]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
Make compatfd fallback more robust
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
8f40c388 4@settitle QEMU Emulator User Documentation
debc7065
FB
5@exampleindent 0
6@paragraphindent 0
7@c %**end of header
386405f7 8
0806e3f6 9@iftex
386405f7
FB
10@titlepage
11@sp 7
8f40c388 12@center @titlefont{QEMU Emulator}
debc7065
FB
13@sp 1
14@center @titlefont{User Documentation}
386405f7
FB
15@sp 3
16@end titlepage
0806e3f6 17@end iftex
386405f7 18
debc7065
FB
19@ifnottex
20@node Top
21@top
22
23@menu
24* Introduction::
25* Installation::
26* QEMU PC System emulator::
27* QEMU System emulator for non PC targets::
83195237 28* QEMU User space emulator::
debc7065
FB
29* compilation:: Compilation from the sources
30* Index::
31@end menu
32@end ifnottex
33
34@contents
35
36@node Introduction
386405f7
FB
37@chapter Introduction
38
debc7065
FB
39@menu
40* intro_features:: Features
41@end menu
42
43@node intro_features
322d0c66 44@section Features
386405f7 45
1f673135
FB
46QEMU is a FAST! processor emulator using dynamic translation to
47achieve good emulation speed.
1eb20527
FB
48
49QEMU has two operating modes:
0806e3f6
FB
50
51@itemize @minus
52
5fafdf24 53@item
1f673135 54Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
55example a PC), including one or several processors and various
56peripherals. It can be used to launch different Operating Systems
57without rebooting the PC or to debug system code.
1eb20527 58
5fafdf24 59@item
83195237
FB
60User mode emulation. In this mode, QEMU can launch
61processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
62launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63to ease cross-compilation and cross-debugging.
1eb20527
FB
64
65@end itemize
66
7c3fc84d 67QEMU can run without an host kernel driver and yet gives acceptable
5fafdf24 68performance.
322d0c66 69
52c00a5f
FB
70For system emulation, the following hardware targets are supported:
71@itemize
9d0a8e6f 72@item PC (x86 or x86_64 processor)
3f9f3aa1 73@item ISA PC (old style PC without PCI bus)
52c00a5f 74@item PREP (PowerPC processor)
9d0a8e6f
FB
75@item G3 BW PowerMac (PowerPC processor)
76@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 77@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 78@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 79@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 80@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
81@item ARM Integrator/CP (ARM)
82@item ARM Versatile baseboard (ARM)
83@item ARM RealView Emulation baseboard (ARM)
b00052e4 84@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
9ee6e8bb
PB
85@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 87@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 88@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 89@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 90@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 91@item MusicPal (MV88W8618 ARM processor)
52c00a5f 92@end itemize
386405f7 93
d9aedc32 94For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
0806e3f6 95
debc7065 96@node Installation
5b9f457a
FB
97@chapter Installation
98
15a34c63
FB
99If you want to compile QEMU yourself, see @ref{compilation}.
100
debc7065
FB
101@menu
102* install_linux:: Linux
103* install_windows:: Windows
104* install_mac:: Macintosh
105@end menu
106
107@node install_linux
1f673135
FB
108@section Linux
109
7c3fc84d
FB
110If a precompiled package is available for your distribution - you just
111have to install it. Otherwise, see @ref{compilation}.
5b9f457a 112
debc7065 113@node install_windows
1f673135 114@section Windows
8cd0ac2f 115
15a34c63 116Download the experimental binary installer at
debc7065 117@url{http://www.free.oszoo.org/@/download.html}.
d691f669 118
debc7065 119@node install_mac
1f673135 120@section Mac OS X
d691f669 121
15a34c63 122Download the experimental binary installer at
debc7065 123@url{http://www.free.oszoo.org/@/download.html}.
df0f11a0 124
debc7065 125@node QEMU PC System emulator
3f9f3aa1 126@chapter QEMU PC System emulator
1eb20527 127
debc7065
FB
128@menu
129* pcsys_introduction:: Introduction
130* pcsys_quickstart:: Quick Start
131* sec_invocation:: Invocation
132* pcsys_keys:: Keys
133* pcsys_monitor:: QEMU Monitor
134* disk_images:: Disk Images
135* pcsys_network:: Network emulation
136* direct_linux_boot:: Direct Linux Boot
137* pcsys_usb:: USB emulation
f858dcae 138* vnc_security:: VNC security
debc7065
FB
139* gdb_usage:: GDB usage
140* pcsys_os_specific:: Target OS specific information
141@end menu
142
143@node pcsys_introduction
0806e3f6
FB
144@section Introduction
145
146@c man begin DESCRIPTION
147
3f9f3aa1
FB
148The QEMU PC System emulator simulates the
149following peripherals:
0806e3f6
FB
150
151@itemize @minus
5fafdf24 152@item
15a34c63 153i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 154@item
15a34c63
FB
155Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
156extensions (hardware level, including all non standard modes).
0806e3f6
FB
157@item
158PS/2 mouse and keyboard
5fafdf24 159@item
15a34c63 1602 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
161@item
162Floppy disk
5fafdf24 163@item
c4a7060c 164PCI/ISA PCI network adapters
0806e3f6 165@item
05d5818c
FB
166Serial ports
167@item
c0fe3827
FB
168Creative SoundBlaster 16 sound card
169@item
170ENSONIQ AudioPCI ES1370 sound card
171@item
e5c9a13e
AZ
172Intel 82801AA AC97 Audio compatible sound card
173@item
c0fe3827 174Adlib(OPL2) - Yamaha YM3812 compatible chip
b389dbfb 175@item
26463dbc
AZ
176Gravis Ultrasound GF1 sound card
177@item
cc53d26d 178CS4231A compatible sound card
179@item
b389dbfb 180PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
181@end itemize
182
3f9f3aa1
FB
183SMP is supported with up to 255 CPUs.
184
cc53d26d 185Note that adlib, ac97, gus and cs4231a are only available when QEMU
0c58ac1c 186was configured with --audio-card-list option containing the name(s) of
e5178e8d 187required card(s).
c0fe3827 188
15a34c63
FB
189QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
190VGA BIOS.
191
c0fe3827
FB
192QEMU uses YM3812 emulation by Tatsuyuki Satoh.
193
26463dbc
AZ
194QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
195by Tibor "TS" Schütz.
423d65f4 196
cc53d26d 197CS4231A is the chip used in Windows Sound System and GUSMAX products
198
0806e3f6
FB
199@c man end
200
debc7065 201@node pcsys_quickstart
1eb20527
FB
202@section Quick Start
203
285dc330 204Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
205
206@example
285dc330 207qemu linux.img
0806e3f6
FB
208@end example
209
210Linux should boot and give you a prompt.
211
6cc721cf 212@node sec_invocation
ec410fc9
FB
213@section Invocation
214
215@example
0806e3f6 216@c man begin SYNOPSIS
89dfe898 217usage: qemu [options] [@var{disk_image}]
0806e3f6 218@c man end
ec410fc9
FB
219@end example
220
0806e3f6 221@c man begin OPTIONS
9d4520d0 222@var{disk_image} is a raw hard disk image for IDE hard disk 0.
ec410fc9
FB
223
224General options:
225@table @option
89dfe898
TS
226@item -M @var{machine}
227Select the emulated @var{machine} (@code{-M ?} for list)
3dbbdc25 228
89dfe898
TS
229@item -fda @var{file}
230@item -fdb @var{file}
debc7065 231Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
19cb3738 232use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
2be3bc02 233
89dfe898
TS
234@item -hda @var{file}
235@item -hdb @var{file}
236@item -hdc @var{file}
237@item -hdd @var{file}
debc7065 238Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
1f47a922 239
89dfe898
TS
240@item -cdrom @var{file}
241Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
be3edd95 242@option{-cdrom} at the same time). You can use the host CD-ROM by
19cb3738 243using @file{/dev/cdrom} as filename (@pxref{host_drives}).
181f1558 244
e0e7ada1
AZ
245@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
246
247Define a new drive. Valid options are:
248
249@table @code
250@item file=@var{file}
251This option defines which disk image (@pxref{disk_images}) to use with
609497ab
AZ
252this drive. If the filename contains comma, you must double it
253(for instance, "file=my,,file" to use file "my,file").
e0e7ada1
AZ
254@item if=@var{interface}
255This option defines on which type on interface the drive is connected.
256Available types are: ide, scsi, sd, mtd, floppy, pflash.
257@item bus=@var{bus},unit=@var{unit}
258These options define where is connected the drive by defining the bus number and
259the unit id.
260@item index=@var{index}
261This option defines where is connected the drive by using an index in the list
262of available connectors of a given interface type.
263@item media=@var{media}
264This option defines the type of the media: disk or cdrom.
265@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
266These options have the same definition as they have in @option{-hdachs}.
267@item snapshot=@var{snapshot}
268@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
33f00271
AZ
269@item cache=@var{cache}
270@var{cache} is "on" or "off" and allows to disable host cache to access data.
1e72d3b7
AJ
271@item format=@var{format}
272Specify which disk @var{format} will be used rather than detecting
273the format. Can be used to specifiy format=raw to avoid interpreting
274an untrusted format header.
e0e7ada1
AZ
275@end table
276
277Instead of @option{-cdrom} you can use:
278@example
279qemu -drive file=file,index=2,media=cdrom
280@end example
281
282Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
283use:
284@example
285qemu -drive file=file,index=0,media=disk
286qemu -drive file=file,index=1,media=disk
287qemu -drive file=file,index=2,media=disk
288qemu -drive file=file,index=3,media=disk
289@end example
290
291You can connect a CDROM to the slave of ide0:
292@example
293qemu -drive file=file,if=ide,index=1,media=cdrom
294@end example
295
296If you don't specify the "file=" argument, you define an empty drive:
297@example
298qemu -drive if=ide,index=1,media=cdrom
299@end example
300
301You can connect a SCSI disk with unit ID 6 on the bus #0:
302@example
303qemu -drive file=file,if=scsi,bus=0,unit=6
304@end example
305
306Instead of @option{-fda}, @option{-fdb}, you can use:
307@example
308qemu -drive file=file,index=0,if=floppy
309qemu -drive file=file,index=1,if=floppy
310@end example
311
312By default, @var{interface} is "ide" and @var{index} is automatically
313incremented:
314@example
315qemu -drive file=a -drive file=b"
316@end example
317is interpreted like:
318@example
319qemu -hda a -hdb b
320@end example
321
eec85c2a
TS
322@item -boot [a|c|d|n]
323Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
324is the default.
1f47a922 325
181f1558 326@item -snapshot
1f47a922
FB
327Write to temporary files instead of disk image files. In this case,
328the raw disk image you use is not written back. You can however force
42550fde 329the write back by pressing @key{C-a s} (@pxref{disk_images}).
ec410fc9 330
52ca8d6a
FB
331@item -no-fd-bootchk
332Disable boot signature checking for floppy disks in Bochs BIOS. It may
333be needed to boot from old floppy disks.
334
89dfe898 335@item -m @var{megs}
00f82b8a
AJ
336Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB. Optionally,
337a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
338gigabytes respectively.
ec410fc9 339
89dfe898 340@item -smp @var{n}
3f9f3aa1 341Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
a785e42e
BS
342CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
343to 4.
