
JQ
1678
1679 return 1;
1680}
1681
3d0684b2
JQ
1682/**
1683 * migration_bitmap_find_dirty: find the next dirty page from start
f3f491fc 1684 *
a5f7b1a6 1685 * Returns the page offset within memory region of the start of a dirty page
3d0684b2 1686 *
6f37bb8b 1687 * @rs: current RAM state
3d0684b2 1688 * @rb: RAMBlock where to search for dirty pages
a935e30f 1689 * @start: page where we start the search
f3f491fc 1690 */
56e93d26 1691static inline
a935e30f 1692unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
f20e2865 1693 unsigned long start)
56e93d26 1694{
6b6712ef
JQ
1695 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1696 unsigned long *bitmap = rb->bmap;
56e93d26
JQ
1697 unsigned long next;
1698
fbd162e6 1699 if (ramblock_is_ignored(rb)) {
b895de50
CLG
1700 return size;
1701 }
1702
6eeb63f7
WW
1703 /*
1704 * When the free page optimization is enabled, we need to check the bitmap
1705 * to send the non-free pages rather than all the pages in the bulk stage.
1706 */
1707 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
6b6712ef 1708 next = start + 1;
56e93d26 1709 } else {
6b6712ef 1710 next = find_next_bit(bitmap, size, start);
56e93d26
JQ
1711 }
1712
6b6712ef 1713 return next;
56e93d26
JQ
1714}
1715
06b10688 1716static inline bool migration_bitmap_clear_dirty(RAMState *rs,
f20e2865
JQ
1717 RAMBlock *rb,
1718 unsigned long page)
a82d593b
DDAG
1719{
1720 bool ret;
a82d593b 1721
386a907b 1722 qemu_mutex_lock(&rs->bitmap_mutex);
002cad6b
PX
1723
1724 /*
1725 * Clear dirty bitmap if needed. This _must_ be called before we
1726 * send any of the page in the chunk because we need to make sure
1727 * we can capture further page content changes when we sync dirty
1728 * log the next time. So as long as we are going to send any of
1729 * the page in the chunk we clear the remote dirty bitmap for all.
1730 * Clearing it earlier won't be a problem, but too late will.
1731 */
1732 if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) {
1733 uint8_t shift = rb->clear_bmap_shift;
1734 hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift);
1735 hwaddr start = (page << TARGET_PAGE_BITS) & (-size);
1736
1737 /*
1738 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
1739 * can make things easier sometimes since then start address
1740 * of the small chunk will always be 64 pages aligned so the
1741 * bitmap will always be aligned to unsigned long. We should
1742 * even be able to remove this restriction but I'm simply
1743 * keeping it.
1744 */
1745 assert(shift >= 6);
1746 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
1747 memory_region_clear_dirty_bitmap(rb->mr, start, size);
1748 }
1749
6b6712ef 1750 ret = test_and_clear_bit(page, rb->bmap);
a82d593b
DDAG
1751
1752 if (ret) {
0d8ec885 1753 rs->migration_dirty_pages--;
a82d593b 1754 }
386a907b
WW
1755 qemu_mutex_unlock(&rs->bitmap_mutex);
1756
a82d593b
DDAG
1757 return ret;
1758}
1759
267691b6 1760/* Called with RCU critical section */
7a3e9571 1761static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
56e93d26 1762{
0d8ec885 1763 rs->migration_dirty_pages +=
5d0980a4 1764 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length,
0d8ec885 1765 &rs->num_dirty_pages_period);
56e93d26
JQ
1766}
1767
3d0684b2
JQ
1768/**
1769 * ram_pagesize_summary: calculate all the pagesizes of a VM
1770 *
1771 * Returns a summary bitmap of the page sizes of all RAMBlocks
1772 *
1773 * For VMs with just normal pages this is equivalent to the host page
1774 * size. If it's got some huge pages then it's the OR of all the
1775 * different page sizes.
e8ca1db2
DDAG
1776 */
1777uint64_t ram_pagesize_summary(void)
1778{
1779 RAMBlock *block;
1780 uint64_t summary = 0;
1781
fbd162e6 1782 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
e8ca1db2
DDAG
1783 summary |= block->page_size;
1784 }
1785
1786 return summary;
1787}
1788
aecbfe9c
XG
1789uint64_t ram_get_total_transferred_pages(void)
1790{
1791 return ram_counters.normal + ram_counters.duplicate +
1792 compression_counters.pages + xbzrle_counters.pages;
1793}
1794
b734035b
XG
1795static void migration_update_rates(RAMState *rs, int64_t end_time)
1796{
be8b02ed 1797 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
76e03000 1798 double compressed_size;
b734035b
XG
1799
1800 /* calculate period counters */
1801 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1802 / (end_time - rs->time_last_bitmap_sync);
1803
be8b02ed 1804 if (!page_count) {
b734035b
XG
1805 return;
1806 }
1807
1808 if (migrate_use_xbzrle()) {
1809 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
be8b02ed 1810 rs->xbzrle_cache_miss_prev) / page_count;
b734035b
XG
1811 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1812 }
76e03000
XG
1813
1814 if (migrate_use_compression()) {
1815 compression_counters.busy_rate = (double)(compression_counters.busy -
1816 rs->compress_thread_busy_prev) / page_count;
1817 rs->compress_thread_busy_prev = compression_counters.busy;
1818
1819 compressed_size = compression_counters.compressed_size -
1820 rs->compressed_size_prev;
1821 if (compressed_size) {
1822 double uncompressed_size = (compression_counters.pages -
1823 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1824
1825 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1826 compression_counters.compression_rate =
1827 uncompressed_size / compressed_size;
1828
1829 rs->compress_pages_prev = compression_counters.pages;
1830 rs->compressed_size_prev = compression_counters.compressed_size;
1831 }
1832 }
b734035b
XG
1833}
1834
8d820d6f 1835static void migration_bitmap_sync(RAMState *rs)
56e93d26
JQ
1836{
1837 RAMBlock *block;
56e93d26 1838 int64_t end_time;
c4bdf0cf 1839 uint64_t bytes_xfer_now;
56e93d26 1840
9360447d 1841 ram_counters.dirty_sync_count++;
56e93d26 1842
f664da80
JQ
1843 if (!rs->time_last_bitmap_sync) {
1844 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
56e93d26
JQ
1845 }
1846
1847 trace_migration_bitmap_sync_start();
9c1f8f44 1848 memory_global_dirty_log_sync();
56e93d26 1849
108cfae0 1850 qemu_mutex_lock(&rs->bitmap_mutex);
56e93d26 1851 rcu_read_lock();
fbd162e6 1852 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
7a3e9571 1853 ramblock_sync_dirty_bitmap(rs, block);
56e93d26 1854 }
650af890 1855 ram_counters.remaining = ram_bytes_remaining();
56e93d26 1856 rcu_read_unlock();
108cfae0 1857 qemu_mutex_unlock(&rs->bitmap_mutex);
56e93d26 1858
9458a9a1 1859 memory_global_after_dirty_log_sync();
a66cd90c 1860 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1ffb5dfd 1861
56e93d26
JQ
1862 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1863
1864 /* more than 1 second = 1000 millisecons */
f664da80 1865 if (end_time > rs->time_last_bitmap_sync + 1000) {
9360447d 1866 bytes_xfer_now = ram_counters.transferred;
d693c6f1 1867
9ac78b61
PL
1868 /* During block migration the auto-converge logic incorrectly detects
1869 * that ram migration makes no progress. Avoid this by disabling the
1870 * throttling logic during the bulk phase of block migration. */
1871 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
56e93d26
JQ
1872 /* The following detection logic can be refined later. For now:
1873 Check to see if the dirtied bytes is 50% more than the approx.
1874 amount of bytes that just got transferred since the last time we
070afca2
JH
1875 were in this routine. If that happens twice, start or increase
1876 throttling */
070afca2 1877
d693c6f1 1878 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
eac74159 1879 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
b4a3c64b 1880 (++rs->dirty_rate_high_cnt >= 2)) {
56e93d26 1881 trace_migration_throttle();
8d820d6f 1882 rs->dirty_rate_high_cnt = 0;
070afca2 1883 mig_throttle_guest_down();
d693c6f1 1884 }
56e93d26 1885 }
070afca2 1886
b734035b
XG
1887 migration_update_rates(rs, end_time);
1888
be8b02ed 1889 rs->target_page_count_prev = rs->target_page_count;
d693c6f1
FF
1890
1891 /* reset period counters */
f664da80 1892 rs->time_last_bitmap_sync = end_time;
a66cd90c 1893 rs->num_dirty_pages_period = 0;
d2a4d85a 1894 rs->bytes_xfer_prev = bytes_xfer_now;
56e93d26 1895 }
4addcd4f 1896 if (migrate_use_events()) {
3ab72385 1897 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
4addcd4f 1898 }
56e93d26
JQ
1899}
1900
bd227060
WW
1901static void migration_bitmap_sync_precopy(RAMState *rs)
1902{
1903 Error *local_err = NULL;
1904
1905 /*
1906 * The current notifier usage is just an optimization to migration, so we
1907 * don't stop the normal migration process in the error case.
1908 */
1909 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1910 error_report_err(local_err);
1911 }
1912
1913 migration_bitmap_sync(rs);
1914
1915 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1916 error_report_err(local_err);
1917 }
1918}
1919
6c97ec5f
XG
1920/**
1921 * save_zero_page_to_file: send the zero page to the file
1922 *
1923 * Returns the size of data written to the file, 0 means the page is not
1924 * a zero page
1925 *
1926 * @rs: current RAM state
1927 * @file: the file where the data is saved
1928 * @block: block that contains the page we want to send
1929 * @offset: offset inside the block for the page
1930 */
1931static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1932 RAMBlock *block, ram_addr_t offset)
1933{
1934 uint8_t *p = block->host + offset;
1935 int len = 0;
1936
1937 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1938 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1939 qemu_put_byte(file, 0);
1940 len += 1;
1941 }
1942 return len;
1943}
1944
56e93d26 1945/**
3d0684b2 1946 * save_zero_page: send the zero page to the stream
56e93d26 1947 *
3d0684b2 1948 * Returns the number of pages written.
56e93d26 1949 *
f7ccd61b 1950 * @rs: current RAM state
56e93d26
JQ
1951 * @block: block that contains the page we want to send
1952 * @offset: offset inside the block for the page
56e93d26 1953 */
7faccdc3 1954static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
56e93d26 1955{
6c97ec5f 1956 int len = save_zero_page_to_file(rs, rs->f, block, offset);
56e93d26 1957
6c97ec5f 1958 if (len) {
9360447d 1959 ram_counters.duplicate++;
6c97ec5f
XG
1960 ram_counters.transferred += len;
1961 return 1;
56e93d26 1962 }
6c97ec5f 1963 return -1;
56e93d26
JQ
1964}
1965
5727309d 1966static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
53f09a10 1967{
5727309d 1968 if (!migrate_release_ram() || !migration_in_postcopy()) {
53f09a10
PB
1969 return;
1970 }
1971
aaa2064c 1972 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
53f09a10
PB
1973}
1974
059ff0fb
XG
1975/*
1976 * @pages: the number of pages written by the control path,
1977 * < 0 - error
1978 * > 0 - number of pages written
1979 *
1980 * Return true if the pages has been saved, otherwise false is returned.
1981 */
1982static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1983 int *pages)
1984{
1985 uint64_t bytes_xmit = 0;
1986 int ret;
1987
1988 *pages = -1;
1989 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1990 &bytes_xmit);
1991 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1992 return false;
1993 }
1994
1995 if (bytes_xmit) {
1996 ram_counters.transferred += bytes_xmit;
1997 *pages = 1;
1998 }
1999
2000 if (ret == RAM_SAVE_CONTROL_DELAYED) {
2001 return true;
2002 }
2003
2004 if (bytes_xmit > 0) {
2005 ram_counters.normal++;
2006 } else if (bytes_xmit == 0) {
2007 ram_counters.duplicate++;
2008 }
2009
2010 return true;
2011}
2012
65dacaa0
XG
2013/*
2014 * directly send the page to the stream
2015 *
2016 * Returns the number of pages written.
2017 *
2018 * @rs: current RAM state
2019 * @block: block that contains the page we want to send
2020 * @offset: offset inside the block for the page
2021 * @buf: the page to be sent
2022 * @async: send to page asyncly
2023 */
2024static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
2025 uint8_t *buf, bool async)
2026{
2027 ram_counters.transferred += save_page_header(rs, rs->f, block,
2028 offset | RAM_SAVE_FLAG_PAGE);
2029 if (async) {
2030 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
2031 migrate_release_ram() &
2032 migration_in_postcopy());
2033 } else {
2034 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
2035 }
2036 ram_counters.transferred += TARGET_PAGE_SIZE;
2037 ram_counters.normal++;
2038 return 1;
2039}
2040
56e93d26 2041/**
3d0684b2 2042 * ram_save_page: send the given page to the stream
56e93d26 2043 *
3d0684b2 2044 * Returns the number of pages written.
3fd3c4b3
DDAG
2045 * < 0 - error
2046 * >=0 - Number of pages written - this might legally be 0
2047 * if xbzrle noticed the page was the same.
