]> git.proxmox.com Git - mirror_qemu.git/blame - migration/ram.c
migration/postcopy: remove redundant cpu_synchronize_all_post_init
[mirror_qemu.git] / migration / ram.c
CommitLineData
56e93d26
JQ
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
76cc7b58
JQ
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
56e93d26
JQ
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
e688df6b 28
1393a485 29#include "qemu/osdep.h"
33c11879 30#include "cpu.h"
56e93d26 31#include <zlib.h>
f348b6d1 32#include "qemu/cutils.h"
56e93d26
JQ
33#include "qemu/bitops.h"
34#include "qemu/bitmap.h"
7205c9ec 35#include "qemu/main-loop.h"
56eb90af 36#include "qemu/pmem.h"
709e3fe8 37#include "xbzrle.h"
7b1e1a22 38#include "ram.h"
6666c96a 39#include "migration.h"
71bb07db 40#include "socket.h"
f2a8f0a6 41#include "migration/register.h"
7b1e1a22 42#include "migration/misc.h"
08a0aee1 43#include "qemu-file.h"
be07b0ac 44#include "postcopy-ram.h"
53d37d36 45#include "page_cache.h"
56e93d26 46#include "qemu/error-report.h"
e688df6b 47#include "qapi/error.h"
9af23989 48#include "qapi/qapi-events-migration.h"
8acabf69 49#include "qapi/qmp/qerror.h"
56e93d26 50#include "trace.h"
56e93d26 51#include "exec/ram_addr.h"
f9494614 52#include "exec/target_page.h"
56e93d26 53#include "qemu/rcu_queue.h"
a91246c9 54#include "migration/colo.h"
53d37d36 55#include "block.h"
af8b7d2b
JQ
56#include "sysemu/sysemu.h"
57#include "qemu/uuid.h"
edd090c7 58#include "savevm.h"
b9ee2f7d 59#include "qemu/iov.h"
56e93d26 60
56e93d26
JQ
61/***********************************************************/
62/* ram save/restore */
63
bb890ed5
JQ
64/* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
65 * worked for pages that where filled with the same char. We switched
66 * it to only search for the zero value. And to avoid confusion with
67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
68 */
69
56e93d26 70#define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
bb890ed5 71#define RAM_SAVE_FLAG_ZERO 0x02
56e93d26
JQ
72#define RAM_SAVE_FLAG_MEM_SIZE 0x04
73#define RAM_SAVE_FLAG_PAGE 0x08
74#define RAM_SAVE_FLAG_EOS 0x10
75#define RAM_SAVE_FLAG_CONTINUE 0x20
76#define RAM_SAVE_FLAG_XBZRLE 0x40
77/* 0x80 is reserved in migration.h start with 0x100 next */
78#define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
79
56e93d26
JQ
80static inline bool is_zero_range(uint8_t *p, uint64_t size)
81{
a1febc49 82 return buffer_is_zero(p, size);
56e93d26
JQ
83}
84
9360447d
JQ
85XBZRLECacheStats xbzrle_counters;
86
56e93d26
JQ
87/* struct contains XBZRLE cache and a static page
88 used by the compression */
89static struct {
90 /* buffer used for XBZRLE encoding */
91 uint8_t *encoded_buf;
92 /* buffer for storing page content */
93 uint8_t *current_buf;
94 /* Cache for XBZRLE, Protected by lock. */
95 PageCache *cache;
96 QemuMutex lock;
c00e0928
JQ
97 /* it will store a page full of zeros */
98 uint8_t *zero_target_page;
f265e0e4
JQ
99 /* buffer used for XBZRLE decoding */
100 uint8_t *decoded_buf;
56e93d26
JQ
101} XBZRLE;
102
56e93d26
JQ
103static void XBZRLE_cache_lock(void)
104{
105 if (migrate_use_xbzrle())
106 qemu_mutex_lock(&XBZRLE.lock);
107}
108
109static void XBZRLE_cache_unlock(void)
110{
111 if (migrate_use_xbzrle())
112 qemu_mutex_unlock(&XBZRLE.lock);
113}
114
3d0684b2
JQ
115/**
116 * xbzrle_cache_resize: resize the xbzrle cache
117 *
118 * This function is called from qmp_migrate_set_cache_size in main
119 * thread, possibly while a migration is in progress. A running
120 * migration may be using the cache and might finish during this call,
121 * hence changes to the cache are protected by XBZRLE.lock().
122 *
c9dede2d 123 * Returns 0 for success or -1 for error
3d0684b2
JQ
124 *
125 * @new_size: new cache size
8acabf69 126 * @errp: set *errp if the check failed, with reason
56e93d26 127 */
c9dede2d 128int xbzrle_cache_resize(int64_t new_size, Error **errp)
56e93d26
JQ
129{
130 PageCache *new_cache;
c9dede2d 131 int64_t ret = 0;
56e93d26 132
8acabf69
JQ
133 /* Check for truncation */
134 if (new_size != (size_t)new_size) {
135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
136 "exceeding address space");
137 return -1;
138 }
139
2a313e5c
JQ
140 if (new_size == migrate_xbzrle_cache_size()) {
141 /* nothing to do */
c9dede2d 142 return 0;
2a313e5c
JQ
143 }
144
56e93d26
JQ
145 XBZRLE_cache_lock();
146
147 if (XBZRLE.cache != NULL) {
80f8dfde 148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
56e93d26 149 if (!new_cache) {
56e93d26
JQ
150 ret = -1;
151 goto out;
152 }
153
154 cache_fini(XBZRLE.cache);
155 XBZRLE.cache = new_cache;
156 }
56e93d26
JQ
157out:
158 XBZRLE_cache_unlock();
159 return ret;
160}
161
fbd162e6
YK
162static bool ramblock_is_ignored(RAMBlock *block)
163{
164 return !qemu_ram_is_migratable(block) ||
165 (migrate_ignore_shared() && qemu_ram_is_shared(block));
166}
167
b895de50 168/* Should be holding either ram_list.mutex, or the RCU lock. */
fbd162e6
YK
169#define RAMBLOCK_FOREACH_NOT_IGNORED(block) \
170 INTERNAL_RAMBLOCK_FOREACH(block) \
171 if (ramblock_is_ignored(block)) {} else
172
b895de50 173#define RAMBLOCK_FOREACH_MIGRATABLE(block) \
343f632c 174 INTERNAL_RAMBLOCK_FOREACH(block) \
b895de50
CLG
175 if (!qemu_ram_is_migratable(block)) {} else
176
343f632c
DDAG
177#undef RAMBLOCK_FOREACH
178
fbd162e6
YK
179int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
180{
181 RAMBlock *block;
182 int ret = 0;
183
184 rcu_read_lock();
185 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
186 ret = func(block, opaque);
187 if (ret) {
188 break;
189 }
190 }
191 rcu_read_unlock();
192 return ret;
193}
194
f9494614
AP
195static void ramblock_recv_map_init(void)
196{
197 RAMBlock *rb;
198
fbd162e6 199 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
f9494614
AP
200 assert(!rb->receivedmap);
201 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
202 }
203}
204
205int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
206{
207 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
208 rb->receivedmap);
209}
210
1cba9f6e
DDAG
211bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
212{
213 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
214}
215
f9494614
AP
216void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
217{
218 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
219}
220
221void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
222 size_t nr)
223{
224 bitmap_set_atomic(rb->receivedmap,
225 ramblock_recv_bitmap_offset(host_addr, rb),
226 nr);
227}
228
a335debb
PX
229#define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
230
231/*
232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
233 *
234 * Returns >0 if success with sent bytes, or <0 if error.
235 */
236int64_t ramblock_recv_bitmap_send(QEMUFile *file,
237 const char *block_name)
238{
239 RAMBlock *block = qemu_ram_block_by_name(block_name);
240 unsigned long *le_bitmap, nbits;
241 uint64_t size;
242
243 if (!block) {
244 error_report("%s: invalid block name: %s", __func__, block_name);
245 return -1;
246 }
247
248 nbits = block->used_length >> TARGET_PAGE_BITS;
249
250 /*
251 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
252 * machines we may need 4 more bytes for padding (see below
253 * comment). So extend it a bit before hand.
254 */
255 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
256
257 /*
258 * Always use little endian when sending the bitmap. This is
259 * required that when source and destination VMs are not using the
260 * same endianess. (Note: big endian won't work.)
261 */
262 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
263
264 /* Size of the bitmap, in bytes */
a725ef9f 265 size = DIV_ROUND_UP(nbits, 8);
a335debb
PX
266
267 /*
268 * size is always aligned to 8 bytes for 64bit machines, but it
269 * may not be true for 32bit machines. We need this padding to
270 * make sure the migration can survive even between 32bit and
271 * 64bit machines.
272 */
273 size = ROUND_UP(size, 8);
274
275 qemu_put_be64(file, size);
276 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
277 /*
278 * Mark as an end, in case the middle part is screwed up due to
279 * some "misterious" reason.
280 */
281 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
282 qemu_fflush(file);
283
bf269906 284 g_free(le_bitmap);
a335debb
PX
285
286 if (qemu_file_get_error(file)) {
287 return qemu_file_get_error(file);
288 }
289
290 return size + sizeof(size);
291}
292
ec481c6c
JQ
293/*
294 * An outstanding page request, on the source, having been received
295 * and queued
296 */
297struct RAMSrcPageRequest {
298 RAMBlock *rb;
299 hwaddr offset;
300 hwaddr len;
301
302 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
303};
304
6f37bb8b
JQ
305/* State of RAM for migration */
306struct RAMState {
204b88b8
JQ
307 /* QEMUFile used for this migration */
308 QEMUFile *f;
6f37bb8b
JQ
309 /* Last block that we have visited searching for dirty pages */
310 RAMBlock *last_seen_block;
311 /* Last block from where we have sent data */
312 RAMBlock *last_sent_block;
269ace29
JQ
313 /* Last dirty target page we have sent */
314 ram_addr_t last_page;
6f37bb8b
JQ
315 /* last ram version we have seen */
316 uint32_t last_version;
317 /* We are in the first round */
318 bool ram_bulk_stage;
6eeb63f7
WW
319 /* The free page optimization is enabled */
320 bool fpo_enabled;
8d820d6f
JQ
321 /* How many times we have dirty too many pages */
322 int dirty_rate_high_cnt;
f664da80
JQ
323 /* these variables are used for bitmap sync */
324 /* last time we did a full bitmap_sync */
325 int64_t time_last_bitmap_sync;
eac74159 326 /* bytes transferred at start_time */
c4bdf0cf 327 uint64_t bytes_xfer_prev;
a66cd90c 328 /* number of dirty pages since start_time */
68908ed6 329 uint64_t num_dirty_pages_period;
b5833fde
JQ
330 /* xbzrle misses since the beginning of the period */
331 uint64_t xbzrle_cache_miss_prev;
76e03000
XG
332
333 /* compression statistics since the beginning of the period */
334 /* amount of count that no free thread to compress data */
335 uint64_t compress_thread_busy_prev;
336 /* amount bytes after compression */
337 uint64_t compressed_size_prev;
338 /* amount of compressed pages */
339 uint64_t compress_pages_prev;
340
be8b02ed
XG
341 /* total handled target pages at the beginning of period */
342 uint64_t target_page_count_prev;
343 /* total handled target pages since start */
344 uint64_t target_page_count;
9360447d 345 /* number of dirty bits in the bitmap */
2dfaf12e 346 uint64_t migration_dirty_pages;
386a907b 347 /* Protects modification of the bitmap and migration dirty pages */
108cfae0 348 QemuMutex bitmap_mutex;
68a098f3
JQ
349 /* The RAMBlock used in the last src_page_requests */
350 RAMBlock *last_req_rb;
ec481c6c
JQ
351 /* Queue of outstanding page requests from the destination */
352 QemuMutex src_page_req_mutex;
b58deb34 353 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
6f37bb8b
JQ
354};
355typedef struct RAMState RAMState;
356
53518d94 357static RAMState *ram_state;
6f37bb8b 358
bd227060
WW
359static NotifierWithReturnList precopy_notifier_list;
360
361void precopy_infrastructure_init(void)
362{
363 notifier_with_return_list_init(&precopy_notifier_list);
364}
365
366void precopy_add_notifier(NotifierWithReturn *n)
367{
368 notifier_with_return_list_add(&precopy_notifier_list, n);
369}
370
371void precopy_remove_notifier(NotifierWithReturn *n)
372{
373 notifier_with_return_remove(n);
374}
375
376int precopy_notify(PrecopyNotifyReason reason, Error **errp)
377{
378 PrecopyNotifyData pnd;
379 pnd.reason = reason;
380 pnd.errp = errp;
381
382 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
383}
384
6eeb63f7
WW
385void precopy_enable_free_page_optimization(void)
386{
387 if (!ram_state) {
388 return;
389 }
390
391 ram_state->fpo_enabled = true;
392}
393
9edabd4d 394uint64_t ram_bytes_remaining(void)
2f4fde93 395{
bae416e5
DDAG
396 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
397 0;
2f4fde93
JQ
398}
399
9360447d 400MigrationStats ram_counters;
96506894 401
b8fb8cb7
DDAG
402/* used by the search for pages to send */
403struct PageSearchStatus {
404 /* Current block being searched */
405 RAMBlock *block;
a935e30f
JQ
406 /* Current page to search from */
407 unsigned long page;
b8fb8cb7
DDAG
408 /* Set once we wrap around */
409 bool complete_round;
410};
411typedef struct PageSearchStatus PageSearchStatus;
412
76e03000
XG
413CompressionStats compression_counters;
414
56e93d26 415struct CompressParam {
56e93d26 416 bool done;
90e56fb4 417 bool quit;
5e5fdcff 418 bool zero_page;
56e93d26
JQ
419 QEMUFile *file;
420 QemuMutex mutex;
421 QemuCond cond;
422 RAMBlock *block;
423 ram_addr_t offset;
34ab9e97
XG
424
425 /* internally used fields */
dcaf446e 426 z_stream stream;
34ab9e97 427 uint8_t *originbuf;
56e93d26
JQ
428};
429typedef struct CompressParam CompressParam;
430
431struct DecompressParam {
73a8912b 432 bool done;
90e56fb4 433 bool quit;
56e93d26
JQ
434 QemuMutex mutex;
435 QemuCond cond;
436 void *des;
d341d9f3 437 uint8_t *compbuf;
56e93d26 438 int len;
797ca154 439 z_stream stream;
56e93d26
JQ
440};
441typedef struct DecompressParam DecompressParam;
442
443static CompressParam *comp_param;
444static QemuThread *compress_threads;
445/* comp_done_cond is used to wake up the migration thread when
446 * one of the compression threads has finished the compression.
447 * comp_done_lock is used to co-work with comp_done_cond.
448 */
0d9f9a5c
LL
449static QemuMutex comp_done_lock;
450static QemuCond comp_done_cond;
56e93d26
JQ
451/* The empty QEMUFileOps will be used by file in CompressParam */
452static const QEMUFileOps empty_ops = { };
453
34ab9e97 454static QEMUFile *decomp_file;
56e93d26
JQ
455static DecompressParam *decomp_param;
456static QemuThread *decompress_threads;
73a8912b
LL
457static QemuMutex decomp_done_lock;
458static QemuCond decomp_done_cond;
56e93d26 459
5e5fdcff 460static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
6ef3771c 461 ram_addr_t offset, uint8_t *source_buf);
56e93d26
JQ
462
463static void *do_data_compress(void *opaque)
464{
465 CompressParam *param = opaque;
a7a9a88f
LL
466 RAMBlock *block;
467 ram_addr_t offset;
5e5fdcff 468 bool zero_page;
56e93d26 469
a7a9a88f 470 qemu_mutex_lock(&param->mutex);
90e56fb4 471 while (!param->quit) {
a7a9a88f
LL
472 if (param->block) {
473 block = param->block;
474 offset = param->offset;
475 param->block = NULL;
476 qemu_mutex_unlock(&param->mutex);
477
5e5fdcff
XG
478 zero_page = do_compress_ram_page(param->file, &param->stream,
479 block, offset, param->originbuf);
a7a9a88f 480
0d9f9a5c 481 qemu_mutex_lock(&comp_done_lock);
a7a9a88f 482 param->done = true;
5e5fdcff 483 param->zero_page = zero_page;
0d9f9a5c
LL
484 qemu_cond_signal(&comp_done_cond);
485 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
486
487 qemu_mutex_lock(&param->mutex);
488 } else {
56e93d26
JQ
489 qemu_cond_wait(&param->cond, &param->mutex);
490 }
56e93d26 491 }
a7a9a88f 492 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
493
494 return NULL;
495}
496
f0afa331 497static void compress_threads_save_cleanup(void)
56e93d26
JQ
498{
499 int i, thread_count;
500
05306935 501 if (!migrate_use_compression() || !comp_param) {
56e93d26
JQ
502 return;
503 }
05306935 504
56e93d26
JQ
505 thread_count = migrate_compress_threads();
506 for (i = 0; i < thread_count; i++) {
dcaf446e
XG
507 /*
508 * we use it as a indicator which shows if the thread is
509 * properly init'd or not
510 */
511 if (!comp_param[i].file) {
512 break;
513 }
05306935
FL
514
515 qemu_mutex_lock(&comp_param[i].mutex);
516 comp_param[i].quit = true;
517 qemu_cond_signal(&comp_param[i].cond);
518 qemu_mutex_unlock(&comp_param[i].mutex);
519
56e93d26 520 qemu_thread_join(compress_threads + i);
56e93d26
JQ
521 qemu_mutex_destroy(&comp_param[i].mutex);
522 qemu_cond_destroy(&comp_param[i].cond);
dcaf446e 523 deflateEnd(&comp_param[i].stream);
34ab9e97 524 g_free(comp_param[i].originbuf);
dcaf446e
XG
525 qemu_fclose(comp_param[i].file);
526 comp_param[i].file = NULL;
56e93d26 527 }
0d9f9a5c
LL
528 qemu_mutex_destroy(&comp_done_lock);
529 qemu_cond_destroy(&comp_done_cond);
56e93d26
JQ
530 g_free(compress_threads);
531 g_free(comp_param);
56e93d26
JQ
532 compress_threads = NULL;
533 comp_param = NULL;
56e93d26
JQ
534}
535
dcaf446e 536static int compress_threads_save_setup(void)
56e93d26
JQ
537{
538 int i, thread_count;
539
540 if (!migrate_use_compression()) {
dcaf446e 541 return 0;
56e93d26 542 }
56e93d26
JQ
543 thread_count = migrate_compress_threads();
544 compress_threads = g_new0(QemuThread, thread_count);
545 comp_param = g_new0(CompressParam, thread_count);
0d9f9a5c
LL
546 qemu_cond_init(&comp_done_cond);
547 qemu_mutex_init(&comp_done_lock);
56e93d26 548 for (i = 0; i < thread_count; i++) {
34ab9e97
XG
549 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
550 if (!comp_param[i].originbuf) {
551 goto exit;
552 }
553
dcaf446e
XG
554 if (deflateInit(&comp_param[i].stream,
555 migrate_compress_level()) != Z_OK) {
34ab9e97 556 g_free(comp_param[i].originbuf);
dcaf446e
XG
557 goto exit;
558 }
559
e110aa91
C
560 /* comp_param[i].file is just used as a dummy buffer to save data,
561 * set its ops to empty.