3f9f3aa1 344
1d14ffa9
FB
345@item -audio-help
346
347Will show the audio subsystem help: list of drivers, tunable
348parameters.
349
89dfe898 350@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
1d14ffa9
FB
351
352Enable audio and selected sound hardware. Use ? to print all
353available sound hardware.
354
355@example
356qemu -soundhw sb16,adlib hda
357qemu -soundhw es1370 hda
e5c9a13e 358qemu -soundhw ac97 hda
6a36d84e 359qemu -soundhw all hda
1d14ffa9
FB
360qemu -soundhw ?
361@end example
a8c490cd 362
e5c9a13e
AZ
363Note that Linux's i810_audio OSS kernel (for AC97) module might
364require manually specifying clocking.
365
366@example
367modprobe i810_audio clocking=48000
368@end example
369
15a34c63
FB
370@item -localtime
371Set the real time clock to local time (the default is to UTC
372time). This option is needed to have correct date in MS-DOS or
373Windows.
374
89dfe898 375@item -startdate @var{date}
7e0af5d0
FB
376Set the initial date of the real time clock. Valid format for
377@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
378@code{2006-06-17}. The default value is @code{now}.
379
89dfe898 380@item -pidfile @var{file}
f7cce898
FB
381Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
382from a script.
383
71e3ceb8
TS
384@item -daemonize
385Daemonize the QEMU process after initialization. QEMU will not detach from
386standard IO until it is ready to receive connections on any of its devices.
387This option is a useful way for external programs to launch QEMU without having
388to cope with initialization race conditions.
389
9d0a8e6f
FB
390@item -win2k-hack
391Use it when installing Windows 2000 to avoid a disk full bug. After
392Windows 2000 is installed, you no longer need this option (this option
393slows down the IDE transfers).
394
89dfe898
TS
395@item -option-rom @var{file}
396Load the contents of @var{file} as an option ROM.
397This option is useful to load things like EtherBoot.
9ae02555 398
89dfe898
TS
399@item -name @var{name}
400Sets the @var{name} of the guest.
401This name will be display in the SDL window caption.
402The @var{name} will also be used for the VNC server.
c35734b2 403
0806e3f6
FB
404@end table
405
f858dcae
TS
406Display options:
407@table @option
408
409@item -nographic
410
411Normally, QEMU uses SDL to display the VGA output. With this option,
412you can totally disable graphical output so that QEMU is a simple
413command line application. The emulated serial port is redirected on
414the console. Therefore, you can still use QEMU to debug a Linux kernel
415with a serial console.
416
052caf70
AJ
417@item -curses
418
419Normally, QEMU uses SDL to display the VGA output. With this option,
420QEMU can display the VGA output when in text mode using a
421curses/ncurses interface. Nothing is displayed in graphical mode.
422
f858dcae
TS
423@item -no-frame
424
425Do not use decorations for SDL windows and start them using the whole
426available screen space. This makes the using QEMU in a dedicated desktop
427workspace more convenient.
428
99aa9e4c
AJ
429@item -no-quit
430
431Disable SDL window close capability.
432
f858dcae
TS
433@item -full-screen
434Start in full screen.
435
89dfe898 436@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
f858dcae
TS
437
438Normally, QEMU uses SDL to display the VGA output. With this option,
439you can have QEMU listen on VNC display @var{display} and redirect the VGA
440display over the VNC session. It is very useful to enable the usb
441tablet device when using this option (option @option{-usbdevice
442tablet}). When using the VNC display, you must use the @option{-k}
443parameter to set the keyboard layout if you are not using en-us. Valid
444syntax for the @var{display} is
445
446@table @code
447
3aa3eea3 448@item @var{host}:@var{d}
f858dcae 449
3aa3eea3
AZ
450TCP connections will only be allowed from @var{host} on display @var{d}.
451By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
452be omitted in which case the server will accept connections from any host.
f858dcae 453
3aa3eea3 454@item @code{unix}:@var{path}
f858dcae
TS
455
456Connections will be allowed over UNIX domain sockets where @var{path} is the
457location of a unix socket to listen for connections on.
458
89dfe898 459@item none
f858dcae 460
3aa3eea3
AZ
461VNC is initialized but not started. The monitor @code{change} command
462can be used to later start the VNC server.
f858dcae
TS
463
464@end table
465
466Following the @var{display} value there may be one or more @var{option} flags
467separated by commas. Valid options are
468
469@table @code
470
3aa3eea3
AZ
471@item reverse
472
473Connect to a listening VNC client via a ``reverse'' connection. The
474client is specified by the @var{display}. For reverse network
475connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
476is a TCP port number, not a display number.
477
89dfe898 478@item password
f858dcae
TS
479
480Require that password based authentication is used for client connections.
481The password must be set separately using the @code{change} command in the
482@ref{pcsys_monitor}
483
89dfe898 484@item tls
f858dcae
TS
485
486Require that client use TLS when communicating with the VNC server. This
487uses anonymous TLS credentials so is susceptible to a man-in-the-middle
488attack. It is recommended that this option be combined with either the
489@var{x509} or @var{x509verify} options.
490
89dfe898 491@item x509=@var{/path/to/certificate/dir}
f858dcae 492
89dfe898 493Valid if @option{tls} is specified. Require that x509 credentials are used
f858dcae
TS
494for negotiating the TLS session. The server will send its x509 certificate
495to the client. It is recommended that a password be set on the VNC server
496to provide authentication of the client when this is used. The path following
497this option specifies where the x509 certificates are to be loaded from.
498See the @ref{vnc_security} section for details on generating certificates.
499
89dfe898 500@item x509verify=@var{/path/to/certificate/dir}
f858dcae 501
89dfe898 502Valid if @option{tls} is specified. Require that x509 credentials are used
f858dcae
TS
503for negotiating the TLS session. The server will send its x509 certificate
504to the client, and request that the client send its own x509 certificate.
505The server will validate the client's certificate against the CA certificate,
506and reject clients when validation fails. If the certificate authority is
507trusted, this is a sufficient authentication mechanism. You may still wish
508to set a password on the VNC server as a second authentication layer. The
509path following this option specifies where the x509 certificates are to
510be loaded from. See the @ref{vnc_security} section for details on generating
511certificates.
512
513@end table
514
89dfe898 515@item -k @var{language}
f858dcae
TS
516
517Use keyboard layout @var{language} (for example @code{fr} for
518French). This option is only needed where it is not easy to get raw PC
519keycodes (e.g. on Macs, with some X11 servers or with a VNC
520display). You don't normally need to use it on PC/Linux or PC/Windows
521hosts.
522
523The available layouts are:
524@example
525ar de-ch es fo fr-ca hu ja mk no pt-br sv
526da en-gb et fr fr-ch is lt nl pl ru th
527de en-us fi fr-be hr it lv nl-be pt sl tr
528@end example
529
530The default is @code{en-us}.
531
532@end table
533
b389dbfb
FB
534USB options:
535@table @option
536
537@item -usb
538Enable the USB driver (will be the default soon)
539
89dfe898 540@item -usbdevice @var{devname}
0aff66b5 541Add the USB device @var{devname}. @xref{usb_devices}.
8fccda83
TS
542
543@table @code
544
545@item mouse
546Virtual Mouse. This will override the PS/2 mouse emulation when activated.
547
548@item tablet
549Pointer device that uses absolute coordinates (like a touchscreen). This
550means qemu is able to report the mouse position without having to grab the
551mouse. Also overrides the PS/2 mouse emulation when activated.
552
334c0241
AJ
553@item disk:[format=@var{format}]:file
554Mass storage device based on file. The optional @var{format} argument
555will be used rather than detecting the format. Can be used to specifiy
556format=raw to avoid interpreting an untrusted format header.
8fccda83
TS
557
558@item host:bus.addr
559Pass through the host device identified by bus.addr (Linux only).
560
561@item host:vendor_id:product_id
562Pass through the host device identified by vendor_id:product_id (Linux only).
563
db380c06
AZ
564@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
565Serial converter to host character device @var{dev}, see @code{-serial} for the
566available devices.
567
2e4d9fb1
AJ
568@item braille
569Braille device. This will use BrlAPI to display the braille output on a real
570or fake device.
571
9ad97e65 572@item net:options
6c9f886c
AZ
573Network adapter that supports CDC ethernet and RNDIS protocols.
574
8fccda83
TS
575@end table
576
b389dbfb
FB
577@end table
578
1f673135
FB
579Network options:
580
581@table @option
582
89dfe898 583@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
41d03949 584Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
c4a7060c 585= 0 is the default). The NIC is an ne2k_pci by default on the PC
41d03949
FB
586target. Optionally, the MAC address can be changed. If no
587@option{-net} option is specified, a single NIC is created.
549444e1
AZ
588Qemu can emulate several different models of network card.
589Valid values for @var{type} are
590@code{i82551}, @code{i82557b}, @code{i82559er},
591@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
9ad97e65 592@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
c4a7060c
BS
593Not all devices are supported on all targets. Use -net nic,model=?
594for a list of available devices for your target.
41d03949 595
89dfe898 596@item -net user[,vlan=@var{n}][,hostname=@var{name}]
7e89463d 597Use the user mode network stack which requires no administrator
4be456f1 598privilege to run. @option{hostname=name} can be used to specify the client
115defd1 599hostname reported by the builtin DHCP server.
41d03949 600
89dfe898 601@item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
41d03949
FB
602Connect the host TAP network interface @var{name} to VLAN @var{n} and
603use the network script @var{file} to configure it. The default
6a1cbf68
TS
604network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
605disable script execution. If @var{name} is not
89dfe898 606provided, the OS automatically provides one. @option{fd}=@var{h} can be
41d03949 607used to specify the handle of an already opened host TAP interface. Example:
1f673135 608
41d03949
FB
609@example
610qemu linux.img -net nic -net tap
611@end example
612
613More complicated example (two NICs, each one connected to a TAP device)
614@example
615qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
616 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
617@end example
3f1a88f4 618
3f1a88f4 619
89dfe898 620@item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
1f673135 621
41d03949
FB
622Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
623machine using a TCP socket connection. If @option{listen} is
624specified, QEMU waits for incoming connections on @var{port}
625(@var{host} is optional). @option{connect} is used to connect to
89dfe898 626another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
3d830459 627specifies an already opened TCP socket.
1f673135 628
41d03949
FB
629Example:
630@example
631# launch a first QEMU instance
debc7065
FB
632qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
633 -net socket,listen=:1234
634# connect the VLAN 0 of this instance to the VLAN 0
635# of the first instance
636qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
637 -net socket,connect=127.0.0.1:1234
41d03949 638@end example
52c00a5f 639
89dfe898 640@item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
3d830459
FB
641
642Create a VLAN @var{n} shared with another QEMU virtual
5fafdf24 643machines using a UDP multicast socket, effectively making a bus for
3d830459
FB
644every QEMU with same multicast address @var{maddr} and @var{port}.
645NOTES:
646@enumerate
5fafdf24
TS
647@item
648Several QEMU can be running on different hosts and share same bus (assuming
3d830459
FB
649correct multicast setup for these hosts).
650@item
651mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
652@url{http://user-mode-linux.sf.net}.
4be456f1
TS
653@item
654Use @option{fd=h} to specify an already opened UDP multicast socket.