56e93d26 2048 *
6f37bb8b 2049 * @rs: current RAM state
56e93d26
JQ
2050 * @block: block that contains the page we want to send
2051 * @offset: offset inside the block for the page
2052 * @last_stage: if we are at the completion stage
56e93d26 2053 */
a0a8aa14 2054static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
56e93d26
JQ
2055{
2056 int pages = -1;
56e93d26 2057 uint8_t *p;
56e93d26 2058 bool send_async = true;
a08f6890 2059 RAMBlock *block = pss->block;
a935e30f 2060 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
059ff0fb 2061 ram_addr_t current_addr = block->offset + offset;
56e93d26 2062
2f68e399 2063 p = block->host + offset;
1db9d8e5 2064 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
56e93d26 2065
56e93d26 2066 XBZRLE_cache_lock();
d7400a34
XG
2067 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
2068 migrate_use_xbzrle()) {
059ff0fb
XG
2069 pages = save_xbzrle_page(rs, &p, current_addr, block,
2070 offset, last_stage);
2071 if (!last_stage) {
2072 /* Can't send this cached data async, since the cache page
2073 * might get updated before it gets to the wire
56e93d26 2074 */
059ff0fb 2075 send_async = false;
56e93d26
JQ
2076 }
2077 }
2078
2079 /* XBZRLE overflow or normal page */
2080 if (pages == -1) {
65dacaa0 2081 pages = save_normal_page(rs, block, offset, p, send_async);
56e93d26
JQ
2082 }
2083
2084 XBZRLE_cache_unlock();
2085
2086 return pages;
2087}
2088
b9ee2f7d
JQ
2089static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
2090 ram_addr_t offset)
2091{
1b81c974 2092 if (multifd_queue_page(rs, block, offset) < 0) {
713f762a
IR
2093 return -1;
2094 }
b9ee2f7d
JQ
2095 ram_counters.normal++;
2096
2097 return 1;
2098}
2099
5e5fdcff 2100static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
6ef3771c 2101 ram_addr_t offset, uint8_t *source_buf)
56e93d26 2102{
53518d94 2103 RAMState *rs = ram_state;
a7a9a88f 2104 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
5e5fdcff 2105 bool zero_page = false;
6ef3771c 2106 int ret;
56e93d26 2107
5e5fdcff
XG
2108 if (save_zero_page_to_file(rs, f, block, offset)) {
2109 zero_page = true;
2110 goto exit;
2111 }
2112
6ef3771c 2113 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
34ab9e97
XG
2114
2115 /*
2116 * copy it to a internal buffer to avoid it being modified by VM
2117 * so that we can catch up the error during compression and
2118 * decompression
2119 */
2120 memcpy(source_buf, p, TARGET_PAGE_SIZE);
6ef3771c
XG
2121 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
2122 if (ret < 0) {
2123 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
b3be2896 2124 error_report("compressed data failed!");
5e5fdcff 2125 return false;
b3be2896 2126 }
56e93d26 2127
5e5fdcff 2128exit:
6ef3771c 2129 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
5e5fdcff
XG
2130 return zero_page;
2131}
2132
2133static void
2134update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
2135{
76e03000
XG
2136 ram_counters.transferred += bytes_xmit;
2137
5e5fdcff
XG
2138 if (param->zero_page) {
2139 ram_counters.duplicate++;
76e03000 2140 return;
5e5fdcff 2141 }
76e03000
XG
2142
2143 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
2144 compression_counters.compressed_size += bytes_xmit - 8;
2145 compression_counters.pages++;
56e93d26
JQ
2146}
2147
32b05495
XG
2148static bool save_page_use_compression(RAMState *rs);
2149
ce25d337 2150static void flush_compressed_data(RAMState *rs)
56e93d26
JQ
2151{
2152 int idx, len, thread_count;
2153
32b05495 2154 if (!save_page_use_compression(rs)) {
56e93d26
JQ
2155 return;
2156 }
2157 thread_count = migrate_compress_threads();
a7a9a88f 2158
0d9f9a5c 2159 qemu_mutex_lock(&comp_done_lock);
56e93d26 2160 for (idx = 0; idx < thread_count; idx++) {
a7a9a88f 2161 while (!comp_param[idx].done) {
0d9f9a5c 2162 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
56e93d26 2163 }
a7a9a88f 2164 }
0d9f9a5c 2165 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
2166
2167 for (idx = 0; idx < thread_count; idx++) {
2168 qemu_mutex_lock(&comp_param[idx].mutex);
90e56fb4 2169 if (!comp_param[idx].quit) {
ce25d337 2170 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
5e5fdcff
XG
2171 /*
2172 * it's safe to fetch zero_page without holding comp_done_lock
2173 * as there is no further request submitted to the thread,
2174 * i.e, the thread should be waiting for a request at this point.
2175 */
2176 update_compress_thread_counts(&comp_param[idx], len);
56e93d26 2177 }
a7a9a88f 2178 qemu_mutex_unlock(&comp_param[idx].mutex);
56e93d26
JQ
2179 }
2180}
2181
2182static inline void set_compress_params(CompressParam *param, RAMBlock *block,
2183 ram_addr_t offset)
2184{
2185 param->block = block;
2186 param->offset = offset;
2187}
2188
ce25d337
JQ
2189static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
2190 ram_addr_t offset)
56e93d26
JQ
2191{
2192 int idx, thread_count, bytes_xmit = -1, pages = -1;
1d58872a 2193 bool wait = migrate_compress_wait_thread();
56e93d26
JQ
2194
2195 thread_count = migrate_compress_threads();
0d9f9a5c 2196 qemu_mutex_lock(&comp_done_lock);
1d58872a
XG
2197retry:
2198 for (idx = 0; idx < thread_count; idx++) {
2199 if (comp_param[idx].done) {
2200 comp_param[idx].done = false;
2201 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2202 qemu_mutex_lock(&comp_param[idx].mutex);
2203 set_compress_params(&comp_param[idx], block, offset);
2204 qemu_cond_signal(&comp_param[idx].cond);
2205 qemu_mutex_unlock(&comp_param[idx].mutex);
2206 pages = 1;
5e5fdcff 2207 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
56e93d26 2208 break;
56e93d26
JQ
2209 }
2210 }
1d58872a
XG
2211
2212 /*
2213 * wait for the free thread if the user specifies 'compress-wait-thread',
2214 * otherwise we will post the page out in the main thread as normal page.
2215 */
2216 if (pages < 0 && wait) {
2217 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2218 goto retry;
2219 }
0d9f9a5c 2220 qemu_mutex_unlock(&comp_done_lock);
56e93d26
JQ
2221
2222 return pages;
2223}
2224
3d0684b2
JQ
2225/**
2226 * find_dirty_block: find the next dirty page and update any state
2227 * associated with the search process.
b9e60928 2228 *
a5f7b1a6 2229 * Returns true if a page is found
b9e60928 2230 *
6f37bb8b 2231 * @rs: current RAM state
3d0684b2
JQ
2232 * @pss: data about the state of the current dirty page scan
2233 * @again: set to false if the search has scanned the whole of RAM
b9e60928 2234 */
f20e2865 2235static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
b9e60928 2236{
f20e2865 2237 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
6f37bb8b 2238 if (pss->complete_round && pss->block == rs->last_seen_block &&
a935e30f 2239 pss->page >= rs->last_page) {
b9e60928
DDAG
2240 /*
2241 * We've been once around the RAM and haven't found anything.
2242 * Give up.
2243 */
2244 *again = false;
2245 return false;
2246 }
a935e30f 2247 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
b9e60928 2248 /* Didn't find anything in this RAM Block */
a935e30f 2249 pss->page = 0;
b9e60928
DDAG
2250 pss->block = QLIST_NEXT_RCU(pss->block, next);
2251 if (!pss->block) {
48df9d80
XG
2252 /*
2253 * If memory migration starts over, we will meet a dirtied page
2254 * which may still exists in compression threads's ring, so we
2255 * should flush the compressed data to make sure the new page
2256 * is not overwritten by the old one in the destination.
2257 *
2258 * Also If xbzrle is on, stop using the data compression at this
2259 * point. In theory, xbzrle can do better than compression.
2260 */
2261 flush_compressed_data(rs);
2262
b9e60928
DDAG
2263 /* Hit the end of the list */
2264 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2265 /* Flag that we've looped */
2266 pss->complete_round = true;
6f37bb8b 2267 rs->ram_bulk_stage = false;
b9e60928
DDAG
2268 }
2269 /* Didn't find anything this time, but try again on the new block */
2270 *again = true;
2271 return false;
2272 } else {
2273 /* Can go around again, but... */
2274 *again = true;
2275 /* We've found something so probably don't need to */
2276 return true;
2277 }
2278}
2279
3d0684b2
JQ
2280/**
2281 * unqueue_page: gets a page of the queue
2282 *
a82d593b 2283 * Helper for 'get_queued_page' - gets a page off the queue
a82d593b 2284 *
3d0684b2
JQ
2285 * Returns the block of the page (or NULL if none available)
2286 *
ec481c6c 2287 * @rs: current RAM state
3d0684b2 2288 * @offset: used to return the offset within the RAMBlock
a82d593b 2289 */
f20e2865 2290static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
a82d593b
DDAG
2291{
2292 RAMBlock *block = NULL;
2293
ae526e32
XG
2294 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2295 return NULL;
2296 }
2297
ec481c6c
JQ
2298 qemu_mutex_lock(&rs->src_page_req_mutex);
2299 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2300 struct RAMSrcPageRequest *entry =
2301 QSIMPLEQ_FIRST(&rs->src_page_requests);
a82d593b
DDAG
2302 block = entry->rb;
2303 *offset = entry->offset;
a82d593b
DDAG
2304
2305 if (entry->len > TARGET_PAGE_SIZE) {
2306 entry->len -= TARGET_PAGE_SIZE;
2307 entry->offset += TARGET_PAGE_SIZE;
2308 } else {
2309 memory_region_unref(block->mr);
ec481c6c 2310 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
a82d593b 2311 g_free(entry);
e03a34f8 2312 migration_consume_urgent_request();
a82d593b
DDAG
2313 }
2314 }
ec481c6c 2315 qemu_mutex_unlock(&rs->src_page_req_mutex);
a82d593b
DDAG
2316
2317 return block;
2318}
2319
3d0684b2 2320/**
ff1543af 2321 * get_queued_page: unqueue a page from the postcopy requests
3d0684b2
JQ
2322 *
2323 * Skips pages that are already sent (!dirty)
a82d593b 2324 *
a5f7b1a6 2325 * Returns true if a queued page is found
a82d593b 2326 *
6f37bb8b 2327 * @rs: current RAM state
3d0684b2 2328 * @pss: data about the state of the current dirty page scan
a82d593b 2329 */
f20e2865 2330static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
a82d593b
DDAG
2331{
2332 RAMBlock *block;
2333 ram_addr_t offset;
2334 bool dirty;
2335
2336 do {
f20e2865 2337 block = unqueue_page(rs, &offset);
a82d593b
DDAG
2338 /*
2339 * We're sending this page, and since it's postcopy nothing else
2340 * will dirty it, and we must make sure it doesn't get sent again
2341 * even if this queue request was received after the background
2342 * search already sent it.
2343 */
2344 if (block) {
f20e2865
JQ
2345 unsigned long page;
2346
6b6712ef
JQ
2347 page = offset >> TARGET_PAGE_BITS;
2348 dirty = test_bit(page, block->bmap);
a82d593b 2349 if (!dirty) {
06b10688 2350 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
6b6712ef 2351 page, test_bit(page, block->unsentmap));
a82d593b 2352 } else {
f20e2865 2353 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
a82d593b
DDAG
2354 }
2355 }
2356
2357 } while (block && !dirty);
2358
2359 if (block) {
2360 /*
2361 * As soon as we start servicing pages out of order, then we have
2362 * to kill the bulk stage, since the bulk stage assumes
2363 * in (migration_bitmap_find_and_reset_dirty) that every page is
2364 * dirty, that's no longer true.
2365 */
6f37bb8b 2366 rs->ram_bulk_stage = false;
a82d593b
DDAG
2367
2368 /*
2369 * We want the background search to continue from the queued page
2370 * since the guest is likely to want other pages near to the page
2371 * it just requested.
2372 */
2373 pss->block = block;
a935e30f 2374 pss->page = offset >> TARGET_PAGE_BITS;
422314e7
WY
2375
2376 /*
2377 * This unqueued page would break the "one round" check, even is
2378 * really rare.
2379 */
2380 pss->complete_round = false;
a82d593b
DDAG
2381 }
2382
2383 return !!block;
2384}
2385
6c595cde 2386/**
5e58f968
JQ
2387 * migration_page_queue_free: drop any remaining pages in the ram
2388 * request queue
6c595cde 2389 *
3d0684b2
JQ
2390 * It should be empty at the end anyway, but in error cases there may
2391 * be some left. in case that there is any page left, we drop it.
2392 *
6c595cde 2393 */
83c13382 2394static void migration_page_queue_free(RAMState *rs)
6c595cde 2395{
ec481c6c 2396 struct RAMSrcPageRequest *mspr, *next_mspr;
6c595cde
DDAG
2397 /* This queue generally should be empty - but in the case of a failed
2398 * migration might have some droppings in.
2399 */
2400 rcu_read_lock();
ec481c6c 2401 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
6c595cde 2402 memory_region_unref(mspr->rb->mr);
ec481c6c 2403 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
6c595cde
DDAG
2404 g_free(mspr);
2405 }
2406 rcu_read_unlock();
2407}
2408
2409/**
3d0684b2
JQ
2410 * ram_save_queue_pages: queue the page for transmission
2411 *
2412 * A request from postcopy destination for example.
2413 *
2414 * Returns zero on success or negative on error
2415 *
3d0684b2
JQ
2416 * @rbname: Name of the RAMBLock of the request. NULL means the
2417 * same that last one.
