]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
Replace Qemu by QEMU in internal documentation
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
e080e785
SW
4
5@documentlanguage en
6@documentencoding UTF-8
7
8f40c388 8@settitle QEMU Emulator User Documentation
debc7065
FB
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
386405f7 12
a1a32b05
SW
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
0806e3f6 19@iftex
386405f7
FB
20@titlepage
21@sp 7
8f40c388 22@center @titlefont{QEMU Emulator}
debc7065
FB
23@sp 1
24@center @titlefont{User Documentation}
386405f7
FB
25@sp 3
26@end titlepage
0806e3f6 27@end iftex
386405f7 28
debc7065
FB
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
83195237 38* QEMU User space emulator::
debc7065 39* compilation:: Compilation from the sources
7544a042 40* License::
debc7065
FB
41* Index::
42@end menu
43@end ifnottex
44
45@contents
46
47@node Introduction
386405f7
FB
48@chapter Introduction
49
debc7065
FB
50@menu
51* intro_features:: Features
52@end menu
53
54@node intro_features
322d0c66 55@section Features
386405f7 56
1f673135
FB
57QEMU is a FAST! processor emulator using dynamic translation to
58achieve good emulation speed.
1eb20527
FB
59
60QEMU has two operating modes:
0806e3f6 61
d7e5edca 62@itemize
7544a042 63@cindex operating modes
0806e3f6 64
5fafdf24 65@item
7544a042 66@cindex system emulation
1f673135 67Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
5fafdf24 72@item
7544a042 73@cindex user mode emulation
83195237
FB
74User mode emulation. In this mode, QEMU can launch
75processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77to ease cross-compilation and cross-debugging.
1eb20527
FB
78
79@end itemize
80
7c3fc84d 81QEMU can run without an host kernel driver and yet gives acceptable
5fafdf24 82performance.
322d0c66 83
52c00a5f
FB
84For system emulation, the following hardware targets are supported:
85@itemize
7544a042
SW
86@cindex emulated target systems
87@cindex supported target systems
9d0a8e6f 88@item PC (x86 or x86_64 processor)
3f9f3aa1 89@item ISA PC (old style PC without PCI bus)
52c00a5f 90@item PREP (PowerPC processor)
d45952a0 91@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 92@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 95@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 96@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
97@item ARM Integrator/CP (ARM)
98@item ARM Versatile baseboard (ARM)
0ef849d7 99@item ARM RealView Emulation/Platform baseboard (ARM)
ef4c3856 100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 103@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 105@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 106@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 107@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109@item Siemens SX1 smartphone (OMAP310 processor)
48c50a62
EI
110@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
3aeaea65 112@item Avnet LX60/LX110/LX200 boards (Xtensa)
52c00a5f 113@end itemize
386405f7 114
7544a042
SW
115@cindex supported user mode targets
116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
0806e3f6 119
debc7065 120@node Installation
5b9f457a
FB
121@chapter Installation
122
15a34c63
FB
123If you want to compile QEMU yourself, see @ref{compilation}.
124
debc7065
FB
125@menu
126* install_linux:: Linux
127* install_windows:: Windows
128* install_mac:: Macintosh
129@end menu
130
131@node install_linux
1f673135 132@section Linux
7544a042 133@cindex installation (Linux)
1f673135 134
7c3fc84d
FB
135If a precompiled package is available for your distribution - you just
136have to install it. Otherwise, see @ref{compilation}.
5b9f457a 137
debc7065 138@node install_windows
1f673135 139@section Windows
7544a042 140@cindex installation (Windows)
8cd0ac2f 141
15a34c63 142Download the experimental binary installer at
debc7065 143@url{http://www.free.oszoo.org/@/download.html}.
7544a042 144TODO (no longer available)
d691f669 145
debc7065 146@node install_mac
1f673135 147@section Mac OS X
d691f669 148
15a34c63 149Download the experimental binary installer at
debc7065 150@url{http://www.free.oszoo.org/@/download.html}.
7544a042 151TODO (no longer available)
df0f11a0 152
debc7065 153@node QEMU PC System emulator
3f9f3aa1 154@chapter QEMU PC System emulator
7544a042 155@cindex system emulation (PC)
1eb20527 156
debc7065
FB
157@menu
158* pcsys_introduction:: Introduction
159* pcsys_quickstart:: Quick Start
160* sec_invocation:: Invocation
161* pcsys_keys:: Keys
162* pcsys_monitor:: QEMU Monitor
163* disk_images:: Disk Images
164* pcsys_network:: Network emulation
576fd0a1 165* pcsys_other_devs:: Other Devices
debc7065
FB
166* direct_linux_boot:: Direct Linux Boot
167* pcsys_usb:: USB emulation
f858dcae 168* vnc_security:: VNC security
debc7065
FB
169* gdb_usage:: GDB usage
170* pcsys_os_specific:: Target OS specific information
171@end menu
172
173@node pcsys_introduction
0806e3f6
FB
174@section Introduction
175
176@c man begin DESCRIPTION
177
3f9f3aa1
FB
178The QEMU PC System emulator simulates the
179following peripherals:
0806e3f6
FB
180
181@itemize @minus
5fafdf24 182@item
15a34c63 183i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 184@item
15a34c63
FB
185Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186extensions (hardware level, including all non standard modes).
0806e3f6
FB
187@item
188PS/2 mouse and keyboard
5fafdf24 189@item
15a34c63 1902 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
191@item
192Floppy disk
5fafdf24 193@item
3a2eeac0 194PCI and ISA network adapters
0806e3f6 195@item
05d5818c
FB
196Serial ports
197@item
c0fe3827
FB
198Creative SoundBlaster 16 sound card
199@item
200ENSONIQ AudioPCI ES1370 sound card
201@item
e5c9a13e
AZ
202Intel 82801AA AC97 Audio compatible sound card
203@item
7d72e762
GH
204Intel HD Audio Controller and HDA codec
205@item
2d983446 206Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 207@item
26463dbc
AZ
208Gravis Ultrasound GF1 sound card
209@item
cc53d26d 210CS4231A compatible sound card
211@item
b389dbfb 212PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
213@end itemize
214
3f9f3aa1
FB
215SMP is supported with up to 255 CPUs.
216
1d1f8c33 217Note that adlib, gus and cs4231a are only available when QEMU was
218configured with --audio-card-list option containing the name(s) of
e5178e8d 219required card(s).
c0fe3827 220
15a34c63
FB
221QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
222VGA BIOS.
223
c0fe3827
FB
224QEMU uses YM3812 emulation by Tatsuyuki Satoh.
225
2d983446 226QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 227by Tibor "TS" Schütz.
423d65f4 228
1a1a0e20 229Note that, by default, GUS shares IRQ(7) with parallel ports and so
720036a5 230qemu must be told to not have parallel ports to have working GUS
231
232@example
233qemu dos.img -soundhw gus -parallel none
234@end example
235
236Alternatively:
237@example
238qemu dos.img -device gus,irq=5
239@end example
240
241Or some other unclaimed IRQ.
242
cc53d26d 243CS4231A is the chip used in Windows Sound System and GUSMAX products
244
0806e3f6
FB
245@c man end
246
debc7065 247@node pcsys_quickstart
1eb20527 248@section Quick Start
7544a042 249@cindex quick start
1eb20527 250
285dc330 251Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
252
253@example
285dc330 254qemu linux.img
0806e3f6
FB
255@end example
256
257Linux should boot and give you a prompt.
