]> git.proxmox.com Git - mirror_qemu.git/blame - qapi/migration.json
Merge tag 'migration-20231020-pull-request' of https://gitlab.com/juan.quintela/qemu...
[mirror_qemu.git] / qapi / migration.json
CommitLineData
48685a8e 1# -*- Mode: Python -*-
f7160f32 2# vim: filetype=python
48685a8e
MA
3#
4
5##
6# = Migration
7##
8
9{ 'include': 'common.json' }
9aca82ba 10{ 'include': 'sockets.json' }
48685a8e
MA
11
12##
13# @MigrationStats:
14#
15# Detailed migration status.
16#
17# @transferred: amount of bytes already transferred to the target VM
18#
a937b6aa
MA
19# @remaining: amount of bytes remaining to be transferred to the
20# target VM
48685a8e
MA
21#
22# @total: total amount of bytes involved in the migration process
23#
24# @duplicate: number of duplicate (zero) pages (since 1.2)
25#
7b24d326
JQ
26# @skipped: number of skipped zero pages. Always zero, only provided for
27# compatibility (since 1.5)
48685a8e
MA
28#
29# @normal: number of normal pages (since 1.2)
30#
31# @normal-bytes: number of normal bytes sent (since 1.2)
32#
a937b6aa
MA
33# @dirty-pages-rate: number of pages dirtied by second by the guest
34# (since 1.3)
48685a8e 35#
a937b6aa 36# @mbps: throughput in megabits/sec. (since 1.6)
48685a8e 37#
a937b6aa
MA
38# @dirty-sync-count: number of times that dirty ram was synchronized
39# (since 2.1)
48685a8e 40#
a937b6aa
MA
41# @postcopy-requests: The number of page requests received from the
42# destination (since 2.7)
48685a8e
MA
43#
44# @page-size: The number of bytes per page for the various page-based
a937b6aa 45# statistics (since 2.10)
48685a8e 46#
a61c45bd
JQ
47# @multifd-bytes: The number of bytes sent through multifd (since 3.0)
48#
aecbfe9c 49# @pages-per-second: the number of memory pages transferred per second
a937b6aa 50# (Since 4.0)
aecbfe9c 51#
ae680668 52# @precopy-bytes: The number of bytes sent in the pre-copy phase
a937b6aa 53# (since 7.0).
ae680668
DE
54#
55# @downtime-bytes: The number of bytes sent while the guest is paused
a937b6aa 56# (since 7.0).
ae680668
DE
57#
58# @postcopy-bytes: The number of bytes sent during the post-copy phase
a937b6aa
MA
59# (since 7.0).
60#
61# @dirty-sync-missed-zero-copy: Number of times dirty RAM
62# synchronization could not avoid copying dirty pages. This is
63# between 0 and @dirty-sync-count * @multifd-channels. (since
64# 7.1)
ae680668 65#
7b24d326
JQ
66# Features:
67#
68# @deprecated: Member @skipped is always zero since 1.5.3
69#
9bc6e893 70# Since: 0.14
7b24d326 71#
48685a8e
MA
72##
73{ 'struct': 'MigrationStats',
74 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
7b24d326 75 'duplicate': 'int',
e4ceec29 76 'skipped': { 'type': 'int', 'features': [ 'deprecated' ] },
7b24d326 77 'normal': 'int',
fd658a7b
JQ
78 'normal-bytes': 'int', 'dirty-pages-rate': 'int',
79 'mbps': 'number', 'dirty-sync-count': 'int',
80 'postcopy-requests': 'int', 'page-size': 'int',
81 'multifd-bytes': 'uint64', 'pages-per-second': 'uint64',
82 'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64',
83 'postcopy-bytes': 'uint64',
84 'dirty-sync-missed-zero-copy': 'uint64' } }
48685a8e
MA
85
86##
87# @XBZRLECacheStats:
88#
89# Detailed XBZRLE migration cache statistics
90#
91# @cache-size: XBZRLE cache size
92#
93# @bytes: amount of bytes already transferred to the target VM
94#
95# @pages: amount of pages transferred to the target VM
96#
97# @cache-miss: number of cache miss
98#
99# @cache-miss-rate: rate of cache miss (since 2.1)
100#
e460a4b1
WW
101# @encoding-rate: rate of encoded bytes (since 5.1)
102#
48685a8e
MA
103# @overflow: number of overflows
104#
105# Since: 1.2
106##
107{ 'struct': 'XBZRLECacheStats',
8b9407a0 108 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int',
48685a8e 109 'cache-miss': 'int', 'cache-miss-rate': 'number',
e460a4b1 110 'encoding-rate': 'number', 'overflow': 'int' } }
48685a8e 111
76e03000
XG
112##
113# @CompressionStats:
114#
115# Detailed migration compression statistics
116#
117# @pages: amount of pages compressed and transferred to the target VM
118#
a937b6aa
MA
119# @busy: count of times that no free thread was available to compress
120# data
76e03000
XG
121#
122# @busy-rate: rate of thread busy
123#
124# @compressed-size: amount of bytes after compression
125#
126# @compression-rate: rate of compressed size
127#
128# Since: 3.1
129##
130{ 'struct': 'CompressionStats',
131 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number',
dbb28bc8 132 'compressed-size': 'int', 'compression-rate': 'number' } }
76e03000 133
48685a8e
MA
134##
135# @MigrationStatus:
136#
137# An enumeration of migration status.
138#
139# @none: no migration has ever happened.
140#
141# @setup: migration process has been initiated.
142#
143# @cancelling: in the process of cancelling migration.
144#
145# @cancelled: cancelling migration is finished.
146#
147# @active: in the process of doing migration.
148#
a937b6aa
MA
149# @postcopy-active: like active, but now in postcopy mode. (since
150# 2.5)
48685a8e 151#
a937b6aa 152# @postcopy-paused: during postcopy but paused. (since 3.0)
a688d2c1 153#
a937b6aa
MA
154# @postcopy-recover: trying to recover from a paused postcopy. (since
155# 3.0)
135b87b4 156#
48685a8e
MA
157# @completed: migration is finished.
158#
159# @failed: some error occurred during migration process.
160#
a937b6aa
MA
161# @colo: VM is in the process of fault tolerance, VM can not get into
162# this state unless colo capability is enabled for migration.
163# (since 2.8)
48685a8e 164#
a937b6aa 165# @pre-switchover: Paused before device serialisation. (since 2.11)
31e06077 166#
a937b6aa
MA
167# @device: During device serialisation when pause-before-switchover is
168# enabled (since 2.11)
31e06077 169#
a937b6aa
MA
170# @wait-unplug: wait for device unplug request by guest OS to be
171# completed. (since 4.2)
c7e0acd5 172#
48685a8e 173# Since: 2.3
48685a8e
MA
174##
175{ 'enum': 'MigrationStatus',
176 'data': [ 'none', 'setup', 'cancelling', 'cancelled',
a688d2c1 177 'active', 'postcopy-active', 'postcopy-paused',
135b87b4 178 'postcopy-recover', 'completed', 'failed', 'colo',
c7e0acd5 179 'pre-switchover', 'device', 'wait-unplug' ] }
3710586c
KW
180##
181# @VfioStats:
182#
183# Detailed VFIO devices migration statistics
184#
a937b6aa
MA
185# @transferred: amount of bytes transferred to the target VM by VFIO
186# devices
3710586c
KW
187#
188# Since: 5.2
3710586c
KW
189##
190{ 'struct': 'VfioStats',
191 'data': {'transferred': 'int' } }
48685a8e
MA
192
193##
194# @MigrationInfo:
195#
196# Information about current migration process.
197#
198# @status: @MigrationStatus describing the current migration status.
a937b6aa
MA
199# If this field is not returned, no migration process has been
200# initiated
48685a8e 201#
a937b6aa
MA
202# @ram: @MigrationStats containing detailed migration status, only
203# returned if status is 'active' or 'completed'(since 1.2)
48685a8e 204#
a937b6aa
MA
205# @disk: @MigrationStats containing detailed disk migration status,
206# only returned if status is 'active' and it is a block migration
48685a8e
MA
207#
208# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE
a937b6aa
MA
209# migration statistics, only returned if XBZRLE feature is on and
210# status is 'active' or 'completed' (since 1.2)
48685a8e
MA
211#
212# @total-time: total amount of milliseconds since migration started.
a937b6aa
MA
213# If migration has ended, it returns the total migration time.
214# (since 1.2)
48685a8e 215#
a937b6aa
MA
216# @downtime: only present when migration finishes correctly total
217# downtime in milliseconds for the guest. (since 1.3)
48685a8e 218#
a937b6aa
MA
219# @expected-downtime: only present while migration is active expected
220# downtime in milliseconds for the guest in last walk of the dirty
221# bitmap. (since 1.3)
48685a8e 222#
a660eed4 223# @setup-time: amount of setup time in milliseconds *before* the
a937b6aa
MA
224# iterations begin but *after* the QMP command is issued. This is
225# designed to provide an accounting of any activities (such as
226# RDMA pinning) which may be expensive, but do not actually occur
227# during the iterative migration rounds themselves. (since 1.6)
48685a8e
MA
228#
229# @cpu-throttle-percentage: percentage of time guest cpus are being
a937b6aa
MA
230# throttled during auto-converge. This is only present when
231# auto-converge has started throttling guest cpus. (Since 2.7)
48685a8e 232#
c94143e5
PX
233# @error-desc: the human readable error description string. Clients
234# should not attempt to parse the error strings. (Since 2.7)
65ace060 235#
a937b6aa
MA
236# @postcopy-blocktime: total time when all vCPU were blocked during
237# postcopy live migration. This is only present when the
238# postcopy-blocktime migration capability is enabled. (Since 3.0)
65ace060 239#
a937b6aa
MA
240# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU.
241# This is only present when the postcopy-blocktime migration
242# capability is enabled. (Since 3.0)
65ace060 243#
a937b6aa
MA
244# @compression: migration compression statistics, only returned if
245# compression feature is on and status is 'active' or 'completed'
246# (Since 3.1)
48685a8e 247#
a937b6aa
MA
248# @socket-address: Only used for tcp, to know what the real port is
249# (Since 4.0)
9aca82ba 250#
a937b6aa
MA
251# @vfio: @VfioStats containing detailed VFIO devices migration
252# statistics, only returned if VFIO device is present, migration
253# is supported by all VFIO devices and status is 'active' or
254# 'completed' (since 5.2)
3710586c 255#
a937b6aa
MA
256# @blocked-reasons: A list of reasons an outgoing migration is
257# blocked. Present and non-empty when migration is blocked.
258# (since 6.0)
e11ce6c0 259#
8abc8115
HH
260# @dirty-limit-throttle-time-per-round: Maximum throttle time
261# (in microseconds) of virtual CPUs each dirty ring full round,
262# which shows how MigrationCapability dirty-limit affects the
263# guest during live migration. (Since 8.1)
264#
265# @dirty-limit-ring-full-time: Estimated average dirty ring full time
266# (in microseconds) for each dirty ring full round. The value
267# equals the dirty ring memory size divided by the average dirty
268# page rate of the virtual CPU, which can be used to observe the
269# average memory load of the virtual CPU indirectly. Note that
270# zero means guest doesn't dirty memory. (Since 8.1)
15699cf5 271#
9bc6e893 272# Since: 0.14
48685a8e
MA
273##
274{ 'struct': 'MigrationInfo',
275 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
276 '*disk': 'MigrationStats',
3710586c 277 '*vfio': 'VfioStats',
48685a8e
MA
278 '*xbzrle-cache': 'XBZRLECacheStats',
279 '*total-time': 'int',
280 '*expected-downtime': 'int',
281 '*downtime': 'int',
282 '*setup-time': 'int',
283 '*cpu-throttle-percentage': 'int',
65ace060 284 '*error-desc': 'str',
3af8554b 285 '*blocked-reasons': ['str'],
fd658a7b 286 '*postcopy-blocktime': 'uint32',
76e03000 287 '*postcopy-vcpu-blocktime': ['uint32'],
9aca82ba 288 '*compression': 'CompressionStats',
15699cf5
HH
289 '*socket-address': ['SocketAddress'],
290 '*dirty-limit-throttle-time-per-round': 'uint64',
291 '*dirty-limit-ring-full-time': 'uint64'} }
48685a8e
MA
292
293##
294# @query-migrate:
295#
a937b6aa 296# Returns information about current migration process. If migration
48685a8e
MA
297# is active there will be another json-object with RAM migration
298# status and if block migration is active another one with block
299# migration status.