3d830459
FB
655@end enumerate
656
657Example:
658@example
659# launch one QEMU instance
debc7065
FB
660qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
661 -net socket,mcast=230.0.0.1:1234
3d830459 662# launch another QEMU instance on same "bus"
debc7065
FB
663qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
664 -net socket,mcast=230.0.0.1:1234
3d830459 665# launch yet another QEMU instance on same "bus"
debc7065
FB
666qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
667 -net socket,mcast=230.0.0.1:1234
3d830459
FB
668@end example
669
670Example (User Mode Linux compat.):
671@example
debc7065
FB
672# launch QEMU instance (note mcast address selected
673# is UML's default)
674qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
675 -net socket,mcast=239.192.168.1:1102
3d830459
FB
676# launch UML
677/path/to/linux ubd0=/path/to/root_fs eth0=mcast
678@end example
8a16d273
TS
679
680@item -net vde[,vlan=@var{n}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
681Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
682listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
683and MODE @var{octalmode} to change default ownership and permissions for
684communication port. This option is available only if QEMU has been compiled
685with vde support enabled.
686
687Example:
688@example
689# launch vde switch
690vde_switch -F -sock /tmp/myswitch
691# launch QEMU instance
692qemu linux.img -net nic -net vde,sock=/tmp/myswitch
693@end example
3d830459 694
41d03949
FB
695@item -net none
696Indicate that no network devices should be configured. It is used to
039af320
FB
697override the default configuration (@option{-net nic -net user}) which
698is activated if no @option{-net} options are provided.
52c00a5f 699
89dfe898 700@item -tftp @var{dir}
9bf05444 701When using the user mode network stack, activate a built-in TFTP
0db1137d
TS
702server. The files in @var{dir} will be exposed as the root of a TFTP server.
703The TFTP client on the guest must be configured in binary mode (use the command
704@code{bin} of the Unix TFTP client). The host IP address on the guest is as
705usual 10.0.2.2.
9bf05444 706
89dfe898 707@item -bootp @var{file}
47d5d01a
TS
708When using the user mode network stack, broadcast @var{file} as the BOOTP
709filename. In conjunction with @option{-tftp}, this can be used to network boot
710a guest from a local directory.
711
712Example (using pxelinux):
713@example
714qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
715@end example
716
89dfe898 717@item -smb @var{dir}
2518bd0d 718When using the user mode network stack, activate a built-in SMB
89dfe898 719server so that Windows OSes can access to the host files in @file{@var{dir}}
2518bd0d
FB
720transparently.
721
722In the guest Windows OS, the line:
723@example
72410.0.2.4 smbserver
725@end example
726must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
727or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
728
89dfe898 729Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
2518bd0d
FB
730
731Note that a SAMBA server must be installed on the host OS in
366dfc52 732@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
6cc721cf 7332.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
2518bd0d 734
89dfe898 735@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
9bf05444
FB
736
737When using the user mode network stack, redirect incoming TCP or UDP
738connections to the host port @var{host-port} to the guest
739@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
740is not specified, its value is 10.0.2.15 (default address given by the
741built-in DHCP server).
742
743For example, to redirect host X11 connection from screen 1 to guest
744screen 0, use the following:
745
746@example
747# on the host
748qemu -redir tcp:6001::6000 [...]
749# this host xterm should open in the guest X11 server
750xterm -display :1
751@end example
752
753To redirect telnet connections from host port 5555 to telnet port on
754the guest, use the following:
755
756@example
757# on the host
758qemu -redir tcp:5555::23 [...]
759telnet localhost 5555
760@end example
761
762Then when you use on the host @code{telnet localhost 5555}, you
763connect to the guest telnet server.
764
1f673135
FB
765@end table
766
41d03949 767Linux boot specific: When using these options, you can use a given
1f673135
FB
768Linux kernel without installing it in the disk image. It can be useful
769for easier testing of various kernels.
770
0806e3f6
FB
771@table @option
772
89dfe898 773@item -kernel @var{bzImage}
0806e3f6
FB
774Use @var{bzImage} as kernel image.
775
89dfe898 776@item -append @var{cmdline}
0806e3f6
FB
777Use @var{cmdline} as kernel command line
778
89dfe898 779@item -initrd @var{file}
0806e3f6
FB
780Use @var{file} as initial ram disk.
781
ec410fc9
FB
782@end table
783
15a34c63 784Debug/Expert options:
ec410fc9 785@table @option
a0a821a4 786
89dfe898 787@item -serial @var{dev}
0bab00f3
FB
788Redirect the virtual serial port to host character device
789@var{dev}. The default device is @code{vc} in graphical mode and
790@code{stdio} in non graphical mode.
791
792This option can be used several times to simulate up to 4 serials
793ports.
794
c03b0f0f
FB
795Use @code{-serial none} to disable all serial ports.
796
0bab00f3 797Available character devices are:
a0a821a4 798@table @code
af3a9031
TS
799@item vc[:WxH]
800Virtual console. Optionally, a width and height can be given in pixel with
801@example
802vc:800x600
803@end example
804It is also possible to specify width or height in characters:
805@example
806vc:80Cx24C
807@end example
a0a821a4
FB
808@item pty
809[Linux only] Pseudo TTY (a new PTY is automatically allocated)
c03b0f0f
FB
810@item none
811No device is allocated.
a0a821a4
FB
812@item null
813void device
f8d179e3 814@item /dev/XXX
e57a8c0e 815[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
f8d179e3 816parameters are set according to the emulated ones.
89dfe898 817@item /dev/parport@var{N}
e57a8c0e 818[Linux only, parallel port only] Use host parallel port
5867c88a 819@var{N}. Currently SPP and EPP parallel port features can be used.
89dfe898
TS
820@item file:@var{filename}
821Write output to @var{filename}. No character can be read.
a0a821a4
FB
822@item stdio
823[Unix only] standard input/output
89dfe898 824@item pipe:@var{filename}
0bab00f3 825name pipe @var{filename}
89dfe898 826@item COM@var{n}
0bab00f3 827[Windows only] Use host serial port @var{n}
89dfe898
TS
828@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
829This implements UDP Net Console.
830When @var{remote_host} or @var{src_ip} are not specified
831they default to @code{0.0.0.0}.
832When not using a specified @var{src_port} a random port is automatically chosen.
951f1351
FB
833
834If you just want a simple readonly console you can use @code{netcat} or
835@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
836@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
837will appear in the netconsole session.
0bab00f3
FB
838
839If you plan to send characters back via netconsole or you want to stop
840and start qemu a lot of times, you should have qemu use the same
841source port each time by using something like @code{-serial
951f1351 842udp::4555@@:4556} to qemu. Another approach is to use a patched
0bab00f3
FB
843version of netcat which can listen to a TCP port and send and receive
844characters via udp. If you have a patched version of netcat which
845activates telnet remote echo and single char transfer, then you can
846use the following options to step up a netcat redirector to allow
847telnet on port 5555 to access the qemu port.
848@table @code
951f1351
FB
849@item Qemu Options:
850-serial udp::4555@@:4556
851@item netcat options:
852-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
853@item telnet options:
854localhost 5555
855@end table
856
857
89dfe898 858@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
951f1351
FB
859The TCP Net Console has two modes of operation. It can send the serial
860I/O to a location or wait for a connection from a location. By default
861the TCP Net Console is sent to @var{host} at the @var{port}. If you use
f542086d
FB
862the @var{server} option QEMU will wait for a client socket application
863to connect to the port before continuing, unless the @code{nowait}
f7499989 864option was specified. The @code{nodelay} option disables the Nagle buffering
4be456f1 865algorithm. If @var{host} is omitted, 0.0.0.0 is assumed. Only
951f1351
FB
866one TCP connection at a time is accepted. You can use @code{telnet} to
867connect to the corresponding character device.
868@table @code
869@item Example to send tcp console to 192.168.0.2 port 4444
870-serial tcp:192.168.0.2:4444
871@item Example to listen and wait on port 4444 for connection
872-serial tcp::4444,server
873@item Example to not wait and listen on ip 192.168.0.100 port 4444
874-serial tcp:192.168.0.100:4444,server,nowait
a0a821a4 875@end table
a0a821a4 876
89dfe898 877@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
951f1351
FB
878The telnet protocol is used instead of raw tcp sockets. The options
879work the same as if you had specified @code{-serial tcp}. The
880difference is that the port acts like a telnet server or client using
881telnet option negotiation. This will also allow you to send the
882MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
883sequence. Typically in unix telnet you do it with Control-] and then
884type "send break" followed by pressing the enter key.
0bab00f3 885
89dfe898 886@item unix:@var{path}[,server][,nowait]
ffd843bc
TS
887A unix domain socket is used instead of a tcp socket. The option works the
888same as if you had specified @code{-serial tcp} except the unix domain socket
889@var{path} is used for connections.
890
89dfe898 891@item mon:@var{dev_string}
20d8a3ed
TS
892This is a special option to allow the monitor to be multiplexed onto
893another serial port. The monitor is accessed with key sequence of
894@key{Control-a} and then pressing @key{c}. See monitor access
895@ref{pcsys_keys} in the -nographic section for more keys.
896@var{dev_string} should be any one of the serial devices specified
897above. An example to multiplex the monitor onto a telnet server
898listening on port 4444 would be:
899@table @code
900@item -serial mon:telnet::4444,server,nowait
901@end table
902
2e4d9fb1
AJ
903@item braille
904Braille device. This will use BrlAPI to display the braille output on a real
905or fake device.
906
0bab00f3 907@end table
05d5818c 908
89dfe898 909@item -parallel @var{dev}
e57a8c0e
FB
910Redirect the virtual parallel port to host device @var{dev} (same
911devices as the serial port). On Linux hosts, @file{/dev/parportN} can
912be used to use hardware devices connected on the corresponding host
913parallel port.
914
915This option can be used several times to simulate up to 3 parallel
916ports.
917
c03b0f0f
FB
918Use @code{-parallel none} to disable all parallel ports.
919
89dfe898 920@item -monitor @var{dev}
a0a821a4
FB
921Redirect the monitor to host device @var{dev} (same devices as the
922serial port).
923The default device is @code{vc} in graphical mode and @code{stdio} in
924non graphical mode.
925
20d8a3ed
TS
926@item -echr numeric_ascii_value
927Change the escape character used for switching to the monitor when using
928monitor and serial sharing. The default is @code{0x01} when using the
929@code{-nographic} option. @code{0x01} is equal to pressing
930@code{Control-a}. You can select a different character from the ascii
931control keys where 1 through 26 map to Control-a through Control-z. For
932instance you could use the either of the following to change the escape
933character to Control-t.
934@table @code
935@item -echr 0x14
936@item -echr 20
937@end table
938
ec410fc9 939@item -s
5fafdf24 940Wait gdb connection to port 1234 (@pxref{gdb_usage}).
89dfe898 941@item -p @var{port}
4046d913
PB
942Change gdb connection port. @var{port} can be either a decimal number
943to specify a TCP port, or a host device (same devices as the serial port).
52c00a5f
FB
944@item -S
945Do not start CPU at startup (you must type 'c' in the monitor).
3b46e624 946@item -d
9d4520d0 947Output log in /tmp/qemu.log
89dfe898 948@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
46d4767d
FB
949Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
950@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
951translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
4be456f1 952all those parameters. This option is useful for old MS-DOS disk
46d4767d 953images.