258
6cc721cf 259@node sec_invocation
ec410fc9
FB
260@section Invocation
261
262@example
0806e3f6 263@c man begin SYNOPSIS
89dfe898 264usage: qemu [options] [@var{disk_image}]
0806e3f6 265@c man end
ec410fc9
FB
266@end example
267
0806e3f6 268@c man begin OPTIONS
d2c639d6
BS
269@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
270targets do not need a disk image.
ec410fc9 271
5824d651 272@include qemu-options.texi
ec410fc9 273
3e11db9a
FB
274@c man end
275
debc7065 276@node pcsys_keys
3e11db9a
FB
277@section Keys
278
279@c man begin OPTIONS
280
de1db2a1
BH
281During the graphical emulation, you can use special key combinations to change
282modes. The default key mappings are shown below, but if you use @code{-alt-grab}
283then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
284@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
285
a1b74fe8 286@table @key
f9859310 287@item Ctrl-Alt-f
7544a042 288@kindex Ctrl-Alt-f
a1b74fe8 289Toggle full screen
a0a821a4 290
d6a65ba3
JK
291@item Ctrl-Alt-+
292@kindex Ctrl-Alt-+
293Enlarge the screen
294
295@item Ctrl-Alt--
296@kindex Ctrl-Alt--
297Shrink the screen
298
c4a735f9 299@item Ctrl-Alt-u
7544a042 300@kindex Ctrl-Alt-u
c4a735f9 301Restore the screen's un-scaled dimensions
302
f9859310 303@item Ctrl-Alt-n
7544a042 304@kindex Ctrl-Alt-n
a0a821a4
FB
305Switch to virtual console 'n'. Standard console mappings are:
306@table @emph
307@item 1
308Target system display
309@item 2
310Monitor
311@item 3
312Serial port
a1b74fe8
FB
313@end table
314
f9859310 315@item Ctrl-Alt
7544a042 316@kindex Ctrl-Alt
a0a821a4
FB
317Toggle mouse and keyboard grab.
318@end table
319
7544a042
SW
320@kindex Ctrl-Up
321@kindex Ctrl-Down
322@kindex Ctrl-PageUp
323@kindex Ctrl-PageDown
3e11db9a
FB
324In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
325@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
326
7544a042 327@kindex Ctrl-a h
a0a821a4
FB
328During emulation, if you are using the @option{-nographic} option, use
329@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
330
331@table @key
a1b74fe8 332@item Ctrl-a h
7544a042 333@kindex Ctrl-a h
d2c639d6 334@item Ctrl-a ?
7544a042 335@kindex Ctrl-a ?
ec410fc9 336Print this help
3b46e624 337@item Ctrl-a x
7544a042 338@kindex Ctrl-a x
366dfc52 339Exit emulator
3b46e624 340@item Ctrl-a s
7544a042 341@kindex Ctrl-a s
1f47a922 342Save disk data back to file (if -snapshot)
20d8a3ed 343@item Ctrl-a t
7544a042 344@kindex Ctrl-a t
d2c639d6 345Toggle console timestamps
a1b74fe8 346@item Ctrl-a b
7544a042 347@kindex Ctrl-a b
1f673135 348Send break (magic sysrq in Linux)
a1b74fe8 349@item Ctrl-a c
7544a042 350@kindex Ctrl-a c
1f673135 351Switch between console and monitor
a1b74fe8 352@item Ctrl-a Ctrl-a
7544a042 353@kindex Ctrl-a a
a1b74fe8 354Send Ctrl-a
ec410fc9 355@end table
0806e3f6
FB
356@c man end
357
358@ignore
359
1f673135
FB
360@c man begin SEEALSO
361The HTML documentation of QEMU for more precise information and Linux
362user mode emulator invocation.
363@c man end
364
365@c man begin AUTHOR
366Fabrice Bellard
367@c man end
368
369@end ignore
370
debc7065 371@node pcsys_monitor
1f673135 372@section QEMU Monitor
7544a042 373@cindex QEMU monitor
1f673135
FB
374
375The QEMU monitor is used to give complex commands to the QEMU
376emulator. You can use it to:
377
378@itemize @minus
379
380@item
e598752a 381Remove or insert removable media images
89dfe898 382(such as CD-ROM or floppies).
1f673135 383
5fafdf24 384@item
1f673135
FB
385Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
386from a disk file.
387
388@item Inspect the VM state without an external debugger.
389
390@end itemize
391
392@subsection Commands
393
394The following commands are available:
395
2313086a 396@include qemu-monitor.texi
0806e3f6 397
1f673135
FB
398@subsection Integer expressions
399
400The monitor understands integers expressions for every integer
401argument. You can use register names to get the value of specifics
402CPU registers by prefixing them with @emph{$}.
ec410fc9 403
1f47a922
FB
404@node disk_images
405@section Disk Images
406
acd935ef
FB
407Since version 0.6.1, QEMU supports many disk image formats, including
408growable disk images (their size increase as non empty sectors are
13a2e80f
FB
409written), compressed and encrypted disk images. Version 0.8.3 added
410the new qcow2 disk image format which is essential to support VM
411snapshots.
1f47a922 412
debc7065
FB
413@menu
414* disk_images_quickstart:: Quick start for disk image creation
415* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 416* vm_snapshots:: VM snapshots
debc7065 417* qemu_img_invocation:: qemu-img Invocation
975b092b 418* qemu_nbd_invocation:: qemu-nbd Invocation
19cb3738 419* host_drives:: Using host drives
debc7065 420* disk_images_fat_images:: Virtual FAT disk images
75818250 421* disk_images_nbd:: NBD access
42af9c30 422* disk_images_sheepdog:: Sheepdog disk images
00984e39 423* disk_images_iscsi:: iSCSI LUNs
debc7065
FB
424@end menu
425
426@node disk_images_quickstart
acd935ef
FB
427@subsection Quick start for disk image creation
428
429You can create a disk image with the command:
1f47a922 430@example
acd935ef 431qemu-img create myimage.img mysize
1f47a922 432@end example
acd935ef
FB
433where @var{myimage.img} is the disk image filename and @var{mysize} is its
434size in kilobytes. You can add an @code{M} suffix to give the size in
435megabytes and a @code{G} suffix for gigabytes.
436
debc7065 437See @ref{qemu_img_invocation} for more information.
1f47a922 438
debc7065 439@node disk_images_snapshot_mode
1f47a922
FB
440@subsection Snapshot mode
441
442If you use the option @option{-snapshot}, all disk images are
443considered as read only. When sectors in written, they are written in
444a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
445write back to the raw disk images by using the @code{commit} monitor
446command (or @key{C-a s} in the serial console).
1f47a922 447
13a2e80f
FB
448@node vm_snapshots
449@subsection VM snapshots
450
451VM snapshots are snapshots of the complete virtual machine including
452CPU state, RAM, device state and the content of all the writable
453disks. In order to use VM snapshots, you must have at least one non
454removable and writable block device using the @code{qcow2} disk image
455format. Normally this device is the first virtual hard drive.