56e93d26
JQ
562 */
563 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
564 comp_param[i].done = true;
90e56fb4 565 comp_param[i].quit = false;
56e93d26
JQ
566 qemu_mutex_init(&comp_param[i].mutex);
567 qemu_cond_init(&comp_param[i].cond);
568 qemu_thread_create(compress_threads + i, "compress",
569 do_data_compress, comp_param + i,
570 QEMU_THREAD_JOINABLE);
571 }
dcaf446e
XG
572 return 0;
573
574exit:
575 compress_threads_save_cleanup();
576 return -1;
56e93d26
JQ
577}
578
f986c3d2
JQ
579/* Multiple fd's */
580
af8b7d2b
JQ
581#define MULTIFD_MAGIC 0x11223344U
582#define MULTIFD_VERSION 1
583
6df264ac
JQ
584#define MULTIFD_FLAG_SYNC (1 << 0)
585
efd1a1d6 586/* This value needs to be a multiple of qemu_target_page_size() */
4b0c7264 587#define MULTIFD_PACKET_SIZE (512 * 1024)
efd1a1d6 588
af8b7d2b
JQ
589typedef struct {
590 uint32_t magic;
591 uint32_t version;
592 unsigned char uuid[16]; /* QemuUUID */
593 uint8_t id;
5fbd8b4b
JQ
594 uint8_t unused1[7]; /* Reserved for future use */
595 uint64_t unused2[4]; /* Reserved for future use */
af8b7d2b
JQ
596} __attribute__((packed)) MultiFDInit_t;
597
2a26c979
JQ
598typedef struct {
599 uint32_t magic;
600 uint32_t version;
601 uint32_t flags;
6f862692
JQ
602 /* maximum number of allocated pages */
603 uint32_t pages_alloc;
604 uint32_t pages_used;
2a34ee59
JQ
605 /* size of the next packet that contains pages */
606 uint32_t next_packet_size;
2a26c979 607 uint64_t packet_num;
5fbd8b4b 608 uint64_t unused[4]; /* Reserved for future use */
2a26c979
JQ
609 char ramblock[256];
610 uint64_t offset[];
611} __attribute__((packed)) MultiFDPacket_t;
612
34c55a94
JQ
613typedef struct {
614 /* number of used pages */
615 uint32_t used;
616 /* number of allocated pages */
617 uint32_t allocated;
618 /* global number of generated multifd packets */
619 uint64_t packet_num;
620 /* offset of each page */
621 ram_addr_t *offset;
622 /* pointer to each page */
623 struct iovec *iov;
624 RAMBlock *block;
625} MultiFDPages_t;
626
8c4598f2
JQ
627typedef struct {
628 /* this fields are not changed once the thread is created */
629 /* channel number */
f986c3d2 630 uint8_t id;
8c4598f2 631 /* channel thread name */
f986c3d2 632 char *name;
8c4598f2 633 /* channel thread id */
f986c3d2 634 QemuThread thread;
8c4598f2 635 /* communication channel */
60df2d4a 636 QIOChannel *c;
8c4598f2 637 /* sem where to wait for more work */
f986c3d2 638 QemuSemaphore sem;
8c4598f2 639 /* this mutex protects the following parameters */
f986c3d2 640 QemuMutex mutex;
8c4598f2 641 /* is this channel thread running */
66770707 642 bool running;
8c4598f2 643 /* should this thread finish */
f986c3d2 644 bool quit;
0beb5ed3
JQ
645 /* thread has work to do */
646 int pending_job;
34c55a94
JQ
647 /* array of pages to sent */
648 MultiFDPages_t *pages;
2a26c979
JQ
649 /* packet allocated len */
650 uint32_t packet_len;
651 /* pointer to the packet */
652 MultiFDPacket_t *packet;
653 /* multifd flags for each packet */
654 uint32_t flags;
2a34ee59
JQ
655 /* size of the next packet that contains pages */
656 uint32_t next_packet_size;
2a26c979
JQ
657 /* global number of generated multifd packets */
658 uint64_t packet_num;
408ea6ae
JQ
659 /* thread local variables */
660 /* packets sent through this channel */
661 uint64_t num_packets;
662 /* pages sent through this channel */
663 uint64_t num_pages;
8c4598f2
JQ
664} MultiFDSendParams;
665
666typedef struct {
667 /* this fields are not changed once the thread is created */
668 /* channel number */
669 uint8_t id;
670 /* channel thread name */
671 char *name;
672 /* channel thread id */
673 QemuThread thread;
674 /* communication channel */
675 QIOChannel *c;
8c4598f2
JQ
676 /* this mutex protects the following parameters */
677 QemuMutex mutex;
678 /* is this channel thread running */
679 bool running;
34c55a94
JQ
680 /* array of pages to receive */
681 MultiFDPages_t *pages;
2a26c979
JQ
682 /* packet allocated len */
683 uint32_t packet_len;
684 /* pointer to the packet */
685 MultiFDPacket_t *packet;
686 /* multifd flags for each packet */
687 uint32_t flags;
688 /* global number of generated multifd packets */
689 uint64_t packet_num;
408ea6ae 690 /* thread local variables */
2a34ee59
JQ
691 /* size of the next packet that contains pages */
692 uint32_t next_packet_size;
408ea6ae
JQ
693 /* packets sent through this channel */
694 uint64_t num_packets;
695 /* pages sent through this channel */
696 uint64_t num_pages;
6df264ac
JQ
697 /* syncs main thread and channels */
698 QemuSemaphore sem_sync;
8c4598f2 699} MultiFDRecvParams;
f986c3d2 700
af8b7d2b
JQ
701static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
702{
703 MultiFDInit_t msg;
704 int ret;
705
706 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
707 msg.version = cpu_to_be32(MULTIFD_VERSION);
708 msg.id = p->id;
709 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
710
711 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
712 if (ret != 0) {
713 return -1;
714 }
715 return 0;
716}
717
718static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
719{
720 MultiFDInit_t msg;
721 int ret;
722
723 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
724 if (ret != 0) {
725 return -1;
726 }
727
341ba0df
PM
728 msg.magic = be32_to_cpu(msg.magic);
729 msg.version = be32_to_cpu(msg.version);
af8b7d2b
JQ
730
731 if (msg.magic != MULTIFD_MAGIC) {
732 error_setg(errp, "multifd: received packet magic %x "
733 "expected %x", msg.magic, MULTIFD_MAGIC);
734 return -1;
735 }
736
737 if (msg.version != MULTIFD_VERSION) {
738 error_setg(errp, "multifd: received packet version %d "
739 "expected %d", msg.version, MULTIFD_VERSION);
740 return -1;
741 }
742
743 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
744 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
745 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
746
747 error_setg(errp, "multifd: received uuid '%s' and expected "
748 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
749 g_free(uuid);
750 g_free(msg_uuid);
751 return -1;
752 }
753
754 if (msg.id > migrate_multifd_channels()) {
755 error_setg(errp, "multifd: received channel version %d "
756 "expected %d", msg.version, MULTIFD_VERSION);
757 return -1;
758 }
759
760 return msg.id;
761}
762
34c55a94
JQ
763static MultiFDPages_t *multifd_pages_init(size_t size)
764{
765 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
766
767 pages->allocated = size;
768 pages->iov = g_new0(struct iovec, size);
769 pages->offset = g_new0(ram_addr_t, size);
770
771 return pages;
772}
773
774static void multifd_pages_clear(MultiFDPages_t *pages)
775{
776 pages->used = 0;
777 pages->allocated = 0;
778 pages->packet_num = 0;
779 pages->block = NULL;
780 g_free(pages->iov);
781 pages->iov = NULL;
782 g_free(pages->offset);
783 pages->offset = NULL;
784 g_free(pages);
785}
786
2a26c979
JQ
787static void multifd_send_fill_packet(MultiFDSendParams *p)
788{
789 MultiFDPacket_t *packet = p->packet;
7ed379b2 790 uint32_t page_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
2a26c979
JQ
791 int i;
792
793 packet->magic = cpu_to_be32(MULTIFD_MAGIC);
794 packet->version = cpu_to_be32(MULTIFD_VERSION);
795 packet->flags = cpu_to_be32(p->flags);
7ed379b2 796 packet->pages_alloc = cpu_to_be32(page_max);
6f862692 797 packet->pages_used = cpu_to_be32(p->pages->used);
2a34ee59 798 packet->next_packet_size = cpu_to_be32(p->next_packet_size);
2a26c979
JQ
799 packet->packet_num = cpu_to_be64(p->packet_num);
800
801 if (p->pages->block) {
802 strncpy(packet->ramblock, p->pages->block->idstr, 256);
803 }
804
805 for (i = 0; i < p->pages->used; i++) {
806 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
807 }
808}
809
810static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
811{
812 MultiFDPacket_t *packet = p->packet;
7ed379b2 813 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
2a26c979
JQ
814 RAMBlock *block;
815 int i;
816
341ba0df 817 packet->magic = be32_to_cpu(packet->magic);
2a26c979
JQ
818 if (packet->magic != MULTIFD_MAGIC) {
819 error_setg(errp, "multifd: received packet "
820 "magic %x and expected magic %x",
821 packet->magic, MULTIFD_MAGIC);
822 return -1;
823 }
824
341ba0df 825 packet->version = be32_to_cpu(packet->version);
2a26c979
JQ
826 if (packet->version != MULTIFD_VERSION) {
827 error_setg(errp, "multifd: received packet "
828 "version %d and expected version %d",
829 packet->version, MULTIFD_VERSION);
830 return -1;
831 }
832
833 p->flags = be32_to_cpu(packet->flags);
834
6f862692 835 packet->pages_alloc = be32_to_cpu(packet->pages_alloc);
7ed379b2
JQ
836 /*
837 * If we recevied a packet that is 100 times bigger than expected
838 * just stop migration. It is a magic number.
839 */
840 if (packet->pages_alloc > pages_max * 100) {
2a26c979 841 error_setg(errp, "multifd: received packet "
7ed379b2
JQ
842 "with size %d and expected a maximum size of %d",
843 packet->pages_alloc, pages_max * 100) ;
2a26c979
JQ
844 return -1;
845 }
7ed379b2
JQ
846 /*
847 * We received a packet that is bigger than expected but inside
848 * reasonable limits (see previous comment). Just reallocate.
849 */
850 if (packet->pages_alloc > p->pages->allocated) {
851 multifd_pages_clear(p->pages);
f151f8ac 852 p->pages = multifd_pages_init(packet->pages_alloc);
7ed379b2 853 }
2a26c979 854
6f862692
JQ
855 p->pages->used = be32_to_cpu(packet->pages_used);
856 if (p->pages->used > packet->pages_alloc) {
2a26c979 857 error_setg(errp, "multifd: received packet "
6f862692
JQ
858 "with %d pages and expected maximum pages are %d",
859 p->pages->used, packet->pages_alloc) ;
2a26c979
JQ
860 return -1;
861 }
862
2a34ee59 863 p->next_packet_size = be32_to_cpu(packet->next_packet_size);
2a26c979
JQ
864 p->packet_num = be64_to_cpu(packet->packet_num);
865
866 if (p->pages->used) {
867 /* make sure that ramblock is 0 terminated */
868 packet->ramblock[255] = 0;
869 block = qemu_ram_block_by_name(packet->ramblock);
870 if (!block) {
871 error_setg(errp, "multifd: unknown ram block %s",
872 packet->ramblock);
873 return -1;
874 }
875 }
876
877 for (i = 0; i < p->pages->used; i++) {
878 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
879
880 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
881 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
882 " (max " RAM_ADDR_FMT ")",
883 offset, block->max_length);
884 return -1;
885 }
886 p->pages->iov[i].iov_base = block->host + offset;
887 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
888 }
889
890 return 0;
891}
892
f986c3d2
JQ
893struct {
894 MultiFDSendParams *params;
34c55a94
JQ
895 /* array of pages to sent */
896 MultiFDPages_t *pages;
6df264ac
JQ
897 /* syncs main thread and channels */
898 QemuSemaphore sem_sync;
899 /* global number of generated multifd packets */
900 uint64_t packet_num;
b9ee2f7d
JQ
901 /* send channels ready */
902 QemuSemaphore channels_ready;
f986c3d2
JQ
903} *multifd_send_state;
904
b9ee2f7d
JQ
905/*
906 * How we use multifd_send_state->pages and channel->pages?
907 *
908 * We create a pages for each channel, and a main one. Each time that
909 * we need to send a batch of pages we interchange the ones between
910 * multifd_send_state and the channel that is sending it. There are
911 * two reasons for that:
912 * - to not have to do so many mallocs during migration
913 * - to make easier to know what to free at the end of migration
914 *
915 * This way we always know who is the owner of each "pages" struct,
a5f7b1a6 916 * and we don't need any locking. It belongs to the migration thread
b9ee2f7d
JQ
917 * or to the channel thread. Switching is safe because the migration
918 * thread is using the channel mutex when changing it, and the channel
919 * have to had finish with its own, otherwise pending_job can't be
920 * false.
921 */
922
923static void multifd_send_pages(void)
924{
925 int i;
926 static int next_channel;
927 MultiFDSendParams *p = NULL; /* make happy gcc */
928 MultiFDPages_t *pages = multifd_send_state->pages;
929 uint64_t transferred;
930
931 qemu_sem_wait(&multifd_send_state->channels_ready);
932 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
933 p = &multifd_send_state->params[i];
934
935 qemu_mutex_lock(&p->mutex);
936 if (!p->pending_job) {
937 p->pending_job++;
938 next_channel = (i + 1) % migrate_multifd_channels();
939 break;
940 }
941 qemu_mutex_unlock(&p->mutex);
942 }
943 p->pages->used = 0;
944
945 p->packet_num = multifd_send_state->packet_num++;
946 p->pages->block = NULL;
947 multifd_send_state->pages = p->pages;
948 p->pages = pages;
4fcefd44 949 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
b9ee2f7d
JQ
950 ram_counters.multifd_bytes += transferred;
951 ram_counters.transferred += transferred;;
952 qemu_mutex_unlock(&p->mutex);
953 qemu_sem_post(&p->sem);
954}
955
956static void multifd_queue_page(RAMBlock *block, ram_addr_t offset)
957{
958 MultiFDPages_t *pages = multifd_send_state->pages;
959
960 if (!pages->block) {
961 pages->block = block;
962 }
963
964 if (pages->block == block) {
965 pages->offset[pages->used] = offset;
966 pages->iov[pages->used].iov_base = block->host + offset;
967 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
968 pages->used++;
969
970 if (pages->used < pages->allocated) {
971 return;
972 }
973 }
974
975 multifd_send_pages();
976
977 if (pages->block != block) {
978 multifd_queue_page(block, offset);
979 }
980}
981
66770707 982static void multifd_send_terminate_threads(Error *err)
f986c3d2
JQ
983{
984 int i;
985
7a169d74
JQ
986 if (err) {
987 MigrationState *s = migrate_get_current();
988 migrate_set_error(s, err);
989 if (s->state == MIGRATION_STATUS_SETUP ||
990 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
991 s->state == MIGRATION_STATUS_DEVICE ||
992 s->state == MIGRATION_STATUS_ACTIVE) {
993 migrate_set_state(&s->state, s->state,
994 MIGRATION_STATUS_FAILED);
995 }
996 }
997
66770707 998 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
999 MultiFDSendParams *p = &multifd_send_state->params[i];
1000
1001 qemu_mutex_lock(&p->mutex);
1002 p->quit = true;
1003 qemu_sem_post(&p->sem);
1004 qemu_mutex_unlock(&p->mutex);
1005 }
1006}
1007
1398b2e3 1008void multifd_save_cleanup(void)
f986c3d2
JQ
1009{
1010 int i;
f986c3d2
JQ
1011
1012 if (!migrate_use_multifd()) {
1398b2e3 1013 return;
f986c3d2 1014 }
66770707
JQ
1015 multifd_send_terminate_threads(NULL);
1016 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1017 MultiFDSendParams *p = &multifd_send_state->params[i];
1018
66770707
JQ
1019 if (p->running) {
1020 qemu_thread_join(&p->thread);
1021 }
60df2d4a
JQ
1022 socket_send_channel_destroy(p->c);
1023 p->c = NULL;
f986c3d2
JQ
1024 qemu_mutex_destroy(&p->mutex);
1025 qemu_sem_destroy(&p->sem);
1026 g_free(p->name);
1027 p->name = NULL;
34c55a94
JQ
1028 multifd_pages_clear(p->pages);
1029 p->pages = NULL;
2a26c979
JQ
1030 p->packet_len = 0;
1031 g_free(p->packet);
1032 p->packet = NULL;
f986c3d2 1033 }
b9ee2f7d 1034 qemu_sem_destroy(&multifd_send_state->channels_ready);
6df264ac 1035 qemu_sem_destroy(&multifd_send_state->sem_sync);
f986c3d2
JQ
1036 g_free(multifd_send_state->params);
1037 multifd_send_state->params = NULL;
34c55a94
JQ
1038 multifd_pages_clear(multifd_send_state->pages);
1039 multifd_send_state->pages = NULL;
f986c3d2
JQ
1040 g_free(multifd_send_state);
1041 multifd_send_state = NULL;
f986c3d2
JQ
1042}
1043
6df264ac
JQ
1044static void multifd_send_sync_main(void)
1045{
1046 int i;
1047
1048 if (!migrate_use_multifd()) {
1049 return;
1050 }
b9ee2f7d
JQ
1051 if (multifd_send_state->pages->used) {
1052 multifd_send_pages();
1053 }
6df264ac
JQ
1054 for (i = 0; i < migrate_multifd_channels(); i++) {
1055 MultiFDSendParams *p = &multifd_send_state->params[i];
1056
1057 trace_multifd_send_sync_main_signal(p->id);
1058
1059 qemu_mutex_lock(&p->mutex);
b9ee2f7d
JQ
1060
1061 p->packet_num = multifd_send_state->packet_num++;
6df264ac
JQ
1062 p->flags |= MULTIFD_FLAG_SYNC;
1063 p->pending_job++;
1064 qemu_mutex_unlock(&p->mutex);
1065 qemu_sem_post(&p->sem);
1066 }
1067 for (i = 0; i < migrate_multifd_channels(); i++) {
1068 MultiFDSendParams *p = &multifd_send_state->params[i];
1069
1070 trace_multifd_send_sync_main_wait(p->id);
1071 qemu_sem_wait(&multifd_send_state->sem_sync);
1072 }
1073 trace_multifd_send_sync_main(multifd_send_state->packet_num);
1074}
1075
f986c3d2
JQ
1076static void *multifd_send_thread(void *opaque)
1077{
1078 MultiFDSendParams *p = opaque;
af8b7d2b 1079 Error *local_err = NULL;
8b2db7f5 1080 int ret;
af8b7d2b 1081
408ea6ae 1082 trace_multifd_send_thread_start(p->id);
74637e6f 1083 rcu_register_thread();
408ea6ae 1084
af8b7d2b
JQ
1085 if (multifd_send_initial_packet(p, &local_err) < 0) {
1086 goto out;
1087 }
408ea6ae
JQ
1088 /* initial packet */
1089 p->num_packets = 1;
f986c3d2
JQ
1090
1091 while (true) {
d82628e4 1092 qemu_sem_wait(&p->sem);
f986c3d2 1093 qemu_mutex_lock(&p->mutex);
0beb5ed3
JQ
1094
1095 if (p->pending_job) {
1096 uint32_t used = p->pages->used;
1097 uint64_t packet_num = p->packet_num;
1098 uint32_t flags = p->flags;
1099
2a34ee59 1100 p->next_packet_size = used * qemu_target_page_size();
0beb5ed3
JQ
1101 multifd_send_fill_packet(p);
1102 p->flags = 0;
1103 p->num_packets++;
1104 p->num_pages += used;
1105 p->pages->used = 0;
1106 qemu_mutex_unlock(&p->mutex);
1107
2a34ee59
JQ
1108 trace_multifd_send(p->id, packet_num, used, flags,
1109 p->next_packet_size);
0beb5ed3 1110
8b2db7f5
JQ
1111 ret = qio_channel_write_all(p->c, (void *)p->packet,
1112 p->packet_len, &local_err);
1113 if (ret != 0) {
1114 break;
1115 }
1116
ad24c7cb
JQ
1117 if (used) {
1118 ret = qio_channel_writev_all(p->c, p->pages->iov,
1119 used, &local_err);
1120 if (ret != 0) {
1121 break;
1122 }
8b2db7f5 1123 }
0beb5ed3
JQ
1124
1125 qemu_mutex_lock(&p->mutex);
1126 p->pending_job--;
1127 qemu_mutex_unlock(&p->mutex);
6df264ac
JQ
1128
1129 if (flags & MULTIFD_FLAG_SYNC) {
1130 qemu_sem_post(&multifd_send_state->sem_sync);
1131 }
b9ee2f7d 1132 qemu_sem_post(&multifd_send_state->channels_ready);
0beb5ed3 1133 } else if (p->quit) {
f986c3d2
JQ
1134 qemu_mutex_unlock(&p->mutex);
1135 break;
6df264ac
JQ
1136 } else {
1137 qemu_mutex_unlock(&p->mutex);
1138 /* sometimes there are spurious wakeups */
f986c3d2 1139 }
f986c3d2
JQ
1140 }
1141
af8b7d2b
JQ
1142out:
1143 if (local_err) {
1144 multifd_send_terminate_threads(local_err);
1145 }
1146
66770707
JQ
1147 qemu_mutex_lock(&p->mutex);
1148 p->running = false;
1149 qemu_mutex_unlock(&p->mutex);
1150
74637e6f 1151 rcu_unregister_thread();
408ea6ae
JQ
1152 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1153