2418 * @start: starting address from the start of the RAMBlock
2419 * @len: length (in bytes) to send
6c595cde 2420 */
96506894 2421int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
6c595cde
DDAG
2422{
2423 RAMBlock *ramblock;
53518d94 2424 RAMState *rs = ram_state;
6c595cde 2425
9360447d 2426 ram_counters.postcopy_requests++;
6c595cde
DDAG
2427 rcu_read_lock();
2428 if (!rbname) {
2429 /* Reuse last RAMBlock */
68a098f3 2430 ramblock = rs->last_req_rb;
6c595cde
DDAG
2431
2432 if (!ramblock) {
2433 /*
2434 * Shouldn't happen, we can't reuse the last RAMBlock if
2435 * it's the 1st request.
2436 */
2437 error_report("ram_save_queue_pages no previous block");
2438 goto err;
2439 }
2440 } else {
2441 ramblock = qemu_ram_block_by_name(rbname);
2442
2443 if (!ramblock) {
2444 /* We shouldn't be asked for a non-existent RAMBlock */
2445 error_report("ram_save_queue_pages no block '%s'", rbname);
2446 goto err;
2447 }
68a098f3 2448 rs->last_req_rb = ramblock;
6c595cde
DDAG
2449 }
2450 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2451 if (start+len > ramblock->used_length) {
9458ad6b
JQ
2452 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2453 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
6c595cde
DDAG
2454 __func__, start, len, ramblock->used_length);
2455 goto err;
2456 }
2457
ec481c6c
JQ
2458 struct RAMSrcPageRequest *new_entry =
2459 g_malloc0(sizeof(struct RAMSrcPageRequest));
6c595cde
DDAG
2460 new_entry->rb = ramblock;
2461 new_entry->offset = start;
2462 new_entry->len = len;
2463
2464 memory_region_ref(ramblock->mr);
ec481c6c
JQ
2465 qemu_mutex_lock(&rs->src_page_req_mutex);
2466 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
e03a34f8 2467 migration_make_urgent_request();
ec481c6c 2468 qemu_mutex_unlock(&rs->src_page_req_mutex);
6c595cde
DDAG
2469 rcu_read_unlock();
2470
2471 return 0;
2472
2473err:
2474 rcu_read_unlock();
2475 return -1;
2476}
2477
d7400a34
XG
2478static bool save_page_use_compression(RAMState *rs)
2479{
2480 if (!migrate_use_compression()) {
2481 return false;
2482 }
2483
2484 /*
2485 * If xbzrle is on, stop using the data compression after first
2486 * round of migration even if compression is enabled. In theory,
2487 * xbzrle can do better than compression.
2488 */
2489 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2490 return true;
2491 }
2492
2493 return false;
2494}
2495
5e5fdcff
XG
2496/*
2497 * try to compress the page before posting it out, return true if the page
2498 * has been properly handled by compression, otherwise needs other
2499 * paths to handle it
2500 */
2501static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2502{
2503 if (!save_page_use_compression(rs)) {
2504 return false;
2505 }
2506
2507 /*
2508 * When starting the process of a new block, the first page of
2509 * the block should be sent out before other pages in the same
2510 * block, and all the pages in last block should have been sent
2511 * out, keeping this order is important, because the 'cont' flag
2512 * is used to avoid resending the block name.
2513 *
2514 * We post the fist page as normal page as compression will take
2515 * much CPU resource.
2516 */
2517 if (block != rs->last_sent_block) {
2518 flush_compressed_data(rs);
2519 return false;
2520 }
2521
2522 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2523 return true;
2524 }
2525
76e03000 2526 compression_counters.busy++;
5e5fdcff
XG
2527 return false;
2528}
2529
a82d593b 2530/**
3d0684b2 2531 * ram_save_target_page: save one target page
a82d593b 2532 *
3d0684b2 2533 * Returns the number of pages written
a82d593b 2534 *
6f37bb8b 2535 * @rs: current RAM state
3d0684b2 2536 * @pss: data about the page we want to send
a82d593b 2537 * @last_stage: if we are at the completion stage
a82d593b 2538 */
a0a8aa14 2539static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 2540 bool last_stage)
a82d593b 2541{
a8ec91f9
XG
2542 RAMBlock *block = pss->block;
2543 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2544 int res;
2545
2546 if (control_save_page(rs, block, offset, &res)) {
2547 return res;
2548 }
2549
5e5fdcff
XG
2550 if (save_compress_page(rs, block, offset)) {
2551 return 1;
d7400a34
XG
2552 }
2553
2554 res = save_zero_page(rs, block, offset);
2555 if (res > 0) {
2556 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2557 * page would be stale
2558 */
2559 if (!save_page_use_compression(rs)) {
2560 XBZRLE_cache_lock();
2561 xbzrle_cache_zero_page(rs, block->offset + offset);
2562 XBZRLE_cache_unlock();
2563 }
2564 ram_release_pages(block->idstr, offset, res);
2565 return res;
2566 }
2567
da3f56cb 2568 /*
5e5fdcff
XG
2569 * do not use multifd for compression as the first page in the new
2570 * block should be posted out before sending the compressed page
da3f56cb 2571 */
5e5fdcff 2572 if (!save_page_use_compression(rs) && migrate_use_multifd()) {
b9ee2f7d 2573 return ram_save_multifd_page(rs, block, offset);
a82d593b
DDAG
2574 }
2575
1faa5665 2576 return ram_save_page(rs, pss, last_stage);
a82d593b
DDAG
2577}
2578
2579/**
3d0684b2 2580 * ram_save_host_page: save a whole host page
a82d593b 2581 *
3d0684b2
JQ
2582 * Starting at *offset send pages up to the end of the current host
2583 * page. It's valid for the initial offset to point into the middle of
2584 * a host page in which case the remainder of the hostpage is sent.
2585 * Only dirty target pages are sent. Note that the host page size may
2586 * be a huge page for this block.
1eb3fc0a
DDAG
2587 * The saving stops at the boundary of the used_length of the block
2588 * if the RAMBlock isn't a multiple of the host page size.
a82d593b 2589 *
3d0684b2
JQ
2590 * Returns the number of pages written or negative on error
2591 *
6f37bb8b 2592 * @rs: current RAM state
3d0684b2 2593 * @ms: current migration state
3d0684b2 2594 * @pss: data about the page we want to send
a82d593b 2595 * @last_stage: if we are at the completion stage
a82d593b 2596 */
a0a8aa14 2597static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 2598 bool last_stage)
a82d593b
DDAG
2599{
2600 int tmppages, pages = 0;
a935e30f
JQ
2601 size_t pagesize_bits =
2602 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
4c011c37 2603
fbd162e6 2604 if (ramblock_is_ignored(pss->block)) {
b895de50
CLG
2605 error_report("block %s should not be migrated !", pss->block->idstr);
2606 return 0;
2607 }
2608
a82d593b 2609 do {
1faa5665
XG
2610 /* Check the pages is dirty and if it is send it */
2611 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2612 pss->page++;
2613 continue;
2614 }
2615
f20e2865 2616 tmppages = ram_save_target_page(rs, pss, last_stage);
a82d593b
DDAG
2617 if (tmppages < 0) {
2618 return tmppages;
2619 }
2620
2621 pages += tmppages;
1faa5665
XG
2622 if (pss->block->unsentmap) {
2623 clear_bit(pss->page, pss->block->unsentmap);
2624 }
2625
a935e30f 2626 pss->page++;
1eb3fc0a
DDAG
2627 } while ((pss->page & (pagesize_bits - 1)) &&
2628 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
a82d593b
DDAG
2629
2630 /* The offset we leave with is the last one we looked at */
a935e30f 2631 pss->page--;
a82d593b
DDAG
2632 return pages;
2633}
6c595cde 2634
56e93d26 2635/**
3d0684b2 2636 * ram_find_and_save_block: finds a dirty page and sends it to f
56e93d26
JQ
2637 *
2638 * Called within an RCU critical section.
2639 *
e8f3735f
XG
2640 * Returns the number of pages written where zero means no dirty pages,
2641 * or negative on error
56e93d26 2642 *
6f37bb8b 2643 * @rs: current RAM state
56e93d26 2644 * @last_stage: if we are at the completion stage
a82d593b
DDAG
2645 *
2646 * On systems where host-page-size > target-page-size it will send all the
2647 * pages in a host page that are dirty.
56e93d26
JQ
2648 */
2649
ce25d337 2650static int ram_find_and_save_block(RAMState *rs, bool last_stage)
56e93d26 2651{
b8fb8cb7 2652 PageSearchStatus pss;
56e93d26 2653 int pages = 0;
b9e60928 2654 bool again, found;
56e93d26 2655
0827b9e9
AA
2656 /* No dirty page as there is zero RAM */
2657 if (!ram_bytes_total()) {
2658 return pages;
2659 }
2660
6f37bb8b 2661 pss.block = rs->last_seen_block;
a935e30f 2662 pss.page = rs->last_page;
b8fb8cb7
DDAG
2663 pss.complete_round = false;
2664
2665 if (!pss.block) {
2666 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2667 }
56e93d26 2668
b9e60928 2669 do {
a82d593b 2670 again = true;
f20e2865 2671 found = get_queued_page(rs, &pss);
b9e60928 2672
a82d593b
DDAG
2673 if (!found) {
2674 /* priority queue empty, so just search for something dirty */
f20e2865 2675 found = find_dirty_block(rs, &pss, &again);
a82d593b 2676 }
f3f491fc 2677
a82d593b 2678 if (found) {
f20e2865 2679 pages = ram_save_host_page(rs, &pss, last_stage);
56e93d26 2680 }
b9e60928 2681 } while (!pages && again);
56e93d26 2682
6f37bb8b 2683 rs->last_seen_block = pss.block;
a935e30f 2684 rs->last_page = pss.page;
56e93d26
JQ
2685
2686 return pages;
2687}
2688
2689void acct_update_position(QEMUFile *f, size_t size, bool zero)
2690{
2691 uint64_t pages = size / TARGET_PAGE_SIZE;
f7ccd61b 2692
56e93d26 2693 if (zero) {
9360447d 2694 ram_counters.duplicate += pages;
56e93d26 2695 } else {
9360447d
JQ
2696 ram_counters.normal += pages;
2697 ram_counters.transferred += size;
56e93d26
JQ
2698 qemu_update_position(f, size);
2699 }
2700}
2701
fbd162e6 2702static uint64_t ram_bytes_total_common(bool count_ignored)
56e93d26
JQ
2703{
2704 RAMBlock *block;
2705 uint64_t total = 0;
2706
2707 rcu_read_lock();
fbd162e6
YK
2708 if (count_ignored) {
2709 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2710 total += block->used_length;
2711 }
2712 } else {
2713 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2714 total += block->used_length;
2715 }
99e15582 2716 }
56e93d26
JQ
2717 rcu_read_unlock();
2718 return total;
2719}
2720
fbd162e6
YK
2721uint64_t ram_bytes_total(void)
2722{
2723 return ram_bytes_total_common(false);
2724}
2725
f265e0e4 2726static void xbzrle_load_setup(void)
56e93d26 2727{
f265e0e4 2728 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
56e93d26
JQ
2729}
2730
f265e0e4
JQ
2731static void xbzrle_load_cleanup(void)
2732{
2733 g_free(XBZRLE.decoded_buf);
2734 XBZRLE.decoded_buf = NULL;
2735}
2736
7d7c96be
PX
2737static void ram_state_cleanup(RAMState **rsp)
2738{
b9ccaf6d
DDAG
2739 if (*rsp) {
2740 migration_page_queue_free(*rsp);
2741 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2742 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2743 g_free(*rsp);
2744 *rsp = NULL;
2745 }
7d7c96be
PX
2746}
2747
84593a08
PX
2748static void xbzrle_cleanup(void)
2749{
2750 XBZRLE_cache_lock();
2751 if (XBZRLE.cache) {
2752 cache_fini(XBZRLE.cache);
2753 g_free(XBZRLE.encoded_buf);
2754 g_free(XBZRLE.current_buf);
2755 g_free(XBZRLE.zero_target_page);
2756 XBZRLE.cache = NULL;
2757 XBZRLE.encoded_buf = NULL;
2758 XBZRLE.current_buf = NULL;
2759 XBZRLE.zero_target_page = NULL;
2760 }
2761 XBZRLE_cache_unlock();
2762}
2763
f265e0e4 2764static void ram_save_cleanup(void *opaque)
56e93d26 2765{
53518d94 2766 RAMState **rsp = opaque;
6b6712ef 2767 RAMBlock *block;
eb859c53 2768
2ff64038 2769 /* caller have hold iothread lock or is in a bh, so there is
4633456c 2770 * no writing race against the migration bitmap
2ff64038 2771 */
6b6712ef
JQ
2772 memory_global_dirty_log_stop();
2773
fbd162e6 2774 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
002cad6b
PX
2775 g_free(block->clear_bmap);
2776 block->clear_bmap = NULL;
6b6712ef
JQ
2777 g_free(block->bmap);
2778 block->bmap = NULL;
2779 g_free(block->unsentmap);
2780 block->unsentmap = NULL;
56e93d26
JQ
2781 }
2782
84593a08 2783 xbzrle_cleanup();
f0afa331 2784 compress_threads_save_cleanup();
7d7c96be 2785 ram_state_cleanup(rsp);
56e93d26
JQ
2786}
2787
6f37bb8b 2788static void ram_state_reset(RAMState *rs)
56e93d26 2789{
6f37bb8b
JQ
2790 rs->last_seen_block = NULL;
2791 rs->last_sent_block = NULL;
269ace29 2792 rs->last_page = 0;
6f37bb8b
JQ
2793 rs->last_version = ram_list.version;
2794 rs->ram_bulk_stage = true;
6eeb63f7 2795 rs->fpo_enabled = false;
56e93d26
JQ
2796}
2797
2798#define MAX_WAIT 50 /* ms, half buffered_file limit */
2799
4f2e4252
DDAG
2800/*
2801 * 'expected' is the value you expect the bitmap mostly to be full
2802 * of; it won't bother printing lines that are all this value.