456
457Use the monitor command @code{savevm} to create a new VM snapshot or
458replace an existing one. A human readable name can be assigned to each
19d36792 459snapshot in addition to its numerical ID.
13a2e80f
FB
460
461Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
462a VM snapshot. @code{info snapshots} lists the available snapshots
463with their associated information:
464
465@example
466(qemu) info snapshots
467Snapshot devices: hda
468Snapshot list (from hda):
469ID TAG VM SIZE DATE VM CLOCK
4701 start 41M 2006-08-06 12:38:02 00:00:14.954
4712 40M 2006-08-06 12:43:29 00:00:18.633
4723 msys 40M 2006-08-06 12:44:04 00:00:23.514
473@end example
474
475A VM snapshot is made of a VM state info (its size is shown in
476@code{info snapshots}) and a snapshot of every writable disk image.
477The VM state info is stored in the first @code{qcow2} non removable
478and writable block device. The disk image snapshots are stored in
479every disk image. The size of a snapshot in a disk image is difficult
480to evaluate and is not shown by @code{info snapshots} because the
481associated disk sectors are shared among all the snapshots to save
19d36792
FB
482disk space (otherwise each snapshot would need a full copy of all the
483disk images).
13a2e80f
FB
484
485When using the (unrelated) @code{-snapshot} option
486(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
487but they are deleted as soon as you exit QEMU.
488
489VM snapshots currently have the following known limitations:
490@itemize
5fafdf24 491@item
13a2e80f
FB
492They cannot cope with removable devices if they are removed or
493inserted after a snapshot is done.
5fafdf24 494@item
13a2e80f
FB
495A few device drivers still have incomplete snapshot support so their
496state is not saved or restored properly (in particular USB).
497@end itemize
498
acd935ef
FB
499@node qemu_img_invocation
500@subsection @code{qemu-img} Invocation
1f47a922 501
acd935ef 502@include qemu-img.texi
05efe46e 503
975b092b
TS
504@node qemu_nbd_invocation
505@subsection @code{qemu-nbd} Invocation
506
507@include qemu-nbd.texi
508
19cb3738
FB
509@node host_drives
510@subsection Using host drives
511
512In addition to disk image files, QEMU can directly access host
513devices. We describe here the usage for QEMU version >= 0.8.3.
514
515@subsubsection Linux
516
517On Linux, you can directly use the host device filename instead of a
4be456f1 518disk image filename provided you have enough privileges to access
19cb3738
FB
519it. For example, use @file{/dev/cdrom} to access to the CDROM or
520@file{/dev/fd0} for the floppy.
521
f542086d 522@table @code
19cb3738
FB
523@item CD
524You can specify a CDROM device even if no CDROM is loaded. QEMU has
525specific code to detect CDROM insertion or removal. CDROM ejection by
526the guest OS is supported. Currently only data CDs are supported.
527@item Floppy
528You can specify a floppy device even if no floppy is loaded. Floppy
529removal is currently not detected accurately (if you change floppy
530without doing floppy access while the floppy is not loaded, the guest
531OS will think that the same floppy is loaded).
532@item Hard disks
533Hard disks can be used. Normally you must specify the whole disk
534(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
535see it as a partitioned disk. WARNING: unless you know what you do, it
536is better to only make READ-ONLY accesses to the hard disk otherwise
537you may corrupt your host data (use the @option{-snapshot} command
538line option or modify the device permissions accordingly).
539@end table
540
541@subsubsection Windows
542
01781963
FB
543@table @code
544@item CD
4be456f1 545The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
546alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
547supported as an alias to the first CDROM drive.
19cb3738 548
e598752a 549Currently there is no specific code to handle removable media, so it
19cb3738
FB
550is better to use the @code{change} or @code{eject} monitor commands to
551change or eject media.
01781963 552@item Hard disks
89dfe898 553Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
554where @var{N} is the drive number (0 is the first hard disk).
555
556WARNING: unless you know what you do, it is better to only make
557READ-ONLY accesses to the hard disk otherwise you may corrupt your
558host data (use the @option{-snapshot} command line so that the
559modifications are written in a temporary file).
560@end table
561
19cb3738
FB
562
563@subsubsection Mac OS X
564
5fafdf24 565@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 566
e598752a 567Currently there is no specific code to handle removable media, so it
19cb3738
FB
568is better to use the @code{change} or @code{eject} monitor commands to
569change or eject media.
570
debc7065 571@node disk_images_fat_images
2c6cadd4
FB
572@subsection Virtual FAT disk images
573
574QEMU can automatically create a virtual FAT disk image from a
575directory tree. In order to use it, just type:
576
5fafdf24 577@example
2c6cadd4
FB
578qemu linux.img -hdb fat:/my_directory
579@end example
580
581Then you access access to all the files in the @file{/my_directory}
582directory without having to copy them in a disk image or to export
583them via SAMBA or NFS. The default access is @emph{read-only}.
584
585Floppies can be emulated with the @code{:floppy:} option:
586
5fafdf24 587@example
2c6cadd4
FB
588qemu linux.img -fda fat:floppy:/my_directory
589@end example
590
591A read/write support is available for testing (beta stage) with the
592@code{:rw:} option:
593
5fafdf24 594@example
2c6cadd4
FB
595qemu linux.img -fda fat:floppy:rw:/my_directory
596@end example
597
598What you should @emph{never} do:
599@itemize
600@item use non-ASCII filenames ;
601@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
602@item expect it to work when loadvm'ing ;
603@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
604@end itemize
605
75818250
TS
606@node disk_images_nbd
607@subsection NBD access
608
609QEMU can access directly to block device exported using the Network Block Device
610protocol.
611
612@example
613qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
614@end example
615
616If the NBD server is located on the same host, you can use an unix socket instead
617of an inet socket:
618
619@example
620qemu linux.img -hdb nbd:unix:/tmp/my_socket
621@end example
622
623In this case, the block device must be exported using qemu-nbd:
624
625@example
626qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
627@end example
628
629The use of qemu-nbd allows to share a disk between several guests:
630@example
631qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
632@end example
633
634and then you can use it with two guests:
635@example
636qemu linux1.img -hdb nbd:unix:/tmp/my_socket
637qemu linux2.img -hdb nbd:unix:/tmp/my_socket
638@end example
639
1d45f8b5
LV
640If the nbd-server uses named exports (since NBD 2.9.18), you must use the
641"exportname" option:
642@example
643qemu -cdrom nbd:localhost:exportname=debian-500-ppc-netinst
644qemu -cdrom nbd:localhost:exportname=openSUSE-11.1-ppc-netinst
645@end example
646
42af9c30
MK
647@node disk_images_sheepdog
648@subsection Sheepdog disk images
649
650Sheepdog is a distributed storage system for QEMU. It provides highly
651available block level storage volumes that can be attached to
652QEMU-based virtual machines.
653
654You can create a Sheepdog disk image with the command:
655@example
656qemu-img create sheepdog:@var{image} @var{size}
657@end example
658where @var{image} is the Sheepdog image name and @var{size} is its
659size.
660
661To import the existing @var{filename} to Sheepdog, you can use a
662convert command.
663@example
664qemu-img convert @var{filename} sheepdog:@var{image}
665@end example
666
667You can boot from the Sheepdog disk image with the command:
668@example
669qemu sheepdog:@var{image}
670@end example
671
672You can also create a snapshot of the Sheepdog image like qcow2.