300#
301# Returns: @MigrationInfo
302#
9bc6e893 303# Since: 0.14
48685a8e 304#
37fa48a4 305# Examples:
48685a8e
MA
306#
307# 1. Before the first migration
308#
309# -> { "execute": "query-migrate" }
310# <- { "return": {} }
311#
312# 2. Migration is done and has succeeded
313#
314# -> { "execute": "query-migrate" }
315# <- { "return": {
316# "status": "completed",
be1d2c49 317# "total-time":12345,
318# "setup-time":12345,
319# "downtime":12345,
48685a8e
MA
320# "ram":{
321# "transferred":123,
322# "remaining":123,
323# "total":246,
48685a8e
MA
324# "duplicate":123,
325# "normal":123,
326# "normal-bytes":123456,
327# "dirty-sync-count":15
328# }
329# }
330# }
331#
332# 3. Migration is done and has failed
333#
334# -> { "execute": "query-migrate" }
335# <- { "return": { "status": "failed" } }
336#
337# 4. Migration is being performed and is not a block migration:
338#
339# -> { "execute": "query-migrate" }
340# <- {
341# "return":{
342# "status":"active",
be1d2c49 343# "total-time":12345,
344# "setup-time":12345,
345# "expected-downtime":12345,
48685a8e
MA
346# "ram":{
347# "transferred":123,
348# "remaining":123,
349# "total":246,
48685a8e
MA
350# "duplicate":123,
351# "normal":123,
352# "normal-bytes":123456,
353# "dirty-sync-count":15
354# }
355# }
356# }
357#
358# 5. Migration is being performed and is a block migration:
359#
360# -> { "execute": "query-migrate" }
361# <- {
362# "return":{
363# "status":"active",
be1d2c49 364# "total-time":12345,
365# "setup-time":12345,
366# "expected-downtime":12345,
48685a8e
MA
367# "ram":{
368# "total":1057024,
369# "remaining":1053304,
370# "transferred":3720,
48685a8e
MA
371# "duplicate":123,
372# "normal":123,
373# "normal-bytes":123456,
374# "dirty-sync-count":15
375# },
376# "disk":{
377# "total":20971520,
378# "remaining":20880384,
379# "transferred":91136
380# }
381# }
382# }
383#
384# 6. Migration is being performed and XBZRLE is active:
385#
386# -> { "execute": "query-migrate" }
387# <- {
388# "return":{
389# "status":"active",
be1d2c49 390# "total-time":12345,
391# "setup-time":12345,
392# "expected-downtime":12345,
48685a8e
MA
393# "ram":{
394# "total":1057024,
395# "remaining":1053304,
396# "transferred":3720,
48685a8e
MA
397# "duplicate":10,
398# "normal":3333,
399# "normal-bytes":3412992,
400# "dirty-sync-count":15
401# },
402# "xbzrle-cache":{
403# "cache-size":67108864,
404# "bytes":20971520,
405# "pages":2444343,
406# "cache-miss":2244,
407# "cache-miss-rate":0.123,
e460a4b1 408# "encoding-rate":80.1,
48685a8e
MA
409# "overflow":34434
410# }
411# }
412# }
48685a8e
MA
413##
414{ 'command': 'query-migrate', 'returns': 'MigrationInfo' }
415
416##
417# @MigrationCapability:
418#
419# Migration capabilities enumeration
420#
a937b6aa
MA
421# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length
422# Encoding). This feature allows us to minimize migration traffic
423# for certain work loads, by sending compressed difference of the
424# pages
425#
426# @rdma-pin-all: Controls whether or not the entire VM memory
427# footprint is mlock()'d on demand or all at once. Refer to
428# docs/rdma.txt for usage. Disabled by default. (since 2.0)
429#
430# @zero-blocks: During storage migration encode blocks of zeroes
431# efficiently. This essentially saves 1MB of zeroes per block on
432# the wire. Enabling requires source and target VM to support
433# this feature. To enable it is sufficient to enable the
434# capability on the source VM. The feature is disabled by default.
435# (since 1.6)
436#
437# @compress: Use multiple compression threads to accelerate live
438# migration. This feature can help to reduce the migration
439# traffic, by sending compressed pages. Please note that if
440# compress and xbzrle are both on, compress only takes effect in
441# the ram bulk stage, after that, it will be disabled and only
442# xbzrle takes effect, this can help to minimize migration
e4ceec29 443# traffic. The feature is disabled by default. (since 2.4)
a937b6aa 444#
e4ceec29 445# @events: generate events for each migration state change (since 2.4)
a937b6aa
MA
446#
447# @auto-converge: If enabled, QEMU will automatically throttle down
448# the guest to speed up convergence of RAM migration. (since 1.6)
449#
450# @postcopy-ram: Start executing on the migration target before all of
451# RAM has been migrated, pulling the remaining pages along as
452# needed. The capacity must have the same setting on both source
453# and target or migration will not even start. NOTE: If the
454# migration fails during postcopy the VM will fail. (since 2.6)
455#
456# @x-colo: If enabled, migration will never end, and the state of the
457# VM on the primary side will be migrated continuously to the VM
458# on secondary side, this process is called COarse-Grain LOck
459# Stepping (COLO) for Non-stop Service. (since 2.8)
460#
461# @release-ram: if enabled, qemu will free the migrated ram pages on
462# the source during postcopy-ram migration. (since 2.9)
48685a8e
MA
463#
464# @block: If enabled, QEMU will also migrate the contents of all block
a937b6aa
MA
465# devices. Default is disabled. A possible alternative uses
466# mirror jobs to a builtin NBD server on the destination, which
467# offers more flexibility. (Since 2.10)
48685a8e
MA
468#
469# @return-path: If enabled, migration will use the return path even
a937b6aa 470# for precopy. (since 2.10)
48685a8e 471#
a937b6aa
MA
472# @pause-before-switchover: Pause outgoing migration before
473# serialising device state and before disabling block IO (since
474# 2.11)
93fbd031 475#
cbfd6c95 476# @multifd: Use more than one fd for migration (since 4.0)
30126bbf 477#
55efc8c2 478# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps.
a937b6aa 479# (since 2.12)
55efc8c2 480#
f22f928e 481# @postcopy-blocktime: Calculate downtime for postcopy live migration
a937b6aa 482# (since 3.0)
f22f928e 483#
a937b6aa
MA
484# @late-block-activate: If enabled, the destination will not activate
485# block devices (and thus take locks) immediately at the end of
486# migration. (since 3.0)
0f073f44 487#
9e272073
MA
488# @x-ignore-shared: If enabled, QEMU will not migrate shared memory
489# that is accessible on the destination machine. (since 4.0)
18269069 490#
b9d68df6 491# @validate-uuid: Send the UUID of the source to allow the destination
a937b6aa
MA
492# to ensure it is the same. (since 4.2)
493#
494# @background-snapshot: If enabled, the migration stream will be a
495# snapshot of the VM exactly at the point when the migration
496# procedure starts. The VM RAM is saved with running VM. (since
497# 6.0)
498#
499# @zero-copy-send: Controls behavior on sending memory pages on
500# migration. When true, enables a zero-copy mechanism for sending
501# memory pages, if host supports it. Requires that QEMU be
502# permitted to use locked memory for guest RAM pages. (since 7.1)
503#
504# @postcopy-preempt: If enabled, the migration process will allow
505# postcopy requests to preempt precopy stream, so postcopy
506# requests will be handled faster. This is a performance feature
507# and should not affect the correctness of postcopy migration.
508# (since 7.1)
1abaec9a 509#
6574232f
AH
510# @switchover-ack: If enabled, migration will not stop the source VM
511# and complete the migration until an ACK is received from the
512# destination that it's OK to do so. Exactly when this ACK is
9e272073
MA
513# sent depends on the migrated devices that use this feature. For
514# example, a device can use it to make sure some of its data is
515# sent and loaded in the destination before doing switchover.
6574232f
AH
516# This can reduce downtime if devices that support this capability
517# are present. 'return-path' capability must be enabled to use
518# it. (since 8.1)
519#
ef965377
HH
520# @dirty-limit: If enabled, migration will throttle vCPUs as needed to
521# keep their dirty page rate within @vcpu-dirty-limit. This can
522# improve responsiveness of large guests during live migration,
523# and can result in more stable read performance. Requires KVM
524# with accelerator property "dirty-ring-size" set. (Since 8.1)
dc623955 525#
9fb49daa 526# Features:
a937b6aa 527#
9fb49daa
MA
528# @unstable: Members @x-colo and @x-ignore-shared are experimental.
529#
48685a8e
MA
530# Since: 1.2
531##
532{ 'enum': 'MigrationCapability',
533 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
9fb49daa
MA
534 'compress', 'events', 'postcopy-ram',
535 { 'name': 'x-colo', 'features': [ 'unstable' ] },
536 'release-ram',
cbfd6c95 537 'block', 'return-path', 'pause-before-switchover', 'multifd',
18269069 538 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate',
9fb49daa 539 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] },
1abaec9a 540 'validate-uuid', 'background-snapshot',
dc623955
HH
541 'zero-copy-send', 'postcopy-preempt', 'switchover-ack',
542 'dirty-limit'] }
48685a8e
MA
543
544##
545# @MigrationCapabilityStatus:
546#
547# Migration capability information
548#
549# @capability: capability enum
550#
551# @state: capability state bool
552#
553# Since: 1.2
554##
555{ 'struct': 'MigrationCapabilityStatus',
fd658a7b 556 'data': { 'capability': 'MigrationCapability', 'state': 'bool' } }
48685a8e
MA
557
558##
559# @migrate-set-capabilities:
560#
561# Enable/Disable the following migration capabilities (like xbzrle)
562#
563# @capabilities: json array of capability modifications to make
564#
565# Since: 1.2
566#
567# Example:
568#
569# -> { "execute": "migrate-set-capabilities" , "arguments":
570# { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
37fa48a4 571# <- { "return": {} }
48685a8e
MA
572##
573{ 'command': 'migrate-set-capabilities',
574 'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
575
576##
577# @query-migrate-capabilities:
578#
579# Returns information about the current migration capabilities status
580#
d93ed1bd 581# Returns: @MigrationCapabilityStatus
48685a8e
MA
582#
583# Since: 1.2
584#
585# Example:
586#
587# -> { "execute": "query-migrate-capabilities" }
588# <- { "return": [
589# {"state": false, "capability": "xbzrle"},
590# {"state": false, "capability": "rdma-pin-all"},
591# {"state": false, "capability": "auto-converge"},
592# {"state": false, "capability": "zero-blocks"},
593# {"state": false, "capability": "compress"},
594# {"state": true, "capability": "events"},
595# {"state": false, "capability": "postcopy-ram"},
596# {"state": false, "capability": "x-colo"}
597# ]}
48685a8e
MA
598##
599{ 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']}
600
96eef042
JQ
601##
602# @MultiFDCompression:
603#
604# An enumeration of multifd compression methods.