f986c3d2
JQ
1154 return NULL;
1155}
1156
60df2d4a
JQ
1157static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1158{
1159 MultiFDSendParams *p = opaque;
1160 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1161 Error *local_err = NULL;
1162
1163 if (qio_task_propagate_error(task, &local_err)) {
1398b2e3
FL
1164 migrate_set_error(migrate_get_current(), local_err);
1165 multifd_save_cleanup();
60df2d4a
JQ
1166 } else {
1167 p->c = QIO_CHANNEL(sioc);
1168 qio_channel_set_delay(p->c, false);
1169 p->running = true;
1170 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1171 QEMU_THREAD_JOINABLE);
60df2d4a
JQ
1172 }
1173}
1174
f986c3d2
JQ
1175int multifd_save_setup(void)
1176{
1177 int thread_count;
efd1a1d6 1178 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
f986c3d2
JQ
1179 uint8_t i;
1180
1181 if (!migrate_use_multifd()) {
1182 return 0;
1183 }
1184 thread_count = migrate_multifd_channels();
1185 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1186 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
34c55a94 1187 multifd_send_state->pages = multifd_pages_init(page_count);
6df264ac 1188 qemu_sem_init(&multifd_send_state->sem_sync, 0);
b9ee2f7d 1189 qemu_sem_init(&multifd_send_state->channels_ready, 0);
34c55a94 1190
f986c3d2
JQ
1191 for (i = 0; i < thread_count; i++) {
1192 MultiFDSendParams *p = &multifd_send_state->params[i];
1193
1194 qemu_mutex_init(&p->mutex);
1195 qemu_sem_init(&p->sem, 0);
1196 p->quit = false;
0beb5ed3 1197 p->pending_job = 0;
f986c3d2 1198 p->id = i;
34c55a94 1199 p->pages = multifd_pages_init(page_count);
2a26c979
JQ
1200 p->packet_len = sizeof(MultiFDPacket_t)
1201 + sizeof(ram_addr_t) * page_count;
1202 p->packet = g_malloc0(p->packet_len);
f986c3d2 1203 p->name = g_strdup_printf("multifdsend_%d", i);
60df2d4a 1204 socket_send_channel_create(multifd_new_send_channel_async, p);
f986c3d2
JQ
1205 }
1206 return 0;
1207}
1208
f986c3d2
JQ
1209struct {
1210 MultiFDRecvParams *params;
1211 /* number of created threads */
1212 int count;
6df264ac
JQ
1213 /* syncs main thread and channels */
1214 QemuSemaphore sem_sync;
1215 /* global number of generated multifd packets */
1216 uint64_t packet_num;
f986c3d2
JQ
1217} *multifd_recv_state;
1218
66770707 1219static void multifd_recv_terminate_threads(Error *err)
f986c3d2
JQ
1220{
1221 int i;
1222
7a169d74
JQ
1223 if (err) {
1224 MigrationState *s = migrate_get_current();
1225 migrate_set_error(s, err);
1226 if (s->state == MIGRATION_STATUS_SETUP ||
1227 s->state == MIGRATION_STATUS_ACTIVE) {
1228 migrate_set_state(&s->state, s->state,
1229 MIGRATION_STATUS_FAILED);
1230 }
1231 }
1232
66770707 1233 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1234 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1235
1236 qemu_mutex_lock(&p->mutex);
7a5cc33c
JQ
1237 /* We could arrive here for two reasons:
1238 - normal quit, i.e. everything went fine, just finished
1239 - error quit: We close the channels so the channel threads
1240 finish the qio_channel_read_all_eof() */
1241 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
f986c3d2
JQ
1242 qemu_mutex_unlock(&p->mutex);
1243 }
1244}
1245
1246int multifd_load_cleanup(Error **errp)
1247{
1248 int i;
1249 int ret = 0;
1250
1251 if (!migrate_use_multifd()) {
1252 return 0;
1253 }
66770707
JQ
1254 multifd_recv_terminate_threads(NULL);
1255 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1256 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1257
66770707
JQ
1258 if (p->running) {
1259 qemu_thread_join(&p->thread);
1260 }
60df2d4a
JQ
1261 object_unref(OBJECT(p->c));
1262 p->c = NULL;
f986c3d2 1263 qemu_mutex_destroy(&p->mutex);
6df264ac 1264 qemu_sem_destroy(&p->sem_sync);
f986c3d2
JQ
1265 g_free(p->name);
1266 p->name = NULL;
34c55a94
JQ
1267 multifd_pages_clear(p->pages);
1268 p->pages = NULL;
2a26c979
JQ
1269 p->packet_len = 0;
1270 g_free(p->packet);
1271 p->packet = NULL;
f986c3d2 1272 }
6df264ac 1273 qemu_sem_destroy(&multifd_recv_state->sem_sync);
f986c3d2
JQ
1274 g_free(multifd_recv_state->params);
1275 multifd_recv_state->params = NULL;
1276 g_free(multifd_recv_state);
1277 multifd_recv_state = NULL;
1278
1279 return ret;
1280}
1281
6df264ac
JQ
1282static void multifd_recv_sync_main(void)
1283{
1284 int i;
1285
1286 if (!migrate_use_multifd()) {
1287 return;
1288 }
1289 for (i = 0; i < migrate_multifd_channels(); i++) {
1290 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1291
6df264ac
JQ
1292 trace_multifd_recv_sync_main_wait(p->id);
1293 qemu_sem_wait(&multifd_recv_state->sem_sync);
77568ea7
WY
1294 }
1295 for (i = 0; i < migrate_multifd_channels(); i++) {
1296 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1297
6df264ac
JQ
1298 qemu_mutex_lock(&p->mutex);
1299 if (multifd_recv_state->packet_num < p->packet_num) {
1300 multifd_recv_state->packet_num = p->packet_num;
1301 }
1302 qemu_mutex_unlock(&p->mutex);
6df264ac 1303 trace_multifd_recv_sync_main_signal(p->id);
6df264ac
JQ
1304 qemu_sem_post(&p->sem_sync);
1305 }
1306 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1307}
1308
f986c3d2
JQ
1309static void *multifd_recv_thread(void *opaque)
1310{
1311 MultiFDRecvParams *p = opaque;
2a26c979
JQ
1312 Error *local_err = NULL;
1313 int ret;
f986c3d2 1314
408ea6ae 1315 trace_multifd_recv_thread_start(p->id);
74637e6f 1316 rcu_register_thread();
408ea6ae 1317
f986c3d2 1318 while (true) {
6df264ac
JQ
1319 uint32_t used;
1320 uint32_t flags;
0beb5ed3 1321
8b2db7f5
JQ
1322 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1323 p->packet_len, &local_err);
1324 if (ret == 0) { /* EOF */
1325 break;
1326 }
1327 if (ret == -1) { /* Error */
1328 break;
1329 }
2a26c979 1330
6df264ac
JQ
1331 qemu_mutex_lock(&p->mutex);
1332 ret = multifd_recv_unfill_packet(p, &local_err);
1333 if (ret) {
f986c3d2
JQ
1334 qemu_mutex_unlock(&p->mutex);
1335 break;
1336 }
6df264ac
JQ
1337
1338 used = p->pages->used;
1339 flags = p->flags;
2a34ee59
JQ
1340 trace_multifd_recv(p->id, p->packet_num, used, flags,
1341 p->next_packet_size);
6df264ac
JQ
1342 p->num_packets++;
1343 p->num_pages += used;
f986c3d2 1344 qemu_mutex_unlock(&p->mutex);
6df264ac 1345
ad24c7cb
JQ
1346 if (used) {
1347 ret = qio_channel_readv_all(p->c, p->pages->iov,
1348 used, &local_err);
1349 if (ret != 0) {
1350 break;
1351 }
8b2db7f5
JQ
1352 }
1353
6df264ac
JQ
1354 if (flags & MULTIFD_FLAG_SYNC) {
1355 qemu_sem_post(&multifd_recv_state->sem_sync);
1356 qemu_sem_wait(&p->sem_sync);
1357 }
f986c3d2
JQ
1358 }
1359
d82628e4
JQ
1360 if (local_err) {
1361 multifd_recv_terminate_threads(local_err);
1362 }
66770707
JQ
1363 qemu_mutex_lock(&p->mutex);
1364 p->running = false;
1365 qemu_mutex_unlock(&p->mutex);
1366
74637e6f 1367 rcu_unregister_thread();
408ea6ae
JQ
1368 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1369
f986c3d2
JQ
1370 return NULL;
1371}
1372
1373int multifd_load_setup(void)
1374{
1375 int thread_count;
efd1a1d6 1376 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
f986c3d2
JQ
1377 uint8_t i;
1378
1379 if (!migrate_use_multifd()) {
1380 return 0;
1381 }
1382 thread_count = migrate_multifd_channels();
1383 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1384 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
66770707 1385 atomic_set(&multifd_recv_state->count, 0);
6df264ac 1386 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
34c55a94 1387
f986c3d2
JQ
1388 for (i = 0; i < thread_count; i++) {
1389 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1390
1391 qemu_mutex_init(&p->mutex);
6df264ac 1392 qemu_sem_init(&p->sem_sync, 0);
f986c3d2 1393 p->id = i;
34c55a94 1394 p->pages = multifd_pages_init(page_count);
2a26c979
JQ
1395 p->packet_len = sizeof(MultiFDPacket_t)
1396 + sizeof(ram_addr_t) * page_count;
1397 p->packet = g_malloc0(p->packet_len);
f986c3d2 1398 p->name = g_strdup_printf("multifdrecv_%d", i);
f986c3d2
JQ
1399 }
1400 return 0;
1401}
1402
62c1e0ca
JQ
1403bool multifd_recv_all_channels_created(void)
1404{
1405 int thread_count = migrate_multifd_channels();
1406
1407 if (!migrate_use_multifd()) {
1408 return true;
1409 }
1410
1411 return thread_count == atomic_read(&multifd_recv_state->count);
1412}
1413
49ed0d24
FL
1414/*
1415 * Try to receive all multifd channels to get ready for the migration.
1416 * - Return true and do not set @errp when correctly receving all channels;
1417 * - Return false and do not set @errp when correctly receiving the current one;
1418 * - Return false and set @errp when failing to receive the current channel.
1419 */
1420bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
71bb07db 1421{
60df2d4a 1422 MultiFDRecvParams *p;
af8b7d2b
JQ
1423 Error *local_err = NULL;
1424 int id;
60df2d4a 1425
af8b7d2b
JQ
1426 id = multifd_recv_initial_packet(ioc, &local_err);
1427 if (id < 0) {
1428 multifd_recv_terminate_threads(local_err);
49ed0d24
FL
1429 error_propagate_prepend(errp, local_err,
1430 "failed to receive packet"
1431 " via multifd channel %d: ",
1432 atomic_read(&multifd_recv_state->count));
81e62053 1433 return false;
af8b7d2b
JQ
1434 }
1435
1436 p = &multifd_recv_state->params[id];
1437 if (p->c != NULL) {
1438 error_setg(&local_err, "multifd: received id '%d' already setup'",
1439 id);
1440 multifd_recv_terminate_threads(local_err);
49ed0d24 1441 error_propagate(errp, local_err);
81e62053 1442 return false;
af8b7d2b 1443 }
60df2d4a
JQ
1444 p->c = ioc;
1445 object_ref(OBJECT(ioc));
408ea6ae
JQ
1446 /* initial packet */
1447 p->num_packets = 1;
60df2d4a
JQ
1448
1449 p->running = true;
1450 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1451 QEMU_THREAD_JOINABLE);
1452 atomic_inc(&multifd_recv_state->count);
49ed0d24
FL
1453 return atomic_read(&multifd_recv_state->count) ==
1454 migrate_multifd_channels();
71bb07db
JQ
1455}
1456
56e93d26 1457/**
3d0684b2 1458 * save_page_header: write page header to wire
56e93d26
JQ
1459 *
1460 * If this is the 1st block, it also writes the block identification
1461 *
3d0684b2 1462 * Returns the number of bytes written
56e93d26
JQ
1463 *
1464 * @f: QEMUFile where to send the data
1465 * @block: block that contains the page we want to send
1466 * @offset: offset inside the block for the page
1467 * in the lower bits, it contains flags
1468 */
2bf3aa85
JQ
1469static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1470 ram_addr_t offset)
56e93d26 1471{
9f5f380b 1472 size_t size, len;
56e93d26 1473
24795694
JQ
1474 if (block == rs->last_sent_block) {
1475 offset |= RAM_SAVE_FLAG_CONTINUE;
1476 }
2bf3aa85 1477 qemu_put_be64(f, offset);
56e93d26
JQ
1478 size = 8;
1479
1480 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
9f5f380b 1481 len = strlen(block->idstr);
2bf3aa85
JQ
1482 qemu_put_byte(f, len);
1483 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
9f5f380b 1484 size += 1 + len;
24795694 1485 rs->last_sent_block = block;
56e93d26
JQ
1486 }
1487 return size;
1488}
1489
3d0684b2
JQ
1490/**
1491 * mig_throttle_guest_down: throotle down the guest
1492 *
1493 * Reduce amount of guest cpu execution to hopefully slow down memory
1494 * writes. If guest dirty memory rate is reduced below the rate at
1495 * which we can transfer pages to the destination then we should be
1496 * able to complete migration. Some workloads dirty memory way too
1497 * fast and will not effectively converge, even with auto-converge.
070afca2
JH
1498 */
1499static void mig_throttle_guest_down(void)
1500{
1501 MigrationState *s = migrate_get_current();
2594f56d
DB
1502 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1503 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
4cbc9c7f 1504 int pct_max = s->parameters.max_cpu_throttle;
070afca2
JH
1505
1506 /* We have not started throttling yet. Let's start it. */
1507 if (!cpu_throttle_active()) {
1508 cpu_throttle_set(pct_initial);
1509 } else {
1510 /* Throttling already on, just increase the rate */
4cbc9c7f
LQ
1511 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1512 pct_max));
070afca2
JH
1513 }
1514}
1515
3d0684b2
JQ
1516/**
1517 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1518 *
6f37bb8b 1519 * @rs: current RAM state
3d0684b2
JQ
1520 * @current_addr: address for the zero page
1521 *
1522 * Update the xbzrle cache to reflect a page that's been sent as all 0.
56e93d26
JQ
1523 * The important thing is that a stale (not-yet-0'd) page be replaced
1524 * by the new data.
1525 * As a bonus, if the page wasn't in the cache it gets added so that
3d0684b2 1526 * when a small write is made into the 0'd page it gets XBZRLE sent.
56e93d26 1527 */
6f37bb8b 1528static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
56e93d26 1529{
6f37bb8b 1530 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
56e93d26
JQ
1531 return;
1532 }
1533
1534 /* We don't care if this fails to allocate a new cache page
1535 * as long as it updated an old one */
c00e0928 1536 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
9360447d 1537 ram_counters.dirty_sync_count);
56e93d26
JQ
1538}
1539
1540#define ENCODING_FLAG_XBZRLE 0x1
1541
1542/**
1543 * save_xbzrle_page: compress and send current page
1544 *
1545 * Returns: 1 means that we wrote the page
1546 * 0 means that page is identical to the one already sent
1547 * -1 means that xbzrle would be longer than normal
1548 *
5a987738 1549 * @rs: current RAM state
3d0684b2
JQ
1550 * @current_data: pointer to the address of the page contents
1551 * @current_addr: addr of the page
56e93d26
JQ
1552 * @block: block that contains the page we want to send
1553 * @offset: offset inside the block for the page
1554 * @last_stage: if we are at the completion stage
56e93d26 1555 */
204b88b8 1556static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
56e93d26 1557 ram_addr_t current_addr, RAMBlock *block,
072c2511 1558 ram_addr_t offset, bool last_stage)
56e93d26
JQ
1559{
1560 int encoded_len = 0, bytes_xbzrle;
1561 uint8_t *prev_cached_page;
1562
9360447d
JQ
1563 if (!cache_is_cached(XBZRLE.cache, current_addr,
1564 ram_counters.dirty_sync_count)) {
1565 xbzrle_counters.cache_miss++;
56e93d26
JQ
1566 if (!last_stage) {
1567 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
9360447d 1568 ram_counters.dirty_sync_count) == -1) {
56e93d26
JQ
1569 return -1;
1570 } else {
1571 /* update *current_data when the page has been
1572 inserted into cache */
1573 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1574 }
1575 }
1576 return -1;
1577 }
1578
1579 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1580
1581 /* save current buffer into memory */
1582 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1583
1584 /* XBZRLE encoding (if there is no overflow) */
1585 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1586 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1587 TARGET_PAGE_SIZE);
ca353803
WY
1588
1589 /*
1590 * Update the cache contents, so that it corresponds to the data
1591 * sent, in all cases except where we skip the page.
1592 */
1593 if (!last_stage && encoded_len != 0) {
1594 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1595 /*
1596 * In the case where we couldn't compress, ensure that the caller
1597 * sends the data from the cache, since the guest might have
1598 * changed the RAM since we copied it.
1599 */
1600 *current_data = prev_cached_page;
1601 }
1602
56e93d26 1603 if (encoded_len == 0) {
55c4446b 1604 trace_save_xbzrle_page_skipping();
56e93d26
JQ
1605 return 0;
1606 } else if (encoded_len == -1) {
55c4446b 1607 trace_save_xbzrle_page_overflow();
9360447d 1608 xbzrle_counters.overflow++;
56e93d26
JQ
1609 return -1;
1610 }
1611
56e93d26 1612 /* Send XBZRLE based compressed page */
2bf3aa85 1613 bytes_xbzrle = save_page_header(rs, rs->f, block,
204b88b8
JQ
1614 offset | RAM_SAVE_FLAG_XBZRLE);
1615 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1616 qemu_put_be16(rs->f, encoded_len);
1617 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
56e93d26 1618 bytes_xbzrle += encoded_len + 1 + 2;
9360447d
JQ
1619 xbzrle_counters.pages++;
1620 xbzrle_counters.bytes += bytes_xbzrle;
1621 ram_counters.transferred += bytes_xbzrle;
56e93d26
JQ
1622
1623 return 1;
1624}
1625
3d0684b2
JQ
1626/**
1627 * migration_bitmap_find_dirty: find the next dirty page from start
f3f491fc 1628 *
a5f7b1a6 1629 * Returns the page offset within memory region of the start of a dirty page
3d0684b2 1630 *
6f37bb8b 1631 * @rs: current RAM state
3d0684b2 1632 * @rb: RAMBlock where to search for dirty pages
a935e30f 1633 * @start: page where we start the search
f3f491fc 1634 */
56e93d26 1635static inline
a935e30f 1636unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
f20e2865 1637 unsigned long start)
56e93d26 1638{
6b6712ef
JQ
1639 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1640 unsigned long *bitmap = rb->bmap;
56e93d26
JQ
1641 unsigned long next;
1642
fbd162e6 1643 if (ramblock_is_ignored(rb)) {
b895de50
CLG
1644 return size;
1645 }
1646
6eeb63f7
WW
1647 /*
1648 * When the free page optimization is enabled, we need to check the bitmap
1649 * to send the non-free pages rather than all the pages in the bulk stage.
1650 */
1651 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
6b6712ef 1652 next = start + 1;
56e93d26 1653 } else {
6b6712ef 1654 next = find_next_bit(bitmap, size, start);
56e93d26
JQ
1655 }
1656
6b6712ef 1657 return next;
56e93d26
JQ
1658}
1659
06b10688 1660static inline bool migration_bitmap_clear_dirty(RAMState *rs,
f20e2865
JQ
1661 RAMBlock *rb,
1662 unsigned long page)
a82d593b
DDAG
1663{
1664 bool ret;
a82d593b 1665
386a907b 1666 qemu_mutex_lock(&rs->bitmap_mutex);
002cad6b
PX
1667
1668 /*
1669 * Clear dirty bitmap if needed. This _must_ be called before we
1670 * send any of the page in the chunk because we need to make sure
1671 * we can capture further page content changes when we sync dirty
1672 * log the next time. So as long as we are going to send any of
1673 * the page in the chunk we clear the remote dirty bitmap for all.
1674 * Clearing it earlier won't be a problem, but too late will.
1675 */
1676 if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) {
1677 uint8_t shift = rb->clear_bmap_shift;
1678 hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift);
1679 hwaddr start = (page << TARGET_PAGE_BITS) & (-size);
1680
1681 /*
1682 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
1683 * can make things easier sometimes since then start address
1684 * of the small chunk will always be 64 pages aligned so the
1685 * bitmap will always be aligned to unsigned long. We should
1686 * even be able to remove this restriction but I'm simply
1687 * keeping it.