2803 * If 'todump' is null the migration bitmap is dumped.
2804 */
6b6712ef
JQ
2805void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2806 unsigned long pages)
4f2e4252 2807{
4f2e4252
DDAG
2808 int64_t cur;
2809 int64_t linelen = 128;
2810 char linebuf[129];
2811
6b6712ef 2812 for (cur = 0; cur < pages; cur += linelen) {
4f2e4252
DDAG
2813 int64_t curb;
2814 bool found = false;
2815 /*
2816 * Last line; catch the case where the line length
2817 * is longer than remaining ram
2818 */
6b6712ef
JQ
2819 if (cur + linelen > pages) {
2820 linelen = pages - cur;
4f2e4252
DDAG
2821 }
2822 for (curb = 0; curb < linelen; curb++) {
2823 bool thisbit = test_bit(cur + curb, todump);
2824 linebuf[curb] = thisbit ? '1' : '.';
2825 found = found || (thisbit != expected);
2826 }
2827 if (found) {
2828 linebuf[curb] = '\0';
2829 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2830 }
2831 }
2832}
2833
e0b266f0
DDAG
2834/* **** functions for postcopy ***** */
2835
ced1c616
PB
2836void ram_postcopy_migrated_memory_release(MigrationState *ms)
2837{
2838 struct RAMBlock *block;
ced1c616 2839
fbd162e6 2840 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
2841 unsigned long *bitmap = block->bmap;
2842 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2843 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
ced1c616
PB
2844
2845 while (run_start < range) {
2846 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
aaa2064c 2847 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
ced1c616
PB
2848 (run_end - run_start) << TARGET_PAGE_BITS);
2849 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2850 }
2851 }
2852}
2853
3d0684b2
JQ
2854/**
2855 * postcopy_send_discard_bm_ram: discard a RAMBlock
2856 *
2857 * Returns zero on success
2858 *
e0b266f0
DDAG
2859 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2860 * Note: At this point the 'unsentmap' is the processed bitmap combined
2861 * with the dirtymap; so a '1' means it's either dirty or unsent.
3d0684b2
JQ
2862 *
2863 * @ms: current migration state
89dab31b 2864 * @block: RAMBlock to discard
e0b266f0 2865 */
810cf2bb 2866static int postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
e0b266f0 2867{
6b6712ef 2868 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
e0b266f0 2869 unsigned long current;
6b6712ef 2870 unsigned long *unsentmap = block->unsentmap;
e0b266f0 2871
6b6712ef 2872 for (current = 0; current < end; ) {
e0b266f0 2873 unsigned long one = find_next_bit(unsentmap, end, current);
33a5cb62 2874 unsigned long zero, discard_length;
e0b266f0 2875
33a5cb62
WY
2876 if (one >= end) {
2877 break;
2878 }
e0b266f0 2879
33a5cb62
WY
2880 zero = find_next_zero_bit(unsentmap, end, one + 1);
2881
2882 if (zero >= end) {
2883 discard_length = end - one;
e0b266f0 2884 } else {
33a5cb62
WY
2885 discard_length = zero - one;
2886 }
810cf2bb 2887 postcopy_discard_send_range(ms, one, discard_length);
33a5cb62 2888 current = one + discard_length;
e0b266f0
DDAG
2889 }
2890
2891 return 0;
2892}
2893
3d0684b2
JQ
2894/**
2895 * postcopy_each_ram_send_discard: discard all RAMBlocks
2896 *
2897 * Returns 0 for success or negative for error
2898 *
e0b266f0
DDAG
2899 * Utility for the outgoing postcopy code.
2900 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2901 * passing it bitmap indexes and name.
e0b266f0
DDAG
2902 * (qemu_ram_foreach_block ends up passing unscaled lengths
2903 * which would mean postcopy code would have to deal with target page)
3d0684b2
JQ
2904 *
2905 * @ms: current migration state
e0b266f0
DDAG
2906 */
2907static int postcopy_each_ram_send_discard(MigrationState *ms)
2908{
2909 struct RAMBlock *block;
2910 int ret;
2911
fbd162e6 2912 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
810cf2bb 2913 postcopy_discard_send_init(ms, block->idstr);
e0b266f0
DDAG
2914
2915 /*
2916 * Postcopy sends chunks of bitmap over the wire, but it
2917 * just needs indexes at this point, avoids it having
2918 * target page specific code.
2919 */
810cf2bb
WY
2920 ret = postcopy_send_discard_bm_ram(ms, block);
2921 postcopy_discard_send_finish(ms);
e0b266f0
DDAG
2922 if (ret) {
2923 return ret;
2924 }
2925 }
2926
2927 return 0;
2928}
2929
3d0684b2
JQ
2930/**
2931 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
2932 *
2933 * Helper for postcopy_chunk_hostpages; it's called twice to
2934 * canonicalize the two bitmaps, that are similar, but one is
2935 * inverted.
99e314eb 2936 *
3d0684b2
JQ
2937 * Postcopy requires that all target pages in a hostpage are dirty or
2938 * clean, not a mix. This function canonicalizes the bitmaps.
99e314eb 2939 *
3d0684b2
JQ
2940 * @ms: current migration state
2941 * @unsent_pass: if true we need to canonicalize partially unsent host pages
2942 * otherwise we need to canonicalize partially dirty host pages
2943 * @block: block that contains the page we want to canonicalize
99e314eb
DDAG
2944 */
2945static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
810cf2bb 2946 RAMBlock *block)
99e314eb 2947{
53518d94 2948 RAMState *rs = ram_state;
6b6712ef
JQ
2949 unsigned long *bitmap = block->bmap;
2950 unsigned long *unsentmap = block->unsentmap;
29c59172 2951 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
6b6712ef 2952 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
99e314eb
DDAG
2953 unsigned long run_start;
2954
29c59172
DDAG
2955 if (block->page_size == TARGET_PAGE_SIZE) {
2956 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2957 return;
2958 }
2959
99e314eb
DDAG
2960 if (unsent_pass) {
2961 /* Find a sent page */
6b6712ef 2962 run_start = find_next_zero_bit(unsentmap, pages, 0);
99e314eb
DDAG
2963 } else {
2964 /* Find a dirty page */
6b6712ef 2965 run_start = find_next_bit(bitmap, pages, 0);
99e314eb
DDAG
2966 }
2967
6b6712ef 2968 while (run_start < pages) {
99e314eb
DDAG
2969
2970 /*
2971 * If the start of this run of pages is in the middle of a host
2972 * page, then we need to fixup this host page.
2973 */
9dec3cc3 2974 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
99e314eb 2975 /* Find the end of this run */
99e314eb 2976 if (unsent_pass) {
dad45ab2 2977 run_start = find_next_bit(unsentmap, pages, run_start + 1);
99e314eb 2978 } else {
dad45ab2 2979 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
99e314eb
DDAG
2980 }
2981 /*
2982 * If the end isn't at the start of a host page, then the
2983 * run doesn't finish at the end of a host page
2984 * and we need to discard.
2985 */
99e314eb
DDAG
2986 }
2987
9dec3cc3 2988 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
99e314eb 2989 unsigned long page;
dad45ab2
WY
2990 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2991 host_ratio);
2992 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
99e314eb
DDAG
2993
2994 /* Tell the destination to discard this page */
2995 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
2996 /* For the unsent_pass we:
2997 * discard partially sent pages
2998 * For the !unsent_pass (dirty) we:
2999 * discard partially dirty pages that were sent
3000 * (any partially sent pages were already discarded
3001 * by the previous unsent_pass)
3002 */
810cf2bb 3003 postcopy_discard_send_range(ms, fixup_start_addr, host_ratio);
99e314eb
DDAG
3004 }
3005
3006 /* Clean up the bitmap */
3007 for (page = fixup_start_addr;
3008 page < fixup_start_addr + host_ratio; page++) {
3009 /* All pages in this host page are now not sent */
3010 set_bit(page, unsentmap);
3011
3012 /*
3013 * Remark them as dirty, updating the count for any pages
3014 * that weren't previously dirty.
3015 */
0d8ec885 3016 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
99e314eb
DDAG
3017 }
3018 }
3019
3020 if (unsent_pass) {
3021 /* Find the next sent page for the next iteration */
6b6712ef 3022 run_start = find_next_zero_bit(unsentmap, pages, run_start);
99e314eb
DDAG
3023 } else {
3024 /* Find the next dirty page for the next iteration */
6b6712ef 3025 run_start = find_next_bit(bitmap, pages, run_start);
99e314eb
DDAG
3026 }
3027 }
3028}
3029
3d0684b2 3030/**
89dab31b 3031 * postcopy_chunk_hostpages: discard any partially sent host page
3d0684b2 3032 *
99e314eb
DDAG
3033 * Utility for the outgoing postcopy code.
3034 *
3035 * Discard any partially sent host-page size chunks, mark any partially
29c59172
DDAG
3036 * dirty host-page size chunks as all dirty. In this case the host-page
3037 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
99e314eb 3038 *
3d0684b2
JQ
3039 * Returns zero on success
3040 *
3041 * @ms: current migration state
6b6712ef 3042 * @block: block we want to work with
99e314eb 3043 */
6b6712ef 3044static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
99e314eb 3045{
810cf2bb 3046 postcopy_discard_send_init(ms, block->idstr);
99e314eb 3047
6b6712ef 3048 /* First pass: Discard all partially sent host pages */
810cf2bb 3049 postcopy_chunk_hostpages_pass(ms, true, block);
6b6712ef
JQ
3050 /*
3051 * Second pass: Ensure that all partially dirty host pages are made
3052 * fully dirty.
3053 */
810cf2bb 3054 postcopy_chunk_hostpages_pass(ms, false, block);
99e314eb 3055
810cf2bb 3056 postcopy_discard_send_finish(ms);
99e314eb
DDAG
3057 return 0;
3058}
3059
3d0684b2
JQ
3060/**
3061 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
3062 *
3063 * Returns zero on success
3064 *
e0b266f0
DDAG
3065 * Transmit the set of pages to be discarded after precopy to the target
3066 * these are pages that:
3067 * a) Have been previously transmitted but are now dirty again
3068 * b) Pages that have never been transmitted, this ensures that
3069 * any pages on the destination that have been mapped by background
3070 * tasks get discarded (transparent huge pages is the specific concern)
3071 * Hopefully this is pretty sparse
3d0684b2
JQ
3072 *
3073 * @ms: current migration state
e0b266f0
DDAG
3074 */
3075int ram_postcopy_send_discard_bitmap(MigrationState *ms)
3076{
53518d94 3077 RAMState *rs = ram_state;
6b6712ef 3078 RAMBlock *block;
e0b266f0 3079 int ret;
e0b266f0
DDAG
3080
3081 rcu_read_lock();
3082
3083 /* This should be our last sync, the src is now paused */
eb859c53 3084 migration_bitmap_sync(rs);
e0b266f0 3085
6b6712ef
JQ
3086 /* Easiest way to make sure we don't resume in the middle of a host-page */
3087 rs->last_seen_block = NULL;
3088 rs->last_sent_block = NULL;
3089 rs->last_page = 0;
e0b266f0 3090
fbd162e6 3091 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
3092 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
3093 unsigned long *bitmap = block->bmap;
3094 unsigned long *unsentmap = block->unsentmap;
3095
3096 if (!unsentmap) {
3097 /* We don't have a safe way to resize the sentmap, so
3098 * if the bitmap was resized it will be NULL at this
3099 * point.
3100 */
3101 error_report("migration ram resized during precopy phase");
3102 rcu_read_unlock();
3103 return -EINVAL;
3104 }
3105 /* Deal with TPS != HPS and huge pages */
3106 ret = postcopy_chunk_hostpages(ms, block);
3107 if (ret) {
3108 rcu_read_unlock();
3109 return ret;
3110 }
e0b266f0 3111
6b6712ef
JQ
3112 /*
3113 * Update the unsentmap to be unsentmap = unsentmap | dirty
3114 */
3115 bitmap_or(unsentmap, unsentmap, bitmap, pages);
e0b266f0 3116#ifdef DEBUG_POSTCOPY
6b6712ef 3117 ram_debug_dump_bitmap(unsentmap, true, pages);
e0b266f0 3118#endif
6b6712ef
JQ
3119 }
3120 trace_ram_postcopy_send_discard_bitmap();
e0b266f0
DDAG
3121
3122 ret = postcopy_each_ram_send_discard(ms);
3123 rcu_read_unlock();
3124
3125 return ret;
3126}
3127
3d0684b2
JQ
3128/**
3129 * ram_discard_range: discard dirtied pages at the beginning of postcopy
e0b266f0 3130 *
3d0684b2 3131 * Returns zero on success
e0b266f0 3132 *
36449157
JQ
3133 * @rbname: name of the RAMBlock of the request. NULL means the
3134 * same that last one.