605#
606# @none: no compression.
a937b6aa 607#
7ec2c2b3 608# @zlib: use zlib compression method.
a937b6aa 609#
87dc6f5f 610# @zstd: use zstd compression method.
96eef042
JQ
611#
612# Since: 5.0
96eef042
JQ
613##
614{ 'enum': 'MultiFDCompression',
87dc6f5f 615 'data': [ 'none', 'zlib',
8a9f1e1d 616 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] }
96eef042 617
6e9f21a2
PK
618##
619# @BitmapMigrationBitmapAliasTransform:
620#
a937b6aa
MA
621# @persistent: If present, the bitmap will be made persistent or
622# transient depending on this parameter.
6e9f21a2
PK
623#
624# Since: 6.0
625##
626{ 'struct': 'BitmapMigrationBitmapAliasTransform',
627 'data': {
628 '*persistent': 'bool'
629 } }
630
31e4c354
HR
631##
632# @BitmapMigrationBitmapAlias:
633#
634# @name: The name of the bitmap.
635#
636# @alias: An alias name for migration (for example the bitmap name on
a937b6aa 637# the opposite site).
31e4c354 638#
a937b6aa
MA
639# @transform: Allows the modification of the migrated bitmap. (since
640# 6.0)
6e9f21a2 641#
31e4c354
HR
642# Since: 5.2
643##
644{ 'struct': 'BitmapMigrationBitmapAlias',
645 'data': {
646 'name': 'str',
6e9f21a2
PK
647 'alias': 'str',
648 '*transform': 'BitmapMigrationBitmapAliasTransform'
31e4c354
HR
649 } }
650
651##
652# @BitmapMigrationNodeAlias:
653#
654# Maps a block node name and the bitmaps it has to aliases for dirty
655# bitmap migration.
656#
657# @node-name: A block node name.
658#
a937b6aa
MA
659# @alias: An alias block node name for migration (for example the node
660# name on the opposite site).
31e4c354
HR
661#
662# @bitmaps: Mappings for the bitmaps on this node.
663#
664# Since: 5.2
665##
666{ 'struct': 'BitmapMigrationNodeAlias',
667 'data': {
668 'node-name': 'str',
669 'alias': 'str',
670 'bitmaps': [ 'BitmapMigrationBitmapAlias' ]
671 } }
672
48685a8e
MA
673##
674# @MigrationParameter:
675#
676# Migration parameters enumeration
677#
a937b6aa
MA
678# @announce-initial: Initial delay (in milliseconds) before sending
679# the first announce (Since 4.0)
ee3d96ba 680#
a937b6aa
MA
681# @announce-max: Maximum delay (in milliseconds) between packets in
682# the announcement (Since 4.0)
ee3d96ba 683#
a937b6aa
MA
684# @announce-rounds: Number of self-announce packets sent after
685# migration (Since 4.0)
ee3d96ba 686#
a937b6aa
MA
687# @announce-step: Increase in delay (in milliseconds) between
688# subsequent packets in the announcement (Since 4.0)
ee3d96ba 689#
a937b6aa
MA
690# @compress-level: Set the compression level to be used in live
691# migration, the compression level is an integer between 0 and 9,
692# where 0 means no compression, 1 means the best compression
693# speed, and 9 means best compression ratio which will consume
694# more CPU.
48685a8e 695#
a937b6aa
MA
696# @compress-threads: Set compression thread count to be used in live
697# migration, the compression thread count is an integer between 1
698# and 255.
48685a8e 699#
a937b6aa
MA
700# @compress-wait-thread: Controls behavior when all compression
701# threads are currently busy. If true (default), wait for a free
702# compression thread to become available; otherwise, send the page
703# uncompressed. (Since 3.1)
1d58872a 704#
a937b6aa
MA
705# @decompress-threads: Set decompression thread count to be used in
706# live migration, the decompression thread count is an integer
707# between 1 and 255. Usually, decompression is at least 4 times as
708# fast as compression, so set the decompress-threads to the number
709# about 1/4 of compress-threads is adequate.
48685a8e 710#
a937b6aa
MA
711# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
712# bytes_xfer_period to trigger throttling. It is expressed as
713# percentage. The default value is 50. (Since 5.0)
dc14a470 714#
a937b6aa
MA
715# @cpu-throttle-initial: Initial percentage of time guest cpus are
716# throttled when migration auto-converge is activated. The
717# default value is 20. (Since 2.7)
48685a8e
MA
718#
719# @cpu-throttle-increment: throttle percentage increase each time
a937b6aa
MA
720# auto-converge detects that migration is not making progress.
721# The default value is 10. (Since 2.7)
722#
723# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
724# the tail stage of throttling, the Guest is very sensitive to CPU
725# percentage while the @cpu-throttle -increment is excessive
726# usually at tail stage. If this parameter is true, we will
727# compute the ideal CPU percentage used by the Guest, which may
728# exactly make the dirty rate match the dirty rate threshold.
729# Then we will choose a smaller throttle increment between the one
730# specified by @cpu-throttle-increment and the one generated by
731# ideal CPU percentage. Therefore, it is compatible to
732# traditional throttling, meanwhile the throttle increment won't
733# be excessive at tail stage. The default value is false. (Since
734# 5.1)
735#
736# @tls-creds: ID of the 'tls-creds' object that provides credentials
737# for establishing a TLS connection over the migration data
738# channel. On the outgoing side of the migration, the credentials
739# must be for a 'client' endpoint, while for the incoming side the
740# credentials must be for a 'server' endpoint. Setting this will
741# enable TLS for all migrations. The default is unset, resulting
742# in unsecured migration at the QEMU level. (Since 2.7)
743#
744# @tls-hostname: hostname of the target host for the migration. This
745# is required when using x509 based TLS credentials and the
746# migration URI does not already include a hostname. For example
747# if using fd: or exec: based migration, the hostname must be
748# provided so that the server's x509 certificate identity can be
749# validated. (Since 2.7)
750#
751# @tls-authz: ID of the 'authz' object subclass that provides access
752# control checking of the TLS x509 certificate distinguished name.
753# This object is only resolved at time of use, so can be deleted
754# and recreated on the fly while the migration server is active.
755# If missing, it will default to denying access (Since 4.0)
756#
757# @max-bandwidth: to set maximum speed for migration. maximum speed
758# in bytes per second. (Since 2.8)
759#
8b239597
PX
760# @avail-switchover-bandwidth: to set the available bandwidth that
761# migration can use during switchover phase. NOTE! This does not
762# limit the bandwidth during switchover, but only for calculations when
763# making decisions to switchover. By default, this value is zero,
764# which means QEMU will estimate the bandwidth automatically. This can
765# be set when the estimated value is not accurate, while the user is
766# able to guarantee such bandwidth is available when switching over.
767# When specified correctly, this can make the switchover decision much
768# more accurate. (Since 8.2)
769#
a937b6aa
MA
770# @downtime-limit: set maximum tolerated downtime for migration.
771# maximum downtime in milliseconds (Since 2.8)
772#
773# @x-checkpoint-delay: The delay time (in ms) between two COLO
774# checkpoints in periodic mode. (Since 2.8)
48685a8e
MA
775#
776# @block-incremental: Affects how much storage is migrated when the
a937b6aa
MA
777# block migration capability is enabled. When false, the entire
778# storage backing chain is migrated into a flattened image at the
779# destination; when true, only the active qcow2 layer is migrated
780# and the destination must already have access to the same backing
781# chain as was used on the source. (since 2.10)
48685a8e 782#
cbfd6c95 783# @multifd-channels: Number of channels used to migrate data in
a937b6aa
MA
784# parallel. This is the same number that the number of sockets
785# used for migration. The default value is 2 (since 4.0)
4075fb1c 786#
73af8dd8 787# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
a937b6aa
MA
788# needs to be a multiple of the target page size and a power of 2
789# (Since 2.11)
73af8dd8 790#
a937b6aa
MA
791# @max-postcopy-bandwidth: Background transfer bandwidth during
792# postcopy. Defaults to 0 (unlimited). In bytes per second.
793# (Since 3.0)
4cbc9c7f 794#
a937b6aa
MA
795# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99.
796# (Since 3.1)
ee3d96ba 797#
a937b6aa
MA
798# @multifd-compression: Which compression method to use. Defaults to
799# none. (Since 5.0)
96eef042 800#
9004db48 801# @multifd-zlib-level: Set the compression level to be used in live
a937b6aa
MA
802# migration, the compression level is an integer between 0 and 9,
803# where 0 means no compression, 1 means the best compression
804# speed, and 9 means best compression ratio which will consume
805# more CPU. Defaults to 1. (Since 5.0)
9004db48 806#
6a9ad154 807# @multifd-zstd-level: Set the compression level to be used in live
a937b6aa
MA
808# migration, the compression level is an integer between 0 and 20,
809# where 0 means no compression, 1 means the best compression
810# speed, and 20 means best compression ratio which will consume
811# more CPU. Defaults to 1. (Since 5.0)
abb6295b 812#
31e4c354 813# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
a937b6aa
MA
814# aliases for the purpose of dirty bitmap migration. Such aliases
815# may for example be the corresponding names on the opposite site.
816# The mapping must be one-to-one, but not necessarily complete: On
817# the source, unmapped bitmaps and all bitmaps on unmapped nodes
818# will be ignored. On the destination, encountering an unmapped
819# alias in the incoming migration stream will result in a report,
820# and all further bitmap migration data will then be discarded.
821# Note that the destination does not know about bitmaps it does
822# not receive, so there is no limitation or requirement regarding
823# the number of bitmaps received, or how they are named, or on
824# which nodes they are placed. By default (when this parameter
825# has never been set), bitmap names are mapped to themselves.
826# Nodes are mapped to their block device name if there is one, and
827# to their node name otherwise. (Since 5.2)
31e4c354 828#
8abc8115
HH
829# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
830# limit during live migration. Should be in the range 1 to 1000ms.
831# Defaults to 1000ms. (Since 8.1)
4d807857 832#
09f9ec99 833# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
8abc8115 834# Defaults to 1. (Since 8.1)
09f9ec99 835#
9fb49daa 836# Features:
a937b6aa 837#
4d807857 838# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
8abc8115 839# are experimental.
9fb49daa 840#
48685a8e
MA
841# Since: 2.4
842##
843{ 'enum': 'MigrationParameter',
ee3d96ba
DDAG
844 'data': ['announce-initial', 'announce-max',
845 'announce-rounds', 'announce-step',
846 'compress-level', 'compress-threads', 'decompress-threads',
dc14a470 847 'compress-wait-thread', 'throttle-trigger-threshold',
48685a8e 848 'cpu-throttle-initial', 'cpu-throttle-increment',
cbbf8182 849 'cpu-throttle-tailslow',
d2f1d29b 850 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth',
8b239597 851 'avail-switchover-bandwidth', 'downtime-limit',
9fb49daa
MA
852 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] },
853 'block-incremental',
cbfd6c95 854 'multifd-channels',
4cbc9c7f 855 'xbzrle-cache-size', 'max-postcopy-bandwidth',
9004db48 856 'max-cpu-throttle', 'multifd-compression',
4d807857
HH
857 'multifd-zlib-level', 'multifd-zstd-level',
858 'block-bitmap-mapping',
09f9ec99
HH
859 { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] },
860 'vcpu-dirty-limit'] }
48685a8e
MA
861
862##
863# @MigrateSetParameters:
864#
a937b6aa
MA
865# @announce-initial: Initial delay (in milliseconds) before sending
866# the first announce (Since 4.0)
ee3d96ba 867#
a937b6aa
MA
868# @announce-max: Maximum delay (in milliseconds) between packets in
869# the announcement (Since 4.0)
ee3d96ba 870#
a937b6aa
MA
871# @announce-rounds: Number of self-announce packets sent after
872# migration (Since 4.0)
ee3d96ba 873#
a937b6aa
MA
874# @announce-step: Increase in delay (in milliseconds) between
875# subsequent packets in the announcement (Since 4.0)
ee3d96ba 876#
48685a8e
MA
877# @compress-level: compression level
878#
879# @compress-threads: compression thread count
880#
a937b6aa
MA
881# @compress-wait-thread: Controls behavior when all compression
882# threads are currently busy. If true (default), wait for a free
883# compression thread to become available; otherwise, send the page
884# uncompressed. (Since 3.1)
1d58872a 885#
48685a8e
MA
886# @decompress-threads: decompression thread count
887#
a937b6aa
MA
888# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
889# bytes_xfer_period to trigger throttling. It is expressed as
890# percentage. The default value is 50. (Since 5.0)
dc14a470 891#
48685a8e 892# @cpu-throttle-initial: Initial percentage of time guest cpus are
a937b6aa
MA
893# throttled when migration auto-converge is activated. The
894# default value is 20. (Since 2.7)
48685a8e
MA
895#
896# @cpu-throttle-increment: throttle percentage increase each time
a937b6aa
MA
897# auto-converge detects that migration is not making progress.