1688 */
1689 assert(shift >= 6);
1690 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
1691 memory_region_clear_dirty_bitmap(rb->mr, start, size);
1692 }
1693
6b6712ef 1694 ret = test_and_clear_bit(page, rb->bmap);
a82d593b
DDAG
1695
1696 if (ret) {
0d8ec885 1697 rs->migration_dirty_pages--;
a82d593b 1698 }
386a907b
WW
1699 qemu_mutex_unlock(&rs->bitmap_mutex);
1700
a82d593b
DDAG
1701 return ret;
1702}
1703
267691b6 1704/* Called with RCU critical section */
15440dd5 1705static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
bf212979 1706 ram_addr_t length)
56e93d26 1707{
0d8ec885 1708 rs->migration_dirty_pages +=
bf212979 1709 cpu_physical_memory_sync_dirty_bitmap(rb, 0, length,
0d8ec885 1710 &rs->num_dirty_pages_period);
56e93d26
JQ
1711}
1712
3d0684b2
JQ
1713/**
1714 * ram_pagesize_summary: calculate all the pagesizes of a VM
1715 *
1716 * Returns a summary bitmap of the page sizes of all RAMBlocks
1717 *
1718 * For VMs with just normal pages this is equivalent to the host page
1719 * size. If it's got some huge pages then it's the OR of all the
1720 * different page sizes.
e8ca1db2
DDAG
1721 */
1722uint64_t ram_pagesize_summary(void)
1723{
1724 RAMBlock *block;
1725 uint64_t summary = 0;
1726
fbd162e6 1727 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
e8ca1db2
DDAG
1728 summary |= block->page_size;
1729 }
1730
1731 return summary;
1732}
1733
aecbfe9c
XG
1734uint64_t ram_get_total_transferred_pages(void)
1735{
1736 return ram_counters.normal + ram_counters.duplicate +
1737 compression_counters.pages + xbzrle_counters.pages;
1738}
1739
b734035b
XG
1740static void migration_update_rates(RAMState *rs, int64_t end_time)
1741{
be8b02ed 1742 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
76e03000 1743 double compressed_size;
b734035b
XG
1744
1745 /* calculate period counters */
1746 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1747 / (end_time - rs->time_last_bitmap_sync);
1748
be8b02ed 1749 if (!page_count) {
b734035b
XG
1750 return;
1751 }
1752
1753 if (migrate_use_xbzrle()) {
1754 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
be8b02ed 1755 rs->xbzrle_cache_miss_prev) / page_count;
b734035b
XG
1756 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1757 }
76e03000
XG
1758
1759 if (migrate_use_compression()) {
1760 compression_counters.busy_rate = (double)(compression_counters.busy -
1761 rs->compress_thread_busy_prev) / page_count;
1762 rs->compress_thread_busy_prev = compression_counters.busy;
1763
1764 compressed_size = compression_counters.compressed_size -
1765 rs->compressed_size_prev;
1766 if (compressed_size) {
1767 double uncompressed_size = (compression_counters.pages -
1768 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1769
1770 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1771 compression_counters.compression_rate =
1772 uncompressed_size / compressed_size;
1773
1774 rs->compress_pages_prev = compression_counters.pages;
1775 rs->compressed_size_prev = compression_counters.compressed_size;
1776 }
1777 }
b734035b
XG
1778}
1779
8d820d6f 1780static void migration_bitmap_sync(RAMState *rs)
56e93d26
JQ
1781{
1782 RAMBlock *block;
56e93d26 1783 int64_t end_time;
c4bdf0cf 1784 uint64_t bytes_xfer_now;
56e93d26 1785
9360447d 1786 ram_counters.dirty_sync_count++;
56e93d26 1787
f664da80
JQ
1788 if (!rs->time_last_bitmap_sync) {
1789 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
56e93d26
JQ
1790 }
1791
1792 trace_migration_bitmap_sync_start();
9c1f8f44 1793 memory_global_dirty_log_sync();
56e93d26 1794
108cfae0 1795 qemu_mutex_lock(&rs->bitmap_mutex);
56e93d26 1796 rcu_read_lock();
fbd162e6 1797 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
bf212979 1798 migration_bitmap_sync_range(rs, block, block->used_length);
56e93d26 1799 }
650af890 1800 ram_counters.remaining = ram_bytes_remaining();
56e93d26 1801 rcu_read_unlock();
108cfae0 1802 qemu_mutex_unlock(&rs->bitmap_mutex);
56e93d26 1803
a66cd90c 1804 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1ffb5dfd 1805
56e93d26
JQ
1806 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1807
1808 /* more than 1 second = 1000 millisecons */
f664da80 1809 if (end_time > rs->time_last_bitmap_sync + 1000) {
9360447d 1810 bytes_xfer_now = ram_counters.transferred;
d693c6f1 1811
9ac78b61
PL
1812 /* During block migration the auto-converge logic incorrectly detects
1813 * that ram migration makes no progress. Avoid this by disabling the
1814 * throttling logic during the bulk phase of block migration. */
1815 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
56e93d26
JQ
1816 /* The following detection logic can be refined later. For now:
1817 Check to see if the dirtied bytes is 50% more than the approx.
1818 amount of bytes that just got transferred since the last time we
070afca2
JH
1819 were in this routine. If that happens twice, start or increase
1820 throttling */
070afca2 1821
d693c6f1 1822 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
eac74159 1823 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
b4a3c64b 1824 (++rs->dirty_rate_high_cnt >= 2)) {
56e93d26 1825 trace_migration_throttle();
8d820d6f 1826 rs->dirty_rate_high_cnt = 0;
070afca2 1827 mig_throttle_guest_down();
d693c6f1 1828 }
56e93d26 1829 }
070afca2 1830
b734035b
XG
1831 migration_update_rates(rs, end_time);
1832
be8b02ed 1833 rs->target_page_count_prev = rs->target_page_count;
d693c6f1
FF
1834
1835 /* reset period counters */
f664da80 1836 rs->time_last_bitmap_sync = end_time;
a66cd90c 1837 rs->num_dirty_pages_period = 0;
d2a4d85a 1838 rs->bytes_xfer_prev = bytes_xfer_now;
56e93d26 1839 }
4addcd4f 1840 if (migrate_use_events()) {
3ab72385 1841 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
4addcd4f 1842 }
56e93d26
JQ
1843}
1844
bd227060
WW
1845static void migration_bitmap_sync_precopy(RAMState *rs)
1846{
1847 Error *local_err = NULL;
1848
1849 /*
1850 * The current notifier usage is just an optimization to migration, so we
1851 * don't stop the normal migration process in the error case.
1852 */
1853 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1854 error_report_err(local_err);
1855 }
1856
1857 migration_bitmap_sync(rs);
1858
1859 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1860 error_report_err(local_err);
1861 }
1862}
1863
6c97ec5f
XG
1864/**
1865 * save_zero_page_to_file: send the zero page to the file
1866 *
1867 * Returns the size of data written to the file, 0 means the page is not
1868 * a zero page
1869 *
1870 * @rs: current RAM state
1871 * @file: the file where the data is saved
1872 * @block: block that contains the page we want to send
1873 * @offset: offset inside the block for the page
1874 */
1875static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1876 RAMBlock *block, ram_addr_t offset)
1877{
1878 uint8_t *p = block->host + offset;
1879 int len = 0;
1880
1881 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1882 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1883 qemu_put_byte(file, 0);
1884 len += 1;
1885 }
1886 return len;
1887}
1888
56e93d26 1889/**
3d0684b2 1890 * save_zero_page: send the zero page to the stream
56e93d26 1891 *
3d0684b2 1892 * Returns the number of pages written.
56e93d26 1893 *
f7ccd61b 1894 * @rs: current RAM state
56e93d26
JQ
1895 * @block: block that contains the page we want to send
1896 * @offset: offset inside the block for the page
56e93d26 1897 */
7faccdc3 1898static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
56e93d26 1899{
6c97ec5f 1900 int len = save_zero_page_to_file(rs, rs->f, block, offset);
56e93d26 1901
6c97ec5f 1902 if (len) {
9360447d 1903 ram_counters.duplicate++;
6c97ec5f
XG
1904 ram_counters.transferred += len;
1905 return 1;
56e93d26 1906 }
6c97ec5f 1907 return -1;
56e93d26
JQ
1908}
1909
5727309d 1910static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
53f09a10 1911{
5727309d 1912 if (!migrate_release_ram() || !migration_in_postcopy()) {
53f09a10
PB
1913 return;
1914 }
1915
aaa2064c 1916 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
53f09a10
PB
1917}
1918
059ff0fb
XG
1919/*
1920 * @pages: the number of pages written by the control path,
1921 * < 0 - error
1922 * > 0 - number of pages written
1923 *
1924 * Return true if the pages has been saved, otherwise false is returned.
1925 */
1926static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1927 int *pages)
1928{
1929 uint64_t bytes_xmit = 0;
1930 int ret;
1931
1932 *pages = -1;
1933 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1934 &bytes_xmit);
1935 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1936 return false;
1937 }
1938
1939 if (bytes_xmit) {
1940 ram_counters.transferred += bytes_xmit;
1941 *pages = 1;
1942 }
1943
1944 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1945 return true;
1946 }
1947
1948 if (bytes_xmit > 0) {
1949 ram_counters.normal++;
1950 } else if (bytes_xmit == 0) {
1951 ram_counters.duplicate++;
1952 }
1953
1954 return true;
1955}
1956
65dacaa0
XG
1957/*
1958 * directly send the page to the stream
1959 *
1960 * Returns the number of pages written.
1961 *
1962 * @rs: current RAM state
1963 * @block: block that contains the page we want to send
1964 * @offset: offset inside the block for the page
1965 * @buf: the page to be sent
1966 * @async: send to page asyncly
1967 */
1968static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1969 uint8_t *buf, bool async)
1970{
1971 ram_counters.transferred += save_page_header(rs, rs->f, block,
1972 offset | RAM_SAVE_FLAG_PAGE);
1973 if (async) {
1974 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
1975 migrate_release_ram() &
1976 migration_in_postcopy());
1977 } else {
1978 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
1979 }
1980 ram_counters.transferred += TARGET_PAGE_SIZE;
1981 ram_counters.normal++;
1982 return 1;
1983}
1984
56e93d26 1985/**
3d0684b2 1986 * ram_save_page: send the given page to the stream
56e93d26 1987 *
3d0684b2 1988 * Returns the number of pages written.
3fd3c4b3
DDAG
1989 * < 0 - error
1990 * >=0 - Number of pages written - this might legally be 0
1991 * if xbzrle noticed the page was the same.
56e93d26 1992 *
6f37bb8b 1993 * @rs: current RAM state
56e93d26
JQ
1994 * @block: block that contains the page we want to send
1995 * @offset: offset inside the block for the page
1996 * @last_stage: if we are at the completion stage
56e93d26 1997 */
a0a8aa14 1998static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
56e93d26
JQ
1999{
2000 int pages = -1;
56e93d26 2001 uint8_t *p;
56e93d26 2002 bool send_async = true;
a08f6890 2003 RAMBlock *block = pss->block;
a935e30f 2004 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
059ff0fb 2005 ram_addr_t current_addr = block->offset + offset;
56e93d26 2006
2f68e399 2007 p = block->host + offset;
1db9d8e5 2008 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
56e93d26 2009
56e93d26 2010 XBZRLE_cache_lock();
d7400a34
XG
2011 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
2012 migrate_use_xbzrle()) {
059ff0fb
XG
2013 pages = save_xbzrle_page(rs, &p, current_addr, block,
2014 offset, last_stage);
2015 if (!last_stage) {
2016 /* Can't send this cached data async, since the cache page
2017 * might get updated before it gets to the wire
56e93d26 2018 */
059ff0fb 2019 send_async = false;
56e93d26
JQ
2020 }
2021 }
2022
2023 /* XBZRLE overflow or normal page */
2024 if (pages == -1) {
65dacaa0 2025 pages = save_normal_page(rs, block, offset, p, send_async);
56e93d26
JQ
2026 }
2027
2028 XBZRLE_cache_unlock();
2029
2030 return pages;
2031}
2032
b9ee2f7d
JQ
2033static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
2034 ram_addr_t offset)
2035{
b9ee2f7d 2036 multifd_queue_page(block, offset);
b9ee2f7d
JQ
2037 ram_counters.normal++;
2038
2039 return 1;
2040}
2041
5e5fdcff 2042static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
6ef3771c 2043 ram_addr_t offset, uint8_t *source_buf)
56e93d26 2044{
53518d94 2045 RAMState *rs = ram_state;
a7a9a88f 2046 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
5e5fdcff 2047 bool zero_page = false;
6ef3771c 2048 int ret;
56e93d26 2049
5e5fdcff
XG
2050 if (save_zero_page_to_file(rs, f, block, offset)) {
2051 zero_page = true;
2052 goto exit;
2053 }
2054
6ef3771c 2055 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
34ab9e97
XG
2056
2057 /*
2058 * copy it to a internal buffer to avoid it being modified by VM
2059 * so that we can catch up the error during compression and
2060 * decompression
2061 */
2062 memcpy(source_buf, p, TARGET_PAGE_SIZE);
6ef3771c
XG
2063 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
2064 if (ret < 0) {
2065 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
b3be2896 2066 error_report("compressed data failed!");
5e5fdcff 2067 return false;
b3be2896 2068 }
56e93d26 2069
5e5fdcff 2070exit:
6ef3771c 2071 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
5e5fdcff
XG
2072 return zero_page;
2073}
2074
2075static void
2076update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
2077{
76e03000
XG
2078 ram_counters.transferred += bytes_xmit;
2079
5e5fdcff
XG
2080 if (param->zero_page) {
2081 ram_counters.duplicate++;
76e03000 2082 return;
5e5fdcff 2083 }
76e03000
XG
2084
2085 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
2086 compression_counters.compressed_size += bytes_xmit - 8;
2087 compression_counters.pages++;
56e93d26
JQ
2088}
2089
32b05495
XG
2090static bool save_page_use_compression(RAMState *rs);
2091
ce25d337 2092static void flush_compressed_data(RAMState *rs)
56e93d26
JQ
2093{
2094 int idx, len, thread_count;
2095
32b05495 2096 if (!save_page_use_compression(rs)) {
56e93d26
JQ
2097 return;
2098 }
2099 thread_count = migrate_compress_threads();
a7a9a88f 2100
0d9f9a5c 2101 qemu_mutex_lock(&comp_done_lock);
56e93d26 2102 for (idx = 0; idx < thread_count; idx++) {
a7a9a88f 2103 while (!comp_param[idx].done) {
0d9f9a5c 2104 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
56e93d26 2105 }
a7a9a88f 2106 }
0d9f9a5c 2107 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
2108
2109 for (idx = 0; idx < thread_count; idx++) {
2110 qemu_mutex_lock(&comp_param[idx].mutex);
90e56fb4 2111 if (!comp_param[idx].quit) {
ce25d337 2112 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
5e5fdcff
XG
2113 /*
2114 * it's safe to fetch zero_page without holding comp_done_lock
2115 * as there is no further request submitted to the thread,
2116 * i.e, the thread should be waiting for a request at this point.
2117 */
2118 update_compress_thread_counts(&comp_param[idx], len);
56e93d26 2119 }
a7a9a88f 2120 qemu_mutex_unlock(&comp_param[idx].mutex);
56e93d26
JQ
2121 }
2122}
2123
2124static inline void set_compress_params(CompressParam *param, RAMBlock *block,
2125 ram_addr_t offset)
2126{
2127 param->block = block;
2128 param->offset = offset;
2129}
2130
ce25d337
JQ
2131static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
2132 ram_addr_t offset)
56e93d26
JQ
2133{
2134 int idx, thread_count, bytes_xmit = -1, pages = -1;
1d58872a 2135 bool wait = migrate_compress_wait_thread();
56e93d26
JQ
2136
2137 thread_count = migrate_compress_threads();
0d9f9a5c 2138 qemu_mutex_lock(&comp_done_lock);
1d58872a
XG
2139retry:
2140 for (idx = 0; idx < thread_count; idx++) {
2141 if (comp_param[idx].done) {
2142 comp_param[idx].done = false;
2143 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2144 qemu_mutex_lock(&comp_param[idx].mutex);
2145 set_compress_params(&comp_param[idx], block, offset);
2146 qemu_cond_signal(&comp_param[idx].cond);
2147 qemu_mutex_unlock(&comp_param[idx].mutex);
2148 pages = 1;
5e5fdcff 2149 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
56e93d26 2150 break;
56e93d26
JQ
2151 }
2152 }
1d58872a
XG
2153
2154 /*
2155 * wait for the free thread if the user specifies 'compress-wait-thread',
2156 * otherwise we will post the page out in the main thread as normal page.
2157 */
2158 if (pages < 0 && wait) {
2159 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2160 goto retry;
2161 }
0d9f9a5c 2162 qemu_mutex_unlock(&comp_done_lock);
56e93d26
JQ
2163
2164 return pages;
2165}
2166
3d0684b2
JQ
2167/**
2168 * find_dirty_block: find the next dirty page and update any state
2169 * associated with the search process.
b9e60928 2170 *
a5f7b1a6 2171 * Returns true if a page is found
b9e60928 2172 *
6f37bb8b 2173 * @rs: current RAM state
3d0684b2
JQ
2174 * @pss: data about the state of the current dirty page scan
2175 * @again: set to false if the search has scanned the whole of RAM
b9e60928 2176 */
f20e2865 2177static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
b9e60928 2178{
f20e2865 2179 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
6f37bb8b 2180 if (pss->complete_round && pss->block == rs->last_seen_block &&
a935e30f 2181 pss->page >= rs->last_page) {
b9e60928
DDAG
2182 /*
2183 * We've been once around the RAM and haven't found anything.
2184 * Give up.
2185 */
2186 *again = false;
2187 return false;
2188 }
a935e30f 2189 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
b9e60928 2190 /* Didn't find anything in this RAM Block */
a935e30f 2191 pss->page = 0;
b9e60928
DDAG
2192 pss->block = QLIST_NEXT_RCU(pss->block, next);
2193 if (!pss->block) {
48df9d80
XG
2194 /*
2195 * If memory migration starts over, we will meet a dirtied page
2196 * which may still exists in compression threads's ring, so we
2197 * should flush the compressed data to make sure the new page
2198 * is not overwritten by the old one in the destination.
2199 *
2200 * Also If xbzrle is on, stop using the data compression at this
2201 * point. In theory, xbzrle can do better than compression.
2202 */
2203 flush_compressed_data(rs);
2204
b9e60928
DDAG
2205 /* Hit the end of the list */
2206 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2207 /* Flag that we've looped */
2208 pss->complete_round = true;
6f37bb8b 2209 rs->ram_bulk_stage = false;
b9e60928
DDAG
2210 }
2211 /* Didn't find anything this time, but try again on the new block */
2212 *again = true;
2213 return false;
2214 } else {
2215 /* Can go around again, but... */
2216 *again = true;
2217 /* We've found something so probably don't need to */
2218 return true;
2219 }
2220}
2221
3d0684b2
JQ
2222/**
2223 * unqueue_page: gets a page of the queue
2224 *
a82d593b 2225 * Helper for 'get_queued_page' - gets a page off the queue
a82d593b 2226 *
3d0684b2
JQ
2227 * Returns the block of the page (or NULL if none available)
2228 *
ec481c6c 2229 * @rs: current RAM state
3d0684b2 2230 * @offset: used to return the offset within the RAMBlock
a82d593b 2231 */
f20e2865 2232static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
a82d593b
DDAG
2233{
2234 RAMBlock *block = NULL;
2235
ae526e32
XG
2236 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2237 return NULL;
2238 }
2239
ec481c6c
JQ
2240 qemu_mutex_lock(&rs->src_page_req_mutex);
2241 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2242 struct RAMSrcPageRequest *entry =
2243 QSIMPLEQ_FIRST(&rs->src_page_requests);
a82d593b
DDAG
2244 block = entry->rb;
2245 *offset = entry->offset;
a82d593b
DDAG
2246
2247 if (entry->len > TARGET_PAGE_SIZE) {
2248 entry->len -= TARGET_PAGE_SIZE;
2249 entry->offset += TARGET_PAGE_SIZE;
2250 } else {
2251 memory_region_unref(block->mr);
ec481c6c 2252 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
a82d593b 2253 g_free(entry);
e03a34f8 2254 migration_consume_urgent_request();
a82d593b
DDAG
2255 }
2256 }
ec481c6c 2257 qemu_mutex_unlock(&rs->src_page_req_mutex);
a82d593b
DDAG
2258
2259 return block;
2260}
2261
3d0684b2 2262/**
ff1543af 2263 * get_queued_page: unqueue a page from the postcopy requests
3d0684b2
JQ
2264 *
2265 * Skips pages that are already sent (!dirty)
a82d593b 2266 *
a5f7b1a6 2267 * Returns true if a queued page is found
a82d593b 2268 *
6f37bb8b 2269 * @rs: current RAM state
3d0684b2 2270 * @pss: data about the state of the current dirty page scan
a82d593b 2271 */
f20e2865 2272static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
a82d593b
DDAG
2273{
2274 RAMBlock *block;
2275 ram_addr_t offset;
2276 bool dirty;
2277
2278 do {
f20e2865 2279 block = unqueue_page(rs, &offset);
a82d593b
DDAG
2280 /*
2281 * We're sending this page, and since it's postcopy nothing else
2282 * will dirty it, and we must make sure it doesn't get sent again
2283 * even if this queue request was received after the background
2284 * search already sent it.
2285 */
2286 if (block) {
f20e2865
JQ
2287 unsigned long page;
2288
6b6712ef
JQ
2289 page = offset >> TARGET_PAGE_BITS;
2290 dirty = test_bit(page, block->bmap);
a82d593b 2291 if (!dirty) {
06b10688 2292 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
6b6712ef 2293 page, test_bit(page, block->unsentmap));
a82d593b 2294 } else {
f20e2865 2295 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
a82d593b
DDAG
2296 }
2297 }
2298
2299 } while (block && !dirty);
2300
2301 if (block) {
2302 /*
2303 * As soon as we start servicing pages out of order, then we have
2304 * to kill the bulk stage, since the bulk stage assumes
2305 * in (migration_bitmap_find_and_reset_dirty) that every page is
2306 * dirty, that's no longer true.