673@example
674qemu-img snapshot -c @var{tag} sheepdog:@var{image}
675@end example
676where @var{tag} is a tag name of the newly created snapshot.
677
678To boot from the Sheepdog snapshot, specify the tag name of the
679snapshot.
680@example
681qemu sheepdog:@var{image}:@var{tag}
682@end example
683
684You can create a cloned image from the existing snapshot.
685@example
686qemu-img create -b sheepdog:@var{base}:@var{tag} sheepdog:@var{image}
687@end example
688where @var{base} is a image name of the source snapshot and @var{tag}
689is its tag name.
690
691If the Sheepdog daemon doesn't run on the local host, you need to
692specify one of the Sheepdog servers to connect to.
693@example
694qemu-img create sheepdog:@var{hostname}:@var{port}:@var{image} @var{size}
695qemu sheepdog:@var{hostname}:@var{port}:@var{image}
696@end example
697
00984e39
RS
698@node disk_images_iscsi
699@subsection iSCSI LUNs
700
701iSCSI is a popular protocol used to access SCSI devices across a computer
702network.
703
704There are two different ways iSCSI devices can be used by QEMU.
705
706The first method is to mount the iSCSI LUN on the host, and make it appear as
707any other ordinary SCSI device on the host and then to access this device as a
708/dev/sd device from QEMU. How to do this differs between host OSes.
709
710The second method involves using the iSCSI initiator that is built into
711QEMU. This provides a mechanism that works the same way regardless of which
712host OS you are running QEMU on. This section will describe this second method
713of using iSCSI together with QEMU.
714
715In QEMU, iSCSI devices are described using special iSCSI URLs
716
717@example
718URL syntax:
719iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
720@end example
721
722Username and password are optional and only used if your target is set up
723using CHAP authentication for access control.
724Alternatively the username and password can also be set via environment
725variables to have these not show up in the process list
726
727@example
728export LIBISCSI_CHAP_USERNAME=<username>
729export LIBISCSI_CHAP_PASSWORD=<password>
730iscsi://<host>/<target-iqn-name>/<lun>
731@end example
732
f9dadc98
RS
733Various session related parameters can be set via special options, either
734in a configuration file provided via '-readconfig' or directly on the
735command line.
736
737@example
738Setting a specific initiator name to use when logging in to the target
739-iscsi initiator-name=iqn.qemu.test:my-initiator
740@end example
741
742@example
743Controlling which type of header digest to negotiate with the target
744-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
745@end example
746
747These can also be set via a configuration file
748@example
749[iscsi]
750 user = "CHAP username"
751 password = "CHAP password"
752 initiator-name = "iqn.qemu.test:my-initiator"
753 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
754 header-digest = "CRC32C"
755@end example
756
757
758Setting the target name allows different options for different targets
759@example
760[iscsi "iqn.target.name"]
761 user = "CHAP username"
762 password = "CHAP password"
763 initiator-name = "iqn.qemu.test:my-initiator"
764 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
765 header-digest = "CRC32C"
766@end example
767
768
769Howto use a configuration file to set iSCSI configuration options:
770@example
771cat >iscsi.conf <<EOF
772[iscsi]
773 user = "me"
774 password = "my password"
775 initiator-name = "iqn.qemu.test:my-initiator"
776 header-digest = "CRC32C"
777EOF
778
779qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
780 -readconfig iscsi.conf
781@end example
782
783
00984e39
RS
784Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
785@example
786This example shows how to set up an iSCSI target with one CDROM and one DISK
787using the Linux STGT software target. This target is available on Red Hat based
788systems as the package 'scsi-target-utils'.
789
790tgtd --iscsi portal=127.0.0.1:3260
791tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
792tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
793 -b /IMAGES/disk.img --device-type=disk
794tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
795 -b /IMAGES/cd.iso --device-type=cd
796tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
797
f9dadc98
RS
798qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
799 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
00984e39
RS
800 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
801@end example
802
803
804
debc7065 805@node pcsys_network
9d4fb82e
FB
806@section Network emulation
807
4be456f1 808QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
809target) and can connect them to an arbitrary number of Virtual Local
810Area Networks (VLANs). Host TAP devices can be connected to any QEMU
811VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 812simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
813network stack can replace the TAP device to have a basic network
814connection.
815
816@subsection VLANs
9d4fb82e 817
41d03949
FB
818QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
819connection between several network devices. These devices can be for
820example QEMU virtual Ethernet cards or virtual Host ethernet devices
821(TAP devices).
9d4fb82e 822
41d03949
FB
823@subsection Using TAP network interfaces
824
825This is the standard way to connect QEMU to a real network. QEMU adds
826a virtual network device on your host (called @code{tapN}), and you
827can then configure it as if it was a real ethernet card.
9d4fb82e 828
8f40c388
FB
829@subsubsection Linux host
830
9d4fb82e
FB
831As an example, you can download the @file{linux-test-xxx.tar.gz}
832archive and copy the script @file{qemu-ifup} in @file{/etc} and
833configure properly @code{sudo} so that the command @code{ifconfig}
834contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 835that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
836device @file{/dev/net/tun} must be present.
837
ee0f4751
FB
838See @ref{sec_invocation} to have examples of command lines using the
839TAP network interfaces.
9d4fb82e 840
8f40c388
FB
841@subsubsection Windows host
842
843There is a virtual ethernet driver for Windows 2000/XP systems, called
844TAP-Win32. But it is not included in standard QEMU for Windows,
845so you will need to get it separately. It is part of OpenVPN package,
846so download OpenVPN from : @url{http://openvpn.net/}.
847
9d4fb82e
FB
848@subsection Using the user mode network stack
849
41d03949
FB
850By using the option @option{-net user} (default configuration if no
851@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 852network stack (you don't need root privilege to use the virtual
41d03949 853network). The virtual network configuration is the following:
9d4fb82e
FB
854
855@example
856
41d03949
FB
857 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
858 | (10.0.2.2)
9d4fb82e 859 |
2518bd0d 860 ----> DNS server (10.0.2.3)
3b46e624 861 |
2518bd0d 862 ----> SMB server (10.0.2.4)
9d4fb82e
FB
863@end example
864
865The QEMU VM behaves as if it was behind a firewall which blocks all
866incoming connections. You can use a DHCP client to automatically
41d03949
FB
867configure the network in the QEMU VM. The DHCP server assign addresses
868to the hosts starting from 10.0.2.15.
9d4fb82e
FB
869
870In order to check that the user mode network is working, you can ping
871the address 10.0.2.2 and verify that you got an address in the range
87210.0.2.x from the QEMU virtual DHCP server.
873
b415a407 874Note that @code{ping} is not supported reliably to the internet as it
4be456f1 875would require root privileges. It means you can only ping the local
b415a407
FB
876router (10.0.2.2).
877
9bf05444
FB
878When using the built-in TFTP server, the router is also the TFTP
879server.
880
881When using the @option{-redir} option, TCP or UDP connections can be
882redirected from the host to the guest. It allows for example to
883redirect X11, telnet or SSH connections.