898# The default value is 10. (Since 2.7)
899#
900# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
901# the tail stage of throttling, the Guest is very sensitive to CPU
902# percentage while the @cpu-throttle -increment is excessive
903# usually at tail stage. If this parameter is true, we will
904# compute the ideal CPU percentage used by the Guest, which may
905# exactly make the dirty rate match the dirty rate threshold.
906# Then we will choose a smaller throttle increment between the one
907# specified by @cpu-throttle-increment and the one generated by
908# ideal CPU percentage. Therefore, it is compatible to
909# traditional throttling, meanwhile the throttle increment won't
910# be excessive at tail stage. The default value is false. (Since
911# 5.1)
cbbf8182 912#
48685a8e 913# @tls-creds: ID of the 'tls-creds' object that provides credentials
a937b6aa
MA
914# for establishing a TLS connection over the migration data
915# channel. On the outgoing side of the migration, the credentials
916# must be for a 'client' endpoint, while for the incoming side the
917# credentials must be for a 'server' endpoint. Setting this to a
918# non-empty string enables TLS for all migrations. An empty
919# string means that QEMU will use plain text mode for migration,
920# rather than TLS (Since 2.9) Previously (since 2.7), this was
921# reported by omitting tls-creds instead.
922#
923# @tls-hostname: hostname of the target host for the migration. This
924# is required when using x509 based TLS credentials and the
925# migration URI does not already include a hostname. For example
926# if using fd: or exec: based migration, the hostname must be
927# provided so that the server's x509 certificate identity can be
928# validated. (Since 2.7) An empty string means that QEMU will use
929# the hostname associated with the migration URI, if any. (Since
930# 2.9) Previously (since 2.7), this was reported by omitting
931# tls-hostname instead.
932#
933# @max-bandwidth: to set maximum speed for migration. maximum speed
934# in bytes per second. (Since 2.8)
935#
8b239597
PX
936# @avail-switchover-bandwidth: to set the available bandwidth that
937# migration can use during switchover phase. NOTE! This does not
938# limit the bandwidth during switchover, but only for calculations when
939# making decisions to switchover. By default, this value is zero,
940# which means QEMU will estimate the bandwidth automatically. This can
941# be set when the estimated value is not accurate, while the user is
942# able to guarantee such bandwidth is available when switching over.
943# When specified correctly, this can make the switchover decision much
944# more accurate. (Since 8.2)
945#
a937b6aa
MA
946# @downtime-limit: set maximum tolerated downtime for migration.
947# maximum downtime in milliseconds (Since 2.8)
948#
949# @x-checkpoint-delay: the delay time between two COLO checkpoints.
950# (Since 2.8)
48685a8e
MA
951#
952# @block-incremental: Affects how much storage is migrated when the
a937b6aa
MA
953# block migration capability is enabled. When false, the entire
954# storage backing chain is migrated into a flattened image at the
955# destination; when true, only the active qcow2 layer is migrated
956# and the destination must already have access to the same backing
957# chain as was used on the source. (since 2.10)
48685a8e 958#
cbfd6c95 959# @multifd-channels: Number of channels used to migrate data in
a937b6aa
MA
960# parallel. This is the same number that the number of sockets
961# used for migration. The default value is 2 (since 4.0)
4075fb1c 962#
73af8dd8 963# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
a937b6aa
MA
964# needs to be a multiple of the target page size and a power of 2
965# (Since 2.11)
7e555c6c 966#
a937b6aa
MA
967# @max-postcopy-bandwidth: Background transfer bandwidth during
968# postcopy. Defaults to 0 (unlimited). In bytes per second.
969# (Since 3.0)
4cbc9c7f 970#
a937b6aa
MA
971# @max-cpu-throttle: maximum cpu throttle percentage. The default
972# value is 99. (Since 3.1)
4cbc9c7f 973#
a937b6aa
MA
974# @multifd-compression: Which compression method to use. Defaults to
975# none. (Since 5.0)
96eef042 976#
9004db48 977# @multifd-zlib-level: Set the compression level to be used in live
a937b6aa
MA
978# migration, the compression level is an integer between 0 and 9,
979# where 0 means no compression, 1 means the best compression
980# speed, and 9 means best compression ratio which will consume
981# more CPU. Defaults to 1. (Since 5.0)
9004db48 982#
6a9ad154 983# @multifd-zstd-level: Set the compression level to be used in live
a937b6aa
MA
984# migration, the compression level is an integer between 0 and 20,
985# where 0 means no compression, 1 means the best compression
986# speed, and 20 means best compression ratio which will consume
987# more CPU. Defaults to 1. (Since 5.0)
6a9ad154 988#
31e4c354 989# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
a937b6aa
MA
990# aliases for the purpose of dirty bitmap migration. Such aliases
991# may for example be the corresponding names on the opposite site.
992# The mapping must be one-to-one, but not necessarily complete: On
993# the source, unmapped bitmaps and all bitmaps on unmapped nodes
994# will be ignored. On the destination, encountering an unmapped
995# alias in the incoming migration stream will result in a report,
996# and all further bitmap migration data will then be discarded.
997# Note that the destination does not know about bitmaps it does
998# not receive, so there is no limitation or requirement regarding
999# the number of bitmaps received, or how they are named, or on
1000# which nodes they are placed. By default (when this parameter
1001# has never been set), bitmap names are mapped to themselves.
1002# Nodes are mapped to their block device name if there is one, and
1003# to their node name otherwise. (Since 5.2)
31e4c354 1004#
8abc8115
HH
1005# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
1006# limit during live migration. Should be in the range 1 to 1000ms.
1007# Defaults to 1000ms. (Since 8.1)
4d807857 1008#
09f9ec99 1009# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
8abc8115 1010# Defaults to 1. (Since 8.1)
09f9ec99 1011#
9fb49daa 1012# Features:
a937b6aa 1013#
4d807857 1014# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
8abc8115 1015# are experimental.
9fb49daa 1016#
56266c6d 1017# TODO: either fuse back into MigrationParameters, or make
a937b6aa 1018# MigrationParameters members mandatory
56266c6d 1019#
48685a8e
MA
1020# Since: 2.4
1021##
48685a8e 1022{ 'struct': 'MigrateSetParameters',
ee3d96ba
DDAG
1023 'data': { '*announce-initial': 'size',
1024 '*announce-max': 'size',
1025 '*announce-rounds': 'size',
1026 '*announce-step': 'size',
ec17de0a
MA
1027 '*compress-level': 'uint8',
1028 '*compress-threads': 'uint8',
1d58872a 1029 '*compress-wait-thread': 'bool',
ec17de0a
MA
1030 '*decompress-threads': 'uint8',
1031 '*throttle-trigger-threshold': 'uint8',
1032 '*cpu-throttle-initial': 'uint8',
1033 '*cpu-throttle-increment': 'uint8',
cbbf8182 1034 '*cpu-throttle-tailslow': 'bool',
48685a8e
MA
1035 '*tls-creds': 'StrOrNull',
1036 '*tls-hostname': 'StrOrNull',
d2f1d29b 1037 '*tls-authz': 'StrOrNull',
ec17de0a 1038 '*max-bandwidth': 'size',
8b239597 1039 '*avail-switchover-bandwidth': 'size',
ec17de0a 1040 '*downtime-limit': 'uint64',
9fb49daa
MA
1041 '*x-checkpoint-delay': { 'type': 'uint32',
1042 'features': [ 'unstable' ] },
4075fb1c 1043 '*block-incremental': 'bool',
ec17de0a 1044 '*multifd-channels': 'uint8',
7e555c6c 1045 '*xbzrle-cache-size': 'size',
4cbc9c7f 1046 '*max-postcopy-bandwidth': 'size',
ec17de0a 1047 '*max-cpu-throttle': 'uint8',
9004db48 1048 '*multifd-compression': 'MultiFDCompression',
ec17de0a
MA
1049 '*multifd-zlib-level': 'uint8',
1050 '*multifd-zstd-level': 'uint8',
4d807857
HH
1051 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1052 '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
09f9ec99
HH
1053 'features': [ 'unstable' ] },
1054 '*vcpu-dirty-limit': 'uint64'} }
48685a8e
MA
1055
1056##
1057# @migrate-set-parameters:
1058#
1059# Set various migration parameters.
1060#
1061# Since: 2.4
1062#
1063# Example:
1064#
1065# -> { "execute": "migrate-set-parameters" ,
1066# "arguments": { "compress-level": 1 } }
37fa48a4 1067# <- { "return": {} }
48685a8e
MA
1068##
1069{ 'command': 'migrate-set-parameters', 'boxed': true,
1070 'data': 'MigrateSetParameters' }
1071
1072##
1073# @MigrationParameters:
1074#
1075# The optional members aren't actually optional.
1076#
a937b6aa
MA
1077# @announce-initial: Initial delay (in milliseconds) before sending
1078# the first announce (Since 4.0)
ee3d96ba 1079#
a937b6aa
MA
1080# @announce-max: Maximum delay (in milliseconds) between packets in
1081# the announcement (Since 4.0)
ee3d96ba 1082#
a937b6aa
MA
1083# @announce-rounds: Number of self-announce packets sent after
1084# migration (Since 4.0)
ee3d96ba 1085#
a937b6aa
MA
1086# @announce-step: Increase in delay (in milliseconds) between
1087# subsequent packets in the announcement (Since 4.0)
ee3d96ba 1088#
48685a8e
MA
1089# @compress-level: compression level
1090#
1091# @compress-threads: compression thread count
1092#
a937b6aa
MA
1093# @compress-wait-thread: Controls behavior when all compression
1094# threads are currently busy. If true (default), wait for a free
1095# compression thread to become available; otherwise, send the page
1096# uncompressed. (Since 3.1)
1d58872a 1097#
48685a8e
MA
1098# @decompress-threads: decompression thread count
1099#
a937b6aa
MA
1100# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
1101# bytes_xfer_period to trigger throttling. It is expressed as
1102# percentage. The default value is 50. (Since 5.0)
dc14a470 1103#
48685a8e 1104# @cpu-throttle-initial: Initial percentage of time guest cpus are
a937b6aa
MA
1105# throttled when migration auto-converge is activated. (Since
1106# 2.7)
48685a8e
MA
1107#
1108# @cpu-throttle-increment: throttle percentage increase each time
a937b6aa
MA
1109# auto-converge detects that migration is not making progress.
1110# (Since 2.7)
1111#
1112# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
1113# the tail stage of throttling, the Guest is very sensitive to CPU
1114# percentage while the @cpu-throttle -increment is excessive
1115# usually at tail stage. If this parameter is true, we will
1116# compute the ideal CPU percentage used by the Guest, which may
1117# exactly make the dirty rate match the dirty rate threshold.