2307 */
6f37bb8b 2308 rs->ram_bulk_stage = false;
a82d593b
DDAG
2309
2310 /*
2311 * We want the background search to continue from the queued page
2312 * since the guest is likely to want other pages near to the page
2313 * it just requested.
2314 */
2315 pss->block = block;
a935e30f 2316 pss->page = offset >> TARGET_PAGE_BITS;
422314e7
WY
2317
2318 /*
2319 * This unqueued page would break the "one round" check, even is
2320 * really rare.
2321 */
2322 pss->complete_round = false;
a82d593b
DDAG
2323 }
2324
2325 return !!block;
2326}
2327
6c595cde 2328/**
5e58f968
JQ
2329 * migration_page_queue_free: drop any remaining pages in the ram
2330 * request queue
6c595cde 2331 *
3d0684b2
JQ
2332 * It should be empty at the end anyway, but in error cases there may
2333 * be some left. in case that there is any page left, we drop it.
2334 *
6c595cde 2335 */
83c13382 2336static void migration_page_queue_free(RAMState *rs)
6c595cde 2337{
ec481c6c 2338 struct RAMSrcPageRequest *mspr, *next_mspr;
6c595cde
DDAG
2339 /* This queue generally should be empty - but in the case of a failed
2340 * migration might have some droppings in.
2341 */
2342 rcu_read_lock();
ec481c6c 2343 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
6c595cde 2344 memory_region_unref(mspr->rb->mr);
ec481c6c 2345 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
6c595cde
DDAG
2346 g_free(mspr);
2347 }
2348 rcu_read_unlock();
2349}
2350
2351/**
3d0684b2
JQ
2352 * ram_save_queue_pages: queue the page for transmission
2353 *
2354 * A request from postcopy destination for example.
2355 *
2356 * Returns zero on success or negative on error
2357 *
3d0684b2
JQ
2358 * @rbname: Name of the RAMBLock of the request. NULL means the
2359 * same that last one.
2360 * @start: starting address from the start of the RAMBlock
2361 * @len: length (in bytes) to send
6c595cde 2362 */
96506894 2363int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
6c595cde
DDAG
2364{
2365 RAMBlock *ramblock;
53518d94 2366 RAMState *rs = ram_state;
6c595cde 2367
9360447d 2368 ram_counters.postcopy_requests++;
6c595cde
DDAG
2369 rcu_read_lock();
2370 if (!rbname) {
2371 /* Reuse last RAMBlock */
68a098f3 2372 ramblock = rs->last_req_rb;
6c595cde
DDAG
2373
2374 if (!ramblock) {
2375 /*
2376 * Shouldn't happen, we can't reuse the last RAMBlock if
2377 * it's the 1st request.
2378 */
2379 error_report("ram_save_queue_pages no previous block");
2380 goto err;
2381 }
2382 } else {
2383 ramblock = qemu_ram_block_by_name(rbname);
2384
2385 if (!ramblock) {
2386 /* We shouldn't be asked for a non-existent RAMBlock */
2387 error_report("ram_save_queue_pages no block '%s'", rbname);
2388 goto err;
2389 }
68a098f3 2390 rs->last_req_rb = ramblock;
6c595cde
DDAG
2391 }
2392 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2393 if (start+len > ramblock->used_length) {
9458ad6b
JQ
2394 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2395 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
6c595cde
DDAG
2396 __func__, start, len, ramblock->used_length);
2397 goto err;
2398 }
2399
ec481c6c
JQ
2400 struct RAMSrcPageRequest *new_entry =
2401 g_malloc0(sizeof(struct RAMSrcPageRequest));
6c595cde
DDAG
2402 new_entry->rb = ramblock;
2403 new_entry->offset = start;
2404 new_entry->len = len;
2405
2406 memory_region_ref(ramblock->mr);
ec481c6c
JQ
2407 qemu_mutex_lock(&rs->src_page_req_mutex);
2408 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
e03a34f8 2409 migration_make_urgent_request();
ec481c6c 2410 qemu_mutex_unlock(&rs->src_page_req_mutex);
6c595cde
DDAG
2411 rcu_read_unlock();
2412
2413 return 0;
2414
2415err:
2416 rcu_read_unlock();
2417 return -1;
2418}
2419
d7400a34
XG
2420static bool save_page_use_compression(RAMState *rs)
2421{
2422 if (!migrate_use_compression()) {
2423 return false;
2424 }
2425
2426 /*
2427 * If xbzrle is on, stop using the data compression after first
2428 * round of migration even if compression is enabled. In theory,
2429 * xbzrle can do better than compression.
2430 */
2431 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2432 return true;
2433 }
2434
2435 return false;
2436}
2437
5e5fdcff
XG
2438/*
2439 * try to compress the page before posting it out, return true if the page
2440 * has been properly handled by compression, otherwise needs other
2441 * paths to handle it
2442 */
2443static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2444{
2445 if (!save_page_use_compression(rs)) {
2446 return false;
2447 }
2448
2449 /*
2450 * When starting the process of a new block, the first page of
2451 * the block should be sent out before other pages in the same
2452 * block, and all the pages in last block should have been sent
2453 * out, keeping this order is important, because the 'cont' flag
2454 * is used to avoid resending the block name.
2455 *
2456 * We post the fist page as normal page as compression will take
2457 * much CPU resource.
2458 */
2459 if (block != rs->last_sent_block) {
2460 flush_compressed_data(rs);
2461 return false;
2462 }
2463
2464 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2465 return true;
2466 }
2467
76e03000 2468 compression_counters.busy++;
5e5fdcff
XG
2469 return false;
2470}
2471
a82d593b 2472/**
3d0684b2 2473 * ram_save_target_page: save one target page
a82d593b 2474 *
3d0684b2 2475 * Returns the number of pages written
a82d593b 2476 *
6f37bb8b 2477 * @rs: current RAM state
3d0684b2 2478 * @pss: data about the page we want to send
a82d593b 2479 * @last_stage: if we are at the completion stage
a82d593b 2480 */
a0a8aa14 2481static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 2482 bool last_stage)
a82d593b 2483{
a8ec91f9
XG
2484 RAMBlock *block = pss->block;
2485 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2486 int res;
2487
2488 if (control_save_page(rs, block, offset, &res)) {
2489 return res;
2490 }
2491
5e5fdcff
XG
2492 if (save_compress_page(rs, block, offset)) {
2493 return 1;
d7400a34
XG
2494 }
2495
2496 res = save_zero_page(rs, block, offset);
2497 if (res > 0) {
2498 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2499 * page would be stale
2500 */
2501 if (!save_page_use_compression(rs)) {
2502 XBZRLE_cache_lock();
2503 xbzrle_cache_zero_page(rs, block->offset + offset);
2504 XBZRLE_cache_unlock();
2505 }
2506 ram_release_pages(block->idstr, offset, res);
2507 return res;
2508 }
2509
da3f56cb 2510 /*
5e5fdcff
XG
2511 * do not use multifd for compression as the first page in the new
2512 * block should be posted out before sending the compressed page
da3f56cb 2513 */
5e5fdcff 2514 if (!save_page_use_compression(rs) && migrate_use_multifd()) {
b9ee2f7d 2515 return ram_save_multifd_page(rs, block, offset);
a82d593b
DDAG
2516 }
2517
1faa5665 2518 return ram_save_page(rs, pss, last_stage);
a82d593b
DDAG
2519}
2520
2521/**
3d0684b2 2522 * ram_save_host_page: save a whole host page
a82d593b 2523 *
3d0684b2
JQ
2524 * Starting at *offset send pages up to the end of the current host
2525 * page. It's valid for the initial offset to point into the middle of
2526 * a host page in which case the remainder of the hostpage is sent.
2527 * Only dirty target pages are sent. Note that the host page size may
2528 * be a huge page for this block.
1eb3fc0a
DDAG
2529 * The saving stops at the boundary of the used_length of the block
2530 * if the RAMBlock isn't a multiple of the host page size.
a82d593b 2531 *
3d0684b2
JQ
2532 * Returns the number of pages written or negative on error
2533 *
6f37bb8b 2534 * @rs: current RAM state
3d0684b2 2535 * @ms: current migration state
3d0684b2 2536 * @pss: data about the page we want to send
a82d593b 2537 * @last_stage: if we are at the completion stage
a82d593b 2538 */
a0a8aa14 2539static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 2540 bool last_stage)
a82d593b
DDAG
2541{
2542 int tmppages, pages = 0;
a935e30f
JQ
2543 size_t pagesize_bits =
2544 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
4c011c37 2545
fbd162e6 2546 if (ramblock_is_ignored(pss->block)) {
b895de50
CLG
2547 error_report("block %s should not be migrated !", pss->block->idstr);
2548 return 0;
2549 }
2550
a82d593b 2551 do {
1faa5665
XG
2552 /* Check the pages is dirty and if it is send it */
2553 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2554 pss->page++;
2555 continue;
2556 }
2557
f20e2865 2558 tmppages = ram_save_target_page(rs, pss, last_stage);
a82d593b
DDAG
2559 if (tmppages < 0) {
2560 return tmppages;
2561 }
2562
2563 pages += tmppages;
1faa5665
XG
2564 if (pss->block->unsentmap) {
2565 clear_bit(pss->page, pss->block->unsentmap);
2566 }
2567
a935e30f 2568 pss->page++;
1eb3fc0a
DDAG
2569 } while ((pss->page & (pagesize_bits - 1)) &&
2570 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
a82d593b
DDAG
2571
2572 /* The offset we leave with is the last one we looked at */
a935e30f 2573 pss->page--;
a82d593b
DDAG
2574 return pages;
2575}
6c595cde 2576
56e93d26 2577/**
3d0684b2 2578 * ram_find_and_save_block: finds a dirty page and sends it to f
56e93d26
JQ
2579 *
2580 * Called within an RCU critical section.
2581 *
e8f3735f
XG
2582 * Returns the number of pages written where zero means no dirty pages,
2583 * or negative on error
56e93d26 2584 *
6f37bb8b 2585 * @rs: current RAM state
56e93d26 2586 * @last_stage: if we are at the completion stage
a82d593b
DDAG
2587 *
2588 * On systems where host-page-size > target-page-size it will send all the
2589 * pages in a host page that are dirty.
56e93d26
JQ
2590 */
2591
ce25d337 2592static int ram_find_and_save_block(RAMState *rs, bool last_stage)
56e93d26 2593{
b8fb8cb7 2594 PageSearchStatus pss;
56e93d26 2595 int pages = 0;
b9e60928 2596 bool again, found;
56e93d26 2597
0827b9e9
AA
2598 /* No dirty page as there is zero RAM */
2599 if (!ram_bytes_total()) {
2600 return pages;
2601 }
2602
6f37bb8b 2603 pss.block = rs->last_seen_block;
a935e30f 2604 pss.page = rs->last_page;
b8fb8cb7
DDAG
2605 pss.complete_round = false;
2606
2607 if (!pss.block) {
2608 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2609 }
56e93d26 2610
b9e60928 2611 do {
a82d593b 2612 again = true;
f20e2865 2613 found = get_queued_page(rs, &pss);
b9e60928 2614
a82d593b
DDAG
2615 if (!found) {
2616 /* priority queue empty, so just search for something dirty */
f20e2865 2617 found = find_dirty_block(rs, &pss, &again);
a82d593b 2618 }
f3f491fc 2619
a82d593b 2620 if (found) {
f20e2865 2621 pages = ram_save_host_page(rs, &pss, last_stage);
56e93d26 2622 }
b9e60928 2623 } while (!pages && again);
56e93d26 2624
6f37bb8b 2625 rs->last_seen_block = pss.block;
a935e30f 2626 rs->last_page = pss.page;
56e93d26
JQ
2627
2628 return pages;
2629}
2630
2631void acct_update_position(QEMUFile *f, size_t size, bool zero)
2632{
2633 uint64_t pages = size / TARGET_PAGE_SIZE;
f7ccd61b 2634
56e93d26 2635 if (zero) {
9360447d 2636 ram_counters.duplicate += pages;
56e93d26 2637 } else {
9360447d
JQ
2638 ram_counters.normal += pages;
2639 ram_counters.transferred += size;
56e93d26
JQ
2640 qemu_update_position(f, size);
2641 }
2642}
2643
fbd162e6 2644static uint64_t ram_bytes_total_common(bool count_ignored)
56e93d26
JQ
2645{
2646 RAMBlock *block;
2647 uint64_t total = 0;
2648
2649 rcu_read_lock();
fbd162e6
YK
2650 if (count_ignored) {
2651 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2652 total += block->used_length;
2653 }
2654 } else {
2655 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2656 total += block->used_length;
2657 }
99e15582 2658 }
56e93d26
JQ
2659 rcu_read_unlock();
2660 return total;
2661}
2662
fbd162e6
YK
2663uint64_t ram_bytes_total(void)
2664{
2665 return ram_bytes_total_common(false);
2666}
2667
f265e0e4 2668static void xbzrle_load_setup(void)
56e93d26 2669{
f265e0e4 2670 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
56e93d26
JQ
2671}
2672
f265e0e4
JQ
2673static void xbzrle_load_cleanup(void)
2674{
2675 g_free(XBZRLE.decoded_buf);
2676 XBZRLE.decoded_buf = NULL;
2677}
2678
7d7c96be
PX
2679static void ram_state_cleanup(RAMState **rsp)
2680{
b9ccaf6d
DDAG
2681 if (*rsp) {
2682 migration_page_queue_free(*rsp);
2683 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2684 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2685 g_free(*rsp);
2686 *rsp = NULL;
2687 }
7d7c96be
PX
2688}
2689
84593a08
PX
2690static void xbzrle_cleanup(void)
2691{
2692 XBZRLE_cache_lock();
2693 if (XBZRLE.cache) {
2694 cache_fini(XBZRLE.cache);
2695 g_free(XBZRLE.encoded_buf);
2696 g_free(XBZRLE.current_buf);
2697 g_free(XBZRLE.zero_target_page);
2698 XBZRLE.cache = NULL;
2699 XBZRLE.encoded_buf = NULL;
2700 XBZRLE.current_buf = NULL;
2701 XBZRLE.zero_target_page = NULL;
2702 }
2703 XBZRLE_cache_unlock();
2704}
2705
f265e0e4 2706static void ram_save_cleanup(void *opaque)
56e93d26 2707{
53518d94 2708 RAMState **rsp = opaque;
6b6712ef 2709 RAMBlock *block;
eb859c53 2710
2ff64038 2711 /* caller have hold iothread lock or is in a bh, so there is
4633456c 2712 * no writing race against the migration bitmap
2ff64038 2713 */
6b6712ef
JQ
2714 memory_global_dirty_log_stop();
2715
fbd162e6 2716 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
002cad6b
PX
2717 g_free(block->clear_bmap);
2718 block->clear_bmap = NULL;
6b6712ef
JQ
2719 g_free(block->bmap);
2720 block->bmap = NULL;
2721 g_free(block->unsentmap);
2722 block->unsentmap = NULL;
56e93d26
JQ
2723 }
2724
84593a08 2725 xbzrle_cleanup();
f0afa331 2726 compress_threads_save_cleanup();
7d7c96be 2727 ram_state_cleanup(rsp);
56e93d26
JQ
2728}
2729
6f37bb8b 2730static void ram_state_reset(RAMState *rs)
56e93d26 2731{
6f37bb8b
JQ
2732 rs->last_seen_block = NULL;
2733 rs->last_sent_block = NULL;
269ace29 2734 rs->last_page = 0;
6f37bb8b
JQ
2735 rs->last_version = ram_list.version;
2736 rs->ram_bulk_stage = true;
6eeb63f7 2737 rs->fpo_enabled = false;
56e93d26
JQ
2738}
2739
2740#define MAX_WAIT 50 /* ms, half buffered_file limit */
2741
4f2e4252
DDAG
2742/*
2743 * 'expected' is the value you expect the bitmap mostly to be full
2744 * of; it won't bother printing lines that are all this value.
2745 * If 'todump' is null the migration bitmap is dumped.
2746 */
6b6712ef
JQ
2747void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2748 unsigned long pages)
4f2e4252 2749{
4f2e4252
DDAG
2750 int64_t cur;
2751 int64_t linelen = 128;
2752 char linebuf[129];
2753
6b6712ef 2754 for (cur = 0; cur < pages; cur += linelen) {
4f2e4252
DDAG
2755 int64_t curb;
2756 bool found = false;
2757 /*
2758 * Last line; catch the case where the line length
2759 * is longer than remaining ram
2760 */
6b6712ef
JQ
2761 if (cur + linelen > pages) {
2762 linelen = pages - cur;
4f2e4252
DDAG
2763 }
2764 for (curb = 0; curb < linelen; curb++) {
2765 bool thisbit = test_bit(cur + curb, todump);
2766 linebuf[curb] = thisbit ? '1' : '.';
2767 found = found || (thisbit != expected);
2768 }
2769 if (found) {
2770 linebuf[curb] = '\0';
2771 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2772 }
2773 }
2774}
2775
e0b266f0
DDAG
2776/* **** functions for postcopy ***** */
2777
ced1c616
PB
2778void ram_postcopy_migrated_memory_release(MigrationState *ms)
2779{
2780 struct RAMBlock *block;
ced1c616 2781
fbd162e6 2782 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
2783 unsigned long *bitmap = block->bmap;
2784 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2785 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
ced1c616
PB
2786
2787 while (run_start < range) {
2788 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
aaa2064c 2789 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
ced1c616
PB
2790 (run_end - run_start) << TARGET_PAGE_BITS);
2791 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2792 }
2793 }
2794}
2795
3d0684b2
JQ
2796/**
2797 * postcopy_send_discard_bm_ram: discard a RAMBlock
2798 *
2799 * Returns zero on success
2800 *
e0b266f0
DDAG
2801 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2802 * Note: At this point the 'unsentmap' is the processed bitmap combined
2803 * with the dirtymap; so a '1' means it's either dirty or unsent.
3d0684b2
JQ
2804 *
2805 * @ms: current migration state
2806 * @pds: state for postcopy
89dab31b 2807 * @block: RAMBlock to discard
e0b266f0
DDAG
2808 */
2809static int postcopy_send_discard_bm_ram(MigrationState *ms,
2810 PostcopyDiscardState *pds,
6b6712ef 2811 RAMBlock *block)
e0b266f0 2812{
6b6712ef 2813 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
e0b266f0 2814 unsigned long current;
6b6712ef 2815 unsigned long *unsentmap = block->unsentmap;
e0b266f0 2816
6b6712ef 2817 for (current = 0; current < end; ) {
e0b266f0
DDAG
2818 unsigned long one = find_next_bit(unsentmap, end, current);
2819
2820 if (one <= end) {
2821 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
2822 unsigned long discard_length;
2823
2824 if (zero >= end) {
2825 discard_length = end - one;
2826 } else {
2827 discard_length = zero - one;
2828 }
d688c62d
DDAG
2829 if (discard_length) {
2830 postcopy_discard_send_range(ms, pds, one, discard_length);
2831 }
e0b266f0
DDAG
2832 current = one + discard_length;
2833 } else {
2834 current = one;
2835 }
2836 }
2837
2838 return 0;
2839}
2840
3d0684b2
JQ
2841/**
2842 * postcopy_each_ram_send_discard: discard all RAMBlocks
2843 *
2844 * Returns 0 for success or negative for error
2845 *
e0b266f0
DDAG
2846 * Utility for the outgoing postcopy code.
2847 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2848 * passing it bitmap indexes and name.
e0b266f0
DDAG
2849 * (qemu_ram_foreach_block ends up passing unscaled lengths
2850 * which would mean postcopy code would have to deal with target page)
3d0684b2
JQ
2851 *
2852 * @ms: current migration state
e0b266f0
DDAG
2853 */
2854static int postcopy_each_ram_send_discard(MigrationState *ms)
2855{
2856 struct RAMBlock *block;
2857 int ret;
2858
fbd162e6 2859 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
2860 PostcopyDiscardState *pds =
2861 postcopy_discard_send_init(ms, block->idstr);
e0b266f0
DDAG
2862
2863 /*
2864 * Postcopy sends chunks of bitmap over the wire, but it
2865 * just needs indexes at this point, avoids it having
2866 * target page specific code.
2867 */
6b6712ef 2868 ret = postcopy_send_discard_bm_ram(ms, pds, block);
e0b266f0
DDAG
2869 postcopy_discard_send_finish(ms, pds);
2870 if (ret) {
2871 return ret;
2872 }
2873 }
2874
2875 return 0;
2876}
2877
3d0684b2
JQ
2878/**
2879 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
2880 *
2881 * Helper for postcopy_chunk_hostpages; it's called twice to
2882 * canonicalize the two bitmaps, that are similar, but one is
2883 * inverted.