7c3fc84d 954
87b47350
FB
955@item -L path
956Set the directory for the BIOS, VGA BIOS and keymaps.
957
15a34c63
FB
958@item -std-vga
959Simulate a standard VGA card with Bochs VBE extensions (default is
3cb0853a
FB
960Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
961VBE extensions (e.g. Windows XP) and if you want to use high
962resolution modes (>= 1280x1024x16) then you should use this option.
963
3c656346
FB
964@item -no-acpi
965Disable ACPI (Advanced Configuration and Power Interface) support. Use
966it if your guest OS complains about ACPI problems (PC target machine
967only).
968
d1beab82
FB
969@item -no-reboot
970Exit instead of rebooting.
971
99aa9e4c
AJ
972@item -no-shutdown
973Don't exit QEMU on guest shutdown, but instead only stop the emulation.
974This allows for instance switching to monitor to commit changes to the
975disk image.
976
d63d307f
FB
977@item -loadvm file
978Start right away with a saved state (@code{loadvm} in monitor)
8e71621f
PB
979
980@item -semihosting
a87295e8
PB
981Enable semihosting syscall emulation (ARM and M68K target machines only).
982
983On ARM this implements the "Angel" interface.
984On M68K this implements the "ColdFire GDB" interface used by libgloss.
985
8e71621f
PB
986Note that this allows guest direct access to the host filesystem,
987so should only be used with trusted guest OS.
2e70f6ef
PB
988
989@item -icount [N|auto]
990Enable virtual instruction counter. The virtual cpu will execute one
991instruction every 2^N ns of virtual time. If @code{auto} is specified
992then the virtual cpu speed will be automatically adjusted to keep virtual
993time within a few seconds of real time.
994
995Note that while this option can give deterministic behavior, it does not
996provide cycle accurate emulation. Modern CPUs contain superscalar out of
dd5d6fe9 997order cores with complex cache hierarchies. The number of instructions
2e70f6ef 998executed often has little or no correlation with actual performance.
ec410fc9
FB
999@end table
1000
3e11db9a
FB
1001@c man end
1002
debc7065 1003@node pcsys_keys
3e11db9a
FB
1004@section Keys
1005
1006@c man begin OPTIONS
1007
a1b74fe8
FB
1008During the graphical emulation, you can use the following keys:
1009@table @key
f9859310 1010@item Ctrl-Alt-f
a1b74fe8 1011Toggle full screen
a0a821a4 1012
f9859310 1013@item Ctrl-Alt-n
a0a821a4
FB
1014Switch to virtual console 'n'. Standard console mappings are:
1015@table @emph
1016@item 1
1017Target system display
1018@item 2
1019Monitor
1020@item 3
1021Serial port
a1b74fe8
FB
1022@end table
1023
f9859310 1024@item Ctrl-Alt
a0a821a4
FB
1025Toggle mouse and keyboard grab.
1026@end table
1027
3e11db9a
FB
1028In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
1029@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
1030
a0a821a4
FB
1031During emulation, if you are using the @option{-nographic} option, use
1032@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
1033
1034@table @key
a1b74fe8 1035@item Ctrl-a h
ec410fc9 1036Print this help
3b46e624 1037@item Ctrl-a x
366dfc52 1038Exit emulator
3b46e624 1039@item Ctrl-a s
1f47a922 1040Save disk data back to file (if -snapshot)
20d8a3ed
TS
1041@item Ctrl-a t
1042toggle console timestamps
a1b74fe8 1043@item Ctrl-a b
1f673135 1044Send break (magic sysrq in Linux)
a1b74fe8 1045@item Ctrl-a c
1f673135 1046Switch between console and monitor
a1b74fe8
FB
1047@item Ctrl-a Ctrl-a
1048Send Ctrl-a
ec410fc9 1049@end table
0806e3f6
FB
1050@c man end
1051
1052@ignore
1053
1f673135
FB
1054@c man begin SEEALSO
1055The HTML documentation of QEMU for more precise information and Linux
1056user mode emulator invocation.
1057@c man end
1058
1059@c man begin AUTHOR
1060Fabrice Bellard
1061@c man end
1062
1063@end ignore
1064
debc7065 1065@node pcsys_monitor
1f673135
FB
1066@section QEMU Monitor
1067
1068The QEMU monitor is used to give complex commands to the QEMU
1069emulator. You can use it to:
1070
1071@itemize @minus
1072
1073@item
e598752a 1074Remove or insert removable media images
89dfe898 1075(such as CD-ROM or floppies).
1f673135 1076
5fafdf24 1077@item
1f673135
FB
1078Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1079from a disk file.
1080
1081@item Inspect the VM state without an external debugger.
1082
1083@end itemize
1084
1085@subsection Commands
1086
1087The following commands are available:
1088
1089@table @option
1090
89dfe898 1091@item help or ? [@var{cmd}]
1f673135
FB
1092Show the help for all commands or just for command @var{cmd}.
1093
3b46e624 1094@item commit
89dfe898 1095Commit changes to the disk images (if -snapshot is used).
1f673135 1096
89dfe898
TS
1097@item info @var{subcommand}
1098Show various information about the system state.
1f673135
FB
1099
1100@table @option
1101@item info network
41d03949 1102show the various VLANs and the associated devices
1f673135
FB
1103@item info block
1104show the block devices
1105@item info registers
1106show the cpu registers
1107@item info history
1108show the command line history
b389dbfb
FB
1109@item info pci
1110show emulated PCI device
1111@item info usb
1112show USB devices plugged on the virtual USB hub
1113@item info usbhost
1114show all USB host devices
a3c25997
FB
1115@item info capture
1116show information about active capturing
13a2e80f
FB
1117@item info snapshots
1118show list of VM snapshots
455204eb
TS
1119@item info mice
1120show which guest mouse is receiving events
1f673135
FB
1121@end table
1122
1123@item q or quit
1124Quit the emulator.
1125
89dfe898 1126@item eject [-f] @var{device}
e598752a 1127Eject a removable medium (use -f to force it).
1f673135 1128
89dfe898 1129@item change @var{device} @var{setting}
f858dcae 1130
89dfe898 1131Change the configuration of a device.
f858dcae
TS
1132
1133@table @option
1134@item change @var{diskdevice} @var{filename}
1135Change the medium for a removable disk device to point to @var{filename}. eg
1136
1137@example
4bf27c24 1138(qemu) change ide1-cd0 /path/to/some.iso
f858dcae
TS
1139@end example
1140
89dfe898 1141@item change vnc @var{display},@var{options}
f858dcae
TS
1142Change the configuration of the VNC server. The valid syntax for @var{display}
1143and @var{options} are described at @ref{sec_invocation}. eg
1144
1145@example
1146(qemu) change vnc localhost:1
1147@end example
1148
1149@item change vnc password
1150
1151Change the password associated with the VNC server. The monitor will prompt for
1152the new password to be entered. VNC passwords are only significant upto 8 letters.
1153eg.
1154
1155@example
1156(qemu) change vnc password
1157Password: ********
1158@end example
1159
1160@end table
1f673135 1161
89dfe898 1162@item screendump @var{filename}
1f673135
FB
1163Save screen into PPM image @var{filename}.
1164
89dfe898 1165@item mouse_move @var{dx} @var{dy} [@var{dz}]
455204eb
TS
1166Move the active mouse to the specified coordinates @var{dx} @var{dy}
1167with optional scroll axis @var{dz}.
1168
89dfe898 1169@item mouse_button @var{val}
455204eb
TS
1170Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1171
89dfe898 1172@item mouse_set @var{index}
455204eb
TS
1173Set which mouse device receives events at given @var{index}, index
1174can be obtained with
1175@example
1176info mice
1177@end example
1178
89dfe898 1179@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
a3c25997
FB
1180Capture audio into @var{filename}. Using sample rate @var{frequency}
1181bits per sample @var{bits} and number of channels @var{channels}.
1182
1183Defaults:
1184@itemize @minus
1185@item Sample rate = 44100 Hz - CD quality
1186@item Bits = 16
1187@item Number of channels = 2 - Stereo
1188@end itemize
1189
89dfe898 1190@item stopcapture @var{index}
a3c25997
FB
1191Stop capture with a given @var{index}, index can be obtained with
1192@example
1193info capture
1194@end example
1195
89dfe898 1196@item log @var{item1}[,...]
1f673135
FB
1197Activate logging of the specified items to @file{/tmp/qemu.log}.
1198
89dfe898 1199@item savevm [@var{tag}|@var{id}]
13a2e80f
FB
1200Create a snapshot of the whole virtual machine. If @var{tag} is
1201provided, it is used as human readable identifier. If there is already
1202a snapshot with the same tag or ID, it is replaced. More info at
1203@ref{vm_snapshots}.
1f673135 1204
89dfe898 1205@item loadvm @var{tag}|@var{id}
13a2e80f
FB
1206Set the whole virtual machine to the snapshot identified by the tag
1207@var{tag} or the unique snapshot ID @var{id}.
1208
89dfe898 1209@item delvm @var{tag}|@var{id}
13a2e80f 1210Delete the snapshot identified by @var{tag} or @var{id}.
1f673135
FB
1211
1212@item stop
1213Stop emulation.
1214
1215@item c or cont
1216Resume emulation.
1217
89dfe898
TS
1218@item gdbserver [@var{port}]
1219Start gdbserver session (default @var{port}=1234)
1f673135 1220
89dfe898 1221@item x/fmt @var{addr}
1f673135
FB
1222Virtual memory dump starting at @var{addr}.
1223
89dfe898 1224@item xp /@var{fmt} @var{addr}
1f673135
FB
1225Physical memory dump starting at @var{addr}.
1226
1227@var{fmt} is a format which tells the command how to format the
1228data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1229
1230@table @var
5fafdf24 1231@item count
1f673135
FB
1232is the number of items to be dumped.
1233
1234@item format
4be456f1 1235can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1f673135
FB
1236c (char) or i (asm instruction).
1237
1238@item size
52c00a5f
FB
1239can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1240@code{h} or @code{w} can be specified with the @code{i} format to
1241respectively select 16 or 32 bit code instruction size.
1f673135
FB
1242
1243@end table
1244
5fafdf24 1245Examples:
1f673135
FB
1246@itemize
1247@item
1248Dump 10 instructions at the current instruction pointer:
5fafdf24 1249@example
1f673135
FB
1250(qemu) x/10i $eip
12510x90107063: ret
12520x90107064: sti
12530x90107065: lea 0x0(%esi,1),%esi
12540x90107069: lea 0x0(%edi,1),%edi
12550x90107070: ret
12560x90107071: jmp 0x90107080
12570x90107073: nop
12580x90107074: nop
12590x90107075: nop
12600x90107076: nop
1261@end example
1262
1263@item
1264Dump 80 16 bit values at the start of the video memory.
5fafdf24 1265@smallexample
1f673135
FB
1266(qemu) xp/80hx 0xb8000
12670x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
12680x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
12690x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
12700x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
12710x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
12720x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
12730x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
12740x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
12750x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
12760x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
debc7065 1277@end smallexample
1f673135
FB
1278@end itemize
1279
89dfe898 1280@item p or print/@var{fmt} @var{expr}
1f673135
FB
1281
1282Print expression value. Only the @var{format} part of @var{fmt} is
1283used.