1118# Then we will choose a smaller throttle increment between the one
1119# specified by @cpu-throttle-increment and the one generated by
1120# ideal CPU percentage. Therefore, it is compatible to
1121# traditional throttling, meanwhile the throttle increment won't
1122# be excessive at tail stage. The default value is false. (Since
1123# 5.1)
cbbf8182 1124#
48685a8e 1125# @tls-creds: ID of the 'tls-creds' object that provides credentials
a937b6aa
MA
1126# for establishing a TLS connection over the migration data
1127# channel. On the outgoing side of the migration, the credentials
1128# must be for a 'client' endpoint, while for the incoming side the
1129# credentials must be for a 'server' endpoint. An empty string
1130# means that QEMU will use plain text mode for migration, rather
1131# than TLS (Since 2.7) Note: 2.8 reports this by omitting
1132# tls-creds instead.
1133#
1134# @tls-hostname: hostname of the target host for the migration. This
1135# is required when using x509 based TLS credentials and the
1136# migration URI does not already include a hostname. For example
1137# if using fd: or exec: based migration, the hostname must be
1138# provided so that the server's x509 certificate identity can be
1139# validated. (Since 2.7) An empty string means that QEMU will use
1140# the hostname associated with the migration URI, if any. (Since
1141# 2.9) Note: 2.8 reports this by omitting tls-hostname instead.
1142#
1143# @tls-authz: ID of the 'authz' object subclass that provides access
1144# control checking of the TLS x509 certificate distinguished name.
1145# (Since 4.0)
1146#
1147# @max-bandwidth: to set maximum speed for migration. maximum speed
1148# in bytes per second. (Since 2.8)
1149#
8b239597
PX
1150# @avail-switchover-bandwidth: to set the available bandwidth that
1151# migration can use during switchover phase. NOTE! This does not
1152# limit the bandwidth during switchover, but only for calculations when
1153# making decisions to switchover. By default, this value is zero,
1154# which means QEMU will estimate the bandwidth automatically. This can
1155# be set when the estimated value is not accurate, while the user is
1156# able to guarantee such bandwidth is available when switching over.
1157# When specified correctly, this can make the switchover decision much
1158# more accurate. (Since 8.2)
1159#
a937b6aa
MA
1160# @downtime-limit: set maximum tolerated downtime for migration.
1161# maximum downtime in milliseconds (Since 2.8)
1162#
1163# @x-checkpoint-delay: the delay time between two COLO checkpoints.
1164# (Since 2.8)
48685a8e
MA
1165#
1166# @block-incremental: Affects how much storage is migrated when the
a937b6aa
MA
1167# block migration capability is enabled. When false, the entire
1168# storage backing chain is migrated into a flattened image at the
1169# destination; when true, only the active qcow2 layer is migrated
1170# and the destination must already have access to the same backing
1171# chain as was used on the source. (since 2.10)
48685a8e 1172#
cbfd6c95 1173# @multifd-channels: Number of channels used to migrate data in
a937b6aa
MA
1174# parallel. This is the same number that the number of sockets
1175# used for migration. The default value is 2 (since 4.0)
4075fb1c 1176#
73af8dd8 1177# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
a937b6aa
MA
1178# needs to be a multiple of the target page size and a power of 2
1179# (Since 2.11)
7e555c6c 1180#
a937b6aa
MA
1181# @max-postcopy-bandwidth: Background transfer bandwidth during
1182# postcopy. Defaults to 0 (unlimited). In bytes per second.
1183# (Since 3.0)
4cbc9c7f 1184#
a937b6aa
MA
1185# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99.
1186# (Since 3.1)
4cbc9c7f 1187#
a937b6aa
MA
1188# @multifd-compression: Which compression method to use. Defaults to
1189# none. (Since 5.0)
96eef042 1190#
9004db48 1191# @multifd-zlib-level: Set the compression level to be used in live
a937b6aa
MA
1192# migration, the compression level is an integer between 0 and 9,
1193# where 0 means no compression, 1 means the best compression
1194# speed, and 9 means best compression ratio which will consume
1195# more CPU. Defaults to 1. (Since 5.0)
9004db48 1196#
6a9ad154 1197# @multifd-zstd-level: Set the compression level to be used in live
a937b6aa
MA
1198# migration, the compression level is an integer between 0 and 20,
1199# where 0 means no compression, 1 means the best compression
1200# speed, and 20 means best compression ratio which will consume
1201# more CPU. Defaults to 1. (Since 5.0)
6a9ad154 1202#
31e4c354 1203# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
a937b6aa
MA
1204# aliases for the purpose of dirty bitmap migration. Such aliases
1205# may for example be the corresponding names on the opposite site.
1206# The mapping must be one-to-one, but not necessarily complete: On
1207# the source, unmapped bitmaps and all bitmaps on unmapped nodes
1208# will be ignored. On the destination, encountering an unmapped
1209# alias in the incoming migration stream will result in a report,
1210# and all further bitmap migration data will then be discarded.
1211# Note that the destination does not know about bitmaps it does
1212# not receive, so there is no limitation or requirement regarding
1213# the number of bitmaps received, or how they are named, or on
1214# which nodes they are placed. By default (when this parameter
1215# has never been set), bitmap names are mapped to themselves.
1216# Nodes are mapped to their block device name if there is one, and
1217# to their node name otherwise. (Since 5.2)
31e4c354 1218#
8abc8115
HH
1219# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
1220# limit during live migration. Should be in the range 1 to 1000ms.
1221# Defaults to 1000ms. (Since 8.1)
4d807857 1222#
09f9ec99 1223# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
8abc8115 1224# Defaults to 1. (Since 8.1)
09f9ec99 1225#
9fb49daa 1226# Features:
a937b6aa 1227#
4d807857 1228# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
8abc8115 1229# are experimental.
9fb49daa 1230#
48685a8e
MA
1231# Since: 2.4
1232##
1233{ 'struct': 'MigrationParameters',
ee3d96ba
DDAG
1234 'data': { '*announce-initial': 'size',
1235 '*announce-max': 'size',
1236 '*announce-rounds': 'size',
1237 '*announce-step': 'size',
1238 '*compress-level': 'uint8',
741d4086 1239 '*compress-threads': 'uint8',
1d58872a 1240 '*compress-wait-thread': 'bool',
741d4086 1241 '*decompress-threads': 'uint8',
dc14a470 1242 '*throttle-trigger-threshold': 'uint8',
741d4086
JQ
1243 '*cpu-throttle-initial': 'uint8',
1244 '*cpu-throttle-increment': 'uint8',
cbbf8182 1245 '*cpu-throttle-tailslow': 'bool',
48685a8e
MA
1246 '*tls-creds': 'str',
1247 '*tls-hostname': 'str',
d2f1d29b 1248 '*tls-authz': 'str',
741d4086 1249 '*max-bandwidth': 'size',
8b239597 1250 '*avail-switchover-bandwidth': 'size',
741d4086 1251 '*downtime-limit': 'uint64',
9fb49daa
MA
1252 '*x-checkpoint-delay': { 'type': 'uint32',
1253 'features': [ 'unstable' ] },
ec17de0a 1254 '*block-incremental': 'bool',
cbfd6c95 1255 '*multifd-channels': 'uint8',
7e555c6c 1256 '*xbzrle-cache-size': 'size',
dbb28bc8 1257 '*max-postcopy-bandwidth': 'size',
96eef042 1258 '*max-cpu-throttle': 'uint8',
9004db48 1259 '*multifd-compression': 'MultiFDCompression',
6a9ad154 1260 '*multifd-zlib-level': 'uint8',
31e4c354 1261 '*multifd-zstd-level': 'uint8',
4d807857
HH
1262 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1263 '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
09f9ec99
HH
1264 'features': [ 'unstable' ] },
1265 '*vcpu-dirty-limit': 'uint64'} }
48685a8e
MA
1266
1267##
1268# @query-migrate-parameters:
1269#
1270# Returns information about the current migration parameters
1271#
1272# Returns: @MigrationParameters
1273#
1274# Since: 2.4
1275#
1276# Example:
1277#
1278# -> { "execute": "query-migrate-parameters" }
1279# <- { "return": {
1280# "decompress-threads": 2,
1281# "cpu-throttle-increment": 10,
1282# "compress-threads": 8,
1283# "compress-level": 1,
1284# "cpu-throttle-initial": 20,
1285# "max-bandwidth": 33554432,
1286# "downtime-limit": 300
1287# }
1288# }
48685a8e
MA
1289##
1290{ 'command': 'query-migrate-parameters',
1291 'returns': 'MigrationParameters' }
1292
48685a8e
MA
1293##
1294# @migrate-start-postcopy:
1295#
a937b6aa
MA
1296# Followup to a migration command to switch the migration to postcopy
1297# mode. The postcopy-ram capability must be set on both source and
1298# destination before the original migration command.
48685a8e
MA
1299#
1300# Since: 2.5
1301#
1302# Example:
1303#
1304# -> { "execute": "migrate-start-postcopy" }
1305# <- { "return": {} }
48685a8e
MA
1306##
1307{ 'command': 'migrate-start-postcopy' }
1308
1309##
1310# @MIGRATION:
1311#
1312# Emitted when a migration event happens
1313#
1314# @status: @MigrationStatus describing the current migration status.
1315#
1316# Since: 2.4
1317#
1318# Example:
1319#
1320# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001},
1321# "event": "MIGRATION",
1322# "data": {"status": "completed"} }
48685a8e
MA
1323##
1324{ 'event': 'MIGRATION',
1325 'data': {'status': 'MigrationStatus'}}
1326
1327##
1328# @MIGRATION_PASS:
1329#
a937b6aa
MA
1330# Emitted from the source side of a migration at the start of each
1331# pass (when it syncs the dirty bitmap)
48685a8e
MA
1332#
1333# @pass: An incrementing count (starting at 1 on the first pass)
1334#
1335# Since: 2.6
1336#
1337# Example:
1338#
37fa48a4
MA
1339# <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225},
1340# "event": "MIGRATION_PASS", "data": {"pass": 2} }
48685a8e
MA
1341##
1342{ 'event': 'MIGRATION_PASS',
1343 'data': { 'pass': 'int' } }
1344
1345##
1346# @COLOMessage:
1347#
1348# The message transmission between Primary side and Secondary side.
1349#
1350# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1351#
a937b6aa
MA
1352# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for
1353# checkpointing
48685a8e
MA
1354#
1355# @checkpoint-reply: SVM gets PVM's checkpoint request
1356#
1357# @vmstate-send: VM's state will be sent by PVM.
1358#
1359# @vmstate-size: The total size of VMstate.
1360#
1361# @vmstate-received: VM's state has been received by SVM.
1362#
1363# @vmstate-loaded: VM's state has been loaded by SVM.
1364#
1365# Since: 2.8
1366##
1367{ 'enum': 'COLOMessage',
1368 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1369 'vmstate-send', 'vmstate-size', 'vmstate-received',
1370 'vmstate-loaded' ] }
1371
1372##
1373# @COLOMode:
1374#
41b6b779 1375# The COLO current mode.
48685a8e 1376#
41b6b779 1377# @none: COLO is disabled.
48685a8e 1378#
41b6b779 1379# @primary: COLO node in primary side.
48685a8e 1380#
41b6b779 1381# @secondary: COLO node in slave side.