99e314eb 2884 *
3d0684b2
JQ
2885 * Postcopy requires that all target pages in a hostpage are dirty or
2886 * clean, not a mix. This function canonicalizes the bitmaps.
99e314eb 2887 *
3d0684b2
JQ
2888 * @ms: current migration state
2889 * @unsent_pass: if true we need to canonicalize partially unsent host pages
2890 * otherwise we need to canonicalize partially dirty host pages
2891 * @block: block that contains the page we want to canonicalize
2892 * @pds: state for postcopy
99e314eb
DDAG
2893 */
2894static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
2895 RAMBlock *block,
2896 PostcopyDiscardState *pds)
2897{
53518d94 2898 RAMState *rs = ram_state;
6b6712ef
JQ
2899 unsigned long *bitmap = block->bmap;
2900 unsigned long *unsentmap = block->unsentmap;
29c59172 2901 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
6b6712ef 2902 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
99e314eb
DDAG
2903 unsigned long run_start;
2904
29c59172
DDAG
2905 if (block->page_size == TARGET_PAGE_SIZE) {
2906 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2907 return;
2908 }
2909
99e314eb
DDAG
2910 if (unsent_pass) {
2911 /* Find a sent page */
6b6712ef 2912 run_start = find_next_zero_bit(unsentmap, pages, 0);
99e314eb
DDAG
2913 } else {
2914 /* Find a dirty page */
6b6712ef 2915 run_start = find_next_bit(bitmap, pages, 0);
99e314eb
DDAG
2916 }
2917
6b6712ef 2918 while (run_start < pages) {
99e314eb
DDAG
2919 bool do_fixup = false;
2920 unsigned long fixup_start_addr;
2921 unsigned long host_offset;
2922
2923 /*
2924 * If the start of this run of pages is in the middle of a host
2925 * page, then we need to fixup this host page.
2926 */
2927 host_offset = run_start % host_ratio;
2928 if (host_offset) {
2929 do_fixup = true;
2930 run_start -= host_offset;
2931 fixup_start_addr = run_start;
2932 /* For the next pass */
2933 run_start = run_start + host_ratio;
2934 } else {
2935 /* Find the end of this run */
2936 unsigned long run_end;
2937 if (unsent_pass) {
6b6712ef 2938 run_end = find_next_bit(unsentmap, pages, run_start + 1);
99e314eb 2939 } else {
6b6712ef 2940 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
99e314eb
DDAG
2941 }
2942 /*
2943 * If the end isn't at the start of a host page, then the
2944 * run doesn't finish at the end of a host page
2945 * and we need to discard.
2946 */
2947 host_offset = run_end % host_ratio;
2948 if (host_offset) {
2949 do_fixup = true;
2950 fixup_start_addr = run_end - host_offset;
2951 /*
2952 * This host page has gone, the next loop iteration starts
2953 * from after the fixup
2954 */
2955 run_start = fixup_start_addr + host_ratio;
2956 } else {
2957 /*
2958 * No discards on this iteration, next loop starts from
2959 * next sent/dirty page
2960 */
2961 run_start = run_end + 1;
2962 }
2963 }
2964
2965 if (do_fixup) {
2966 unsigned long page;
2967
2968 /* Tell the destination to discard this page */
2969 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
2970 /* For the unsent_pass we:
2971 * discard partially sent pages
2972 * For the !unsent_pass (dirty) we:
2973 * discard partially dirty pages that were sent
2974 * (any partially sent pages were already discarded
2975 * by the previous unsent_pass)
2976 */
2977 postcopy_discard_send_range(ms, pds, fixup_start_addr,
2978 host_ratio);
2979 }
2980
2981 /* Clean up the bitmap */
2982 for (page = fixup_start_addr;
2983 page < fixup_start_addr + host_ratio; page++) {
2984 /* All pages in this host page are now not sent */
2985 set_bit(page, unsentmap);
2986
2987 /*
2988 * Remark them as dirty, updating the count for any pages
2989 * that weren't previously dirty.
2990 */
0d8ec885 2991 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
99e314eb
DDAG
2992 }
2993 }
2994
2995 if (unsent_pass) {
2996 /* Find the next sent page for the next iteration */
6b6712ef 2997 run_start = find_next_zero_bit(unsentmap, pages, run_start);
99e314eb
DDAG
2998 } else {
2999 /* Find the next dirty page for the next iteration */
6b6712ef 3000 run_start = find_next_bit(bitmap, pages, run_start);
99e314eb
DDAG
3001 }
3002 }
3003}
3004
3d0684b2 3005/**
89dab31b 3006 * postcopy_chunk_hostpages: discard any partially sent host page
3d0684b2 3007 *
99e314eb
DDAG
3008 * Utility for the outgoing postcopy code.
3009 *
3010 * Discard any partially sent host-page size chunks, mark any partially
29c59172
DDAG
3011 * dirty host-page size chunks as all dirty. In this case the host-page
3012 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
99e314eb 3013 *
3d0684b2
JQ
3014 * Returns zero on success
3015 *
3016 * @ms: current migration state
6b6712ef 3017 * @block: block we want to work with
99e314eb 3018 */
6b6712ef 3019static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
99e314eb 3020{
6b6712ef
JQ
3021 PostcopyDiscardState *pds =
3022 postcopy_discard_send_init(ms, block->idstr);
99e314eb 3023
6b6712ef
JQ
3024 /* First pass: Discard all partially sent host pages */
3025 postcopy_chunk_hostpages_pass(ms, true, block, pds);
3026 /*
3027 * Second pass: Ensure that all partially dirty host pages are made
3028 * fully dirty.
3029 */
3030 postcopy_chunk_hostpages_pass(ms, false, block, pds);
99e314eb 3031
6b6712ef 3032 postcopy_discard_send_finish(ms, pds);
99e314eb
DDAG
3033 return 0;
3034}
3035
3d0684b2
JQ
3036/**
3037 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
3038 *
3039 * Returns zero on success
3040 *
e0b266f0
DDAG
3041 * Transmit the set of pages to be discarded after precopy to the target
3042 * these are pages that:
3043 * a) Have been previously transmitted but are now dirty again
3044 * b) Pages that have never been transmitted, this ensures that
3045 * any pages on the destination that have been mapped by background
3046 * tasks get discarded (transparent huge pages is the specific concern)
3047 * Hopefully this is pretty sparse
3d0684b2
JQ
3048 *
3049 * @ms: current migration state
e0b266f0
DDAG
3050 */
3051int ram_postcopy_send_discard_bitmap(MigrationState *ms)
3052{
53518d94 3053 RAMState *rs = ram_state;
6b6712ef 3054 RAMBlock *block;
e0b266f0 3055 int ret;
e0b266f0
DDAG
3056
3057 rcu_read_lock();
3058
3059 /* This should be our last sync, the src is now paused */
eb859c53 3060 migration_bitmap_sync(rs);
e0b266f0 3061
6b6712ef
JQ
3062 /* Easiest way to make sure we don't resume in the middle of a host-page */
3063 rs->last_seen_block = NULL;
3064 rs->last_sent_block = NULL;
3065 rs->last_page = 0;
e0b266f0 3066
fbd162e6 3067 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
3068 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
3069 unsigned long *bitmap = block->bmap;
3070 unsigned long *unsentmap = block->unsentmap;
3071
3072 if (!unsentmap) {
3073 /* We don't have a safe way to resize the sentmap, so
3074 * if the bitmap was resized it will be NULL at this
3075 * point.
3076 */
3077 error_report("migration ram resized during precopy phase");
3078 rcu_read_unlock();
3079 return -EINVAL;
3080 }
3081 /* Deal with TPS != HPS and huge pages */
3082 ret = postcopy_chunk_hostpages(ms, block);
3083 if (ret) {
3084 rcu_read_unlock();
3085 return ret;
3086 }
e0b266f0 3087
6b6712ef
JQ
3088 /*
3089 * Update the unsentmap to be unsentmap = unsentmap | dirty
3090 */
3091 bitmap_or(unsentmap, unsentmap, bitmap, pages);
e0b266f0 3092#ifdef DEBUG_POSTCOPY
6b6712ef 3093 ram_debug_dump_bitmap(unsentmap, true, pages);
e0b266f0 3094#endif
6b6712ef
JQ
3095 }
3096 trace_ram_postcopy_send_discard_bitmap();
e0b266f0
DDAG
3097
3098 ret = postcopy_each_ram_send_discard(ms);
3099 rcu_read_unlock();
3100
3101 return ret;
3102}
3103
3d0684b2
JQ
3104/**
3105 * ram_discard_range: discard dirtied pages at the beginning of postcopy
e0b266f0 3106 *
3d0684b2 3107 * Returns zero on success
e0b266f0 3108 *
36449157
JQ
3109 * @rbname: name of the RAMBlock of the request. NULL means the
3110 * same that last one.
3d0684b2
JQ
3111 * @start: RAMBlock starting page
3112 * @length: RAMBlock size
e0b266f0 3113 */
aaa2064c 3114int ram_discard_range(const char *rbname, uint64_t start, size_t length)
e0b266f0
DDAG
3115{
3116 int ret = -1;
3117
36449157 3118 trace_ram_discard_range(rbname, start, length);
d3a5038c 3119
e0b266f0 3120 rcu_read_lock();
36449157 3121 RAMBlock *rb = qemu_ram_block_by_name(rbname);
e0b266f0
DDAG
3122
3123 if (!rb) {
36449157 3124 error_report("ram_discard_range: Failed to find block '%s'", rbname);
e0b266f0
DDAG
3125 goto err;
3126 }
3127
814bb08f
PX
3128 /*
3129 * On source VM, we don't need to update the received bitmap since
3130 * we don't even have one.
3131 */
3132 if (rb->receivedmap) {
3133 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
3134 length >> qemu_target_page_bits());
3135 }
3136
d3a5038c 3137 ret = ram_block_discard_range(rb, start, length);
e0b266f0
DDAG
3138
3139err:
3140 rcu_read_unlock();
3141
3142 return ret;
3143}
3144
84593a08
PX
3145/*
3146 * For every allocation, we will try not to crash the VM if the
3147 * allocation failed.
3148 */
3149static int xbzrle_init(void)
3150{
3151 Error *local_err = NULL;
3152
3153 if (!migrate_use_xbzrle()) {
3154 return 0;
3155 }
3156
3157 XBZRLE_cache_lock();
3158
3159 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
3160 if (!XBZRLE.zero_target_page) {
3161 error_report("%s: Error allocating zero page", __func__);
3162 goto err_out;
3163 }
3164
3165 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
3166 TARGET_PAGE_SIZE, &local_err);
3167 if (!XBZRLE.cache) {
3168 error_report_err(local_err);
3169 goto free_zero_page;
3170 }
3171
3172 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
3173 if (!XBZRLE.encoded_buf) {
3174 error_report("%s: Error allocating encoded_buf", __func__);
3175 goto free_cache;
3176 }
3177
3178 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
3179 if (!XBZRLE.current_buf) {
3180 error_report("%s: Error allocating current_buf", __func__);
3181 goto free_encoded_buf;
3182 }
3183
3184 /* We are all good */
3185 XBZRLE_cache_unlock();
3186 return 0;
3187
3188free_encoded_buf:
3189 g_free(XBZRLE.encoded_buf);
3190 XBZRLE.encoded_buf = NULL;
3191free_cache:
3192 cache_fini(XBZRLE.cache);
3193 XBZRLE.cache = NULL;
3194free_zero_page:
3195 g_free(XBZRLE.zero_target_page);
3196 XBZRLE.zero_target_page = NULL;
3197err_out:
3198 XBZRLE_cache_unlock();
3199 return -ENOMEM;
3200}
3201
53518d94 3202static int ram_state_init(RAMState **rsp)
56e93d26 3203{
7d00ee6a
PX
3204 *rsp = g_try_new0(RAMState, 1);
3205
3206 if (!*rsp) {
3207 error_report("%s: Init ramstate fail", __func__);
3208 return -1;
3209 }
53518d94
JQ
3210
3211 qemu_mutex_init(&(*rsp)->bitmap_mutex);
3212 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
3213 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
56e93d26 3214
7d00ee6a 3215 /*
03158519
WY
3216 * This must match with the initial values of dirty bitmap.
3217 * Currently we initialize the dirty bitmap to all zeros so
3218 * here the total dirty page count is zero.
7d00ee6a 3219 */
03158519 3220 (*rsp)->migration_dirty_pages = 0;
7d00ee6a
PX
3221 ram_state_reset(*rsp);
3222
3223 return 0;
3224}
3225
d6eff5d7 3226static void ram_list_init_bitmaps(void)
7d00ee6a 3227{
002cad6b 3228 MigrationState *ms = migrate_get_current();
d6eff5d7
PX
3229 RAMBlock *block;
3230 unsigned long pages;
002cad6b 3231 uint8_t shift;
56e93d26 3232
0827b9e9
AA
3233 /* Skip setting bitmap if there is no RAM */
3234 if (ram_bytes_total()) {
002cad6b
PX
3235 shift = ms->clear_bitmap_shift;
3236 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
3237 error_report("clear_bitmap_shift (%u) too big, using "
3238 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
3239 shift = CLEAR_BITMAP_SHIFT_MAX;
3240 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
3241 error_report("clear_bitmap_shift (%u) too small, using "
3242 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
3243 shift = CLEAR_BITMAP_SHIFT_MIN;
3244 }
3245
fbd162e6 3246 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
d6eff5d7 3247 pages = block->max_length >> TARGET_PAGE_BITS;
03158519
WY
3248 /*
3249 * The initial dirty bitmap for migration must be set with all
3250 * ones to make sure we'll migrate every guest RAM page to
3251 * destination.
3252 * Here we didn't set RAMBlock.bmap simply because it is already
3253 * set in ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION] in
3254 * ram_block_add, and that's where we'll sync the dirty bitmaps.
3255 * Here setting RAMBlock.bmap would be fine too but not necessary.
3256 */
6b6712ef 3257 block->bmap = bitmap_new(pages);
002cad6b
PX
3258 block->clear_bmap_shift = shift;
3259 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
6b6712ef
JQ
3260 if (migrate_postcopy_ram()) {
3261 block->unsentmap = bitmap_new(pages);
3262 bitmap_set(block->unsentmap, 0, pages);
3263 }
0827b9e9 3264 }
f3f491fc 3265 }
d6eff5d7
PX
3266}
3267
3268static void ram_init_bitmaps(RAMState *rs)
3269{
3270 /* For memory_global_dirty_log_start below. */
3271 qemu_mutex_lock_iothread();
3272 qemu_mutex_lock_ramlist();
3273 rcu_read_lock();
f3f491fc 3274
d6eff5d7 3275 ram_list_init_bitmaps();
56e93d26 3276 memory_global_dirty_log_start();
bd227060 3277 migration_bitmap_sync_precopy(rs);
d6eff5d7
PX
3278
3279 rcu_read_unlock();
56e93d26 3280 qemu_mutex_unlock_ramlist();
49877834 3281 qemu_mutex_unlock_iothread();
d6eff5d7
PX
3282}
3283
3284static int ram_init_all(RAMState **rsp)
3285{
3286 if (ram_state_init(rsp)) {
3287 return -1;
3288 }
3289
3290 if (xbzrle_init()) {
3291 ram_state_cleanup(rsp);
3292 return -1;
3293 }
3294
3295 ram_init_bitmaps(*rsp);
a91246c9
HZ
3296
3297 return 0;
3298}
3299
08614f34
PX
3300static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3301{
3302 RAMBlock *block;
3303 uint64_t pages = 0;
3304
3305 /*
3306 * Postcopy is not using xbzrle/compression, so no need for that.
3307 * Also, since source are already halted, we don't need to care
3308 * about dirty page logging as well.
3309 */
3310
fbd162e6 3311 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
08614f34
PX
3312 pages += bitmap_count_one(block->bmap,
3313 block->used_length >> TARGET_PAGE_BITS);
3314 }
3315
3316 /* This may not be aligned with current bitmaps. Recalculate. */
3317 rs->migration_dirty_pages = pages;
3318
3319 rs->last_seen_block = NULL;
3320 rs->last_sent_block = NULL;
3321 rs->last_page = 0;
3322 rs->last_version = ram_list.version;
3323 /*
3324 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3325 * matter what we have sent.
3326 */
3327 rs->ram_bulk_stage = false;
3328
3329 /* Update RAMState cache of output QEMUFile */
3330 rs->f = out;
3331
3332 trace_ram_state_resume_prepare(pages);
3333}
3334
6bcb05fc
WW
3335/*
3336 * This function clears bits of the free pages reported by the caller from the
3337 * migration dirty bitmap. @addr is the host address corresponding to the
3338 * start of the continuous guest free pages, and @len is the total bytes of
3339 * those pages.
3340 */
3341void qemu_guest_free_page_hint(void *addr, size_t len)
3342{
3343 RAMBlock *block;
3344 ram_addr_t offset;
3345 size_t used_len, start, npages;
3346 MigrationState *s = migrate_get_current();
3347
3348 /* This function is currently expected to be used during live migration */
3349 if (!migration_is_setup_or_active(s->state)) {
3350 return;
3351 }
3352
3353 for (; len > 0; len -= used_len, addr += used_len) {
3354 block = qemu_ram_block_from_host(addr, false, &offset);
3355 if (unlikely(!block || offset >= block->used_length)) {
3356 /*
3357 * The implementation might not support RAMBlock resize during
3358 * live migration, but it could happen in theory with future
3359 * updates. So we add a check here to capture that case.
3360 */
3361 error_report_once("%s unexpected error", __func__);
3362 return;
3363 }
3364
3365 if (len <= block->used_length - offset) {
3366 used_len = len;
3367 } else {
3368 used_len = block->used_length - offset;
3369 }
3370
3371 start = offset >> TARGET_PAGE_BITS;
3372 npages = used_len >> TARGET_PAGE_BITS;
3373
3374 qemu_mutex_lock(&ram_state->bitmap_mutex);
3375 ram_state->migration_dirty_pages -=
3376 bitmap_count_one_with_offset(block->bmap, start, npages);
3377 bitmap_clear(block->bmap, start, npages);
3378 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3379 }
3380}
3381
3d0684b2
JQ
3382/*
3383 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
a91246c9
HZ
3384 * long-running RCU critical section. When rcu-reclaims in the code
3385 * start to become numerous it will be necessary to reduce the
3386 * granularity of these critical sections.
3387 */
3388
3d0684b2
JQ
3389/**
3390 * ram_save_setup: Setup RAM for migration
3391 *
3392 * Returns zero to indicate success and negative for error
3393 *
3394 * @f: QEMUFile where to send the data
3395 * @opaque: RAMState pointer
3396 */
a91246c9
HZ
3397static int ram_save_setup(QEMUFile *f, void *opaque)
3398{
53518d94 3399 RAMState **rsp = opaque;
a91246c9
HZ
3400 RAMBlock *block;
3401
dcaf446e
XG
3402 if (compress_threads_save_setup()) {
3403 return -1;
3404 }
3405
a91246c9
HZ
3406 /* migration has already setup the bitmap, reuse it. */
3407 if (!migration_in_colo_state()) {
7d00ee6a 3408 if (ram_init_all(rsp) != 0) {
dcaf446e 3409 compress_threads_save_cleanup();
a91246c9 3410 return -1;
53518d94 3411 }
a91246c9 3412 }
53518d94 3413 (*rsp)->f = f;
a91246c9
HZ
3414
3415 rcu_read_lock();
56e93d26 3416
fbd162e6 3417 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
56e93d26 3418
b895de50 3419 RAMBLOCK_FOREACH_MIGRATABLE(block) {
56e93d26
JQ
3420 qemu_put_byte(f, strlen(block->idstr));
3421 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3422 qemu_put_be64(f, block->used_length);
ef08fb38
DDAG
3423 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
3424 qemu_put_be64(f, block->page_size);
3425 }
fbd162e6
YK
3426 if (migrate_ignore_shared()) {
3427 qemu_put_be64(f, block->mr->addr);
fbd162e6 3428 }
56e93d26
JQ
3429 }
3430
3431 rcu_read_unlock();
3432
3433 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3434 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3435
6df264ac 3436 multifd_send_sync_main();
56e93d26 3437 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3438 qemu_fflush(f);
56e93d26
JQ
3439
3440 return 0;
3441}
3442
3d0684b2
JQ
3443/**
3444 * ram_save_iterate: iterative stage for migration
3445 *
3446 * Returns zero to indicate success and negative for error
3447 *
3448 * @f: QEMUFile where to send the data
3449 * @opaque: RAMState pointer
3450 */
56e93d26
JQ
3451static int ram_save_iterate(QEMUFile *f, void *opaque)
3452{
53518d94
JQ
3453 RAMState **temp = opaque;
3454 RAMState *rs = *temp;
56e93d26
JQ
3455 int ret;
3456 int i;
3457 int64_t t0;
5c90308f 3458 int done = 0;
56e93d26 3459
b2557345
PL
3460 if (blk_mig_bulk_active()) {
3461 /* Avoid transferring ram during bulk phase of block migration as
3462 * the bulk phase will usually take a long time and transferring
3463 * ram updates during that time is pointless. */
3464 goto out;
3465 }
3466
56e93d26 3467 rcu_read_lock();
6f37bb8b
JQ
3468 if (ram_list.version != rs->last_version) {
3469 ram_state_reset(rs);
56e93d26
JQ
3470 }
3471
3472 /* Read version before ram_list.blocks */
3473 smp_rmb();
3474
3475 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3476
3477 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3478 i = 0;
e03a34f8
DDAG
3479 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3480 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
56e93d26
JQ
3481 int pages;
3482
e03a34f8
DDAG
3483 if (qemu_file_get_error(f)) {
3484 break;
3485 }
3486
ce25d337 3487 pages = ram_find_and_save_block(rs, false);
56e93d26
JQ
3488 /* no more pages to sent */
3489 if (pages == 0) {
5c90308f 3490 done = 1;
56e93d26
JQ
3491 break;
3492 }
e8f3735f
XG
3493
3494 if (pages < 0) {
3495 qemu_file_set_error(f, pages);
3496 break;
3497 }
3498
be8b02ed 3499 rs->target_page_count += pages;
070afca2 3500
56e93d26
JQ
3501 /* we want to check in the 1st loop, just in case it was the 1st time
3502 and we had to sync the dirty bitmap.
a5f7b1a6 3503 qemu_clock_get_ns() is a bit expensive, so we only check each some
56e93d26
JQ
3504 iterations
3505 */
3506 if ((i & 63) == 0) {
3507 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
3508 if (t1 > MAX_WAIT) {
55c4446b 3509 trace_ram_save_iterate_big_wait(t1, i);
56e93d26
JQ
3510 break;
3511 }
3512 }
3513 i++;
3514 }
56e93d26
JQ
3515 rcu_read_unlock();
3516
3517 /*
3518 * Must occur before EOS (or any QEMUFile operation)
3519 * because of RDMA protocol.