0806e3f6 1284
89dfe898 1285@item sendkey @var{keys}
a3a91a35
FB
1286
1287Send @var{keys} to the emulator. Use @code{-} to press several keys
1288simultaneously. Example:
1289@example
1290sendkey ctrl-alt-f1
1291@end example
1292
1293This command is useful to send keys that your graphical user interface
1294intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1295
15a34c63
FB
1296@item system_reset
1297
1298Reset the system.
1299
0ecdffbb
AJ
1300@item boot_set @var{bootdevicelist}
1301
1302Define new values for the boot device list. Those values will override
1303the values specified on the command line through the @code{-boot} option.
1304
1305The values that can be specified here depend on the machine type, but are
1306the same that can be specified in the @code{-boot} command line option.
1307
89dfe898 1308@item usb_add @var{devname}
b389dbfb 1309
0aff66b5
PB
1310Add the USB device @var{devname}. For details of available devices see
1311@ref{usb_devices}
b389dbfb 1312
89dfe898 1313@item usb_del @var{devname}
b389dbfb
FB
1314
1315Remove the USB device @var{devname} from the QEMU virtual USB
1316hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1317command @code{info usb} to see the devices you can remove.
1318
1f673135 1319@end table
0806e3f6 1320
1f673135
FB
1321@subsection Integer expressions
1322
1323The monitor understands integers expressions for every integer
1324argument. You can use register names to get the value of specifics
1325CPU registers by prefixing them with @emph{$}.
ec410fc9 1326
1f47a922
FB
1327@node disk_images
1328@section Disk Images
1329
acd935ef
FB
1330Since version 0.6.1, QEMU supports many disk image formats, including
1331growable disk images (their size increase as non empty sectors are
13a2e80f
FB
1332written), compressed and encrypted disk images. Version 0.8.3 added
1333the new qcow2 disk image format which is essential to support VM
1334snapshots.
1f47a922 1335
debc7065
FB
1336@menu
1337* disk_images_quickstart:: Quick start for disk image creation
1338* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 1339* vm_snapshots:: VM snapshots
debc7065 1340* qemu_img_invocation:: qemu-img Invocation
975b092b 1341* qemu_nbd_invocation:: qemu-nbd Invocation
19cb3738 1342* host_drives:: Using host drives
debc7065 1343* disk_images_fat_images:: Virtual FAT disk images
75818250 1344* disk_images_nbd:: NBD access
debc7065
FB
1345@end menu
1346
1347@node disk_images_quickstart
acd935ef
FB
1348@subsection Quick start for disk image creation
1349
1350You can create a disk image with the command:
1f47a922 1351@example
acd935ef 1352qemu-img create myimage.img mysize
1f47a922 1353@end example
acd935ef
FB
1354where @var{myimage.img} is the disk image filename and @var{mysize} is its
1355size in kilobytes. You can add an @code{M} suffix to give the size in
1356megabytes and a @code{G} suffix for gigabytes.
1357
debc7065 1358See @ref{qemu_img_invocation} for more information.
1f47a922 1359
debc7065 1360@node disk_images_snapshot_mode
1f47a922
FB
1361@subsection Snapshot mode
1362
1363If you use the option @option{-snapshot}, all disk images are
1364considered as read only. When sectors in written, they are written in
1365a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
1366write back to the raw disk images by using the @code{commit} monitor
1367command (or @key{C-a s} in the serial console).
1f47a922 1368
13a2e80f
FB
1369@node vm_snapshots
1370@subsection VM snapshots
1371
1372VM snapshots are snapshots of the complete virtual machine including
1373CPU state, RAM, device state and the content of all the writable
1374disks. In order to use VM snapshots, you must have at least one non
1375removable and writable block device using the @code{qcow2} disk image
1376format. Normally this device is the first virtual hard drive.
1377
1378Use the monitor command @code{savevm} to create a new VM snapshot or
1379replace an existing one. A human readable name can be assigned to each
19d36792 1380snapshot in addition to its numerical ID.
13a2e80f
FB
1381
1382Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1383a VM snapshot. @code{info snapshots} lists the available snapshots
1384with their associated information:
1385
1386@example
1387(qemu) info snapshots
1388Snapshot devices: hda
1389Snapshot list (from hda):
1390ID TAG VM SIZE DATE VM CLOCK
13911 start 41M 2006-08-06 12:38:02 00:00:14.954
13922 40M 2006-08-06 12:43:29 00:00:18.633
13933 msys 40M 2006-08-06 12:44:04 00:00:23.514
1394@end example
1395
1396A VM snapshot is made of a VM state info (its size is shown in
1397@code{info snapshots}) and a snapshot of every writable disk image.
1398The VM state info is stored in the first @code{qcow2} non removable
1399and writable block device. The disk image snapshots are stored in
1400every disk image. The size of a snapshot in a disk image is difficult
1401to evaluate and is not shown by @code{info snapshots} because the
1402associated disk sectors are shared among all the snapshots to save
19d36792
FB
1403disk space (otherwise each snapshot would need a full copy of all the
1404disk images).
13a2e80f
FB
1405
1406When using the (unrelated) @code{-snapshot} option
1407(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1408but they are deleted as soon as you exit QEMU.
1409
1410VM snapshots currently have the following known limitations:
1411@itemize
5fafdf24 1412@item
13a2e80f
FB
1413They cannot cope with removable devices if they are removed or
1414inserted after a snapshot is done.
5fafdf24 1415@item
13a2e80f
FB
1416A few device drivers still have incomplete snapshot support so their
1417state is not saved or restored properly (in particular USB).
1418@end itemize
1419
acd935ef
FB
1420@node qemu_img_invocation
1421@subsection @code{qemu-img} Invocation
1f47a922 1422
acd935ef 1423@include qemu-img.texi
05efe46e 1424
975b092b
TS
1425@node qemu_nbd_invocation
1426@subsection @code{qemu-nbd} Invocation
1427
1428@include qemu-nbd.texi
1429
19cb3738
FB
1430@node host_drives
1431@subsection Using host drives
1432
1433In addition to disk image files, QEMU can directly access host
1434devices. We describe here the usage for QEMU version >= 0.8.3.
1435
1436@subsubsection Linux
1437
1438On Linux, you can directly use the host device filename instead of a
4be456f1 1439disk image filename provided you have enough privileges to access
19cb3738
FB
1440it. For example, use @file{/dev/cdrom} to access to the CDROM or
1441@file{/dev/fd0} for the floppy.
1442
f542086d 1443@table @code
19cb3738
FB
1444@item CD
1445You can specify a CDROM device even if no CDROM is loaded. QEMU has
1446specific code to detect CDROM insertion or removal. CDROM ejection by
1447the guest OS is supported. Currently only data CDs are supported.
1448@item Floppy
1449You can specify a floppy device even if no floppy is loaded. Floppy
1450removal is currently not detected accurately (if you change floppy
1451without doing floppy access while the floppy is not loaded, the guest
1452OS will think that the same floppy is loaded).
1453@item Hard disks
1454Hard disks can be used. Normally you must specify the whole disk
1455(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1456see it as a partitioned disk. WARNING: unless you know what you do, it
1457is better to only make READ-ONLY accesses to the hard disk otherwise
1458you may corrupt your host data (use the @option{-snapshot} command
1459line option or modify the device permissions accordingly).
1460@end table
1461
1462@subsubsection Windows
1463
01781963
FB
1464@table @code
1465@item CD
4be456f1 1466The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
1467alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1468supported as an alias to the first CDROM drive.
19cb3738 1469
e598752a 1470Currently there is no specific code to handle removable media, so it
19cb3738
FB
1471is better to use the @code{change} or @code{eject} monitor commands to
1472change or eject media.
01781963 1473@item Hard disks
89dfe898 1474Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
1475where @var{N} is the drive number (0 is the first hard disk).
1476
1477WARNING: unless you know what you do, it is better to only make
1478READ-ONLY accesses to the hard disk otherwise you may corrupt your
1479host data (use the @option{-snapshot} command line so that the
1480modifications are written in a temporary file).
1481@end table
1482
19cb3738
FB
1483
1484@subsubsection Mac OS X
1485
5fafdf24 1486@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 1487
e598752a 1488Currently there is no specific code to handle removable media, so it
19cb3738
FB
1489is better to use the @code{change} or @code{eject} monitor commands to
1490change or eject media.
1491
debc7065 1492@node disk_images_fat_images
2c6cadd4
FB
1493@subsection Virtual FAT disk images
1494
1495QEMU can automatically create a virtual FAT disk image from a
1496directory tree. In order to use it, just type:
1497
5fafdf24 1498@example
2c6cadd4
FB
1499qemu linux.img -hdb fat:/my_directory
1500@end example
1501
1502Then you access access to all the files in the @file{/my_directory}
1503directory without having to copy them in a disk image or to export
1504them via SAMBA or NFS. The default access is @emph{read-only}.
1505
1506Floppies can be emulated with the @code{:floppy:} option:
1507
5fafdf24 1508@example
2c6cadd4
FB
1509qemu linux.img -fda fat:floppy:/my_directory
1510@end example
1511
1512A read/write support is available for testing (beta stage) with the
1513@code{:rw:} option:
1514
5fafdf24 1515@example
2c6cadd4
FB
1516qemu linux.img -fda fat:floppy:rw:/my_directory
1517@end example
1518
1519What you should @emph{never} do:
1520@itemize
1521@item use non-ASCII filenames ;
1522@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
1523@item expect it to work when loadvm'ing ;
1524@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
1525@end itemize
1526
75818250
TS
1527@node disk_images_nbd
1528@subsection NBD access
1529
1530QEMU can access directly to block device exported using the Network Block Device
1531protocol.
1532
1533@example
1534qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
1535@end example
1536
1537If the NBD server is located on the same host, you can use an unix socket instead
1538of an inet socket:
1539
1540@example
1541qemu linux.img -hdb nbd:unix:/tmp/my_socket
1542@end example
1543
1544In this case, the block device must be exported using qemu-nbd:
1545
1546@example
1547qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
1548@end example
1549
1550The use of qemu-nbd allows to share a disk between several guests:
1551@example
1552qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
1553@end example
1554
1555and then you can use it with two guests:
1556@example
1557qemu linux1.img -hdb nbd:unix:/tmp/my_socket
1558qemu linux2.img -hdb nbd:unix:/tmp/my_socket
1559@end example
1560
debc7065 1561@node pcsys_network
9d4fb82e
FB
1562@section Network emulation
1563
4be456f1 1564QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1565target) and can connect them to an arbitrary number of Virtual Local
1566Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1567VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1568simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1569network stack can replace the TAP device to have a basic network
1570connection.
1571
1572@subsection VLANs
9d4fb82e 1573
41d03949
FB
1574QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1575connection between several network devices. These devices can be for
1576example QEMU virtual Ethernet cards or virtual Host ethernet devices
1577(TAP devices).
9d4fb82e 1578
41d03949
FB
1579@subsection Using TAP network interfaces
1580
1581This is the standard way to connect QEMU to a real network. QEMU adds
1582a virtual network device on your host (called @code{tapN}), and you
1583can then configure it as if it was a real ethernet card.
9d4fb82e 1584
8f40c388
FB
1585@subsubsection Linux host
1586
9d4fb82e
FB
1587As an example, you can download the @file{linux-test-xxx.tar.gz}
1588archive and copy the script @file{qemu-ifup} in @file{/etc} and
1589configure properly @code{sudo} so that the command @code{ifconfig}
1590contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1591that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1592device @file{/dev/net/tun} must be present.