3d0684b2
JQ
3135 * @start: RAMBlock starting page
3136 * @length: RAMBlock size
e0b266f0 3137 */
aaa2064c 3138int ram_discard_range(const char *rbname, uint64_t start, size_t length)
e0b266f0
DDAG
3139{
3140 int ret = -1;
3141
36449157 3142 trace_ram_discard_range(rbname, start, length);
d3a5038c 3143
e0b266f0 3144 rcu_read_lock();
36449157 3145 RAMBlock *rb = qemu_ram_block_by_name(rbname);
e0b266f0
DDAG
3146
3147 if (!rb) {
36449157 3148 error_report("ram_discard_range: Failed to find block '%s'", rbname);
e0b266f0
DDAG
3149 goto err;
3150 }
3151
814bb08f
PX
3152 /*
3153 * On source VM, we don't need to update the received bitmap since
3154 * we don't even have one.
3155 */
3156 if (rb->receivedmap) {
3157 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
3158 length >> qemu_target_page_bits());
3159 }
3160
d3a5038c 3161 ret = ram_block_discard_range(rb, start, length);
e0b266f0
DDAG
3162
3163err:
3164 rcu_read_unlock();
3165
3166 return ret;
3167}
3168
84593a08
PX
3169/*
3170 * For every allocation, we will try not to crash the VM if the
3171 * allocation failed.
3172 */
3173static int xbzrle_init(void)
3174{
3175 Error *local_err = NULL;
3176
3177 if (!migrate_use_xbzrle()) {
3178 return 0;
3179 }
3180
3181 XBZRLE_cache_lock();
3182
3183 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
3184 if (!XBZRLE.zero_target_page) {
3185 error_report("%s: Error allocating zero page", __func__);
3186 goto err_out;
3187 }
3188
3189 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
3190 TARGET_PAGE_SIZE, &local_err);
3191 if (!XBZRLE.cache) {
3192 error_report_err(local_err);
3193 goto free_zero_page;
3194 }
3195
3196 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
3197 if (!XBZRLE.encoded_buf) {
3198 error_report("%s: Error allocating encoded_buf", __func__);
3199 goto free_cache;
3200 }
3201
3202 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
3203 if (!XBZRLE.current_buf) {
3204 error_report("%s: Error allocating current_buf", __func__);
3205 goto free_encoded_buf;
3206 }
3207
3208 /* We are all good */
3209 XBZRLE_cache_unlock();
3210 return 0;
3211
3212free_encoded_buf:
3213 g_free(XBZRLE.encoded_buf);
3214 XBZRLE.encoded_buf = NULL;
3215free_cache:
3216 cache_fini(XBZRLE.cache);
3217 XBZRLE.cache = NULL;
3218free_zero_page:
3219 g_free(XBZRLE.zero_target_page);
3220 XBZRLE.zero_target_page = NULL;
3221err_out:
3222 XBZRLE_cache_unlock();
3223 return -ENOMEM;
3224}
3225
53518d94 3226static int ram_state_init(RAMState **rsp)
56e93d26 3227{
7d00ee6a
PX
3228 *rsp = g_try_new0(RAMState, 1);
3229
3230 if (!*rsp) {
3231 error_report("%s: Init ramstate fail", __func__);
3232 return -1;
3233 }
53518d94
JQ
3234
3235 qemu_mutex_init(&(*rsp)->bitmap_mutex);
3236 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
3237 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
56e93d26 3238
7d00ee6a 3239 /*
40c4d4a8
IR
3240 * Count the total number of pages used by ram blocks not including any
3241 * gaps due to alignment or unplugs.
03158519 3242 * This must match with the initial values of dirty bitmap.
7d00ee6a 3243 */
40c4d4a8 3244 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
7d00ee6a
PX
3245 ram_state_reset(*rsp);
3246
3247 return 0;
3248}
3249
d6eff5d7 3250static void ram_list_init_bitmaps(void)
7d00ee6a 3251{
002cad6b 3252 MigrationState *ms = migrate_get_current();
d6eff5d7
PX
3253 RAMBlock *block;
3254 unsigned long pages;
002cad6b 3255 uint8_t shift;
56e93d26 3256
0827b9e9
AA
3257 /* Skip setting bitmap if there is no RAM */
3258 if (ram_bytes_total()) {
002cad6b
PX
3259 shift = ms->clear_bitmap_shift;
3260 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
3261 error_report("clear_bitmap_shift (%u) too big, using "
3262 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
3263 shift = CLEAR_BITMAP_SHIFT_MAX;
3264 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
3265 error_report("clear_bitmap_shift (%u) too small, using "
3266 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
3267 shift = CLEAR_BITMAP_SHIFT_MIN;
3268 }
3269
fbd162e6 3270 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
d6eff5d7 3271 pages = block->max_length >> TARGET_PAGE_BITS;
03158519
WY
3272 /*
3273 * The initial dirty bitmap for migration must be set with all
3274 * ones to make sure we'll migrate every guest RAM page to
3275 * destination.
40c4d4a8
IR
3276 * Here we set RAMBlock.bmap all to 1 because when rebegin a
3277 * new migration after a failed migration, ram_list.
3278 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
3279 * guest memory.
03158519 3280 */
6b6712ef 3281 block->bmap = bitmap_new(pages);
40c4d4a8 3282 bitmap_set(block->bmap, 0, pages);
002cad6b
PX
3283 block->clear_bmap_shift = shift;
3284 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
6b6712ef
JQ
3285 if (migrate_postcopy_ram()) {
3286 block->unsentmap = bitmap_new(pages);
3287 bitmap_set(block->unsentmap, 0, pages);
3288 }
0827b9e9 3289 }
f3f491fc 3290 }
d6eff5d7
PX
3291}
3292
3293static void ram_init_bitmaps(RAMState *rs)
3294{
3295 /* For memory_global_dirty_log_start below. */
3296 qemu_mutex_lock_iothread();
3297 qemu_mutex_lock_ramlist();
3298 rcu_read_lock();
f3f491fc 3299
d6eff5d7 3300 ram_list_init_bitmaps();
56e93d26 3301 memory_global_dirty_log_start();
bd227060 3302 migration_bitmap_sync_precopy(rs);
d6eff5d7
PX
3303
3304 rcu_read_unlock();
56e93d26 3305 qemu_mutex_unlock_ramlist();
49877834 3306 qemu_mutex_unlock_iothread();
d6eff5d7
PX
3307}
3308
3309static int ram_init_all(RAMState **rsp)
3310{
3311 if (ram_state_init(rsp)) {
3312 return -1;
3313 }
3314
3315 if (xbzrle_init()) {
3316 ram_state_cleanup(rsp);
3317 return -1;
3318 }
3319
3320 ram_init_bitmaps(*rsp);
a91246c9
HZ
3321
3322 return 0;
3323}
3324
08614f34
PX
3325static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3326{
3327 RAMBlock *block;
3328 uint64_t pages = 0;
3329
3330 /*
3331 * Postcopy is not using xbzrle/compression, so no need for that.
3332 * Also, since source are already halted, we don't need to care
3333 * about dirty page logging as well.
3334 */
3335
fbd162e6 3336 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
08614f34
PX
3337 pages += bitmap_count_one(block->bmap,
3338 block->used_length >> TARGET_PAGE_BITS);
3339 }
3340
3341 /* This may not be aligned with current bitmaps. Recalculate. */
3342 rs->migration_dirty_pages = pages;
3343
3344 rs->last_seen_block = NULL;
3345 rs->last_sent_block = NULL;
3346 rs->last_page = 0;
3347 rs->last_version = ram_list.version;
3348 /*
3349 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3350 * matter what we have sent.
3351 */
3352 rs->ram_bulk_stage = false;
3353
3354 /* Update RAMState cache of output QEMUFile */
3355 rs->f = out;
3356
3357 trace_ram_state_resume_prepare(pages);
3358}
3359
6bcb05fc
WW
3360/*
3361 * This function clears bits of the free pages reported by the caller from the
3362 * migration dirty bitmap. @addr is the host address corresponding to the
3363 * start of the continuous guest free pages, and @len is the total bytes of
3364 * those pages.
3365 */
3366void qemu_guest_free_page_hint(void *addr, size_t len)
3367{
3368 RAMBlock *block;
3369 ram_addr_t offset;
3370 size_t used_len, start, npages;
3371 MigrationState *s = migrate_get_current();
3372
3373 /* This function is currently expected to be used during live migration */
3374 if (!migration_is_setup_or_active(s->state)) {
3375 return;
3376 }
3377
3378 for (; len > 0; len -= used_len, addr += used_len) {
3379 block = qemu_ram_block_from_host(addr, false, &offset);
3380 if (unlikely(!block || offset >= block->used_length)) {
3381 /*
3382 * The implementation might not support RAMBlock resize during
3383 * live migration, but it could happen in theory with future
3384 * updates. So we add a check here to capture that case.
3385 */
3386 error_report_once("%s unexpected error", __func__);
3387 return;
3388 }
3389
3390 if (len <= block->used_length - offset) {
3391 used_len = len;
3392 } else {
3393 used_len = block->used_length - offset;
3394 }
3395
3396 start = offset >> TARGET_PAGE_BITS;
3397 npages = used_len >> TARGET_PAGE_BITS;
3398
3399 qemu_mutex_lock(&ram_state->bitmap_mutex);
3400 ram_state->migration_dirty_pages -=
3401 bitmap_count_one_with_offset(block->bmap, start, npages);
3402 bitmap_clear(block->bmap, start, npages);
3403 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3404 }
3405}
3406
3d0684b2
JQ
3407/*
3408 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
a91246c9
HZ
3409 * long-running RCU critical section. When rcu-reclaims in the code
3410 * start to become numerous it will be necessary to reduce the
3411 * granularity of these critical sections.
3412 */
3413
3d0684b2
JQ
3414/**
3415 * ram_save_setup: Setup RAM for migration
3416 *
3417 * Returns zero to indicate success and negative for error
3418 *
3419 * @f: QEMUFile where to send the data
3420 * @opaque: RAMState pointer
3421 */
a91246c9
HZ
3422static int ram_save_setup(QEMUFile *f, void *opaque)
3423{
53518d94 3424 RAMState **rsp = opaque;
a91246c9
HZ
3425 RAMBlock *block;
3426
dcaf446e
XG
3427 if (compress_threads_save_setup()) {
3428 return -1;
3429 }
3430
a91246c9
HZ
3431 /* migration has already setup the bitmap, reuse it. */
3432 if (!migration_in_colo_state()) {
7d00ee6a 3433 if (ram_init_all(rsp) != 0) {
dcaf446e 3434 compress_threads_save_cleanup();
a91246c9 3435 return -1;
53518d94 3436 }
a91246c9 3437 }
53518d94 3438 (*rsp)->f = f;
a91246c9
HZ
3439
3440 rcu_read_lock();
56e93d26 3441
fbd162e6 3442 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
56e93d26 3443
b895de50 3444 RAMBLOCK_FOREACH_MIGRATABLE(block) {
56e93d26
JQ
3445 qemu_put_byte(f, strlen(block->idstr));
3446 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3447 qemu_put_be64(f, block->used_length);
ef08fb38
DDAG
3448 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
3449 qemu_put_be64(f, block->page_size);
3450 }
fbd162e6
YK
3451 if (migrate_ignore_shared()) {
3452 qemu_put_be64(f, block->mr->addr);
fbd162e6 3453 }
56e93d26
JQ
3454 }
3455
3456 rcu_read_unlock();
3457
3458 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3459 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3460
1b81c974 3461 multifd_send_sync_main(*rsp);
56e93d26 3462 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3463 qemu_fflush(f);
56e93d26
JQ
3464
3465 return 0;
3466}
3467
3d0684b2
JQ
3468/**
3469 * ram_save_iterate: iterative stage for migration
3470 *
3471 * Returns zero to indicate success and negative for error
3472 *
3473 * @f: QEMUFile where to send the data
3474 * @opaque: RAMState pointer
3475 */
56e93d26
JQ
3476static int ram_save_iterate(QEMUFile *f, void *opaque)
3477{
53518d94
JQ
3478 RAMState **temp = opaque;
3479 RAMState *rs = *temp;
56e93d26
JQ
3480 int ret;
3481 int i;
3482 int64_t t0;
5c90308f 3483 int done = 0;
56e93d26 3484
b2557345
PL
3485 if (blk_mig_bulk_active()) {
3486 /* Avoid transferring ram during bulk phase of block migration as
3487 * the bulk phase will usually take a long time and transferring
3488 * ram updates during that time is pointless. */
3489 goto out;
3490 }
3491
56e93d26 3492 rcu_read_lock();
6f37bb8b
JQ
3493 if (ram_list.version != rs->last_version) {
3494 ram_state_reset(rs);
56e93d26
JQ
3495 }
3496
3497 /* Read version before ram_list.blocks */
3498 smp_rmb();
3499
3500 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3501
3502 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3503 i = 0;
e03a34f8
DDAG
3504 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3505 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
56e93d26
JQ
3506 int pages;
3507
e03a34f8
DDAG
3508 if (qemu_file_get_error(f)) {
3509 break;
3510 }
3511
ce25d337 3512 pages = ram_find_and_save_block(rs, false);
56e93d26
JQ
3513 /* no more pages to sent */
3514 if (pages == 0) {
5c90308f 3515 done = 1;
56e93d26
JQ
3516 break;
3517 }
e8f3735f
XG
3518
3519 if (pages < 0) {
3520 qemu_file_set_error(f, pages);
3521 break;
3522 }
3523
be8b02ed 3524 rs->target_page_count += pages;
070afca2 3525
56e93d26
JQ
3526 /* we want to check in the 1st loop, just in case it was the 1st time
3527 and we had to sync the dirty bitmap.
a5f7b1a6 3528 qemu_clock_get_ns() is a bit expensive, so we only check each some
56e93d26
JQ
3529 iterations
3530 */
3531 if ((i & 63) == 0) {
3532 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
3533 if (t1 > MAX_WAIT) {
55c4446b 3534 trace_ram_save_iterate_big_wait(t1, i);
56e93d26
JQ
3535 break;
3536 }
3537 }
3538 i++;
3539 }
56e93d26
JQ
3540 rcu_read_unlock();
3541
3542 /*
3543 * Must occur before EOS (or any QEMUFile operation)
3544 * because of RDMA protocol.