443f1376 884
41d03949
FB
885@subsection Connecting VLANs between QEMU instances
886
887Using the @option{-net socket} option, it is possible to make VLANs
888that span several QEMU instances. See @ref{sec_invocation} to have a
889basic example.
890
576fd0a1 891@node pcsys_other_devs
6cbf4c8c
CM
892@section Other Devices
893
894@subsection Inter-VM Shared Memory device
895
896With KVM enabled on a Linux host, a shared memory device is available. Guests
897map a POSIX shared memory region into the guest as a PCI device that enables
898zero-copy communication to the application level of the guests. The basic
899syntax is:
900
901@example
902qemu -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
903@end example
904
905If desired, interrupts can be sent between guest VMs accessing the same shared
906memory region. Interrupt support requires using a shared memory server and
907using a chardev socket to connect to it. The code for the shared memory server
908is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
909memory server is:
910
911@example
912qemu -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
913 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
914qemu -chardev socket,path=<path>,id=<id>
915@end example
916
917When using the server, the guest will be assigned a VM ID (>=0) that allows guests
918using the same server to communicate via interrupts. Guests can read their
919VM ID from a device register (see example code). Since receiving the shared
920memory region from the server is asynchronous, there is a (small) chance the
921guest may boot before the shared memory is attached. To allow an application
922to ensure shared memory is attached, the VM ID register will return -1 (an
923invalid VM ID) until the memory is attached. Once the shared memory is
924attached, the VM ID will return the guest's valid VM ID. With these semantics,
925the guest application can check to ensure the shared memory is attached to the
926guest before proceeding.
927
928The @option{role} argument can be set to either master or peer and will affect
929how the shared memory is migrated. With @option{role=master}, the guest will
930copy the shared memory on migration to the destination host. With
931@option{role=peer}, the guest will not be able to migrate with the device attached.
932With the @option{peer} case, the device should be detached and then reattached
933after migration using the PCI hotplug support.
934
9d4fb82e
FB
935@node direct_linux_boot
936@section Direct Linux Boot
1f673135
FB
937
938This section explains how to launch a Linux kernel inside QEMU without
939having to make a full bootable image. It is very useful for fast Linux
ee0f4751 940kernel testing.
1f673135 941
ee0f4751 942The syntax is:
1f673135 943@example
ee0f4751 944qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
945@end example
946
ee0f4751
FB
947Use @option{-kernel} to provide the Linux kernel image and
948@option{-append} to give the kernel command line arguments. The
949@option{-initrd} option can be used to provide an INITRD image.
1f673135 950
ee0f4751
FB
951When using the direct Linux boot, a disk image for the first hard disk
952@file{hda} is required because its boot sector is used to launch the
953Linux kernel.
1f673135 954
ee0f4751
FB
955If you do not need graphical output, you can disable it and redirect
956the virtual serial port and the QEMU monitor to the console with the
957@option{-nographic} option. The typical command line is:
1f673135 958@example
ee0f4751
FB
959qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
960 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
961@end example
962
ee0f4751
FB
963Use @key{Ctrl-a c} to switch between the serial console and the
964monitor (@pxref{pcsys_keys}).
1f673135 965
debc7065 966@node pcsys_usb
b389dbfb
FB
967@section USB emulation
968
0aff66b5
PB
969QEMU emulates a PCI UHCI USB controller. You can virtually plug
970virtual USB devices or real host USB devices (experimental, works only
071c9394 971on Linux hosts). QEMU will automatically create and connect virtual USB hubs
f542086d 972as necessary to connect multiple USB devices.
b389dbfb 973
0aff66b5
PB
974@menu
975* usb_devices::
976* host_usb_devices::
977@end menu
978@node usb_devices
979@subsection Connecting USB devices
b389dbfb 980
0aff66b5
PB
981USB devices can be connected with the @option{-usbdevice} commandline option
982or the @code{usb_add} monitor command. Available devices are:
b389dbfb 983
db380c06
AZ
984@table @code
985@item mouse
0aff66b5 986Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 987@item tablet
c6d46c20 988Pointer device that uses absolute coordinates (like a touchscreen).
0aff66b5
PB
989This means qemu is able to report the mouse position without having
990to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 991@item disk:@var{file}
0aff66b5 992Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 993@item host:@var{bus.addr}
0aff66b5
PB
994Pass through the host device identified by @var{bus.addr}
995(Linux only)
db380c06 996@item host:@var{vendor_id:product_id}
0aff66b5
PB
997Pass through the host device identified by @var{vendor_id:product_id}
998(Linux only)
db380c06 999@item wacom-tablet
f6d2a316
AZ
1000Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1001above but it can be used with the tslib library because in addition to touch
1002coordinates it reports touch pressure.
db380c06 1003@item keyboard
47b2d338 1004Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1005@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1006Serial converter. This emulates an FTDI FT232BM chip connected to host character
1007device @var{dev}. The available character devices are the same as for the
1008@code{-serial} option. The @code{vendorid} and @code{productid} options can be
0d6753e5 1009used to override the default 0403:6001. For instance,
db380c06
AZ
1010@example
1011usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1012@end example
1013will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1014serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1015@item braille
1016Braille device. This will use BrlAPI to display the braille output on a real
1017or fake device.
9ad97e65
AZ
1018@item net:@var{options}
1019Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1020specifies NIC options as with @code{-net nic,}@var{options} (see description).
1021For instance, user-mode networking can be used with
6c9f886c 1022@example
9ad97e65 1023qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
1024@end example
1025Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
1026@item bt[:@var{hci-type}]
1027Bluetooth dongle whose type is specified in the same format as with
1028the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1029no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1030This USB device implements the USB Transport Layer of HCI. Example
1031usage:
1032@example
1033qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1034@end example
0aff66b5 1035@end table
b389dbfb 1036
0aff66b5 1037@node host_usb_devices
b389dbfb
FB
1038@subsection Using host USB devices on a Linux host
1039
1040WARNING: this is an experimental feature. QEMU will slow down when
1041using it. USB devices requiring real time streaming (i.e. USB Video
1042Cameras) are not supported yet.
1043
1044@enumerate
5fafdf24 1045@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1046is actually using the USB device. A simple way to do that is simply to
1047disable the corresponding kernel module by renaming it from @file{mydriver.o}
1048to @file{mydriver.o.disabled}.
1049
1050@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1051@example
1052ls /proc/bus/usb
1053001 devices drivers
1054@end example
1055
1056@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1057@example
1058chown -R myuid /proc/bus/usb
1059@end example
1060
1061@item Launch QEMU and do in the monitor:
5fafdf24 1062@example
b389dbfb
FB
1063info usbhost
1064 Device 1.2, speed 480 Mb/s
1065 Class 00: USB device 1234:5678, USB DISK
1066@end example
1067You should see the list of the devices you can use (Never try to use
1068hubs, it won't work).
1069
1070@item Add the device in QEMU by using:
5fafdf24 1071@example
b389dbfb
FB
1072usb_add host:1234:5678
1073@end example
1074
1075Normally the guest OS should report that a new USB device is
1076plugged. You can use the option @option{-usbdevice} to do the same.
1077
1078@item Now you can try to use the host USB device in QEMU.
1079
1080@end enumerate
1081
1082When relaunching QEMU, you may have to unplug and plug again the USB
1083device to make it work again (this is a bug).