3520 */
3521 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3522
b2557345 3523out:
b6526c4b 3524 multifd_send_sync_main();
56e93d26 3525 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3526 qemu_fflush(f);
9360447d 3527 ram_counters.transferred += 8;
56e93d26
JQ
3528
3529 ret = qemu_file_get_error(f);
3530 if (ret < 0) {
3531 return ret;
3532 }
3533
5c90308f 3534 return done;
56e93d26
JQ
3535}
3536
3d0684b2
JQ
3537/**
3538 * ram_save_complete: function called to send the remaining amount of ram
3539 *
e8f3735f 3540 * Returns zero to indicate success or negative on error
3d0684b2
JQ
3541 *
3542 * Called with iothread lock
3543 *
3544 * @f: QEMUFile where to send the data
3545 * @opaque: RAMState pointer
3546 */
56e93d26
JQ
3547static int ram_save_complete(QEMUFile *f, void *opaque)
3548{
53518d94
JQ
3549 RAMState **temp = opaque;
3550 RAMState *rs = *temp;
e8f3735f 3551 int ret = 0;
6f37bb8b 3552
56e93d26
JQ
3553 rcu_read_lock();
3554
5727309d 3555 if (!migration_in_postcopy()) {
bd227060 3556 migration_bitmap_sync_precopy(rs);
663e6c1d 3557 }
56e93d26
JQ
3558
3559 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3560
3561 /* try transferring iterative blocks of memory */
3562
3563 /* flush all remaining blocks regardless of rate limiting */
3564 while (true) {
3565 int pages;
3566
ce25d337 3567 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
56e93d26
JQ
3568 /* no more blocks to sent */
3569 if (pages == 0) {
3570 break;
3571 }
e8f3735f
XG
3572 if (pages < 0) {
3573 ret = pages;
3574 break;
3575 }
56e93d26
JQ
3576 }
3577
ce25d337 3578 flush_compressed_data(rs);
56e93d26 3579 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
56e93d26
JQ
3580
3581 rcu_read_unlock();
d09a6fde 3582
6df264ac 3583 multifd_send_sync_main();
56e93d26 3584 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3585 qemu_fflush(f);
56e93d26 3586
e8f3735f 3587 return ret;
56e93d26
JQ
3588}
3589
c31b098f 3590static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
47995026
VSO
3591 uint64_t *res_precopy_only,
3592 uint64_t *res_compatible,
3593 uint64_t *res_postcopy_only)
56e93d26 3594{
53518d94
JQ
3595 RAMState **temp = opaque;
3596 RAMState *rs = *temp;
56e93d26
JQ
3597 uint64_t remaining_size;
3598
9edabd4d 3599 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 3600
5727309d 3601 if (!migration_in_postcopy() &&
663e6c1d 3602 remaining_size < max_size) {
56e93d26
JQ
3603 qemu_mutex_lock_iothread();
3604 rcu_read_lock();
bd227060 3605 migration_bitmap_sync_precopy(rs);
56e93d26
JQ
3606 rcu_read_unlock();
3607 qemu_mutex_unlock_iothread();
9edabd4d 3608 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 3609 }
c31b098f 3610
86e1167e
VSO
3611 if (migrate_postcopy_ram()) {
3612 /* We can do postcopy, and all the data is postcopiable */
47995026 3613 *res_compatible += remaining_size;
86e1167e 3614 } else {
47995026 3615 *res_precopy_only += remaining_size;
86e1167e 3616 }
56e93d26
JQ
3617}
3618
3619static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3620{
3621 unsigned int xh_len;
3622 int xh_flags;
063e760a 3623 uint8_t *loaded_data;
56e93d26 3624
56e93d26
JQ
3625 /* extract RLE header */
3626 xh_flags = qemu_get_byte(f);
3627 xh_len = qemu_get_be16(f);
3628
3629 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3630 error_report("Failed to load XBZRLE page - wrong compression!");
3631 return -1;
3632 }
3633
3634 if (xh_len > TARGET_PAGE_SIZE) {
3635 error_report("Failed to load XBZRLE page - len overflow!");
3636 return -1;
3637 }
f265e0e4 3638 loaded_data = XBZRLE.decoded_buf;
56e93d26 3639 /* load data and decode */
f265e0e4 3640 /* it can change loaded_data to point to an internal buffer */
063e760a 3641 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
56e93d26
JQ
3642
3643 /* decode RLE */
063e760a 3644 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
56e93d26
JQ
3645 TARGET_PAGE_SIZE) == -1) {
3646 error_report("Failed to load XBZRLE page - decode error!");
3647 return -1;
3648 }
3649
3650 return 0;
3651}
3652
3d0684b2
JQ
3653/**
3654 * ram_block_from_stream: read a RAMBlock id from the migration stream
3655 *
3656 * Must be called from within a rcu critical section.
3657 *
56e93d26 3658 * Returns a pointer from within the RCU-protected ram_list.
a7180877 3659 *
3d0684b2
JQ
3660 * @f: QEMUFile where to read the data from
3661 * @flags: Page flags (mostly to see if it's a continuation of previous block)
a7180877 3662 */
3d0684b2 3663static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
56e93d26
JQ
3664{
3665 static RAMBlock *block = NULL;
3666 char id[256];
3667 uint8_t len;
3668
3669 if (flags & RAM_SAVE_FLAG_CONTINUE) {
4c4bad48 3670 if (!block) {
56e93d26
JQ
3671 error_report("Ack, bad migration stream!");
3672 return NULL;
3673 }
4c4bad48 3674 return block;
56e93d26
JQ
3675 }
3676
3677 len = qemu_get_byte(f);
3678 qemu_get_buffer(f, (uint8_t *)id, len);
3679 id[len] = 0;
3680
e3dd7493 3681 block = qemu_ram_block_by_name(id);
4c4bad48
HZ
3682 if (!block) {
3683 error_report("Can't find block %s", id);
3684 return NULL;
56e93d26
JQ
3685 }
3686
fbd162e6 3687 if (ramblock_is_ignored(block)) {
b895de50
CLG
3688 error_report("block %s should not be migrated !", id);
3689 return NULL;
3690 }
3691
4c4bad48
HZ
3692 return block;
3693}
3694
3695static inline void *host_from_ram_block_offset(RAMBlock *block,
3696 ram_addr_t offset)
3697{
3698 if (!offset_in_ramblock(block, offset)) {
3699 return NULL;
3700 }
3701
3702 return block->host + offset;
56e93d26
JQ
3703}
3704
13af18f2
ZC
3705static inline void *colo_cache_from_block_offset(RAMBlock *block,
3706 ram_addr_t offset)
3707{
3708 if (!offset_in_ramblock(block, offset)) {
3709 return NULL;
3710 }
3711 if (!block->colo_cache) {
3712 error_report("%s: colo_cache is NULL in block :%s",
3713 __func__, block->idstr);
3714 return NULL;
3715 }
7d9acafa
ZC
3716
3717 /*
3718 * During colo checkpoint, we need bitmap of these migrated pages.
3719 * It help us to decide which pages in ram cache should be flushed
3720 * into VM's RAM later.
3721 */
3722 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3723 ram_state->migration_dirty_pages++;
3724 }
13af18f2
ZC
3725 return block->colo_cache + offset;
3726}
3727
3d0684b2
JQ
3728/**
3729 * ram_handle_compressed: handle the zero page case
3730 *
56e93d26
JQ
3731 * If a page (or a whole RDMA chunk) has been
3732 * determined to be zero, then zap it.
3d0684b2
JQ
3733 *
3734 * @host: host address for the zero page
3735 * @ch: what the page is filled from. We only support zero
3736 * @size: size of the zero page
56e93d26
JQ
3737 */
3738void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3739{
3740 if (ch != 0 || !is_zero_range(host, size)) {
3741 memset(host, ch, size);
3742 }
3743}
3744
797ca154
XG
3745/* return the size after decompression, or negative value on error */
3746static int
3747qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3748 const uint8_t *source, size_t source_len)
3749{
3750 int err;
3751
3752 err = inflateReset(stream);
3753 if (err != Z_OK) {
3754 return -1;
3755 }
3756
3757 stream->avail_in = source_len;
3758 stream->next_in = (uint8_t *)source;
3759 stream->avail_out = dest_len;
3760 stream->next_out = dest;
3761
3762 err = inflate(stream, Z_NO_FLUSH);
3763 if (err != Z_STREAM_END) {
3764 return -1;
3765 }
3766
3767 return stream->total_out;
3768}
3769
56e93d26
JQ
3770static void *do_data_decompress(void *opaque)
3771{
3772 DecompressParam *param = opaque;
3773 unsigned long pagesize;
33d151f4 3774 uint8_t *des;
34ab9e97 3775 int len, ret;
56e93d26 3776
33d151f4 3777 qemu_mutex_lock(&param->mutex);
90e56fb4 3778 while (!param->quit) {
33d151f4
LL
3779 if (param->des) {
3780 des = param->des;
3781 len = param->len;
3782 param->des = 0;
3783 qemu_mutex_unlock(&param->mutex);
3784
56e93d26 3785 pagesize = TARGET_PAGE_SIZE;
34ab9e97
XG
3786
3787 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3788 param->compbuf, len);
f548222c 3789 if (ret < 0 && migrate_get_current()->decompress_error_check) {
34ab9e97
XG
3790 error_report("decompress data failed");
3791 qemu_file_set_error(decomp_file, ret);
3792 }
73a8912b 3793
33d151f4
LL
3794 qemu_mutex_lock(&decomp_done_lock);
3795 param->done = true;
3796 qemu_cond_signal(&decomp_done_cond);
3797 qemu_mutex_unlock(&decomp_done_lock);
3798
3799 qemu_mutex_lock(&param->mutex);
3800 } else {
3801 qemu_cond_wait(&param->cond, &param->mutex);
3802 }
56e93d26 3803 }
33d151f4 3804 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
3805
3806 return NULL;
3807}
3808
34ab9e97 3809static int wait_for_decompress_done(void)
5533b2e9
LL
3810{
3811 int idx, thread_count;
3812
3813 if (!migrate_use_compression()) {
34ab9e97 3814 return 0;
5533b2e9
LL
3815 }
3816
3817 thread_count = migrate_decompress_threads();
3818 qemu_mutex_lock(&decomp_done_lock);
3819 for (idx = 0; idx < thread_count; idx++) {
3820 while (!decomp_param[idx].done) {
3821 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3822 }
3823 }
3824 qemu_mutex_unlock(&decomp_done_lock);
34ab9e97 3825 return qemu_file_get_error(decomp_file);
5533b2e9
LL
3826}
3827
f0afa331 3828static void compress_threads_load_cleanup(void)
56e93d26
JQ
3829{
3830 int i, thread_count;
3831
3416ab5b
JQ
3832 if (!migrate_use_compression()) {
3833 return;
3834 }
56e93d26
JQ
3835 thread_count = migrate_decompress_threads();
3836 for (i = 0; i < thread_count; i++) {
797ca154
XG
3837 /*
3838 * we use it as a indicator which shows if the thread is
3839 * properly init'd or not
3840 */
3841 if (!decomp_param[i].compbuf) {
3842 break;
3843 }
3844
56e93d26 3845 qemu_mutex_lock(&decomp_param[i].mutex);
90e56fb4 3846 decomp_param[i].quit = true;
56e93d26
JQ
3847 qemu_cond_signal(&decomp_param[i].cond);
3848 qemu_mutex_unlock(&decomp_param[i].mutex);
3849 }
3850 for (i = 0; i < thread_count; i++) {
797ca154
XG
3851 if (!decomp_param[i].compbuf) {
3852 break;
3853 }
3854
56e93d26
JQ
3855 qemu_thread_join(decompress_threads + i);
3856 qemu_mutex_destroy(&decomp_param[i].mutex);
3857 qemu_cond_destroy(&decomp_param[i].cond);
797ca154 3858 inflateEnd(&decomp_param[i].stream);
56e93d26 3859 g_free(decomp_param[i].compbuf);
797ca154 3860 decomp_param[i].compbuf = NULL;
56e93d26
JQ
3861 }
3862 g_free(decompress_threads);
3863 g_free(decomp_param);
56e93d26
JQ
3864 decompress_threads = NULL;
3865 decomp_param = NULL;
34ab9e97 3866 decomp_file = NULL;
56e93d26
JQ
3867}
3868
34ab9e97 3869static int compress_threads_load_setup(QEMUFile *f)
797ca154
XG
3870{
3871 int i, thread_count;
3872
3873 if (!migrate_use_compression()) {
3874 return 0;
3875 }
3876
3877 thread_count = migrate_decompress_threads();
3878 decompress_threads = g_new0(QemuThread, thread_count);
3879 decomp_param = g_new0(DecompressParam, thread_count);
3880 qemu_mutex_init(&decomp_done_lock);
3881 qemu_cond_init(&decomp_done_cond);
34ab9e97 3882 decomp_file = f;
797ca154
XG
3883 for (i = 0; i < thread_count; i++) {
3884 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3885 goto exit;
3886 }
3887
3888 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3889 qemu_mutex_init(&decomp_param[i].mutex);
3890 qemu_cond_init(&decomp_param[i].cond);
3891 decomp_param[i].done = true;
3892 decomp_param[i].quit = false;
3893 qemu_thread_create(decompress_threads + i, "decompress",
3894 do_data_decompress, decomp_param + i,
3895 QEMU_THREAD_JOINABLE);
3896 }
3897 return 0;
3898exit:
3899 compress_threads_load_cleanup();
3900 return -1;
3901}
3902
c1bc6626 3903static void decompress_data_with_multi_threads(QEMUFile *f,
56e93d26
JQ
3904 void *host, int len)
3905{
3906 int idx, thread_count;
3907
3908 thread_count = migrate_decompress_threads();
73a8912b 3909 qemu_mutex_lock(&decomp_done_lock);
56e93d26
JQ
3910 while (true) {
3911 for (idx = 0; idx < thread_count; idx++) {
73a8912b 3912 if (decomp_param[idx].done) {
33d151f4
LL
3913 decomp_param[idx].done = false;
3914 qemu_mutex_lock(&decomp_param[idx].mutex);
c1bc6626 3915 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
56e93d26
JQ
3916 decomp_param[idx].des = host;
3917 decomp_param[idx].len = len;
33d151f4
LL
3918 qemu_cond_signal(&decomp_param[idx].cond);
3919 qemu_mutex_unlock(&decomp_param[idx].mutex);
56e93d26
JQ
3920 break;
3921 }
3922 }
3923 if (idx < thread_count) {
3924 break;
73a8912b
LL
3925 } else {
3926 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
56e93d26
JQ
3927 }
3928 }
73a8912b 3929 qemu_mutex_unlock(&decomp_done_lock);
56e93d26
JQ
3930}
3931
13af18f2
ZC
3932/*
3933 * colo cache: this is for secondary VM, we cache the whole
3934 * memory of the secondary VM, it is need to hold the global lock
3935 * to call this helper.
3936 */
3937int colo_init_ram_cache(void)
3938{
3939 RAMBlock *block;
3940
3941 rcu_read_lock();
fbd162e6 3942 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
13af18f2
ZC
3943 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3944 NULL,
3945 false);
3946 if (!block->colo_cache) {
3947 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3948 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3949 block->used_length);
3950 goto out_locked;
3951 }
3952 memcpy(block->colo_cache, block->host, block->used_length);
3953 }
3954 rcu_read_unlock();
7d9acafa
ZC
3955 /*
3956 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3957 * with to decide which page in cache should be flushed into SVM's RAM. Here
3958 * we use the same name 'ram_bitmap' as for migration.
3959 */
3960 if (ram_bytes_total()) {
3961 RAMBlock *block;
3962
fbd162e6 3963 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
7d9acafa
ZC
3964 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3965
3966 block->bmap = bitmap_new(pages);
3967 bitmap_set(block->bmap, 0, pages);
3968 }
3969 }
3970 ram_state = g_new0(RAMState, 1);
3971 ram_state->migration_dirty_pages = 0;
c6e5bafb 3972 qemu_mutex_init(&ram_state->bitmap_mutex);
d1955d22 3973 memory_global_dirty_log_start();
7d9acafa 3974
13af18f2
ZC
3975 return 0;
3976
3977out_locked:
7d9acafa 3978
fbd162e6 3979 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
13af18f2
ZC
3980 if (block->colo_cache) {
3981 qemu_anon_ram_free(block->colo_cache, block->used_length);
3982 block->colo_cache = NULL;
3983 }
3984 }
3985
3986 rcu_read_unlock();
3987 return -errno;
3988}
3989
3990/* It is need to hold the global lock to call this helper */
3991void colo_release_ram_cache(void)
3992{
3993 RAMBlock *block;
3994
d1955d22 3995 memory_global_dirty_log_stop();
fbd162e6 3996 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
7d9acafa
ZC
3997 g_free(block->bmap);
3998 block->bmap = NULL;
3999 }
4000
13af18f2 4001 rcu_read_lock();
7d9acafa 4002
fbd162e6 4003 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
13af18f2
ZC
4004 if (block->colo_cache) {
4005 qemu_anon_ram_free(block->colo_cache, block->used_length);
4006 block->colo_cache = NULL;
4007 }
4008 }
7d9acafa 4009
13af18f2 4010 rcu_read_unlock();
c6e5bafb 4011 qemu_mutex_destroy(&ram_state->bitmap_mutex);
7d9acafa
ZC
4012 g_free(ram_state);
4013 ram_state = NULL;
13af18f2
ZC
4014}
4015
f265e0e4
JQ
4016/**
4017 * ram_load_setup: Setup RAM for migration incoming side
4018 *
4019 * Returns zero to indicate success and negative for error
4020 *
4021 * @f: QEMUFile where to receive the data
4022 * @opaque: RAMState pointer
4023 */
4024static int ram_load_setup(QEMUFile *f, void *opaque)
4025{
34ab9e97 4026 if (compress_threads_load_setup(f)) {
797ca154
XG
4027 return -1;
4028 }
4029
f265e0e4 4030 xbzrle_load_setup();
f9494614 4031 ramblock_recv_map_init();
13af18f2 4032
f265e0e4
JQ
4033 return 0;
4034}
4035
4036static int ram_load_cleanup(void *opaque)
4037{
f9494614 4038 RAMBlock *rb;
56eb90af 4039
fbd162e6 4040 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
56eb90af
JH
4041 if (ramblock_is_pmem(rb)) {
4042 pmem_persist(rb->host, rb->used_length);
4043 }
4044 }
4045
f265e0e4 4046 xbzrle_load_cleanup();
f0afa331 4047 compress_threads_load_cleanup();
f9494614 4048
fbd162e6 4049 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
f9494614
AP
4050 g_free(rb->receivedmap);
4051 rb->receivedmap = NULL;
4052 }
13af18f2 4053
f265e0e4
JQ
4054 return 0;
4055}
4056
3d0684b2
JQ
4057/**
4058 * ram_postcopy_incoming_init: allocate postcopy data structures
4059 *
4060 * Returns 0 for success and negative if there was one error
4061 *
4062 * @mis: current migration incoming state
4063 *
4064 * Allocate data structures etc needed by incoming migration with
4065 * postcopy-ram. postcopy-ram's similarly names
4066 * postcopy_ram_incoming_init does the work.