3545 */
3546 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3547
b2557345 3548out:
1b81c974 3549 multifd_send_sync_main(rs);
56e93d26 3550 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3551 qemu_fflush(f);
9360447d 3552 ram_counters.transferred += 8;
56e93d26
JQ
3553
3554 ret = qemu_file_get_error(f);
3555 if (ret < 0) {
3556 return ret;
3557 }
3558
5c90308f 3559 return done;
56e93d26
JQ
3560}
3561
3d0684b2
JQ
3562/**
3563 * ram_save_complete: function called to send the remaining amount of ram
3564 *
e8f3735f 3565 * Returns zero to indicate success or negative on error
3d0684b2
JQ
3566 *
3567 * Called with iothread lock
3568 *
3569 * @f: QEMUFile where to send the data
3570 * @opaque: RAMState pointer
3571 */
56e93d26
JQ
3572static int ram_save_complete(QEMUFile *f, void *opaque)
3573{
53518d94
JQ
3574 RAMState **temp = opaque;
3575 RAMState *rs = *temp;
e8f3735f 3576 int ret = 0;
6f37bb8b 3577
56e93d26
JQ
3578 rcu_read_lock();
3579
5727309d 3580 if (!migration_in_postcopy()) {
bd227060 3581 migration_bitmap_sync_precopy(rs);
663e6c1d 3582 }
56e93d26
JQ
3583
3584 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3585
3586 /* try transferring iterative blocks of memory */
3587
3588 /* flush all remaining blocks regardless of rate limiting */
3589 while (true) {
3590 int pages;
3591
ce25d337 3592 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
56e93d26
JQ
3593 /* no more blocks to sent */
3594 if (pages == 0) {
3595 break;
3596 }
e8f3735f
XG
3597 if (pages < 0) {
3598 ret = pages;
3599 break;
3600 }
56e93d26
JQ
3601 }
3602
ce25d337 3603 flush_compressed_data(rs);
56e93d26 3604 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
56e93d26
JQ
3605
3606 rcu_read_unlock();
d09a6fde 3607
1b81c974 3608 multifd_send_sync_main(rs);
56e93d26 3609 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3610 qemu_fflush(f);
56e93d26 3611
e8f3735f 3612 return ret;
56e93d26
JQ
3613}
3614
c31b098f 3615static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
47995026
VSO
3616 uint64_t *res_precopy_only,
3617 uint64_t *res_compatible,
3618 uint64_t *res_postcopy_only)
56e93d26 3619{
53518d94
JQ
3620 RAMState **temp = opaque;
3621 RAMState *rs = *temp;
56e93d26
JQ
3622 uint64_t remaining_size;
3623
9edabd4d 3624 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 3625
5727309d 3626 if (!migration_in_postcopy() &&
663e6c1d 3627 remaining_size < max_size) {
56e93d26
JQ
3628 qemu_mutex_lock_iothread();
3629 rcu_read_lock();
bd227060 3630 migration_bitmap_sync_precopy(rs);
56e93d26
JQ
3631 rcu_read_unlock();
3632 qemu_mutex_unlock_iothread();
9edabd4d 3633 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 3634 }
c31b098f 3635
86e1167e
VSO
3636 if (migrate_postcopy_ram()) {
3637 /* We can do postcopy, and all the data is postcopiable */
47995026 3638 *res_compatible += remaining_size;
86e1167e 3639 } else {
47995026 3640 *res_precopy_only += remaining_size;
86e1167e 3641 }
56e93d26
JQ
3642}
3643
3644static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3645{
3646 unsigned int xh_len;
3647 int xh_flags;
063e760a 3648 uint8_t *loaded_data;
56e93d26 3649
56e93d26
JQ
3650 /* extract RLE header */
3651 xh_flags = qemu_get_byte(f);
3652 xh_len = qemu_get_be16(f);
3653
3654 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3655 error_report("Failed to load XBZRLE page - wrong compression!");
3656 return -1;
3657 }
3658
3659 if (xh_len > TARGET_PAGE_SIZE) {
3660 error_report("Failed to load XBZRLE page - len overflow!");
3661 return -1;
3662 }
f265e0e4 3663 loaded_data = XBZRLE.decoded_buf;
56e93d26 3664 /* load data and decode */
f265e0e4 3665 /* it can change loaded_data to point to an internal buffer */
063e760a 3666 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
56e93d26
JQ
3667
3668 /* decode RLE */
063e760a 3669 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
56e93d26
JQ
3670 TARGET_PAGE_SIZE) == -1) {
3671 error_report("Failed to load XBZRLE page - decode error!");
3672 return -1;
3673 }
3674
3675 return 0;
3676}
3677
3d0684b2
JQ
3678/**
3679 * ram_block_from_stream: read a RAMBlock id from the migration stream
3680 *
3681 * Must be called from within a rcu critical section.
3682 *
56e93d26 3683 * Returns a pointer from within the RCU-protected ram_list.
a7180877 3684 *
3d0684b2
JQ
3685 * @f: QEMUFile where to read the data from
3686 * @flags: Page flags (mostly to see if it's a continuation of previous block)
a7180877 3687 */
3d0684b2 3688static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
56e93d26
JQ
3689{
3690 static RAMBlock *block = NULL;
3691 char id[256];
3692 uint8_t len;
3693
3694 if (flags & RAM_SAVE_FLAG_CONTINUE) {
4c4bad48 3695 if (!block) {
56e93d26
JQ
3696 error_report("Ack, bad migration stream!");
3697 return NULL;
3698 }
4c4bad48 3699 return block;
56e93d26
JQ
3700 }
3701
3702 len = qemu_get_byte(f);
3703 qemu_get_buffer(f, (uint8_t *)id, len);
3704 id[len] = 0;
3705
e3dd7493 3706 block = qemu_ram_block_by_name(id);
4c4bad48
HZ
3707 if (!block) {
3708 error_report("Can't find block %s", id);
3709 return NULL;
56e93d26
JQ
3710 }
3711
fbd162e6 3712 if (ramblock_is_ignored(block)) {
b895de50
CLG
3713 error_report("block %s should not be migrated !", id);
3714 return NULL;
3715 }
3716
4c4bad48
HZ
3717 return block;
3718}
3719
3720static inline void *host_from_ram_block_offset(RAMBlock *block,
3721 ram_addr_t offset)
3722{
3723 if (!offset_in_ramblock(block, offset)) {
3724 return NULL;
3725 }
3726
3727 return block->host + offset;
56e93d26
JQ
3728}
3729
13af18f2
ZC
3730static inline void *colo_cache_from_block_offset(RAMBlock *block,
3731 ram_addr_t offset)
3732{
3733 if (!offset_in_ramblock(block, offset)) {
3734 return NULL;
3735 }
3736 if (!block->colo_cache) {
3737 error_report("%s: colo_cache is NULL in block :%s",
3738 __func__, block->idstr);
3739 return NULL;
3740 }
7d9acafa
ZC
3741
3742 /*
3743 * During colo checkpoint, we need bitmap of these migrated pages.
3744 * It help us to decide which pages in ram cache should be flushed
3745 * into VM's RAM later.
3746 */
3747 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3748 ram_state->migration_dirty_pages++;
3749 }
13af18f2
ZC
3750 return block->colo_cache + offset;
3751}
3752
3d0684b2
JQ
3753/**
3754 * ram_handle_compressed: handle the zero page case
3755 *
56e93d26
JQ
3756 * If a page (or a whole RDMA chunk) has been
3757 * determined to be zero, then zap it.
3d0684b2
JQ
3758 *
3759 * @host: host address for the zero page
3760 * @ch: what the page is filled from. We only support zero
3761 * @size: size of the zero page
56e93d26
JQ
3762 */
3763void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3764{
3765 if (ch != 0 || !is_zero_range(host, size)) {
3766 memset(host, ch, size);
3767 }
3768}
3769
797ca154
XG
3770/* return the size after decompression, or negative value on error */
3771static int
3772qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3773 const uint8_t *source, size_t source_len)
3774{
3775 int err;
3776
3777 err = inflateReset(stream);
3778 if (err != Z_OK) {
3779 return -1;
3780 }
3781
3782 stream->avail_in = source_len;
3783 stream->next_in = (uint8_t *)source;
3784 stream->avail_out = dest_len;
3785 stream->next_out = dest;
3786
3787 err = inflate(stream, Z_NO_FLUSH);
3788 if (err != Z_STREAM_END) {
3789 return -1;
3790 }
3791
3792 return stream->total_out;
3793}
3794
56e93d26
JQ
3795static void *do_data_decompress(void *opaque)
3796{
3797 DecompressParam *param = opaque;
3798 unsigned long pagesize;
33d151f4 3799 uint8_t *des;
34ab9e97 3800 int len, ret;
56e93d26 3801
33d151f4 3802 qemu_mutex_lock(&param->mutex);
90e56fb4 3803 while (!param->quit) {
33d151f4
LL
3804 if (param->des) {
3805 des = param->des;
3806 len = param->len;
3807 param->des = 0;
3808 qemu_mutex_unlock(&param->mutex);
3809
56e93d26 3810 pagesize = TARGET_PAGE_SIZE;
34ab9e97
XG
3811
3812 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3813 param->compbuf, len);
f548222c 3814 if (ret < 0 && migrate_get_current()->decompress_error_check) {
34ab9e97
XG
3815 error_report("decompress data failed");
3816 qemu_file_set_error(decomp_file, ret);
3817 }
73a8912b 3818
33d151f4
LL
3819 qemu_mutex_lock(&decomp_done_lock);
3820 param->done = true;
3821 qemu_cond_signal(&decomp_done_cond);
3822 qemu_mutex_unlock(&decomp_done_lock);
3823
3824 qemu_mutex_lock(&param->mutex);
3825 } else {
3826 qemu_cond_wait(&param->cond, &param->mutex);
3827 }
56e93d26 3828 }
33d151f4 3829 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
3830
3831 return NULL;
3832}
3833
34ab9e97 3834static int wait_for_decompress_done(void)
5533b2e9
LL
3835{
3836 int idx, thread_count;
3837
3838 if (!migrate_use_compression()) {
34ab9e97 3839 return 0;
5533b2e9
LL
3840 }
3841
3842 thread_count = migrate_decompress_threads();
3843 qemu_mutex_lock(&decomp_done_lock);
3844 for (idx = 0; idx < thread_count; idx++) {
3845 while (!decomp_param[idx].done) {
3846 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3847 }
3848 }
3849 qemu_mutex_unlock(&decomp_done_lock);
34ab9e97 3850 return qemu_file_get_error(decomp_file);
5533b2e9
LL
3851}
3852
f0afa331 3853static void compress_threads_load_cleanup(void)
56e93d26
JQ
3854{
3855 int i, thread_count;
3856
3416ab5b
JQ
3857 if (!migrate_use_compression()) {
3858 return;
3859 }
56e93d26
JQ
3860 thread_count = migrate_decompress_threads();
3861 for (i = 0; i < thread_count; i++) {
797ca154
XG
3862 /*
3863 * we use it as a indicator which shows if the thread is
3864 * properly init'd or not
3865 */
3866 if (!decomp_param[i].compbuf) {
3867 break;
3868 }
3869
56e93d26 3870 qemu_mutex_lock(&decomp_param[i].mutex);
90e56fb4 3871 decomp_param[i].quit = true;
56e93d26
JQ
3872 qemu_cond_signal(&decomp_param[i].cond);
3873 qemu_mutex_unlock(&decomp_param[i].mutex);
3874 }
3875 for (i = 0; i < thread_count; i++) {
797ca154
XG
3876 if (!decomp_param[i].compbuf) {
3877 break;
3878 }
3879
56e93d26
JQ
3880 qemu_thread_join(decompress_threads + i);
3881 qemu_mutex_destroy(&decomp_param[i].mutex);
3882 qemu_cond_destroy(&decomp_param[i].cond);
797ca154 3883 inflateEnd(&decomp_param[i].stream);
56e93d26 3884 g_free(decomp_param[i].compbuf);
797ca154 3885 decomp_param[i].compbuf = NULL;
56e93d26
JQ
3886 }
3887 g_free(decompress_threads);
3888 g_free(decomp_param);
56e93d26
JQ
3889 decompress_threads = NULL;
3890 decomp_param = NULL;
34ab9e97 3891 decomp_file = NULL;
56e93d26
JQ
3892}
3893
34ab9e97 3894static int compress_threads_load_setup(QEMUFile *f)
797ca154
XG
3895{
3896 int i, thread_count;
3897
3898 if (!migrate_use_compression()) {
3899 return 0;
3900 }
3901
3902 thread_count = migrate_decompress_threads();
3903 decompress_threads = g_new0(QemuThread, thread_count);
3904 decomp_param = g_new0(DecompressParam, thread_count);
3905 qemu_mutex_init(&decomp_done_lock);
3906 qemu_cond_init(&decomp_done_cond);
34ab9e97 3907 decomp_file = f;
797ca154
XG
3908 for (i = 0; i < thread_count; i++) {
3909 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3910 goto exit;
3911 }
3912
3913 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3914 qemu_mutex_init(&decomp_param[i].mutex);
3915 qemu_cond_init(&decomp_param[i].cond);
3916 decomp_param[i].done = true;
3917 decomp_param[i].quit = false;
3918 qemu_thread_create(decompress_threads + i, "decompress",
3919 do_data_decompress, decomp_param + i,
3920 QEMU_THREAD_JOINABLE);
3921 }
3922 return 0;
3923exit:
3924 compress_threads_load_cleanup();
3925 return -1;
3926}
3927
c1bc6626 3928static void decompress_data_with_multi_threads(QEMUFile *f,
56e93d26
JQ
3929 void *host, int len)
3930{
3931 int idx, thread_count;
3932
3933 thread_count = migrate_decompress_threads();
73a8912b 3934 qemu_mutex_lock(&decomp_done_lock);
56e93d26
JQ
3935 while (true) {
3936 for (idx = 0; idx < thread_count; idx++) {
73a8912b 3937 if (decomp_param[idx].done) {
33d151f4
LL
3938 decomp_param[idx].done = false;
3939 qemu_mutex_lock(&decomp_param[idx].mutex);
c1bc6626 3940 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
56e93d26
JQ
3941 decomp_param[idx].des = host;
3942 decomp_param[idx].len = len;
33d151f4
LL
3943 qemu_cond_signal(&decomp_param[idx].cond);
3944 qemu_mutex_unlock(&decomp_param[idx].mutex);
56e93d26
JQ
3945 break;
3946 }
3947 }
3948 if (idx < thread_count) {
3949 break;
73a8912b
LL
3950 } else {
3951 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
56e93d26
JQ
3952 }
3953 }
73a8912b 3954 qemu_mutex_unlock(&decomp_done_lock);
56e93d26
JQ
3955}
3956
13af18f2
ZC
3957/*
3958 * colo cache: this is for secondary VM, we cache the whole
3959 * memory of the secondary VM, it is need to hold the global lock
3960 * to call this helper.