1593
ee0f4751
FB
1594See @ref{sec_invocation} to have examples of command lines using the
1595TAP network interfaces.
9d4fb82e 1596
8f40c388
FB
1597@subsubsection Windows host
1598
1599There is a virtual ethernet driver for Windows 2000/XP systems, called
1600TAP-Win32. But it is not included in standard QEMU for Windows,
1601so you will need to get it separately. It is part of OpenVPN package,
1602so download OpenVPN from : @url{http://openvpn.net/}.
1603
9d4fb82e
FB
1604@subsection Using the user mode network stack
1605
41d03949
FB
1606By using the option @option{-net user} (default configuration if no
1607@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1608network stack (you don't need root privilege to use the virtual
41d03949 1609network). The virtual network configuration is the following:
9d4fb82e
FB
1610
1611@example
1612
41d03949
FB
1613 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1614 | (10.0.2.2)
9d4fb82e 1615 |
2518bd0d 1616 ----> DNS server (10.0.2.3)
3b46e624 1617 |
2518bd0d 1618 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1619@end example
1620
1621The QEMU VM behaves as if it was behind a firewall which blocks all
1622incoming connections. You can use a DHCP client to automatically
41d03949
FB
1623configure the network in the QEMU VM. The DHCP server assign addresses
1624to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1625
1626In order to check that the user mode network is working, you can ping
1627the address 10.0.2.2 and verify that you got an address in the range
162810.0.2.x from the QEMU virtual DHCP server.
1629
b415a407 1630Note that @code{ping} is not supported reliably to the internet as it
4be456f1 1631would require root privileges. It means you can only ping the local
b415a407
FB
1632router (10.0.2.2).
1633
9bf05444
FB
1634When using the built-in TFTP server, the router is also the TFTP
1635server.
1636
1637When using the @option{-redir} option, TCP or UDP connections can be
1638redirected from the host to the guest. It allows for example to
1639redirect X11, telnet or SSH connections.
443f1376 1640
41d03949
FB
1641@subsection Connecting VLANs between QEMU instances
1642
1643Using the @option{-net socket} option, it is possible to make VLANs
1644that span several QEMU instances. See @ref{sec_invocation} to have a
1645basic example.
1646
9d4fb82e
FB
1647@node direct_linux_boot
1648@section Direct Linux Boot
1f673135
FB
1649
1650This section explains how to launch a Linux kernel inside QEMU without
1651having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1652kernel testing.
1f673135 1653
ee0f4751 1654The syntax is:
1f673135 1655@example
ee0f4751 1656qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1657@end example
1658
ee0f4751
FB
1659Use @option{-kernel} to provide the Linux kernel image and
1660@option{-append} to give the kernel command line arguments. The
1661@option{-initrd} option can be used to provide an INITRD image.
1f673135 1662
ee0f4751
FB
1663When using the direct Linux boot, a disk image for the first hard disk
1664@file{hda} is required because its boot sector is used to launch the
1665Linux kernel.
1f673135 1666
ee0f4751
FB
1667If you do not need graphical output, you can disable it and redirect
1668the virtual serial port and the QEMU monitor to the console with the
1669@option{-nographic} option. The typical command line is:
1f673135 1670@example
ee0f4751
FB
1671qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1672 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1673@end example
1674
ee0f4751
FB
1675Use @key{Ctrl-a c} to switch between the serial console and the
1676monitor (@pxref{pcsys_keys}).
1f673135 1677
debc7065 1678@node pcsys_usb
b389dbfb
FB
1679@section USB emulation
1680
0aff66b5
PB
1681QEMU emulates a PCI UHCI USB controller. You can virtually plug
1682virtual USB devices or real host USB devices (experimental, works only
1683on Linux hosts). Qemu will automatically create and connect virtual USB hubs
f542086d 1684as necessary to connect multiple USB devices.
b389dbfb 1685
0aff66b5
PB
1686@menu
1687* usb_devices::
1688* host_usb_devices::
1689@end menu
1690@node usb_devices
1691@subsection Connecting USB devices
b389dbfb 1692
0aff66b5
PB
1693USB devices can be connected with the @option{-usbdevice} commandline option
1694or the @code{usb_add} monitor command. Available devices are:
b389dbfb 1695
db380c06
AZ
1696@table @code
1697@item mouse
0aff66b5 1698Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 1699@item tablet
c6d46c20 1700Pointer device that uses absolute coordinates (like a touchscreen).
0aff66b5
PB
1701This means qemu is able to report the mouse position without having
1702to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 1703@item disk:@var{file}
0aff66b5 1704Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 1705@item host:@var{bus.addr}
0aff66b5
PB
1706Pass through the host device identified by @var{bus.addr}
1707(Linux only)
db380c06 1708@item host:@var{vendor_id:product_id}
0aff66b5
PB
1709Pass through the host device identified by @var{vendor_id:product_id}
1710(Linux only)
db380c06 1711@item wacom-tablet
f6d2a316
AZ
1712Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1713above but it can be used with the tslib library because in addition to touch
1714coordinates it reports touch pressure.
db380c06 1715@item keyboard
47b2d338 1716Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1717@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1718Serial converter. This emulates an FTDI FT232BM chip connected to host character
1719device @var{dev}. The available character devices are the same as for the
1720@code{-serial} option. The @code{vendorid} and @code{productid} options can be
a11d070e 1721used to override the default 0403:6001. For instance,
db380c06
AZ
1722@example
1723usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1724@end example
1725will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1726serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1727@item braille
1728Braille device. This will use BrlAPI to display the braille output on a real
1729or fake device.
9ad97e65
AZ
1730@item net:@var{options}
1731Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1732specifies NIC options as with @code{-net nic,}@var{options} (see description).
1733For instance, user-mode networking can be used with
6c9f886c 1734@example
9ad97e65 1735qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
1736@end example
1737Currently this cannot be used in machines that support PCI NICs.
0aff66b5 1738@end table
b389dbfb 1739
0aff66b5 1740@node host_usb_devices
b389dbfb
FB
1741@subsection Using host USB devices on a Linux host
1742
1743WARNING: this is an experimental feature. QEMU will slow down when
1744using it. USB devices requiring real time streaming (i.e. USB Video
1745Cameras) are not supported yet.
1746
1747@enumerate
5fafdf24 1748@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1749is actually using the USB device. A simple way to do that is simply to
1750disable the corresponding kernel module by renaming it from @file{mydriver.o}
1751to @file{mydriver.o.disabled}.
1752
1753@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1754@example
1755ls /proc/bus/usb
1756001 devices drivers
1757@end example
1758
1759@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1760@example
1761chown -R myuid /proc/bus/usb
1762@end example
1763
1764@item Launch QEMU and do in the monitor:
5fafdf24 1765@example
b389dbfb
FB
1766info usbhost
1767 Device 1.2, speed 480 Mb/s
1768 Class 00: USB device 1234:5678, USB DISK
1769@end example
1770You should see the list of the devices you can use (Never try to use
1771hubs, it won't work).
1772
1773@item Add the device in QEMU by using:
5fafdf24 1774@example
b389dbfb
FB
1775usb_add host:1234:5678
1776@end example
1777
1778Normally the guest OS should report that a new USB device is
1779plugged. You can use the option @option{-usbdevice} to do the same.
1780
1781@item Now you can try to use the host USB device in QEMU.
1782
1783@end enumerate
1784
1785When relaunching QEMU, you may have to unplug and plug again the USB
1786device to make it work again (this is a bug).
1787
f858dcae
TS
1788@node vnc_security
1789@section VNC security
1790
1791The VNC server capability provides access to the graphical console
1792of the guest VM across the network. This has a number of security
1793considerations depending on the deployment scenarios.
1794
1795@menu
1796* vnc_sec_none::
1797* vnc_sec_password::
1798* vnc_sec_certificate::
1799* vnc_sec_certificate_verify::
1800* vnc_sec_certificate_pw::
1801* vnc_generate_cert::
1802@end menu
1803@node vnc_sec_none
1804@subsection Without passwords
1805
1806The simplest VNC server setup does not include any form of authentication.
1807For this setup it is recommended to restrict it to listen on a UNIX domain
1808socket only. For example
1809
1810@example
1811qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1812@end example
1813
1814This ensures that only users on local box with read/write access to that
1815path can access the VNC server. To securely access the VNC server from a
1816remote machine, a combination of netcat+ssh can be used to provide a secure
1817tunnel.
1818
1819@node vnc_sec_password
1820@subsection With passwords
1821
1822The VNC protocol has limited support for password based authentication. Since
1823the protocol limits passwords to 8 characters it should not be considered
1824to provide high security. The password can be fairly easily brute-forced by
1825a client making repeat connections. For this reason, a VNC server using password
1826authentication should be restricted to only listen on the loopback interface
1827or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1828option, and then once QEMU is running the password is set with the monitor. Until
1829the monitor is used to set the password all clients will be rejected.
1830
1831@example
1832qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1833(qemu) change vnc password
1834Password: ********
1835(qemu)
1836@end example
1837
1838@node vnc_sec_certificate
1839@subsection With x509 certificates
1840
1841The QEMU VNC server also implements the VeNCrypt extension allowing use of
1842TLS for encryption of the session, and x509 certificates for authentication.
1843The use of x509 certificates is strongly recommended, because TLS on its
1844own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1845support provides a secure session, but no authentication. This allows any
1846client to connect, and provides an encrypted session.
1847
1848@example
1849qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1850@end example
1851
1852In the above example @code{/etc/pki/qemu} should contain at least three files,
1853@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1854users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1855NB the @code{server-key.pem} file should be protected with file mode 0600 to
1856only be readable by the user owning it.
1857
1858@node vnc_sec_certificate_verify
1859@subsection With x509 certificates and client verification
1860
1861Certificates can also provide a means to authenticate the client connecting.
1862The server will request that the client provide a certificate, which it will
1863then validate against the CA certificate. This is a good choice if deploying
1864in an environment with a private internal certificate authority.
1865
1866@example
1867qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1868@end example
1869
1870
1871@node vnc_sec_certificate_pw
1872@subsection With x509 certificates, client verification and passwords
1873
1874Finally, the previous method can be combined with VNC password authentication
1875to provide two layers of authentication for clients.
1876
1877@example
1878qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1879(qemu) change vnc password
1880Password: ********
1881(qemu)
1882@end example
1883
1884@node vnc_generate_cert
1885@subsection Generating certificates for VNC
1886
1887The GNU TLS packages provides a command called @code{certtool} which can
1888be used to generate certificates and keys in PEM format. At a minimum it
1889is neccessary to setup a certificate authority, and issue certificates to
1890each server. If using certificates for authentication, then each client
1891will also need to be issued a certificate. The recommendation is for the
1892server to keep its certificates in either @code{/etc/pki/qemu} or for
1893unprivileged users in @code{$HOME/.pki/qemu}.
1894
1895@menu
1896* vnc_generate_ca::
1897* vnc_generate_server::
1898* vnc_generate_client::
1899@end menu
1900@node vnc_generate_ca
1901@subsubsection Setup the Certificate Authority
1902
1903This step only needs to be performed once per organization / organizational
1904unit. First the CA needs a private key. This key must be kept VERY secret
1905and secure. If this key is compromised the entire trust chain of the certificates
1906issued with it is lost.