48685a8e
MA
1382#
1383# Since: 2.8
1384##
1385{ 'enum': 'COLOMode',
41b6b779 1386 'data': [ 'none', 'primary', 'secondary'] }
48685a8e
MA
1387
1388##
1389# @FailoverStatus:
1390#
1391# An enumeration of COLO failover status
1392#
1393# @none: no failover has ever happened
1394#
1395# @require: got failover requirement but not handled
1396#
1397# @active: in the process of doing failover
1398#
1399# @completed: finish the process of failover
1400#
a937b6aa
MA
1401# @relaunch: restart the failover process, from 'none' -> 'completed'
1402# (Since 2.9)
48685a8e
MA
1403#
1404# Since: 2.8
1405##
1406{ 'enum': 'FailoverStatus',
1407 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] }
1408
9ecff6d6
HZ
1409##
1410# @COLO_EXIT:
1411#
1412# Emitted when VM finishes COLO mode due to some errors happening or
1413# at the request of users.
1414#
1415# @mode: report COLO mode when COLO exited.
1416#
1417# @reason: describes the reason for the COLO exit.
1418#
1419# Since: 3.1
1420#
1421# Example:
1422#
1423# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172},
1424# "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } }
9ecff6d6
HZ
1425##
1426{ 'event': 'COLO_EXIT',
1427 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } }
1428
1429##
1430# @COLOExitReason:
1431#
3a43ac47 1432# The reason for a COLO exit.
9ecff6d6 1433#
a937b6aa
MA
1434# @none: failover has never happened. This state does not occur in
1435# the COLO_EXIT event, and is only visible in the result of
1436# query-colo-status.
9ecff6d6 1437#
3a43ac47 1438# @request: COLO exit is due to an external request.
9ecff6d6 1439#
3a43ac47
ZC
1440# @error: COLO exit is due to an internal error.
1441#
1442# @processing: COLO is currently handling a failover (since 4.0).
9ecff6d6
HZ
1443#
1444# Since: 3.1
1445##
1446{ 'enum': 'COLOExitReason',
3a43ac47 1447 'data': [ 'none', 'request', 'error' , 'processing' ] }
9ecff6d6 1448
48685a8e
MA
1449##
1450# @x-colo-lost-heartbeat:
1451#
a937b6aa
MA
1452# Tell qemu that heartbeat is lost, request it to do takeover
1453# procedures. If this command is sent to the PVM, the Primary side
1454# will exit COLO mode. If sent to the Secondary, the Secondary side
1455# will run failover work, then takes over server operation to become
1456# the service VM.
48685a8e 1457#
9fb49daa 1458# Features:
a937b6aa 1459#
9fb49daa
MA
1460# @unstable: This command is experimental.
1461#
48685a8e
MA
1462# Since: 2.8
1463#
1464# Example:
1465#
1466# -> { "execute": "x-colo-lost-heartbeat" }
1467# <- { "return": {} }
48685a8e 1468##
9fb49daa 1469{ 'command': 'x-colo-lost-heartbeat',
51e47cf8
VSO
1470 'features': [ 'unstable' ],
1471 'if': 'CONFIG_REPLICATION' }
48685a8e
MA
1472
1473##
1474# @migrate_cancel:
1475#
1476# Cancel the current executing migration process.
1477#
1478# Returns: nothing on success
1479#
a937b6aa
MA
1480# Notes: This command succeeds even if there is no migration process
1481# running.
48685a8e 1482#
9bc6e893 1483# Since: 0.14
48685a8e
MA
1484#
1485# Example:
1486#
1487# -> { "execute": "migrate_cancel" }
1488# <- { "return": {} }
48685a8e
MA
1489##
1490{ 'command': 'migrate_cancel' }
1491
89cfc02c
DDAG
1492##
1493# @migrate-continue:
1494#
1495# Continue migration when it's in a paused state.
1496#
1497# @state: The state the migration is currently expected to be in
1498#
1499# Returns: nothing on success
4ae65a52 1500#
89cfc02c 1501# Since: 2.11
4ae65a52 1502#
89cfc02c
DDAG
1503# Example:
1504#
1505# -> { "execute": "migrate-continue" , "arguments":
1506# { "state": "pre-switchover" } }
1507# <- { "return": {} }
1508##
1509{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} }
1510
48685a8e
MA
1511##
1512# @migrate:
1513#
1514# Migrates the current running guest to another Virtual Machine.
1515#
1516# @uri: the Uniform Resource Identifier of the destination VM
1517#
1518# @blk: do block migration (full disk copy)
1519#
1520# @inc: incremental disk copy migration
1521#
a937b6aa
MA
1522# @detach: this argument exists only for compatibility reasons and is
1523# ignored by QEMU
48685a8e 1524#
51f63ec7 1525# @resume: resume one paused migration, default "off". (since 3.0)
7a4da28b 1526#
48685a8e
MA
1527# Returns: nothing on success
1528#
9bc6e893 1529# Since: 0.14
48685a8e
MA
1530#
1531# Notes:
1532#
a937b6aa
MA
1533# 1. The 'query-migrate' command should be used to check migration's
1534# progress and final result (this information is provided by the
1535# 'status' member)
48685a8e
MA
1536#
1537# 2. All boolean arguments default to false
1538#
a937b6aa
MA
1539# 3. The user Monitor's "detach" argument is invalid in QMP and should
1540# not be used
48685a8e
MA
1541#
1542# Example:
1543#
1544# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
1545# <- { "return": {} }
48685a8e
MA
1546##
1547{ 'command': 'migrate',
7a4da28b
PX
1548 'data': {'uri': 'str', '*blk': 'bool', '*inc': 'bool',
1549 '*detach': 'bool', '*resume': 'bool' } }
48685a8e
MA
1550
1551##
1552# @migrate-incoming:
1553#
a937b6aa
MA
1554# Start an incoming migration, the qemu must have been started with
1555# -incoming defer
48685a8e
MA
1556#
1557# @uri: The Uniform Resource Identifier identifying the source or
a937b6aa 1558# address to listen on
48685a8e
MA
1559#
1560# Returns: nothing on success
1561#
1562# Since: 2.3
1563#
1564# Notes:
1565#
a937b6aa
MA
1566# 1. It's a bad idea to use a string for the uri, but it needs
1567# to stay compatible with -incoming and the format of the uri
1568# is already exposed above libvirt.
48685a8e 1569#
a937b6aa
MA
1570# 2. QEMU must be started with -incoming defer to allow
1571# migrate-incoming to be used.
48685a8e
MA
1572#
1573# 3. The uri format is the same as for -incoming
1574#
1575# Example:
1576#
1577# -> { "execute": "migrate-incoming",
1578# "arguments": { "uri": "tcp::4446" } }
1579# <- { "return": {} }
48685a8e
MA
1580##
1581{ 'command': 'migrate-incoming', 'data': {'uri': 'str' } }
1582
1583##
1584# @xen-save-devices-state:
1585#
a937b6aa
MA
1586# Save the state of all devices to file. The RAM and the block
1587# devices of the VM are not saved by this command.
48685a8e
MA
1588#
1589# @filename: the file to save the state of the devices to as binary
a937b6aa
MA
1590# data. See xen-save-devices-state.txt for a description of the
1591# binary format.
48685a8e 1592#
a937b6aa
MA
1593# @live: Optional argument to ask QEMU to treat this command as part
1594# of a live migration. Default to true. (since 2.11)
5d6c599f 1595#
48685a8e
MA
1596# Returns: Nothing on success
1597#
1598# Since: 1.1
1599#
1600# Example:
1601#
1602# -> { "execute": "xen-save-devices-state",
1603# "arguments": { "filename": "/tmp/save" } }
1604# <- { "return": {} }
48685a8e 1605##
5d6c599f
AP
1606{ 'command': 'xen-save-devices-state',
1607 'data': {'filename': 'str', '*live':'bool' } }
48685a8e 1608
28af9ba2
PMD
1609##
1610# @xen-set-global-dirty-log:
1611#
1612# Enable or disable the global dirty log mode.
1613#
1614# @enable: true to enable, false to disable.
1615#
1616# Returns: nothing
1617#
1618# Since: 1.3
1619#
1620# Example:
1621#
1622# -> { "execute": "xen-set-global-dirty-log",
1623# "arguments": { "enable": true } }
1624# <- { "return": {} }
28af9ba2
PMD
1625##
1626{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1627
1628##
1629# @xen-load-devices-state:
1630#
a937b6aa
MA
1631# Load the state of all devices from file. The RAM and the block
1632# devices of the VM are not loaded by this command.
28af9ba2
PMD
1633#
1634# @filename: the file to load the state of the devices from as binary
a937b6aa
MA
1635# data. See xen-save-devices-state.txt for a description of the
1636# binary format.
28af9ba2
PMD
1637#
1638# Since: 2.7
1639#
1640# Example:
1641#
1642# -> { "execute": "xen-load-devices-state",
1643# "arguments": { "filename": "/tmp/resume" } }
1644# <- { "return": {} }
28af9ba2
PMD
1645##
1646{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
1647
48685a8e
MA
1648##
1649# @xen-set-replication:
1650#
1651# Enable or disable replication.
1652#
1653# @enable: true to enable, false to disable.
1654#
1655# @primary: true for primary or false for secondary.
1656#
a937b6aa
MA
1657# @failover: true to do failover, false to stop. but cannot be
1658# specified if 'enable' is true. default value is false.
48685a8e
MA
1659#
1660# Returns: nothing.
1661#
1662# Example:
1663#
1664# -> { "execute": "xen-set-replication",
1665# "arguments": {"enable": true, "primary": false} }
1666# <- { "return": {} }
1667#
1668# Since: 2.9
1669##
1670{ 'command': 'xen-set-replication',
fd658a7b 1671 'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' },
8a9f1e1d 1672 'if': 'CONFIG_REPLICATION' }
48685a8e
MA
1673
1674##
1675# @ReplicationStatus:
1676#
1677# The result format for 'query-xen-replication-status'.
1678#
1679# @error: true if an error happened, false if replication is normal.
1680#
a937b6aa
MA
1681# @desc: the human readable error description string, when @error is
1682# 'true'.
48685a8e
MA
1683#
1684# Since: 2.9
1685##
1686{ 'struct': 'ReplicationStatus',
335d10cd 1687 'data': { 'error': 'bool', '*desc': 'str' },
8a9f1e1d 1688 'if': 'CONFIG_REPLICATION' }
48685a8e
MA
1689
1690##
1691# @query-xen-replication-status:
1692#
1693# Query replication status while the vm is running.
1694#
f4347129 1695# Returns: A @ReplicationStatus object showing the status.
48685a8e
MA
1696#
1697# Example:
1698#
1699# -> { "execute": "query-xen-replication-status" }
1700# <- { "return": { "error": false } }
1701#
1702# Since: 2.9
1703##
1704{ 'command': 'query-xen-replication-status',
335d10cd 1705 'returns': 'ReplicationStatus',
8a9f1e1d 1706 'if': 'CONFIG_REPLICATION' }
48685a8e
MA
1707
1708##
1709# @xen-colo-do-checkpoint:
1710#
1711# Xen uses this command to notify replication to trigger a checkpoint.
1712#
1713# Returns: nothing.
1714#
1715# Example:
1716#
1717# -> { "execute": "xen-colo-do-checkpoint" }
1718# <- { "return": {} }
1719#
1720# Since: 2.9
1721##
335d10cd 1722{ 'command': 'xen-colo-do-checkpoint',
8a9f1e1d 1723 'if': 'CONFIG_REPLICATION' }
02affd41 1724
f56c0065
ZC
1725##
1726# @COLOStatus:
1727#
1728# The result format for 'query-colo-status'.
1729#
a937b6aa
MA
1730# @mode: COLO running mode. If COLO is running, this field will
1731# return 'primary' or 'secondary'.
f56c0065 1732#
a937b6aa
MA
1733# @last-mode: COLO last running mode. If COLO is running, this field
1734# will return same like mode field, after failover we can use this
1735# field to get last colo mode. (since 4.0)
5ed0deca 1736#
f56c0065
ZC
1737# @reason: describes the reason for the COLO exit.