3961 */
3962int colo_init_ram_cache(void)
3963{
3964 RAMBlock *block;
3965
3966 rcu_read_lock();
fbd162e6 3967 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
13af18f2
ZC
3968 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3969 NULL,
3970 false);
3971 if (!block->colo_cache) {
3972 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3973 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3974 block->used_length);
3975 goto out_locked;
3976 }
3977 memcpy(block->colo_cache, block->host, block->used_length);
3978 }
3979 rcu_read_unlock();
7d9acafa
ZC
3980 /*
3981 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3982 * with to decide which page in cache should be flushed into SVM's RAM. Here
3983 * we use the same name 'ram_bitmap' as for migration.
3984 */
3985 if (ram_bytes_total()) {
3986 RAMBlock *block;
3987
fbd162e6 3988 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
7d9acafa
ZC
3989 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3990
3991 block->bmap = bitmap_new(pages);
3992 bitmap_set(block->bmap, 0, pages);
3993 }
3994 }
3995 ram_state = g_new0(RAMState, 1);
3996 ram_state->migration_dirty_pages = 0;
c6e5bafb 3997 qemu_mutex_init(&ram_state->bitmap_mutex);
d1955d22 3998 memory_global_dirty_log_start();
7d9acafa 3999
13af18f2
ZC
4000 return 0;
4001
4002out_locked:
7d9acafa 4003
fbd162e6 4004 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
13af18f2
ZC
4005 if (block->colo_cache) {
4006 qemu_anon_ram_free(block->colo_cache, block->used_length);
4007 block->colo_cache = NULL;
4008 }
4009 }
4010
4011 rcu_read_unlock();
4012 return -errno;
4013}
4014
4015/* It is need to hold the global lock to call this helper */
4016void colo_release_ram_cache(void)
4017{
4018 RAMBlock *block;
4019
d1955d22 4020 memory_global_dirty_log_stop();
fbd162e6 4021 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
7d9acafa
ZC
4022 g_free(block->bmap);
4023 block->bmap = NULL;
4024 }
4025
13af18f2 4026 rcu_read_lock();
7d9acafa 4027
fbd162e6 4028 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
13af18f2
ZC
4029 if (block->colo_cache) {
4030 qemu_anon_ram_free(block->colo_cache, block->used_length);
4031 block->colo_cache = NULL;
4032 }
4033 }
7d9acafa 4034
13af18f2 4035 rcu_read_unlock();
c6e5bafb 4036 qemu_mutex_destroy(&ram_state->bitmap_mutex);
7d9acafa
ZC
4037 g_free(ram_state);
4038 ram_state = NULL;
13af18f2
ZC
4039}
4040
f265e0e4
JQ
4041/**
4042 * ram_load_setup: Setup RAM for migration incoming side
4043 *
4044 * Returns zero to indicate success and negative for error
4045 *
4046 * @f: QEMUFile where to receive the data
4047 * @opaque: RAMState pointer
4048 */
4049static int ram_load_setup(QEMUFile *f, void *opaque)
4050{
34ab9e97 4051 if (compress_threads_load_setup(f)) {
797ca154
XG
4052 return -1;
4053 }
4054
f265e0e4 4055 xbzrle_load_setup();
f9494614 4056 ramblock_recv_map_init();
13af18f2 4057
f265e0e4
JQ
4058 return 0;
4059}
4060
4061static int ram_load_cleanup(void *opaque)
4062{
f9494614 4063 RAMBlock *rb;
56eb90af 4064
fbd162e6 4065 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
56eb90af
JH
4066 if (ramblock_is_pmem(rb)) {
4067 pmem_persist(rb->host, rb->used_length);
4068 }
4069 }
4070
f265e0e4 4071 xbzrle_load_cleanup();
f0afa331 4072 compress_threads_load_cleanup();
f9494614 4073
fbd162e6 4074 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
f9494614
AP
4075 g_free(rb->receivedmap);
4076 rb->receivedmap = NULL;
4077 }
13af18f2 4078
f265e0e4
JQ
4079 return 0;
4080}
4081
3d0684b2
JQ
4082/**
4083 * ram_postcopy_incoming_init: allocate postcopy data structures
4084 *
4085 * Returns 0 for success and negative if there was one error
4086 *
4087 * @mis: current migration incoming state
4088 *
4089 * Allocate data structures etc needed by incoming migration with
4090 * postcopy-ram. postcopy-ram's similarly names
4091 * postcopy_ram_incoming_init does the work.
1caddf8a
DDAG
4092 */
4093int ram_postcopy_incoming_init(MigrationIncomingState *mis)
4094{
c136180c 4095 return postcopy_ram_incoming_init(mis);
1caddf8a
DDAG
4096}
4097
3d0684b2
JQ
4098/**
4099 * ram_load_postcopy: load a page in postcopy case
4100 *
4101 * Returns 0 for success or -errno in case of error
4102 *
a7180877
DDAG
4103 * Called in postcopy mode by ram_load().
4104 * rcu_read_lock is taken prior to this being called.
3d0684b2
JQ
4105 *
4106 * @f: QEMUFile where to send the data
a7180877
DDAG
4107 */
4108static int ram_load_postcopy(QEMUFile *f)
4109{
4110 int flags = 0, ret = 0;
4111 bool place_needed = false;
1aa83678 4112 bool matches_target_page_size = false;
a7180877
DDAG
4113 MigrationIncomingState *mis = migration_incoming_get_current();
4114 /* Temporary page that is later 'placed' */
4115 void *postcopy_host_page = postcopy_get_tmp_page(mis);
c53b7ddc 4116 void *last_host = NULL;
a3b6ff6d 4117 bool all_zero = false;
a7180877
DDAG
4118
4119 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4120 ram_addr_t addr;
4121 void *host = NULL;
4122 void *page_buffer = NULL;
4123 void *place_source = NULL;
df9ff5e1 4124 RAMBlock *block = NULL;
a7180877 4125 uint8_t ch;
a7180877
DDAG
4126
4127 addr = qemu_get_be64(f);
7a9ddfbf
PX
4128
4129 /*
4130 * If qemu file error, we should stop here, and then "addr"
4131 * may be invalid
4132 */
4133 ret = qemu_file_get_error(f);
4134 if (ret) {
4135 break;
4136 }
4137
a7180877
DDAG
4138 flags = addr & ~TARGET_PAGE_MASK;
4139 addr &= TARGET_PAGE_MASK;
4140
4141 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
4142 place_needed = false;
bb890ed5 4143 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
df9ff5e1 4144 block = ram_block_from_stream(f, flags);
4c4bad48
HZ
4145
4146 host = host_from_ram_block_offset(block, addr);
a7180877
DDAG
4147 if (!host) {
4148 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4149 ret = -EINVAL;
4150 break;
4151 }
1aa83678 4152 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
a7180877 4153 /*
28abd200
DDAG
4154 * Postcopy requires that we place whole host pages atomically;
4155 * these may be huge pages for RAMBlocks that are backed by
4156 * hugetlbfs.
a7180877
DDAG
4157 * To make it atomic, the data is read into a temporary page
4158 * that's moved into place later.
4159 * The migration protocol uses, possibly smaller, target-pages
4160 * however the source ensures it always sends all the components
4161 * of a host page in order.
4162 */
4163 page_buffer = postcopy_host_page +
28abd200 4164 ((uintptr_t)host & (block->page_size - 1));
a7180877 4165 /* If all TP are zero then we can optimise the place */
28abd200 4166 if (!((uintptr_t)host & (block->page_size - 1))) {
a7180877 4167 all_zero = true;
c53b7ddc
DDAG
4168 } else {
4169 /* not the 1st TP within the HP */
4170 if (host != (last_host + TARGET_PAGE_SIZE)) {
9af9e0fe 4171 error_report("Non-sequential target page %p/%p",
c53b7ddc
DDAG
4172 host, last_host);
4173 ret = -EINVAL;
4174 break;
4175 }
a7180877
DDAG
4176 }
4177
c53b7ddc 4178
a7180877
DDAG
4179 /*
4180 * If it's the last part of a host page then we place the host
4181 * page
4182 */
4183 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
28abd200 4184 (block->page_size - 1)) == 0;
a7180877
DDAG
4185 place_source = postcopy_host_page;
4186 }
c53b7ddc 4187 last_host = host;
a7180877
DDAG
4188
4189 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
bb890ed5 4190 case RAM_SAVE_FLAG_ZERO:
a7180877
DDAG
4191 ch = qemu_get_byte(f);
4192 memset(page_buffer, ch, TARGET_PAGE_SIZE);
4193 if (ch) {
4194 all_zero = false;
4195 }
4196 break;
4197
4198 case RAM_SAVE_FLAG_PAGE:
4199 all_zero = false;
1aa83678
PX
4200 if (!matches_target_page_size) {
4201 /* For huge pages, we always use temporary buffer */
a7180877
DDAG
4202 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
4203 } else {
1aa83678
PX
4204 /*
4205 * For small pages that matches target page size, we
4206 * avoid the qemu_file copy. Instead we directly use
4207 * the buffer of QEMUFile to place the page. Note: we
4208 * cannot do any QEMUFile operation before using that
4209 * buffer to make sure the buffer is valid when
4210 * placing the page.
a7180877
DDAG
4211 */
4212 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
4213 TARGET_PAGE_SIZE);
4214 }
4215 break;
4216 case RAM_SAVE_FLAG_EOS:
4217 /* normal exit */
6df264ac 4218 multifd_recv_sync_main();
a7180877
DDAG
4219 break;
4220 default:
4221 error_report("Unknown combination of migration flags: %#x"
4222 " (postcopy mode)", flags);
4223 ret = -EINVAL;
7a9ddfbf
PX
4224 break;
4225 }
4226
4227 /* Detect for any possible file errors */
4228 if (!ret && qemu_file_get_error(f)) {
4229 ret = qemu_file_get_error(f);
a7180877
DDAG
4230 }
4231
7a9ddfbf 4232 if (!ret && place_needed) {
a7180877 4233 /* This gets called at the last target page in the host page */
df9ff5e1
DDAG
4234 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
4235
a7180877 4236 if (all_zero) {
df9ff5e1 4237 ret = postcopy_place_page_zero(mis, place_dest,
8be4620b 4238 block);
a7180877 4239 } else {
df9ff5e1 4240 ret = postcopy_place_page(mis, place_dest,
8be4620b 4241 place_source, block);
a7180877
DDAG
4242 }
4243 }
a7180877
DDAG
4244 }
4245
4246 return ret;
4247}
4248
acab30b8
DHB
4249static bool postcopy_is_advised(void)
4250{
4251 PostcopyState ps = postcopy_state_get();
4252 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
4253}
4254
4255static bool postcopy_is_running(void)
4256{
4257 PostcopyState ps = postcopy_state_get();
4258 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
4259}
4260
e6f4aa18
ZC
4261/*
4262 * Flush content of RAM cache into SVM's memory.
4263 * Only flush the pages that be dirtied by PVM or SVM or both.
4264 */
4265static void colo_flush_ram_cache(void)
4266{
4267 RAMBlock *block = NULL;
4268 void *dst_host;
4269 void *src_host;
4270 unsigned long offset = 0;
4271
d1955d22
HZ
4272 memory_global_dirty_log_sync();
4273 rcu_read_lock();
fbd162e6 4274 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
7a3e9571 4275 ramblock_sync_dirty_bitmap(ram_state, block);
d1955d22
HZ
4276 }
4277 rcu_read_unlock();
4278
e6f4aa18
ZC
4279 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
4280 rcu_read_lock();
4281 block = QLIST_FIRST_RCU(&ram_list.blocks);
4282
4283 while (block) {
4284 offset = migration_bitmap_find_dirty(ram_state, block, offset);
4285
4286 if (offset << TARGET_PAGE_BITS >= block->used_length) {
4287 offset = 0;
4288 block = QLIST_NEXT_RCU(block, next);
4289 } else {
4290 migration_bitmap_clear_dirty(ram_state, block, offset);
4291 dst_host = block->host + (offset << TARGET_PAGE_BITS);
4292 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS);
4293 memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
4294 }
4295 }
4296
4297 rcu_read_unlock();
4298 trace_colo_flush_ram_cache_end();
4299}
4300
10da4a36
WY
4301/**
4302 * ram_load_precopy: load pages in precopy case
4303 *
4304 * Returns 0 for success or -errno in case of error
4305 *
4306 * Called in precopy mode by ram_load().