1084
f858dcae
TS
1085@node vnc_security
1086@section VNC security
1087
1088The VNC server capability provides access to the graphical console
1089of the guest VM across the network. This has a number of security
1090considerations depending on the deployment scenarios.
1091
1092@menu
1093* vnc_sec_none::
1094* vnc_sec_password::
1095* vnc_sec_certificate::
1096* vnc_sec_certificate_verify::
1097* vnc_sec_certificate_pw::
2f9606b3
AL
1098* vnc_sec_sasl::
1099* vnc_sec_certificate_sasl::
f858dcae 1100* vnc_generate_cert::
2f9606b3 1101* vnc_setup_sasl::
f858dcae
TS
1102@end menu
1103@node vnc_sec_none
1104@subsection Without passwords
1105
1106The simplest VNC server setup does not include any form of authentication.
1107For this setup it is recommended to restrict it to listen on a UNIX domain
1108socket only. For example
1109
1110@example
1111qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1112@end example
1113
1114This ensures that only users on local box with read/write access to that
1115path can access the VNC server. To securely access the VNC server from a
1116remote machine, a combination of netcat+ssh can be used to provide a secure
1117tunnel.
1118
1119@node vnc_sec_password
1120@subsection With passwords
1121
1122The VNC protocol has limited support for password based authentication. Since
1123the protocol limits passwords to 8 characters it should not be considered
1124to provide high security. The password can be fairly easily brute-forced by
1125a client making repeat connections. For this reason, a VNC server using password
1126authentication should be restricted to only listen on the loopback interface
34a3d239 1127or UNIX domain sockets. Password authentication is requested with the @code{password}
f858dcae
TS
1128option, and then once QEMU is running the password is set with the monitor. Until
1129the monitor is used to set the password all clients will be rejected.
1130
1131@example
1132qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1133(qemu) change vnc password
1134Password: ********
1135(qemu)
1136@end example
1137
1138@node vnc_sec_certificate
1139@subsection With x509 certificates
1140
1141The QEMU VNC server also implements the VeNCrypt extension allowing use of
1142TLS for encryption of the session, and x509 certificates for authentication.
1143The use of x509 certificates is strongly recommended, because TLS on its
1144own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1145support provides a secure session, but no authentication. This allows any
1146client to connect, and provides an encrypted session.
1147
1148@example
1149qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1150@end example
1151
1152In the above example @code{/etc/pki/qemu} should contain at least three files,
1153@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1154users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1155NB the @code{server-key.pem} file should be protected with file mode 0600 to
1156only be readable by the user owning it.
1157
1158@node vnc_sec_certificate_verify
1159@subsection With x509 certificates and client verification
1160
1161Certificates can also provide a means to authenticate the client connecting.
1162The server will request that the client provide a certificate, which it will
1163then validate against the CA certificate. This is a good choice if deploying
1164in an environment with a private internal certificate authority.
1165
1166@example
1167qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1168@end example
1169
1170
1171@node vnc_sec_certificate_pw
1172@subsection With x509 certificates, client verification and passwords
1173
1174Finally, the previous method can be combined with VNC password authentication
1175to provide two layers of authentication for clients.
1176
1177@example
1178qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1179(qemu) change vnc password
1180Password: ********
1181(qemu)
1182@end example
1183
2f9606b3
AL
1184
1185@node vnc_sec_sasl
1186@subsection With SASL authentication
1187
1188The SASL authentication method is a VNC extension, that provides an
1189easily extendable, pluggable authentication method. This allows for
1190integration with a wide range of authentication mechanisms, such as
1191PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1192The strength of the authentication depends on the exact mechanism
1193configured. If the chosen mechanism also provides a SSF layer, then
1194it will encrypt the datastream as well.
1195
1196Refer to the later docs on how to choose the exact SASL mechanism
1197used for authentication, but assuming use of one supporting SSF,
1198then QEMU can be launched with:
1199
1200@example
1201qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
1202@end example
1203
1204@node vnc_sec_certificate_sasl
1205@subsection With x509 certificates and SASL authentication
1206
1207If the desired SASL authentication mechanism does not supported
1208SSF layers, then it is strongly advised to run it in combination
1209with TLS and x509 certificates. This provides securely encrypted
1210data stream, avoiding risk of compromising of the security
1211credentials. This can be enabled, by combining the 'sasl' option
1212with the aforementioned TLS + x509 options:
1213
1214@example
1215qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1216@end example
1217
1218
f858dcae
TS
1219@node vnc_generate_cert
1220@subsection Generating certificates for VNC
1221
1222The GNU TLS packages provides a command called @code{certtool} which can
1223be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1224is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1225each server. If using certificates for authentication, then each client
1226will also need to be issued a certificate. The recommendation is for the
1227server to keep its certificates in either @code{/etc/pki/qemu} or for
1228unprivileged users in @code{$HOME/.pki/qemu}.
1229
1230@menu
1231* vnc_generate_ca::
1232* vnc_generate_server::
1233* vnc_generate_client::
1234@end menu
1235@node vnc_generate_ca
1236@subsubsection Setup the Certificate Authority
1237
1238This step only needs to be performed once per organization / organizational
1239unit. First the CA needs a private key. This key must be kept VERY secret
1240and secure. If this key is compromised the entire trust chain of the certificates
1241issued with it is lost.
1242
1243@example
1244# certtool --generate-privkey > ca-key.pem
1245@end example
1246
1247A CA needs to have a public certificate. For simplicity it can be a self-signed
1248certificate, or one issue by a commercial certificate issuing authority. To
1249generate a self-signed certificate requires one core piece of information, the
1250name of the organization.
1251
1252@example
1253# cat > ca.info <<EOF
1254cn = Name of your organization
1255ca
1256cert_signing_key
1257EOF
1258# certtool --generate-self-signed \
1259 --load-privkey ca-key.pem
1260 --template ca.info \
1261 --outfile ca-cert.pem
1262@end example
1263
1264The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1265TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1266
1267@node vnc_generate_server
1268@subsubsection Issuing server certificates
1269
1270Each server (or host) needs to be issued with a key and certificate. When connecting
1271the certificate is sent to the client which validates it against the CA certificate.
1272The core piece of information for a server certificate is the hostname. This should
1273be the fully qualified hostname that the client will connect with, since the client
1274will typically also verify the hostname in the certificate. On the host holding the
1275secure CA private key:
1276
1277@example
1278# cat > server.info <<EOF
1279organization = Name of your organization
1280cn = server.foo.example.com
1281tls_www_server
1282encryption_key
1283signing_key
1284EOF
1285# certtool --generate-privkey > server-key.pem
1286# certtool --generate-certificate \
1287 --load-ca-certificate ca-cert.pem \
1288 --load-ca-privkey ca-key.pem \
1289 --load-privkey server server-key.pem \
1290 --template server.info \
1291 --outfile server-cert.pem
1292@end example
1293
1294The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1295to the server for which they were generated. The @code{server-key.pem} is security
1296sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1297
1298@node vnc_generate_client
1299@subsubsection Issuing client certificates
1300
1301If the QEMU VNC server is to use the @code{x509verify} option to validate client
1302certificates as its authentication mechanism, each client also needs to be issued
1303a certificate. The client certificate contains enough metadata to uniquely identify
1304the client, typically organization, state, city, building, etc. On the host holding
1305the secure CA private key:
1306
1307@example
1308# cat > client.info <<EOF
1309country = GB
1310state = London
1311locality = London
1312organiazation = Name of your organization
1313cn = client.foo.example.com
1314tls_www_client
1315encryption_key
1316signing_key
1317EOF
1318# certtool --generate-privkey > client-key.pem
1319# certtool --generate-certificate \
1320 --load-ca-certificate ca-cert.pem \
1321 --load-ca-privkey ca-key.pem \
1322 --load-privkey client-key.pem \
1323 --template client.info \
1324 --outfile client-cert.pem
1325@end example
1326
1327The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1328copied to the client for which they were generated.