1738#
ea3b23e5 1739# Since: 3.1
f56c0065
ZC
1740##
1741{ 'struct': 'COLOStatus',
5cc8f9eb 1742 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode',
51e47cf8
VSO
1743 'reason': 'COLOExitReason' },
1744 'if': 'CONFIG_REPLICATION' }
f56c0065
ZC
1745
1746##
1747# @query-colo-status:
1748#
1749# Query COLO status while the vm is running.
1750#
1751# Returns: A @COLOStatus object showing the status.
1752#
1753# Example:
1754#
1755# -> { "execute": "query-colo-status" }
51ec294d 1756# <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } }
f56c0065 1757#
ea3b23e5 1758# Since: 3.1
f56c0065
ZC
1759##
1760{ 'command': 'query-colo-status',
51e47cf8
VSO
1761 'returns': 'COLOStatus',
1762 'if': 'CONFIG_REPLICATION' }
f56c0065 1763
02affd41
PX
1764##
1765# @migrate-recover:
1766#
1767# Provide a recovery migration stream URI.
1768#
1769# @uri: the URI to be used for the recovery of migration stream.
1770#
1771# Returns: nothing.
1772#
1773# Example:
1774#
1775# -> { "execute": "migrate-recover",
1776# "arguments": { "uri": "tcp:192.168.1.200:12345" } }
1777# <- { "return": {} }
1778#
51f63ec7 1779# Since: 3.0
02affd41 1780##
b0ddeba2
MAL
1781{ 'command': 'migrate-recover',
1782 'data': { 'uri': 'str' },
02affd41 1783 'allow-oob': true }
bfbf89c2
PX
1784
1785##
1786# @migrate-pause:
1787#
1788# Pause a migration. Currently it only supports postcopy.
1789#
1790# Returns: nothing.
1791#
1792# Example:
1793#
1794# -> { "execute": "migrate-pause" }
1795# <- { "return": {} }
1796#
51f63ec7 1797# Since: 3.0
bfbf89c2
PX
1798##
1799{ 'command': 'migrate-pause', 'allow-oob': true }
d328e6f3
JF
1800
1801##
1802# @UNPLUG_PRIMARY:
1803#
1804# Emitted from source side of a migration when migration state is
a937b6aa
MA
1805# WAIT_UNPLUG. Device was unplugged by guest operating system. Device
1806# resources in QEMU are kept on standby to be able to re-plug it in
1807# case of migration failure.
d328e6f3
JF
1808#
1809# @device-id: QEMU device id of the unplugged device
1810#
1811# Since: 4.2
1812#
1813# Example:
4ae65a52 1814#
0df5e9a3
VT
1815# <- { "event": "UNPLUG_PRIMARY",
1816# "data": { "device-id": "hostdev0" },
1817# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
d328e6f3
JF
1818##
1819{ 'event': 'UNPLUG_PRIMARY',
1820 'data': { 'device-id': 'str' } }
7df3aa30 1821
71864ead
HH
1822##
1823# @DirtyRateVcpu:
1824#
1825# Dirty rate of vcpu.
1826#
1827# @id: vcpu index.
1828#
1829# @dirty-rate: dirty rate.
1830#
f78d4ed7 1831# Since: 6.2
71864ead
HH
1832##
1833{ 'struct': 'DirtyRateVcpu',
1834 'data': { 'id': 'int', 'dirty-rate': 'int64' } }
1835
7df3aa30
CZ
1836##
1837# @DirtyRateStatus:
1838#
5034e3d4 1839# Dirty page rate measurement status.
7df3aa30 1840#
5034e3d4 1841# @unstarted: measuring thread has not been started yet
7df3aa30 1842#
5034e3d4 1843# @measuring: measuring thread is running
7df3aa30 1844#
5034e3d4 1845# @measured: dirty page rate is measured and the results are available
7df3aa30
CZ
1846#
1847# Since: 5.2
7df3aa30
CZ
1848##
1849{ 'enum': 'DirtyRateStatus',
1850 'data': [ 'unstarted', 'measuring', 'measured'] }
4c437254 1851
71864ead
HH
1852##
1853# @DirtyRateMeasureMode:
1854#
5034e3d4
AG
1855# Method used to measure dirty page rate. Differences between
1856# available methods are explained in @calc-dirty-rate.
71864ead 1857#
5034e3d4 1858# @page-sampling: use page sampling
71864ead 1859#
5034e3d4 1860# @dirty-ring: use dirty ring
826b8bc8 1861#
5034e3d4 1862# @dirty-bitmap: use dirty bitmap
71864ead 1863#
f78d4ed7 1864# Since: 6.2
71864ead
HH
1865##
1866{ 'enum': 'DirtyRateMeasureMode',
826b8bc8 1867 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] }
71864ead 1868
34a68001
AG
1869##
1870# @TimeUnit:
1871#
1872# Specifies unit in which time-related value is specified.
1873#
1874# @second: value is in seconds
1875#
1876# @millisecond: value is in milliseconds
1877#
1878# Since 8.2
1879#
1880##
1881{ 'enum': 'TimeUnit',
1882 'data': ['second', 'millisecond'] }
1883
4c437254
CZ
1884##
1885# @DirtyRateInfo:
1886#
5034e3d4 1887# Information about measured dirty page rate.
4c437254 1888#
a937b6aa 1889# @dirty-rate: an estimate of the dirty page rate of the VM in units
5034e3d4 1890# of MiB/s. Value is present only when @status is 'measured'.
4c437254 1891#
5034e3d4 1892# @status: current status of dirty page rate measurements
4c437254
CZ
1893#
1894# @start-time: start time in units of second for calculation
1895#
34a68001
AG
1896# @calc-time: time period for which dirty page rate was measured,
1897# expressed and rounded down to @calc-time-unit.
1898#
1899# @calc-time-unit: time unit of @calc-time (Since 8.2)
4c437254 1900#
5034e3d4
AG
1901# @sample-pages: number of sampled pages per GiB of guest memory.
1902# Valid only in page-sampling mode (Since 6.1)
7afa08cd 1903#
5034e3d4 1904# @mode: mode that was used to measure dirty page rate (Since 6.2)
0e21bf24 1905#
5034e3d4 1906# @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was
a937b6aa 1907# specified (Since 6.2)
0e21bf24 1908#
4c437254 1909# Since: 5.2
4c437254
CZ
1910##
1911{ 'struct': 'DirtyRateInfo',
b1a859cf 1912 'data': {'*dirty-rate': 'int64',
4c437254
CZ
1913 'status': 'DirtyRateStatus',
1914 'start-time': 'int64',
7afa08cd 1915 'calc-time': 'int64',
34a68001 1916 'calc-time-unit': 'TimeUnit',
0e21bf24
HH
1917 'sample-pages': 'uint64',
1918 'mode': 'DirtyRateMeasureMode',
1919 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } }
4c437254
CZ
1920
1921##
1922# @calc-dirty-rate:
1923#
5034e3d4
AG
1924# Start measuring dirty page rate of the VM. Results can be retrieved
1925# with @query-dirty-rate after measurements are completed.
1926#
1927# Dirty page rate is the number of pages changed in a given time
1928# period expressed in MiB/s. The following methods of calculation are
1929# available:
1930#
1931# 1. In page sampling mode, a random subset of pages are selected and
1932# hashed twice: once at the beginning of measurement time period,
1933# and once again at the end. If two hashes for some page are
1934# different, the page is counted as changed. Since this method
1935# relies on sampling and hashing, calculated dirty page rate is
1936# only an estimate of its true value. Increasing @sample-pages
1937# improves estimation quality at the cost of higher computational
1938# overhead.
1939#
1940# 2. Dirty bitmap mode captures writes to memory (for example by
1941# temporarily revoking write access to all pages) and counting page
1942# faults. Information about modified pages is collected into a
1943# bitmap, where each bit corresponds to one guest page. This mode
1944# requires that KVM accelerator property "dirty-ring-size" is *not*
1945# set.
1946#
1947# 3. Dirty ring mode is similar to dirty bitmap mode, but the
1948# information about modified pages is collected into ring buffer.
1949# This mode tracks page modification per each vCPU separately. It
1950# requires that KVM accelerator property "dirty-ring-size" is set.
1951#
34a68001
AG
1952# @calc-time: time period for which dirty page rate is calculated.
1953# By default it is specified in seconds, but the unit can be set
1954# explicitly with @calc-time-unit. Note that larger @calc-time
1955# values will typically result in smaller dirty page rates because
1956# page dirtying is a one-time event. Once some page is counted
1957# as dirty during @calc-time period, further writes to this page
1958# will not increase dirty page rate anymore.
1959#
1960# @calc-time-unit: time unit in which @calc-time is specified.
1961# By default it is seconds. (Since 8.2)
5034e3d4
AG
1962#
1963# @sample-pages: number of sampled pages per each GiB of guest memory.
1964# Default value is 512. For 4KiB guest pages this corresponds to
1965# sampling ratio of 0.2%. This argument is used only in page
1966# sampling mode. (Since 6.1)
1967#
1968# @mode: mechanism for tracking dirty pages. Default value is
1969# 'page-sampling'. Others are 'dirty-bitmap' and 'dirty-ring'.
1970# (Since 6.1)
0e21bf24 1971#
4c437254
CZ
1972# Since: 5.2
1973#
1974# Example:
4ae65a52 1975#
37fa48a4
MA
1976# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1,
1977# 'sample-pages': 512} }
1978# <- { "return": {} }
34a68001
AG
1979#
1980# Measure dirty rate using dirty bitmap for 500 milliseconds:
1981#
1982# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 500,
1983# "calc-time-unit": "millisecond", "mode": "dirty-bitmap"} }
1984#
1985# <- { "return": {} }
4c437254 1986##
7afa08cd 1987{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64',
34a68001 1988 '*calc-time-unit': 'TimeUnit',
0e21bf24
HH
1989 '*sample-pages': 'int',
1990 '*mode': 'DirtyRateMeasureMode'} }
4c437254
CZ
1991
1992##
1993# @query-dirty-rate:
1994#
5034e3d4 1995# Query results of the most recent invocation of @calc-dirty-rate.
4c437254 1996#
34a68001
AG
1997# @calc-time-unit: time unit in which to report calculation time.
1998# By default it is reported in seconds. (Since 8.2)
1999#
4c437254 2000# Since: 5.2
5034e3d4
AG
2001#
2002# Examples:
2003#
2004# 1. Measurement is in progress:
2005#
2006# <- {"status": "measuring", "sample-pages": 512,
320a6ccc 2007# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10,
34a68001 2008# "calc-time-unit": "second"}
5034e3d4
AG
2009#
2010# 2. Measurement has been completed:
2011#
2012# <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108,
320a6ccc 2013# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10,
34a68001 2014# "calc-time-unit": "second"}
4c437254 2015##
34a68001
AG
2016{ 'command': 'query-dirty-rate', 'data': {'*calc-time-unit': 'TimeUnit' },
2017 'returns': 'DirtyRateInfo' }
0f0d83a4 2018
f3b2e38c
HH
2019##
2020# @DirtyLimitInfo:
2021#
2022# Dirty page rate limit information of a virtual CPU.
2023#
2024# @cpu-index: index of a virtual CPU.
2025#
2026# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual
a937b6aa 2027# CPU, 0 means unlimited.
f3b2e38c
HH
2028#
2029# @current-rate: current dirty page rate (MB/s) for a virtual CPU.
2030#
2031# Since: 7.1
f3b2e38c
HH
2032##
2033{ 'struct': 'DirtyLimitInfo',
2034 'data': { 'cpu-index': 'int',
2035 'limit-rate': 'uint64',
2036 'current-rate': 'uint64' } }
2037
2038##
2039# @set-vcpu-dirty-limit:
2040#
2041# Set the upper limit of dirty page rate for virtual CPUs.