1907
1908@example
1909# certtool --generate-privkey > ca-key.pem
1910@end example
1911
1912A CA needs to have a public certificate. For simplicity it can be a self-signed
1913certificate, or one issue by a commercial certificate issuing authority. To
1914generate a self-signed certificate requires one core piece of information, the
1915name of the organization.
1916
1917@example
1918# cat > ca.info <<EOF
1919cn = Name of your organization
1920ca
1921cert_signing_key
1922EOF
1923# certtool --generate-self-signed \
1924 --load-privkey ca-key.pem
1925 --template ca.info \
1926 --outfile ca-cert.pem
1927@end example
1928
1929The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1930TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1931
1932@node vnc_generate_server
1933@subsubsection Issuing server certificates
1934
1935Each server (or host) needs to be issued with a key and certificate. When connecting
1936the certificate is sent to the client which validates it against the CA certificate.
1937The core piece of information for a server certificate is the hostname. This should
1938be the fully qualified hostname that the client will connect with, since the client
1939will typically also verify the hostname in the certificate. On the host holding the
1940secure CA private key:
1941
1942@example
1943# cat > server.info <<EOF
1944organization = Name of your organization
1945cn = server.foo.example.com
1946tls_www_server
1947encryption_key
1948signing_key
1949EOF
1950# certtool --generate-privkey > server-key.pem
1951# certtool --generate-certificate \
1952 --load-ca-certificate ca-cert.pem \
1953 --load-ca-privkey ca-key.pem \
1954 --load-privkey server server-key.pem \
1955 --template server.info \
1956 --outfile server-cert.pem
1957@end example
1958
1959The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1960to the server for which they were generated. The @code{server-key.pem} is security
1961sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1962
1963@node vnc_generate_client
1964@subsubsection Issuing client certificates
1965
1966If the QEMU VNC server is to use the @code{x509verify} option to validate client
1967certificates as its authentication mechanism, each client also needs to be issued
1968a certificate. The client certificate contains enough metadata to uniquely identify
1969the client, typically organization, state, city, building, etc. On the host holding
1970the secure CA private key:
1971
1972@example
1973# cat > client.info <<EOF
1974country = GB
1975state = London
1976locality = London
1977organiazation = Name of your organization
1978cn = client.foo.example.com
1979tls_www_client
1980encryption_key
1981signing_key
1982EOF
1983# certtool --generate-privkey > client-key.pem
1984# certtool --generate-certificate \
1985 --load-ca-certificate ca-cert.pem \
1986 --load-ca-privkey ca-key.pem \
1987 --load-privkey client-key.pem \
1988 --template client.info \
1989 --outfile client-cert.pem
1990@end example
1991
1992The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1993copied to the client for which they were generated.
1994
0806e3f6 1995@node gdb_usage
da415d54
FB
1996@section GDB usage
1997
1998QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1999'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 2000
9d4520d0 2001In order to use gdb, launch qemu with the '-s' option. It will wait for a
da415d54
FB
2002gdb connection:
2003@example
debc7065
FB
2004> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
2005 -append "root=/dev/hda"
da415d54
FB
2006Connected to host network interface: tun0
2007Waiting gdb connection on port 1234
2008@end example
2009
2010Then launch gdb on the 'vmlinux' executable:
2011@example
2012> gdb vmlinux
2013@end example
2014
2015In gdb, connect to QEMU:
2016@example
6c9bf893 2017(gdb) target remote localhost:1234
da415d54
FB
2018@end example
2019
2020Then you can use gdb normally. For example, type 'c' to launch the kernel:
2021@example
2022(gdb) c
2023@end example
2024
0806e3f6
FB
2025Here are some useful tips in order to use gdb on system code:
2026
2027@enumerate
2028@item
2029Use @code{info reg} to display all the CPU registers.
2030@item
2031Use @code{x/10i $eip} to display the code at the PC position.
2032@item
2033Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 2034@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
2035@end enumerate
2036
60897d36
EI
2037Advanced debugging options:
2038
2039The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 2040@table @code
60897d36
EI
2041@item maintenance packet qqemu.sstepbits
2042
2043This will display the MASK bits used to control the single stepping IE:
2044@example
2045(gdb) maintenance packet qqemu.sstepbits
2046sending: "qqemu.sstepbits"
2047received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
2048@end example
2049@item maintenance packet qqemu.sstep
2050
2051This will display the current value of the mask used when single stepping IE:
2052@example
2053(gdb) maintenance packet qqemu.sstep
2054sending: "qqemu.sstep"
2055received: "0x7"
2056@end example
2057@item maintenance packet Qqemu.sstep=HEX_VALUE
2058
2059This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
2060@example
2061(gdb) maintenance packet Qqemu.sstep=0x5
2062sending: "qemu.sstep=0x5"
2063received: "OK"
2064@end example
94d45e44 2065@end table
60897d36 2066
debc7065 2067@node pcsys_os_specific
1a084f3d
FB
2068@section Target OS specific information
2069
2070@subsection Linux
2071
15a34c63
FB
2072To have access to SVGA graphic modes under X11, use the @code{vesa} or
2073the @code{cirrus} X11 driver. For optimal performances, use 16 bit
2074color depth in the guest and the host OS.
1a084f3d 2075
e3371e62
FB
2076When using a 2.6 guest Linux kernel, you should add the option
2077@code{clock=pit} on the kernel command line because the 2.6 Linux
2078kernels make very strict real time clock checks by default that QEMU
2079cannot simulate exactly.
2080
7c3fc84d
FB
2081When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2082not activated because QEMU is slower with this patch. The QEMU
2083Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 2084Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
2085patch by default. Newer kernels don't have it.
2086
1a084f3d
FB
2087@subsection Windows
2088
2089If you have a slow host, using Windows 95 is better as it gives the
2090best speed. Windows 2000 is also a good choice.
2091
e3371e62
FB
2092@subsubsection SVGA graphic modes support
2093
2094QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
2095card. All Windows versions starting from Windows 95 should recognize
2096and use this graphic card. For optimal performances, use 16 bit color
2097depth in the guest and the host OS.
1a084f3d 2098
3cb0853a
FB
2099If you are using Windows XP as guest OS and if you want to use high
2100resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
21011280x1024x16), then you should use the VESA VBE virtual graphic card
2102(option @option{-std-vga}).
2103
e3371e62
FB
2104@subsubsection CPU usage reduction
2105
2106Windows 9x does not correctly use the CPU HLT
15a34c63
FB
2107instruction. The result is that it takes host CPU cycles even when
2108idle. You can install the utility from
2109@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2110problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 2111
9d0a8e6f 2112@subsubsection Windows 2000 disk full problem
e3371e62 2113
9d0a8e6f
FB
2114Windows 2000 has a bug which gives a disk full problem during its
2115installation. When installing it, use the @option{-win2k-hack} QEMU
2116option to enable a specific workaround. After Windows 2000 is
2117installed, you no longer need this option (this option slows down the
2118IDE transfers).
e3371e62 2119
6cc721cf
FB
2120@subsubsection Windows 2000 shutdown
2121
2122Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2123can. It comes from the fact that Windows 2000 does not automatically
2124use the APM driver provided by the BIOS.
2125
2126In order to correct that, do the following (thanks to Struan
2127Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2128Add/Troubleshoot a device => Add a new device & Next => No, select the
2129hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2130(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 2131correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
2132
2133@subsubsection Share a directory between Unix and Windows
2134
2135See @ref{sec_invocation} about the help of the option @option{-smb}.
2136
2192c332 2137@subsubsection Windows XP security problem
e3371e62
FB
2138
2139Some releases of Windows XP install correctly but give a security
2140error when booting:
2141@example
2142A problem is preventing Windows from accurately checking the
2143license for this computer. Error code: 0x800703e6.
2144@end example
e3371e62 2145
2192c332
FB
2146The workaround is to install a service pack for XP after a boot in safe
2147mode. Then reboot, and the problem should go away. Since there is no
2148network while in safe mode, its recommended to download the full
2149installation of SP1 or SP2 and transfer that via an ISO or using the
2150vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 2151
a0a821a4
FB
2152@subsection MS-DOS and FreeDOS
2153
2154@subsubsection CPU usage reduction
2155
2156DOS does not correctly use the CPU HLT instruction. The result is that
2157it takes host CPU cycles even when idle. You can install the utility
2158from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2159problem.
2160
debc7065 2161@node QEMU System emulator for non PC targets
3f9f3aa1
FB
2162@chapter QEMU System emulator for non PC targets
2163
2164QEMU is a generic emulator and it emulates many non PC
2165machines. Most of the options are similar to the PC emulator. The
4be456f1 2166differences are mentioned in the following sections.
3f9f3aa1 2167
debc7065
FB
2168@menu
2169* QEMU PowerPC System emulator::
24d4de45
TS
2170* Sparc32 System emulator::
2171* Sparc64 System emulator::
2172* MIPS System emulator::
2173* ARM System emulator::
2174* ColdFire System emulator::
debc7065
FB
2175@end menu
2176
2177@node QEMU PowerPC System emulator
3f9f3aa1 2178@section QEMU PowerPC System emulator
1a084f3d 2179
15a34c63
FB
2180Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2181or PowerMac PowerPC system.
1a084f3d 2182
b671f9ed 2183QEMU emulates the following PowerMac peripherals:
1a084f3d 2184
15a34c63 2185@itemize @minus
5fafdf24
TS
2186@item
2187UniNorth PCI Bridge
15a34c63
FB
2188@item
2189PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 2190@item
15a34c63 21912 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 2192@item
15a34c63
FB
2193NE2000 PCI adapters
2194@item
2195Non Volatile RAM
2196@item
2197VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
2198@end itemize
2199
b671f9ed 2200QEMU emulates the following PREP peripherals:
52c00a5f
FB
2201
2202@itemize @minus
5fafdf24 2203@item
15a34c63
FB
2204PCI Bridge
2205@item
2206PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 2207@item
52c00a5f
FB
22082 IDE interfaces with hard disk and CD-ROM support
2209@item
2210Floppy disk
5fafdf24 2211@item
15a34c63 2212NE2000 network adapters
52c00a5f
FB
2213@item
2214Serial port
2215@item
2216PREP Non Volatile RAM
15a34c63
FB
2217@item
2218PC compatible keyboard and mouse.
52c00a5f
FB
2219@end itemize
2220
15a34c63 2221QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 2222@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 2223
15a34c63
FB
2224@c man begin OPTIONS
2225
2226The following options are specific to the PowerPC emulation:
2227
2228@table @option
2229
3b46e624 2230@item -g WxH[xDEPTH]
15a34c63
FB
2231
2232Set the initial VGA graphic mode. The default is 800x600x15.