4307 * rcu_read_lock is taken prior to this being called.
4308 *
4309 * @f: QEMUFile where to send the data
4310 */
4311static int ram_load_precopy(QEMUFile *f)
56e93d26 4312{
10da4a36 4313 int flags = 0, ret = 0, invalid_flags = 0, len = 0;
ef08fb38 4314 /* ADVISE is earlier, it shows the source has the postcopy capability on */
acab30b8 4315 bool postcopy_advised = postcopy_is_advised();
edc60127
JQ
4316 if (!migrate_use_compression()) {
4317 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4318 }
a7180877 4319
10da4a36 4320 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
56e93d26 4321 ram_addr_t addr, total_ram_bytes;
a776aa15 4322 void *host = NULL;
56e93d26
JQ
4323 uint8_t ch;
4324
4325 addr = qemu_get_be64(f);
4326 flags = addr & ~TARGET_PAGE_MASK;
4327 addr &= TARGET_PAGE_MASK;
4328
edc60127
JQ
4329 if (flags & invalid_flags) {
4330 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4331 error_report("Received an unexpected compressed page");
4332 }
4333
4334 ret = -EINVAL;
4335 break;
4336 }
4337
bb890ed5 4338 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
a776aa15 4339 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4c4bad48
HZ
4340 RAMBlock *block = ram_block_from_stream(f, flags);
4341
13af18f2
ZC
4342 /*
4343 * After going into COLO, we should load the Page into colo_cache.
4344 */
4345 if (migration_incoming_in_colo_state()) {
4346 host = colo_cache_from_block_offset(block, addr);
4347 } else {
4348 host = host_from_ram_block_offset(block, addr);
4349 }
a776aa15
DDAG
4350 if (!host) {
4351 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4352 ret = -EINVAL;
4353 break;
4354 }
13af18f2
ZC
4355
4356 if (!migration_incoming_in_colo_state()) {
4357 ramblock_recv_bitmap_set(block, host);
4358 }
4359
1db9d8e5 4360 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
a776aa15
DDAG
4361 }
4362
56e93d26
JQ
4363 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4364 case RAM_SAVE_FLAG_MEM_SIZE:
4365 /* Synchronize RAM block list */
4366 total_ram_bytes = addr;
4367 while (!ret && total_ram_bytes) {
4368 RAMBlock *block;
56e93d26
JQ
4369 char id[256];
4370 ram_addr_t length;
4371
4372 len = qemu_get_byte(f);
4373 qemu_get_buffer(f, (uint8_t *)id, len);
4374 id[len] = 0;
4375 length = qemu_get_be64(f);
4376
e3dd7493 4377 block = qemu_ram_block_by_name(id);
b895de50
CLG
4378 if (block && !qemu_ram_is_migratable(block)) {
4379 error_report("block %s should not be migrated !", id);
4380 ret = -EINVAL;
4381 } else if (block) {
e3dd7493
DDAG
4382 if (length != block->used_length) {
4383 Error *local_err = NULL;
56e93d26 4384
fa53a0e5 4385 ret = qemu_ram_resize(block, length,
e3dd7493
DDAG
4386 &local_err);
4387 if (local_err) {
4388 error_report_err(local_err);
56e93d26 4389 }
56e93d26 4390 }
ef08fb38
DDAG
4391 /* For postcopy we need to check hugepage sizes match */
4392 if (postcopy_advised &&
4393 block->page_size != qemu_host_page_size) {
4394 uint64_t remote_page_size = qemu_get_be64(f);
4395 if (remote_page_size != block->page_size) {
4396 error_report("Mismatched RAM page size %s "
4397 "(local) %zd != %" PRId64,
4398 id, block->page_size,
4399 remote_page_size);
4400 ret = -EINVAL;
4401 }
4402 }
fbd162e6
YK
4403 if (migrate_ignore_shared()) {
4404 hwaddr addr = qemu_get_be64(f);
fbd162e6
YK
4405 if (ramblock_is_ignored(block) &&
4406 block->mr->addr != addr) {
4407 error_report("Mismatched GPAs for block %s "
4408 "%" PRId64 "!= %" PRId64,
4409 id, (uint64_t)addr,
4410 (uint64_t)block->mr->addr);
4411 ret = -EINVAL;
4412 }
4413 }
e3dd7493
DDAG
4414 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4415 block->idstr);
4416 } else {
56e93d26
JQ
4417 error_report("Unknown ramblock \"%s\", cannot "
4418 "accept migration", id);
4419 ret = -EINVAL;
4420 }
4421
4422 total_ram_bytes -= length;
4423 }
4424 break;
a776aa15 4425
bb890ed5 4426 case RAM_SAVE_FLAG_ZERO:
56e93d26
JQ
4427 ch = qemu_get_byte(f);
4428 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4429 break;
a776aa15 4430
56e93d26 4431 case RAM_SAVE_FLAG_PAGE:
56e93d26
JQ
4432 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4433 break;
56e93d26 4434
a776aa15 4435 case RAM_SAVE_FLAG_COMPRESS_PAGE:
56e93d26
JQ
4436 len = qemu_get_be32(f);
4437 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4438 error_report("Invalid compressed data length: %d", len);
4439 ret = -EINVAL;
4440 break;
4441 }
c1bc6626 4442 decompress_data_with_multi_threads(f, host, len);
56e93d26 4443 break;
a776aa15 4444
56e93d26 4445 case RAM_SAVE_FLAG_XBZRLE:
56e93d26
JQ
4446 if (load_xbzrle(f, addr, host) < 0) {
4447 error_report("Failed to decompress XBZRLE page at "
4448 RAM_ADDR_FMT, addr);
4449 ret = -EINVAL;
4450 break;
4451 }
4452 break;
4453 case RAM_SAVE_FLAG_EOS:
4454 /* normal exit */
6df264ac 4455 multifd_recv_sync_main();
56e93d26
JQ
4456 break;
4457 default:
4458 if (flags & RAM_SAVE_FLAG_HOOK) {
632e3a5c 4459 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
56e93d26
JQ
4460 } else {
4461 error_report("Unknown combination of migration flags: %#x",
4462 flags);
4463 ret = -EINVAL;
4464 }
4465 }
4466 if (!ret) {
4467 ret = qemu_file_get_error(f);
4468 }
4469 }
4470
10da4a36
WY
4471 return ret;
4472}
4473
4474static int ram_load(QEMUFile *f, void *opaque, int version_id)
4475{
4476 int ret = 0;
4477 static uint64_t seq_iter;
4478 /*
4479 * If system is running in postcopy mode, page inserts to host memory must
4480 * be atomic
4481 */
4482 bool postcopy_running = postcopy_is_running();
4483
4484 seq_iter++;
4485
4486 if (version_id != 4) {
4487 return -EINVAL;
4488 }
4489
4490 /*
4491 * This RCU critical section can be very long running.
4492 * When RCU reclaims in the code start to become numerous,
4493 * it will be necessary to reduce the granularity of this
4494 * critical section.
4495 */
4496 rcu_read_lock();
4497
4498 if (postcopy_running) {
4499 ret = ram_load_postcopy(f);
4500 } else {
4501 ret = ram_load_precopy(f);
4502 }
4503
34ab9e97 4504 ret |= wait_for_decompress_done();
56e93d26 4505 rcu_read_unlock();
55c4446b 4506 trace_ram_load_complete(ret, seq_iter);
e6f4aa18
ZC
4507
4508 if (!ret && migration_incoming_in_colo_state()) {
4509 colo_flush_ram_cache();
4510 }
56e93d26
JQ
4511 return ret;
4512}
4513
c6467627
VSO
4514static bool ram_has_postcopy(void *opaque)
4515{
469dd51b 4516 RAMBlock *rb;
fbd162e6 4517 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
469dd51b
JH
4518 if (ramblock_is_pmem(rb)) {
4519 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4520 "is not supported now!", rb->idstr, rb->host);
4521 return false;
4522 }
4523 }
4524
c6467627
VSO
4525 return migrate_postcopy_ram();
4526}
4527
edd090c7
PX
4528/* Sync all the dirty bitmap with destination VM. */
4529static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4530{
4531 RAMBlock *block;
4532 QEMUFile *file = s->to_dst_file;
4533 int ramblock_count = 0;
4534
4535 trace_ram_dirty_bitmap_sync_start();
4536
fbd162e6 4537 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
edd090c7
PX
4538 qemu_savevm_send_recv_bitmap(file, block->idstr);
4539 trace_ram_dirty_bitmap_request(block->idstr);
4540 ramblock_count++;
4541 }
4542
4543 trace_ram_dirty_bitmap_sync_wait();
4544
4545 /* Wait until all the ramblocks' dirty bitmap synced */
4546 while (ramblock_count--) {
4547 qemu_sem_wait(&s->rp_state.rp_sem);
4548 }
4549
4550 trace_ram_dirty_bitmap_sync_complete();
4551
4552 return 0;
4553}
4554
4555static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4556{
4557 qemu_sem_post(&s->rp_state.rp_sem);
4558}
4559
a335debb
PX
4560/*
4561 * Read the received bitmap, revert it as the initial dirty bitmap.
4562 * This is only used when the postcopy migration is paused but wants
4563 * to resume from a middle point.
4564 */
4565int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4566{
4567 int ret = -EINVAL;
4568 QEMUFile *file = s->rp_state.from_dst_file;
4569 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
a725ef9f 4570 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
a335debb
PX
4571 uint64_t size, end_mark;
4572
4573 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4574
4575 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4576 error_report("%s: incorrect state %s", __func__,
4577 MigrationStatus_str(s->state));
4578 return -EINVAL;
4579 }
4580
4581 /*
4582 * Note: see comments in ramblock_recv_bitmap_send() on why we
4583 * need the endianess convertion, and the paddings.
4584 */
4585 local_size = ROUND_UP(local_size, 8);
4586
4587 /* Add paddings */
4588 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4589
4590 size = qemu_get_be64(file);
4591
4592 /* The size of the bitmap should match with our ramblock */
4593 if (size != local_size) {
4594 error_report("%s: ramblock '%s' bitmap size mismatch "
4595 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4596 block->idstr, size, local_size);
4597 ret = -EINVAL;
4598 goto out;
4599 }
4600
4601 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4602 end_mark = qemu_get_be64(file);
4603
4604 ret = qemu_file_get_error(file);
4605 if (ret || size != local_size) {
4606 error_report("%s: read bitmap failed for ramblock '%s': %d"
4607 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4608 __func__, block->idstr, ret, local_size, size);
4609 ret = -EIO;
4610 goto out;
4611 }
4612
4613 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4614 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4615 __func__, block->idstr, end_mark);
4616 ret = -EINVAL;
4617 goto out;
4618 }
4619
4620 /*
4621 * Endianess convertion. We are during postcopy (though paused).
4622 * The dirty bitmap won't change. We can directly modify it.
4623 */
4624 bitmap_from_le(block->bmap, le_bitmap, nbits);
4625
4626 /*
4627 * What we received is "received bitmap". Revert it as the initial
4628 * dirty bitmap for this ramblock.
4629 */
4630 bitmap_complement(block->bmap, block->bmap, nbits);
4631
4632 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4633
edd090c7
PX
4634 /*
4635 * We succeeded to sync bitmap for current ramblock. If this is
4636 * the last one to sync, we need to notify the main send thread.
4637 */
4638 ram_dirty_bitmap_reload_notify(s);
4639
a335debb
PX
4640 ret = 0;
4641out:
bf269906 4642 g_free(le_bitmap);
a335debb
PX
4643 return ret;
4644}
4645
edd090c7
PX
4646static int ram_resume_prepare(MigrationState *s, void *opaque)
4647{
4648 RAMState *rs = *(RAMState **)opaque;
08614f34 4649 int ret;
edd090c7 4650
08614f34
PX
4651 ret = ram_dirty_bitmap_sync_all(s, rs);
4652 if (ret) {
4653 return ret;
4654 }
4655
4656 ram_state_resume_prepare(rs, s->to_dst_file);
4657
4658 return 0;
edd090c7
PX
4659}
4660
56e93d26 4661static SaveVMHandlers savevm_ram_handlers = {
9907e842 4662 .save_setup = ram_save_setup,
56e93d26 4663 .save_live_iterate = ram_save_iterate,
763c906b 4664 .save_live_complete_postcopy = ram_save_complete,
a3e06c3d 4665 .save_live_complete_precopy = ram_save_complete,
c6467627 4666 .has_postcopy = ram_has_postcopy,
56e93d26
JQ
4667 .save_live_pending = ram_save_pending,
4668 .load_state = ram_load,
f265e0e4
JQ
4669 .save_cleanup = ram_save_cleanup,
4670 .load_setup = ram_load_setup,
4671 .load_cleanup = ram_load_cleanup,
edd090c7 4672 .resume_prepare = ram_resume_prepare,
56e93d26
JQ
4673};
4674
4675void ram_mig_init(void)
4676{
4677 qemu_mutex_init(&XBZRLE.lock);
ce62df53 4678 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
56e93d26 4679}