2042#
a937b6aa
MA
2043# Requires KVM with accelerator property "dirty-ring-size" set. A
2044# virtual CPU's dirty page rate is a measure of its memory load. To
2045# observe dirty page rates, use @calc-dirty-rate.
f3b2e38c
HH
2046#
2047# @cpu-index: index of a virtual CPU, default is all.
2048#
2049# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs.
2050#
2051# Since: 7.1
2052#
2053# Example:
37fa48a4
MA
2054#
2055# -> {"execute": "set-vcpu-dirty-limit"}
2056# "arguments": { "dirty-rate": 200,
2057# "cpu-index": 1 } }
2058# <- { "return": {} }
f3b2e38c
HH
2059##
2060{ 'command': 'set-vcpu-dirty-limit',
2061 'data': { '*cpu-index': 'int',
2062 'dirty-rate': 'uint64' } }
2063
2064##
2065# @cancel-vcpu-dirty-limit:
2066#
2067# Cancel the upper limit of dirty page rate for virtual CPUs.
2068#
2069# Cancel the dirty page limit for the vCPU which has been set with
a937b6aa 2070# set-vcpu-dirty-limit command. Note that this command requires
f3b2e38c
HH
2071# support from dirty ring, same as the "set-vcpu-dirty-limit".
2072#
2073# @cpu-index: index of a virtual CPU, default is all.
2074#
2075# Since: 7.1
2076#
2077# Example:
37fa48a4
MA
2078#
2079# -> {"execute": "cancel-vcpu-dirty-limit"},
2080# "arguments": { "cpu-index": 1 } }
2081# <- { "return": {} }
f3b2e38c
HH
2082##
2083{ 'command': 'cancel-vcpu-dirty-limit',
2084 'data': { '*cpu-index': 'int'} }
2085
2086##
2087# @query-vcpu-dirty-limit:
2088#
a937b6aa
MA
2089# Returns information about virtual CPU dirty page rate limits, if
2090# any.
f3b2e38c
HH
2091#
2092# Since: 7.1
2093#
2094# Example:
37fa48a4
MA
2095#
2096# -> {"execute": "query-vcpu-dirty-limit"}
2097# <- {"return": [
2098# { "limit-rate": 60, "current-rate": 3, "cpu-index": 0},
2099# { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]}
f3b2e38c
HH
2100##
2101{ 'command': 'query-vcpu-dirty-limit',
2102 'returns': [ 'DirtyLimitInfo' ] }
2103
67132620
JJ
2104##
2105# @MigrationThreadInfo:
2106#
2107# Information about migrationthreads
2108#
2109# @name: the name of migration thread
2110#
2111# @thread-id: ID of the underlying host thread
2112#
2113# Since: 7.2
2114##
2115{ 'struct': 'MigrationThreadInfo',
2116 'data': {'name': 'str',
2117 'thread-id': 'int'} }
2118
2119##
2120# @query-migrationthreads:
2121#
2122# Returns information of migration threads
2123#
2124# data: migration thread name
2125#
7c3def93 2126# Returns: information about migration threads
67132620
JJ
2127#
2128# Since: 7.2
2129##
2130{ 'command': 'query-migrationthreads',
2131 'returns': ['MigrationThreadInfo'] }
2132
0f0d83a4
DB
2133##
2134# @snapshot-save:
2135#
2136# Save a VM snapshot
2137#
2138# @job-id: identifier for the newly created job
a937b6aa 2139#
0f0d83a4 2140# @tag: name of the snapshot to create
a937b6aa 2141#
0f0d83a4 2142# @vmstate: block device node name to save vmstate to
a937b6aa 2143#
0f0d83a4
DB
2144# @devices: list of block device node names to save a snapshot to
2145#
2146# Applications should not assume that the snapshot save is complete
a937b6aa
MA
2147# when this command returns. The job commands / events must be used
2148# to determine completion and to fetch details of any errors that
2149# arise.
0f0d83a4 2150#
a937b6aa
MA
2151# Note that execution of the guest CPUs may be stopped during the time
2152# it takes to save the snapshot. A future version of QEMU may ensure
2153# CPUs are executing continuously.
0f0d83a4 2154#
a937b6aa
MA
2155# It is strongly recommended that @devices contain all writable block
2156# device nodes if a consistent snapshot is required.
0f0d83a4
DB
2157#
2158# If @tag already exists, an error will be reported
2159#
2160# Returns: nothing
2161#
2162# Example:
2163#
2164# -> { "execute": "snapshot-save",
b1ca5322 2165# "arguments": {
0f0d83a4
DB
2166# "job-id": "snapsave0",
2167# "tag": "my-snap",
2168# "vmstate": "disk0",
2169# "devices": ["disk0", "disk1"]
2170# }
2171# }
2172# <- { "return": { } }
2173# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2174# "timestamp": {"seconds": 1432121972, "microseconds": 744001},
0f0d83a4
DB
2175# "data": {"status": "created", "id": "snapsave0"}}
2176# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2177# "timestamp": {"seconds": 1432122172, "microseconds": 744001},
0f0d83a4 2178# "data": {"status": "running", "id": "snapsave0"}}
6e7a37ff
VT
2179# <- {"event": "STOP",
2180# "timestamp": {"seconds": 1432122372, "microseconds": 744001} }
2181# <- {"event": "RESUME",
2182# "timestamp": {"seconds": 1432122572, "microseconds": 744001} }
0f0d83a4 2183# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2184# "timestamp": {"seconds": 1432122772, "microseconds": 744001},
0f0d83a4
DB
2185# "data": {"status": "waiting", "id": "snapsave0"}}
2186# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2187# "timestamp": {"seconds": 1432122972, "microseconds": 744001},
0f0d83a4
DB
2188# "data": {"status": "pending", "id": "snapsave0"}}
2189# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2190# "timestamp": {"seconds": 1432123172, "microseconds": 744001},
0f0d83a4
DB
2191# "data": {"status": "concluded", "id": "snapsave0"}}
2192# -> {"execute": "query-jobs"}
2193# <- {"return": [{"current-progress": 1,
2194# "status": "concluded",
2195# "total-progress": 1,
2196# "type": "snapshot-save",
2197# "id": "snapsave0"}]}
2198#
2199# Since: 6.0
2200##
2201{ 'command': 'snapshot-save',
2202 'data': { 'job-id': 'str',
2203 'tag': 'str',
2204 'vmstate': 'str',
2205 'devices': ['str'] } }
2206
2207##
2208# @snapshot-load:
2209#
2210# Load a VM snapshot
2211#
2212# @job-id: identifier for the newly created job
a937b6aa 2213#
0f0d83a4 2214# @tag: name of the snapshot to load.
a937b6aa 2215#
0f0d83a4 2216# @vmstate: block device node name to load vmstate from
a937b6aa 2217#
0f0d83a4
DB
2218# @devices: list of block device node names to load a snapshot from
2219#
2220# Applications should not assume that the snapshot load is complete
a937b6aa
MA
2221# when this command returns. The job commands / events must be used
2222# to determine completion and to fetch details of any errors that
2223# arise.
0f0d83a4
DB
2224#
2225# Note that execution of the guest CPUs will be stopped during the
2226# time it takes to load the snapshot.
2227#
a937b6aa
MA
2228# It is strongly recommended that @devices contain all writable block
2229# device nodes that can have changed since the original @snapshot-save
2230# command execution.
0f0d83a4
DB
2231#
2232# Returns: nothing
2233#
2234# Example:
2235#
2236# -> { "execute": "snapshot-load",
b1ca5322 2237# "arguments": {
0f0d83a4
DB
2238# "job-id": "snapload0",
2239# "tag": "my-snap",
2240# "vmstate": "disk0",
2241# "devices": ["disk0", "disk1"]
2242# }
2243# }
2244# <- { "return": { } }
2245# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2246# "timestamp": {"seconds": 1472124172, "microseconds": 744001},
0f0d83a4
DB
2247# "data": {"status": "created", "id": "snapload0"}}
2248# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2249# "timestamp": {"seconds": 1472125172, "microseconds": 744001},
0f0d83a4 2250# "data": {"status": "running", "id": "snapload0"}}
6e7a37ff
VT
2251# <- {"event": "STOP",
2252# "timestamp": {"seconds": 1472125472, "microseconds": 744001} }
2253# <- {"event": "RESUME",
2254# "timestamp": {"seconds": 1472125872, "microseconds": 744001} }
0f0d83a4 2255# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2256# "timestamp": {"seconds": 1472126172, "microseconds": 744001},
0f0d83a4
DB
2257# "data": {"status": "waiting", "id": "snapload0"}}
2258# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2259# "timestamp": {"seconds": 1472127172, "microseconds": 744001},
0f0d83a4
DB
2260# "data": {"status": "pending", "id": "snapload0"}}
2261# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2262# "timestamp": {"seconds": 1472128172, "microseconds": 744001},
0f0d83a4
DB
2263# "data": {"status": "concluded", "id": "snapload0"}}
2264# -> {"execute": "query-jobs"}
2265# <- {"return": [{"current-progress": 1,
2266# "status": "concluded",
2267# "total-progress": 1,
2268# "type": "snapshot-load",
2269# "id": "snapload0"}]}
2270#
2271# Since: 6.0
2272##
2273{ 'command': 'snapshot-load',
2274 'data': { 'job-id': 'str',
2275 'tag': 'str',
2276 'vmstate': 'str',
2277 'devices': ['str'] } }
2278
2279##
2280# @snapshot-delete:
2281#
2282# Delete a VM snapshot
2283#
2284# @job-id: identifier for the newly created job
a937b6aa 2285#
0f0d83a4 2286# @tag: name of the snapshot to delete.
a937b6aa 2287#
0f0d83a4
DB
2288# @devices: list of block device node names to delete a snapshot from
2289#
2290# Applications should not assume that the snapshot delete is complete
a937b6aa
MA
2291# when this command returns. The job commands / events must be used
2292# to determine completion and to fetch details of any errors that
2293# arise.
0f0d83a4
DB
2294#
2295# Returns: nothing
2296#
2297# Example:
2298#
2299# -> { "execute": "snapshot-delete",
b1ca5322 2300# "arguments": {
0f0d83a4
DB
2301# "job-id": "snapdelete0",
2302# "tag": "my-snap",
2303# "devices": ["disk0", "disk1"]
2304# }
2305# }
2306# <- { "return": { } }
2307# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2308# "timestamp": {"seconds": 1442124172, "microseconds": 744001},
0f0d83a4
DB
2309# "data": {"status": "created", "id": "snapdelete0"}}
2310# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2311# "timestamp": {"seconds": 1442125172, "microseconds": 744001},
0f0d83a4
DB
2312# "data": {"status": "running", "id": "snapdelete0"}}
2313# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2314# "timestamp": {"seconds": 1442126172, "microseconds": 744001},
0f0d83a4
DB
2315# "data": {"status": "waiting", "id": "snapdelete0"}}
2316# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2317# "timestamp": {"seconds": 1442127172, "microseconds": 744001},
0f0d83a4
DB
2318# "data": {"status": "pending", "id": "snapdelete0"}}
2319# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2320# "timestamp": {"seconds": 1442128172, "microseconds": 744001},
0f0d83a4
DB
2321# "data": {"status": "concluded", "id": "snapdelete0"}}
2322# -> {"execute": "query-jobs"}
2323# <- {"return": [{"current-progress": 1,
2324# "status": "concluded",
2325# "total-progress": 1,
2326# "type": "snapshot-delete",
2327# "id": "snapdelete0"}]}
2328#
2329# Since: 6.0
2330##
2331{ 'command': 'snapshot-delete',
2332 'data': { 'job-id': 'str',
2333 'tag': 'str',
2334 'devices': ['str'] } }