1329
2f9606b3
AL
1330
1331@node vnc_setup_sasl
1332
1333@subsection Configuring SASL mechanisms
1334
1335The following documentation assumes use of the Cyrus SASL implementation on a
1336Linux host, but the principals should apply to any other SASL impl. When SASL
1337is enabled, the mechanism configuration will be loaded from system default
1338SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1339unprivileged user, an environment variable SASL_CONF_PATH can be used
1340to make it search alternate locations for the service config.
1341
1342The default configuration might contain
1343
1344@example
1345mech_list: digest-md5
1346sasldb_path: /etc/qemu/passwd.db
1347@end example
1348
1349This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1350Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1351in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1352command. While this mechanism is easy to configure and use, it is not
1353considered secure by modern standards, so only suitable for developers /
1354ad-hoc testing.
1355
1356A more serious deployment might use Kerberos, which is done with the 'gssapi'
1357mechanism
1358
1359@example
1360mech_list: gssapi
1361keytab: /etc/qemu/krb5.tab
1362@end example
1363
1364For this to work the administrator of your KDC must generate a Kerberos
1365principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1366replacing 'somehost.example.com' with the fully qualified host name of the
40c5c6cd 1367machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3
AL
1368
1369Other configurations will be left as an exercise for the reader. It should
1370be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1371encryption. For all other mechanisms, VNC should always be configured to
1372use TLS and x509 certificates to protect security credentials from snooping.
1373
0806e3f6 1374@node gdb_usage
da415d54
FB
1375@section GDB usage
1376
1377QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1378'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1379
9d4520d0 1380In order to use gdb, launch qemu with the '-s' option. It will wait for a
da415d54
FB
1381gdb connection:
1382@example
debc7065
FB
1383> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1384 -append "root=/dev/hda"
da415d54
FB
1385Connected to host network interface: tun0
1386Waiting gdb connection on port 1234
1387@end example
1388
1389Then launch gdb on the 'vmlinux' executable:
1390@example
1391> gdb vmlinux
1392@end example
1393
1394In gdb, connect to QEMU:
1395@example
6c9bf893 1396(gdb) target remote localhost:1234
da415d54
FB
1397@end example
1398
1399Then you can use gdb normally. For example, type 'c' to launch the kernel:
1400@example
1401(gdb) c
1402@end example
1403
0806e3f6
FB
1404Here are some useful tips in order to use gdb on system code:
1405
1406@enumerate
1407@item
1408Use @code{info reg} to display all the CPU registers.
1409@item
1410Use @code{x/10i $eip} to display the code at the PC position.
1411@item
1412Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1413@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1414@end enumerate
1415
60897d36
EI
1416Advanced debugging options:
1417
1418The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1419@table @code
60897d36
EI
1420@item maintenance packet qqemu.sstepbits
1421
1422This will display the MASK bits used to control the single stepping IE:
1423@example
1424(gdb) maintenance packet qqemu.sstepbits
1425sending: "qqemu.sstepbits"
1426received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1427@end example
1428@item maintenance packet qqemu.sstep
1429
1430This will display the current value of the mask used when single stepping IE:
1431@example
1432(gdb) maintenance packet qqemu.sstep
1433sending: "qqemu.sstep"
1434received: "0x7"
1435@end example
1436@item maintenance packet Qqemu.sstep=HEX_VALUE
1437
1438This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1439@example
1440(gdb) maintenance packet Qqemu.sstep=0x5
1441sending: "qemu.sstep=0x5"
1442received: "OK"
1443@end example
94d45e44 1444@end table
60897d36 1445
debc7065 1446@node pcsys_os_specific
1a084f3d
FB
1447@section Target OS specific information
1448
1449@subsection Linux
1450
15a34c63
FB
1451To have access to SVGA graphic modes under X11, use the @code{vesa} or
1452the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1453color depth in the guest and the host OS.
1a084f3d 1454
e3371e62
FB
1455When using a 2.6 guest Linux kernel, you should add the option
1456@code{clock=pit} on the kernel command line because the 2.6 Linux
1457kernels make very strict real time clock checks by default that QEMU
1458cannot simulate exactly.
1459
7c3fc84d
FB
1460When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1461not activated because QEMU is slower with this patch. The QEMU
1462Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1463Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1464patch by default. Newer kernels don't have it.
1465
1a084f3d
FB
1466@subsection Windows
1467
1468If you have a slow host, using Windows 95 is better as it gives the
1469best speed. Windows 2000 is also a good choice.
1470
e3371e62
FB
1471@subsubsection SVGA graphic modes support
1472
1473QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1474card. All Windows versions starting from Windows 95 should recognize
1475and use this graphic card. For optimal performances, use 16 bit color
1476depth in the guest and the host OS.
1a084f3d 1477
3cb0853a
FB
1478If you are using Windows XP as guest OS and if you want to use high
1479resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
14801280x1024x16), then you should use the VESA VBE virtual graphic card
1481(option @option{-std-vga}).
1482
e3371e62
FB
1483@subsubsection CPU usage reduction
1484
1485Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1486instruction. The result is that it takes host CPU cycles even when
1487idle. You can install the utility from
1488@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1489problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1490
9d0a8e6f 1491@subsubsection Windows 2000 disk full problem
e3371e62 1492
9d0a8e6f
FB
1493Windows 2000 has a bug which gives a disk full problem during its
1494installation. When installing it, use the @option{-win2k-hack} QEMU
1495option to enable a specific workaround. After Windows 2000 is
1496installed, you no longer need this option (this option slows down the
1497IDE transfers).
e3371e62 1498
6cc721cf
FB
1499@subsubsection Windows 2000 shutdown
1500
1501Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1502can. It comes from the fact that Windows 2000 does not automatically
1503use the APM driver provided by the BIOS.
1504
1505In order to correct that, do the following (thanks to Struan
1506Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1507Add/Troubleshoot a device => Add a new device & Next => No, select the
1508hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1509(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1510correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1511
1512@subsubsection Share a directory between Unix and Windows
1513
1514See @ref{sec_invocation} about the help of the option @option{-smb}.
1515
2192c332 1516@subsubsection Windows XP security problem
e3371e62
FB
1517
1518Some releases of Windows XP install correctly but give a security
1519error when booting:
1520@example
1521A problem is preventing Windows from accurately checking the
1522license for this computer. Error code: 0x800703e6.