1caddf8a
DDAG
4067 */
4068int ram_postcopy_incoming_init(MigrationIncomingState *mis)
4069{
c136180c 4070 return postcopy_ram_incoming_init(mis);
1caddf8a
DDAG
4071}
4072
3d0684b2
JQ
4073/**
4074 * ram_load_postcopy: load a page in postcopy case
4075 *
4076 * Returns 0 for success or -errno in case of error
4077 *
a7180877
DDAG
4078 * Called in postcopy mode by ram_load().
4079 * rcu_read_lock is taken prior to this being called.
3d0684b2
JQ
4080 *
4081 * @f: QEMUFile where to send the data
a7180877
DDAG
4082 */
4083static int ram_load_postcopy(QEMUFile *f)
4084{
4085 int flags = 0, ret = 0;
4086 bool place_needed = false;
1aa83678 4087 bool matches_target_page_size = false;
a7180877
DDAG
4088 MigrationIncomingState *mis = migration_incoming_get_current();
4089 /* Temporary page that is later 'placed' */
4090 void *postcopy_host_page = postcopy_get_tmp_page(mis);
c53b7ddc 4091 void *last_host = NULL;
a3b6ff6d 4092 bool all_zero = false;
a7180877
DDAG
4093
4094 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4095 ram_addr_t addr;
4096 void *host = NULL;
4097 void *page_buffer = NULL;
4098 void *place_source = NULL;
df9ff5e1 4099 RAMBlock *block = NULL;
a7180877 4100 uint8_t ch;
a7180877
DDAG
4101
4102 addr = qemu_get_be64(f);
7a9ddfbf
PX
4103
4104 /*
4105 * If qemu file error, we should stop here, and then "addr"
4106 * may be invalid
4107 */
4108 ret = qemu_file_get_error(f);
4109 if (ret) {
4110 break;
4111 }
4112
a7180877
DDAG
4113 flags = addr & ~TARGET_PAGE_MASK;
4114 addr &= TARGET_PAGE_MASK;
4115
4116 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
4117 place_needed = false;
bb890ed5 4118 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
df9ff5e1 4119 block = ram_block_from_stream(f, flags);
4c4bad48
HZ
4120
4121 host = host_from_ram_block_offset(block, addr);
a7180877
DDAG
4122 if (!host) {
4123 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4124 ret = -EINVAL;
4125 break;
4126 }
1aa83678 4127 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
a7180877 4128 /*
28abd200
DDAG
4129 * Postcopy requires that we place whole host pages atomically;
4130 * these may be huge pages for RAMBlocks that are backed by
4131 * hugetlbfs.
a7180877
DDAG
4132 * To make it atomic, the data is read into a temporary page
4133 * that's moved into place later.
4134 * The migration protocol uses, possibly smaller, target-pages
4135 * however the source ensures it always sends all the components
4136 * of a host page in order.
4137 */
4138 page_buffer = postcopy_host_page +
28abd200 4139 ((uintptr_t)host & (block->page_size - 1));
a7180877 4140 /* If all TP are zero then we can optimise the place */
28abd200 4141 if (!((uintptr_t)host & (block->page_size - 1))) {
a7180877 4142 all_zero = true;
c53b7ddc
DDAG
4143 } else {
4144 /* not the 1st TP within the HP */
4145 if (host != (last_host + TARGET_PAGE_SIZE)) {
9af9e0fe 4146 error_report("Non-sequential target page %p/%p",
c53b7ddc
DDAG
4147 host, last_host);
4148 ret = -EINVAL;
4149 break;
4150 }
a7180877
DDAG
4151 }
4152
c53b7ddc 4153
a7180877
DDAG
4154 /*
4155 * If it's the last part of a host page then we place the host
4156 * page
4157 */
4158 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
28abd200 4159 (block->page_size - 1)) == 0;
a7180877
DDAG
4160 place_source = postcopy_host_page;
4161 }
c53b7ddc 4162 last_host = host;
a7180877
DDAG
4163
4164 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
bb890ed5 4165 case RAM_SAVE_FLAG_ZERO:
a7180877
DDAG
4166 ch = qemu_get_byte(f);
4167 memset(page_buffer, ch, TARGET_PAGE_SIZE);
4168 if (ch) {
4169 all_zero = false;
4170 }
4171 break;
4172
4173 case RAM_SAVE_FLAG_PAGE:
4174 all_zero = false;
1aa83678
PX
4175 if (!matches_target_page_size) {
4176 /* For huge pages, we always use temporary buffer */
a7180877
DDAG
4177 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
4178 } else {
1aa83678
PX
4179 /*
4180 * For small pages that matches target page size, we
4181 * avoid the qemu_file copy. Instead we directly use
4182 * the buffer of QEMUFile to place the page. Note: we
4183 * cannot do any QEMUFile operation before using that
4184 * buffer to make sure the buffer is valid when
4185 * placing the page.
a7180877
DDAG
4186 */
4187 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
4188 TARGET_PAGE_SIZE);
4189 }
4190 break;
4191 case RAM_SAVE_FLAG_EOS:
4192 /* normal exit */
6df264ac 4193 multifd_recv_sync_main();
a7180877
DDAG
4194 break;
4195 default:
4196 error_report("Unknown combination of migration flags: %#x"
4197 " (postcopy mode)", flags);
4198 ret = -EINVAL;
7a9ddfbf
PX
4199 break;
4200 }
4201
4202 /* Detect for any possible file errors */
4203 if (!ret && qemu_file_get_error(f)) {
4204 ret = qemu_file_get_error(f);
a7180877
DDAG
4205 }
4206
7a9ddfbf 4207 if (!ret && place_needed) {
a7180877 4208 /* This gets called at the last target page in the host page */
df9ff5e1
DDAG
4209 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
4210
a7180877 4211 if (all_zero) {
df9ff5e1 4212 ret = postcopy_place_page_zero(mis, place_dest,
8be4620b 4213 block);
a7180877 4214 } else {
df9ff5e1 4215 ret = postcopy_place_page(mis, place_dest,
8be4620b 4216 place_source, block);
a7180877
DDAG
4217 }
4218 }
a7180877
DDAG
4219 }
4220
4221 return ret;
4222}
4223
acab30b8
DHB
4224static bool postcopy_is_advised(void)
4225{
4226 PostcopyState ps = postcopy_state_get();
4227 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
4228}
4229
4230static bool postcopy_is_running(void)
4231{
4232 PostcopyState ps = postcopy_state_get();
4233 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
4234}
4235
e6f4aa18
ZC
4236/*
4237 * Flush content of RAM cache into SVM's memory.
4238 * Only flush the pages that be dirtied by PVM or SVM or both.
4239 */
4240static void colo_flush_ram_cache(void)
4241{
4242 RAMBlock *block = NULL;
4243 void *dst_host;
4244 void *src_host;
4245 unsigned long offset = 0;
4246
d1955d22
HZ
4247 memory_global_dirty_log_sync();
4248 rcu_read_lock();
fbd162e6 4249 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
bf212979 4250 migration_bitmap_sync_range(ram_state, block, block->used_length);
d1955d22
HZ
4251 }
4252 rcu_read_unlock();
4253
e6f4aa18
ZC
4254 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
4255 rcu_read_lock();
4256 block = QLIST_FIRST_RCU(&ram_list.blocks);
4257
4258 while (block) {
4259 offset = migration_bitmap_find_dirty(ram_state, block, offset);
4260
4261 if (offset << TARGET_PAGE_BITS >= block->used_length) {
4262 offset = 0;
4263 block = QLIST_NEXT_RCU(block, next);
4264 } else {
4265 migration_bitmap_clear_dirty(ram_state, block, offset);
4266 dst_host = block->host + (offset << TARGET_PAGE_BITS);
4267 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS);
4268 memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
4269 }
4270 }
4271
4272 rcu_read_unlock();
4273 trace_colo_flush_ram_cache_end();
4274}
4275
56e93d26
JQ
4276static int ram_load(QEMUFile *f, void *opaque, int version_id)
4277{
edc60127 4278 int flags = 0, ret = 0, invalid_flags = 0;
56e93d26
JQ
4279 static uint64_t seq_iter;
4280 int len = 0;
a7180877
DDAG
4281 /*
4282 * If system is running in postcopy mode, page inserts to host memory must
4283 * be atomic
4284 */
acab30b8 4285 bool postcopy_running = postcopy_is_running();
ef08fb38 4286 /* ADVISE is earlier, it shows the source has the postcopy capability on */
acab30b8 4287 bool postcopy_advised = postcopy_is_advised();
56e93d26
JQ
4288
4289 seq_iter++;
4290
4291 if (version_id != 4) {
4292 ret = -EINVAL;
4293 }
4294
edc60127
JQ
4295 if (!migrate_use_compression()) {
4296 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4297 }
56e93d26
JQ
4298 /* This RCU critical section can be very long running.
4299 * When RCU reclaims in the code start to become numerous,
4300 * it will be necessary to reduce the granularity of this
4301 * critical section.
4302 */
4303 rcu_read_lock();
a7180877
DDAG
4304
4305 if (postcopy_running) {
4306 ret = ram_load_postcopy(f);
4307 }
4308
4309 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
56e93d26 4310 ram_addr_t addr, total_ram_bytes;
a776aa15 4311 void *host = NULL;
56e93d26
JQ
4312 uint8_t ch;
4313
4314 addr = qemu_get_be64(f);
4315 flags = addr & ~TARGET_PAGE_MASK;
4316 addr &= TARGET_PAGE_MASK;
4317
edc60127
JQ
4318 if (flags & invalid_flags) {
4319 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4320 error_report("Received an unexpected compressed page");
4321 }
4322
4323 ret = -EINVAL;
4324 break;
4325 }
4326
bb890ed5 4327 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
a776aa15 4328 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4c4bad48
HZ
4329 RAMBlock *block = ram_block_from_stream(f, flags);
4330
13af18f2
ZC
4331 /*
4332 * After going into COLO, we should load the Page into colo_cache.
4333 */
4334 if (migration_incoming_in_colo_state()) {
4335 host = colo_cache_from_block_offset(block, addr);
4336 } else {
4337 host = host_from_ram_block_offset(block, addr);
4338 }
a776aa15
DDAG
4339 if (!host) {
4340 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4341 ret = -EINVAL;
4342 break;
4343 }
13af18f2
ZC
4344
4345 if (!migration_incoming_in_colo_state()) {
4346 ramblock_recv_bitmap_set(block, host);
4347 }
4348
1db9d8e5 4349 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
a776aa15
DDAG
4350 }
4351
56e93d26
JQ
4352 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4353 case RAM_SAVE_FLAG_MEM_SIZE:
4354 /* Synchronize RAM block list */
4355 total_ram_bytes = addr;
4356 while (!ret && total_ram_bytes) {
4357 RAMBlock *block;
56e93d26
JQ
4358 char id[256];
4359 ram_addr_t length;
4360
4361 len = qemu_get_byte(f);
4362 qemu_get_buffer(f, (uint8_t *)id, len);
4363 id[len] = 0;
4364 length = qemu_get_be64(f);
4365
e3dd7493 4366 block = qemu_ram_block_by_name(id);
b895de50
CLG
4367 if (block && !qemu_ram_is_migratable(block)) {
4368 error_report("block %s should not be migrated !", id);
4369 ret = -EINVAL;
4370 } else if (block) {
e3dd7493
DDAG
4371 if (length != block->used_length) {
4372 Error *local_err = NULL;
56e93d26 4373
fa53a0e5 4374 ret = qemu_ram_resize(block, length,
e3dd7493
DDAG
4375 &local_err);
4376 if (local_err) {
4377 error_report_err(local_err);
56e93d26 4378 }
56e93d26 4379 }
ef08fb38
DDAG
4380 /* For postcopy we need to check hugepage sizes match */
4381 if (postcopy_advised &&
4382 block->page_size != qemu_host_page_size) {
4383 uint64_t remote_page_size = qemu_get_be64(f);
4384 if (remote_page_size != block->page_size) {
4385 error_report("Mismatched RAM page size %s "
4386 "(local) %zd != %" PRId64,
4387 id, block->page_size,
4388 remote_page_size);
4389 ret = -EINVAL;
4390 }
4391 }
fbd162e6
YK
4392 if (migrate_ignore_shared()) {
4393 hwaddr addr = qemu_get_be64(f);
fbd162e6
YK
4394 if (ramblock_is_ignored(block) &&
4395 block->mr->addr != addr) {
4396 error_report("Mismatched GPAs for block %s "
4397 "%" PRId64 "!= %" PRId64,
4398 id, (uint64_t)addr,
4399 (uint64_t)block->mr->addr);
4400 ret = -EINVAL;
4401 }
4402 }
e3dd7493
DDAG
4403 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4404 block->idstr);
4405 } else {
56e93d26
JQ
4406 error_report("Unknown ramblock \"%s\", cannot "
4407 "accept migration", id);
4408 ret = -EINVAL;
4409 }
4410
4411 total_ram_bytes -= length;
4412 }
4413 break;
a776aa15 4414
bb890ed5 4415 case RAM_SAVE_FLAG_ZERO:
56e93d26
JQ
4416 ch = qemu_get_byte(f);
4417 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4418 break;
a776aa15 4419
56e93d26 4420 case RAM_SAVE_FLAG_PAGE:
56e93d26
JQ
4421 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4422 break;
56e93d26 4423
a776aa15 4424 case RAM_SAVE_FLAG_COMPRESS_PAGE:
56e93d26
JQ
4425 len = qemu_get_be32(f);
4426 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4427 error_report("Invalid compressed data length: %d", len);
4428 ret = -EINVAL;
4429 break;
4430 }
c1bc6626 4431 decompress_data_with_multi_threads(f, host, len);
56e93d26 4432 break;
a776aa15 4433
56e93d26 4434 case RAM_SAVE_FLAG_XBZRLE:
56e93d26
JQ
4435 if (load_xbzrle(f, addr, host) < 0) {
4436 error_report("Failed to decompress XBZRLE page at "
4437 RAM_ADDR_FMT, addr);
4438 ret = -EINVAL;
4439 break;
4440 }
4441 break;
4442 case RAM_SAVE_FLAG_EOS:
4443 /* normal exit */
6df264ac 4444 multifd_recv_sync_main();
56e93d26
JQ
4445 break;
4446 default:
4447 if (flags & RAM_SAVE_FLAG_HOOK) {
632e3a5c 4448 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
56e93d26
JQ
4449 } else {
4450 error_report("Unknown combination of migration flags: %#x",
4451 flags);
4452 ret = -EINVAL;
4453 }
4454 }
4455 if (!ret) {
4456 ret = qemu_file_get_error(f);
4457 }
4458 }
4459
34ab9e97 4460 ret |= wait_for_decompress_done();
56e93d26 4461 rcu_read_unlock();
55c4446b 4462 trace_ram_load_complete(ret, seq_iter);
e6f4aa18
ZC
4463
4464 if (!ret && migration_incoming_in_colo_state()) {
4465 colo_flush_ram_cache();
4466 }
56e93d26
JQ
4467 return ret;
4468}
4469
c6467627
VSO
4470static bool ram_has_postcopy(void *opaque)
4471{
469dd51b 4472 RAMBlock *rb;
fbd162e6 4473 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
469dd51b
JH
4474 if (ramblock_is_pmem(rb)) {
4475 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4476 "is not supported now!", rb->idstr, rb->host);
4477 return false;
4478 }
4479 }
4480
c6467627
VSO
4481 return migrate_postcopy_ram();
4482}
4483
edd090c7
PX
4484/* Sync all the dirty bitmap with destination VM. */
4485static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4486{
4487 RAMBlock *block;
4488 QEMUFile *file = s->to_dst_file;
4489 int ramblock_count = 0;
4490
4491 trace_ram_dirty_bitmap_sync_start();
4492
fbd162e6 4493 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
edd090c7
PX
4494 qemu_savevm_send_recv_bitmap(file, block->idstr);
4495 trace_ram_dirty_bitmap_request(block->idstr);
4496 ramblock_count++;
4497 }
4498
4499 trace_ram_dirty_bitmap_sync_wait();
4500
4501 /* Wait until all the ramblocks' dirty bitmap synced */
4502 while (ramblock_count--) {
4503 qemu_sem_wait(&s->rp_state.rp_sem);
4504 }
4505
4506 trace_ram_dirty_bitmap_sync_complete();
4507
4508 return 0;
4509}
4510
4511static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4512{
4513 qemu_sem_post(&s->rp_state.rp_sem);
4514}
4515
a335debb
PX
4516/*
4517 * Read the received bitmap, revert it as the initial dirty bitmap.
4518 * This is only used when the postcopy migration is paused but wants
4519 * to resume from a middle point.
4520 */
4521int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4522{
4523 int ret = -EINVAL;
4524 QEMUFile *file = s->rp_state.from_dst_file;
4525 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
a725ef9f 4526 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
a335debb
PX
4527 uint64_t size, end_mark;
4528
4529 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4530
4531 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4532 error_report("%s: incorrect state %s", __func__,
4533 MigrationStatus_str(s->state));
4534 return -EINVAL;
4535 }
4536
4537 /*
4538 * Note: see comments in ramblock_recv_bitmap_send() on why we
4539 * need the endianess convertion, and the paddings.
4540 */
4541 local_size = ROUND_UP(local_size, 8);
4542
4543 /* Add paddings */
4544 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4545
4546 size = qemu_get_be64(file);
4547
4548 /* The size of the bitmap should match with our ramblock */
4549 if (size != local_size) {
4550 error_report("%s: ramblock '%s' bitmap size mismatch "
4551 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4552 block->idstr, size, local_size);
4553 ret = -EINVAL;
4554 goto out;
4555 }
4556
4557 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4558 end_mark = qemu_get_be64(file);
4559
4560 ret = qemu_file_get_error(file);
4561 if (ret || size != local_size) {
4562 error_report("%s: read bitmap failed for ramblock '%s': %d"
4563 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4564 __func__, block->idstr, ret, local_size, size);
4565 ret = -EIO;
4566 goto out;
4567 }
4568
4569 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4570 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4571 __func__, block->idstr, end_mark);
4572 ret = -EINVAL;
4573 goto out;
4574 }
4575
4576 /*
4577 * Endianess convertion. We are during postcopy (though paused).
4578 * The dirty bitmap won't change. We can directly modify it.
4579 */
4580 bitmap_from_le(block->bmap, le_bitmap, nbits);
4581
4582 /*
4583 * What we received is "received bitmap". Revert it as the initial
4584 * dirty bitmap for this ramblock.
4585 */
4586 bitmap_complement(block->bmap, block->bmap, nbits);
4587
4588 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4589
edd090c7
PX
4590 /*
4591 * We succeeded to sync bitmap for current ramblock. If this is
4592 * the last one to sync, we need to notify the main send thread.
4593 */
4594 ram_dirty_bitmap_reload_notify(s);
4595
a335debb
PX
4596 ret = 0;
4597out:
bf269906 4598 g_free(le_bitmap);
a335debb
PX
4599 return ret;
4600}
4601
edd090c7
PX
4602static int ram_resume_prepare(MigrationState *s, void *opaque)
4603{
4604 RAMState *rs = *(RAMState **)opaque;
08614f34 4605 int ret;
edd090c7 4606
08614f34
PX
4607 ret = ram_dirty_bitmap_sync_all(s, rs);
4608 if (ret) {
4609 return ret;
4610 }
4611
4612 ram_state_resume_prepare(rs, s->to_dst_file);
4613
4614 return 0;
edd090c7
PX
4615}
4616
56e93d26 4617static SaveVMHandlers savevm_ram_handlers = {
9907e842 4618 .save_setup = ram_save_setup,
56e93d26 4619 .save_live_iterate = ram_save_iterate,
763c906b 4620 .save_live_complete_postcopy = ram_save_complete,
a3e06c3d 4621 .save_live_complete_precopy = ram_save_complete,
c6467627 4622 .has_postcopy = ram_has_postcopy,
56e93d26
JQ
4623 .save_live_pending = ram_save_pending,
4624 .load_state = ram_load,
f265e0e4
JQ
4625 .save_cleanup = ram_save_cleanup,
4626 .load_setup = ram_load_setup,
4627 .load_cleanup = ram_load_cleanup,
edd090c7 4628 .resume_prepare = ram_resume_prepare,
56e93d26
JQ
4629};
4630
4631void ram_mig_init(void)
4632{
4633 qemu_mutex_init(&XBZRLE.lock);
6f37bb8b 4634 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);
56e93d26 4635}