2233
2234@end table
2235
5fafdf24 2236@c man end
15a34c63
FB
2237
2238
52c00a5f 2239More information is available at
3f9f3aa1 2240@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 2241
24d4de45
TS
2242@node Sparc32 System emulator
2243@section Sparc32 System emulator
e80cfcfc 2244
6a3b9cc9 2245Use the executable @file{qemu-system-sparc} to simulate a SPARCstation
ee76f82e
BS
22465, SPARCstation 10, SPARCstation 20, SPARCserver 600MP (sun4m
2247architecture), SPARCstation 2 (sun4c architecture), SPARCserver 1000,
2248or SPARCcenter 2000 (sun4d architecture). The emulation is somewhat
2249complete. SMP up to 16 CPUs is supported, but Linux limits the number
2250of usable CPUs to 4.
e80cfcfc 2251
7d85892b 2252QEMU emulates the following sun4m/sun4d peripherals:
e80cfcfc
FB
2253
2254@itemize @minus
3475187d 2255@item
7d85892b 2256IOMMU or IO-UNITs
e80cfcfc
FB
2257@item
2258TCX Frame buffer
5fafdf24 2259@item
e80cfcfc
FB
2260Lance (Am7990) Ethernet
2261@item
2262Non Volatile RAM M48T08
2263@item
3475187d
FB
2264Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2265and power/reset logic
2266@item
2267ESP SCSI controller with hard disk and CD-ROM support
2268@item
6a3b9cc9 2269Floppy drive (not on SS-600MP)
a2502b58
BS
2270@item
2271CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
2272@end itemize
2273
6a3b9cc9
BS
2274The number of peripherals is fixed in the architecture. Maximum
2275memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 2276others 2047MB.
3475187d 2277
30a604f3 2278Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
2279@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2280firmware implementation. The goal is to implement a 100% IEEE
22811275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
2282
2283A sample Linux 2.6 series kernel and ram disk image are available on
0986ac3b
FB
2284the QEMU web site. Please note that currently NetBSD, OpenBSD or
2285Solaris kernels don't work.
3475187d
FB
2286
2287@c man begin OPTIONS
2288
a2502b58 2289The following options are specific to the Sparc32 emulation:
3475187d
FB
2290
2291@table @option
2292
a2502b58 2293@item -g WxHx[xDEPTH]
3475187d 2294
a2502b58
BS
2295Set the initial TCX graphic mode. The default is 1024x768x8, currently
2296the only other possible mode is 1024x768x24.
3475187d 2297
66508601
BS
2298@item -prom-env string
2299
2300Set OpenBIOS variables in NVRAM, for example:
2301
2302@example
2303qemu-system-sparc -prom-env 'auto-boot?=false' \
2304 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2305@end example
2306
ee76f82e 2307@item -M [SS-5|SS-10|SS-20|SS-600MP|SS-2|SS-1000|SS-2000]
a2502b58
BS
2308
2309Set the emulated machine type. Default is SS-5.
2310
3475187d
FB
2311@end table
2312
5fafdf24 2313@c man end
3475187d 2314
24d4de45
TS
2315@node Sparc64 System emulator
2316@section Sparc64 System emulator
e80cfcfc 2317
c7ba218d
BS
2318Use the executable @file{qemu-system-sparc64} to simulate a Sun4u or
2319Sun4v machine. The emulator is not usable for anything yet.
b756921a 2320
c7ba218d 2321QEMU emulates the following peripherals:
83469015
FB
2322
2323@itemize @minus
2324@item
5fafdf24 2325UltraSparc IIi APB PCI Bridge
83469015
FB
2326@item
2327PCI VGA compatible card with VESA Bochs Extensions
2328@item
2329Non Volatile RAM M48T59
2330@item
2331PC-compatible serial ports
c7ba218d
BS
2332@item
23332 PCI IDE interfaces with hard disk and CD-ROM support
83469015
FB
2334@end itemize
2335
c7ba218d
BS
2336@c man begin OPTIONS
2337
2338The following options are specific to the Sparc64 emulation:
2339
2340@table @option
2341
2342@item -M [sun4u|sun4v]
2343
2344Set the emulated machine type. The default is sun4u.
2345
2346@end table
2347
2348@c man end
2349
24d4de45
TS
2350@node MIPS System emulator
2351@section MIPS System emulator
9d0a8e6f 2352
d9aedc32
TS
2353Four executables cover simulation of 32 and 64-bit MIPS systems in
2354both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2355@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2356Five different machine types are emulated:
24d4de45
TS
2357
2358@itemize @minus
2359@item
2360A generic ISA PC-like machine "mips"
2361@item
2362The MIPS Malta prototype board "malta"
2363@item
d9aedc32 2364An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2365@item
f0fc6f8f 2366MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2367@item
2368A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2369@end itemize
2370
2371The generic emulation is supported by Debian 'Etch' and is able to
2372install Debian into a virtual disk image. The following devices are
2373emulated:
3f9f3aa1
FB
2374
2375@itemize @minus
5fafdf24 2376@item
6bf5b4e8 2377A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2378@item
2379PC style serial port
2380@item
24d4de45
TS
2381PC style IDE disk
2382@item
3f9f3aa1
FB
2383NE2000 network card
2384@end itemize
2385
24d4de45
TS
2386The Malta emulation supports the following devices:
2387
2388@itemize @minus
2389@item
0b64d008 2390Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2391@item
2392PIIX4 PCI/USB/SMbus controller
2393@item
2394The Multi-I/O chip's serial device
2395@item
2396PCnet32 PCI network card
2397@item
2398Malta FPGA serial device
2399@item
2400Cirrus VGA graphics card
2401@end itemize
2402
2403The ACER Pica emulation supports:
2404
2405@itemize @minus
2406@item
2407MIPS R4000 CPU
2408@item
2409PC-style IRQ and DMA controllers
2410@item
2411PC Keyboard
2412@item
2413IDE controller
2414@end itemize
3f9f3aa1 2415
f0fc6f8f
TS
2416The mipssim pseudo board emulation provides an environment similiar
2417to what the proprietary MIPS emulator uses for running Linux.
2418It supports:
6bf5b4e8
TS
2419
2420@itemize @minus
2421@item
2422A range of MIPS CPUs, default is the 24Kf
2423@item
2424PC style serial port
2425@item
2426MIPSnet network emulation
2427@end itemize
2428
88cb0a02
AJ
2429The MIPS Magnum R4000 emulation supports:
2430
2431@itemize @minus
2432@item
2433MIPS R4000 CPU
2434@item
2435PC-style IRQ controller
2436@item
2437PC Keyboard
2438@item
2439SCSI controller
2440@item
2441G364 framebuffer
2442@end itemize
2443
2444
24d4de45
TS
2445@node ARM System emulator
2446@section ARM System emulator
3f9f3aa1
FB
2447
2448Use the executable @file{qemu-system-arm} to simulate a ARM
2449machine. The ARM Integrator/CP board is emulated with the following
2450devices:
2451
2452@itemize @minus
2453@item
9ee6e8bb 2454ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2455@item
2456Two PL011 UARTs
5fafdf24 2457@item
3f9f3aa1 2458SMC 91c111 Ethernet adapter
00a9bf19
PB
2459@item
2460PL110 LCD controller
2461@item
2462PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2463@item
2464PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2465@end itemize
2466
2467The ARM Versatile baseboard is emulated with the following devices:
2468
2469@itemize @minus
2470@item
9ee6e8bb 2471ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2472@item
2473PL190 Vectored Interrupt Controller
2474@item
2475Four PL011 UARTs
5fafdf24 2476@item
00a9bf19
PB
2477SMC 91c111 Ethernet adapter
2478@item
2479PL110 LCD controller
2480@item
2481PL050 KMI with PS/2 keyboard and mouse.
2482@item
2483PCI host bridge. Note the emulated PCI bridge only provides access to
2484PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2485This means some devices (eg. ne2k_pci NIC) are not usable, and others
2486(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2487mapped control registers.
e6de1bad
PB
2488@item
2489PCI OHCI USB controller.
2490@item
2491LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2492@item
2493PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2494@end itemize
2495
d7739d75
PB
2496The ARM RealView Emulation baseboard is emulated with the following devices:
2497
2498@itemize @minus
2499@item
9ee6e8bb 2500ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
d7739d75
PB
2501@item
2502ARM AMBA Generic/Distributed Interrupt Controller
2503@item
2504Four PL011 UARTs
5fafdf24 2505@item
d7739d75
PB
2506SMC 91c111 Ethernet adapter
2507@item
2508PL110 LCD controller
2509@item
2510PL050 KMI with PS/2 keyboard and mouse
2511@item
2512PCI host bridge
2513@item
2514PCI OHCI USB controller
2515@item
2516LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2517@item
2518PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2519@end itemize
2520
b00052e4
AZ
2521The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2522and "Terrier") emulation includes the following peripherals:
2523
2524@itemize @minus
2525@item
2526Intel PXA270 System-on-chip (ARM V5TE core)
2527@item
2528NAND Flash memory
2529@item
2530IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2531@item
2532On-chip OHCI USB controller
2533@item
2534On-chip LCD controller
2535@item
2536On-chip Real Time Clock
2537@item
2538TI ADS7846 touchscreen controller on SSP bus
2539@item
2540Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2541@item
2542GPIO-connected keyboard controller and LEDs
2543@item
549444e1 2544Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2545@item
2546Three on-chip UARTs
2547@item
2548WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2549@end itemize
2550
02645926
AZ
2551The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2552following elements:
2553
2554@itemize @minus
2555@item
2556Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2557@item
2558ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2559@item
2560On-chip LCD controller
2561@item
2562On-chip Real Time Clock
2563@item
2564TI TSC2102i touchscreen controller / analog-digital converter / Audio
2565CODEC, connected through MicroWire and I@math{^2}S busses
2566@item
2567GPIO-connected matrix keypad
2568@item
2569Secure Digital card connected to OMAP MMC/SD host
2570@item
2571Three on-chip UARTs
2572@end itemize
2573
c30bb264
AZ
2574Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2575emulation supports the following elements:
2576
2577@itemize @minus
2578@item
2579Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2580@item
2581RAM and non-volatile OneNAND Flash memories
2582@item
2583Display connected to EPSON remote framebuffer chip and OMAP on-chip
2584display controller and a LS041y3 MIPI DBI-C controller
2585@item
2586TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2587driven through SPI bus
2588@item
2589National Semiconductor LM8323-controlled qwerty keyboard driven
2590through I@math{^2}C bus
2591@item
2592Secure Digital card connected to OMAP MMC/SD host
2593@item
2594Three OMAP on-chip UARTs and on-chip STI debugging console
2595@item
2596Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2597TUSB6010 chip - only USB host mode is supported
2598@item
2599TI TMP105 temperature sensor driven through I@math{^2}C bus
2600@item
2601TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2602@item
2603Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2604through CBUS
2605@end itemize
2606
9ee6e8bb
PB
2607The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2608devices:
2609
2610@itemize @minus
2611@item
2612Cortex-M3 CPU core.
2613@item
261464k Flash and 8k SRAM.
2615@item
2616Timers, UARTs, ADC and I@math{^2}C interface.
2617@item
2618OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2619@end itemize
2620
2621The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2622devices:
2623
2624@itemize @minus
2625@item
2626Cortex-M3 CPU core.
2627@item
2628256k Flash and 64k SRAM.
2629@item
2630Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2631@item
2632OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2633@end itemize
2634
57cd6e97
AZ
2635The Freecom MusicPal internet radio emulation includes the following
2636elements:
2637
2638@itemize @minus
2639@item
2640Marvell MV88W8618 ARM core.
2641@item
264232 MB RAM, 256 KB SRAM, 8 MB flash.
2643@item
2644Up to 2 16550 UARTs
2645@item
2646MV88W8xx8 Ethernet controller
2647@item
2648MV88W8618 audio controller, WM8750 CODEC and mixer
2649@item
2650