1523@end example
e3371e62 1524
2192c332
FB
1525The workaround is to install a service pack for XP after a boot in safe
1526mode. Then reboot, and the problem should go away. Since there is no
1527network while in safe mode, its recommended to download the full
1528installation of SP1 or SP2 and transfer that via an ISO or using the
1529vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1530
a0a821a4
FB
1531@subsection MS-DOS and FreeDOS
1532
1533@subsubsection CPU usage reduction
1534
1535DOS does not correctly use the CPU HLT instruction. The result is that
1536it takes host CPU cycles even when idle. You can install the utility
1537from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1538problem.
1539
debc7065 1540@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1541@chapter QEMU System emulator for non PC targets
1542
1543QEMU is a generic emulator and it emulates many non PC
1544machines. Most of the options are similar to the PC emulator. The
4be456f1 1545differences are mentioned in the following sections.
3f9f3aa1 1546
debc7065 1547@menu
7544a042 1548* PowerPC System emulator::
24d4de45
TS
1549* Sparc32 System emulator::
1550* Sparc64 System emulator::
1551* MIPS System emulator::
1552* ARM System emulator::
1553* ColdFire System emulator::
7544a042
SW
1554* Cris System emulator::
1555* Microblaze System emulator::
1556* SH4 System emulator::
3aeaea65 1557* Xtensa System emulator::
debc7065
FB
1558@end menu
1559
7544a042
SW
1560@node PowerPC System emulator
1561@section PowerPC System emulator
1562@cindex system emulation (PowerPC)
1a084f3d 1563
15a34c63
FB
1564Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1565or PowerMac PowerPC system.
1a084f3d 1566
b671f9ed 1567QEMU emulates the following PowerMac peripherals:
1a084f3d 1568
15a34c63 1569@itemize @minus
5fafdf24 1570@item
006f3a48 1571UniNorth or Grackle PCI Bridge
15a34c63
FB
1572@item
1573PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1574@item
15a34c63 15752 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1576@item
15a34c63
FB
1577NE2000 PCI adapters
1578@item
1579Non Volatile RAM
1580@item
1581VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1582@end itemize
1583
b671f9ed 1584QEMU emulates the following PREP peripherals:
52c00a5f
FB
1585
1586@itemize @minus
5fafdf24 1587@item
15a34c63
FB
1588PCI Bridge
1589@item
1590PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1591@item
52c00a5f
FB
15922 IDE interfaces with hard disk and CD-ROM support
1593@item
1594Floppy disk
5fafdf24 1595@item
15a34c63 1596NE2000 network adapters
52c00a5f
FB
1597@item
1598Serial port
1599@item
1600PREP Non Volatile RAM
15a34c63
FB
1601@item
1602PC compatible keyboard and mouse.
52c00a5f
FB
1603@end itemize
1604
15a34c63 1605QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1606@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1607
992e5acd 1608Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
1609for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1610v2) portable firmware implementation. The goal is to implement a 100%
1611IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1612
15a34c63
FB
1613@c man begin OPTIONS
1614
1615The following options are specific to the PowerPC emulation:
1616
1617@table @option
1618
4e257e5e 1619@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63
FB
1620
1621Set the initial VGA graphic mode. The default is 800x600x15.
1622
4e257e5e 1623@item -prom-env @var{string}
95efd11c
BS
1624
1625Set OpenBIOS variables in NVRAM, for example:
1626
1627@example
1628qemu-system-ppc -prom-env 'auto-boot?=false' \
1629 -prom-env 'boot-device=hd:2,\yaboot' \
1630 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1631@end example
1632
1633These variables are not used by Open Hack'Ware.
1634
15a34c63
FB
1635@end table
1636
5fafdf24 1637@c man end
15a34c63
FB
1638
1639
52c00a5f 1640More information is available at
3f9f3aa1 1641@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1642
24d4de45
TS
1643@node Sparc32 System emulator
1644@section Sparc32 System emulator
7544a042 1645@cindex system emulation (Sparc32)
e80cfcfc 1646
34a3d239
BS
1647Use the executable @file{qemu-system-sparc} to simulate the following
1648Sun4m architecture machines:
1649@itemize @minus
1650@item
1651SPARCstation 4
1652@item
1653SPARCstation 5
1654@item
1655SPARCstation 10
1656@item
1657SPARCstation 20
1658@item
1659SPARCserver 600MP
1660@item
1661SPARCstation LX
1662@item
1663SPARCstation Voyager
1664@item
1665SPARCclassic
1666@item
1667SPARCbook
1668@end itemize
1669
1670The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1671but Linux limits the number of usable CPUs to 4.
e80cfcfc 1672
34a3d239
BS
1673It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1674SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1675emulators are not usable yet.
1676
1677QEMU emulates the following sun4m/sun4c/sun4d peripherals:
e80cfcfc
FB
1678
1679@itemize @minus
3475187d 1680@item
7d85892b 1681IOMMU or IO-UNITs
e80cfcfc
FB
1682@item
1683TCX Frame buffer
5fafdf24 1684@item
e80cfcfc
FB
1685Lance (Am7990) Ethernet
1686@item
34a3d239 1687Non Volatile RAM M48T02/M48T08
e80cfcfc 1688@item
3475187d
FB
1689Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1690and power/reset logic
1691@item
1692ESP SCSI controller with hard disk and CD-ROM support
1693@item
6a3b9cc9 1694Floppy drive (not on SS-600MP)
a2502b58
BS
1695@item
1696CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1697@end itemize
1698
6a3b9cc9
BS
1699The number of peripherals is fixed in the architecture. Maximum
1700memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 1701others 2047MB.
3475187d 1702
30a604f3 1703Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
1704@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1705firmware implementation. The goal is to implement a 100% IEEE
17061275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1707
1708A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239
BS
1709the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1710some kernel versions work. Please note that currently Solaris kernels
1711don't work probably due to interface issues between OpenBIOS and
1712Solaris.
3475187d
FB
1713
1714@c man begin OPTIONS
1715
a2502b58 1716The following options are specific to the Sparc32 emulation:
3475187d
FB
1717
1718@table @option
1719
4e257e5e 1720@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 1721
a2502b58
BS
1722Set the initial TCX graphic mode. The default is 1024x768x8, currently
1723the only other possible mode is 1024x768x24.
3475187d 1724
4e257e5e 1725@item -prom-env @var{string}
66508601
BS
1726
1727Set OpenBIOS variables in NVRAM, for example:
1728
1729@example
1730qemu-system-sparc -prom-env 'auto-boot?=false' \
1731 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1732@end example
1733
609c1dac 1734@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
a2502b58
BS
1735
1736Set the emulated machine type. Default is SS-5.
1737
3475187d
FB
1738@end table
1739
5fafdf24 1740@c man end
3475187d 1741
24d4de45
TS
1742@node Sparc64 System emulator
1743@section Sparc64 System emulator
7544a042 1744@cindex system emulation (Sparc64)
e80cfcfc 1745
34a3d239
BS
1746Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1747(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1748Niagara (T1) machine. The emulator is not usable for anything yet, but
1749it can launch some kernels.
b756921a 1750
c7ba218d 1751QEMU emulates the following peripherals:
83469015
FB
1752
1753@itemize @minus
1754@item
5fafdf24 1755UltraSparc IIi APB PCI Bridge
83469015
FB
1756@item
1757PCI VGA compatible card with VESA Bochs Extensions
1758@item
34a3d239
BS
1759PS/2 mouse and keyboard
1760@item
83469015
FB
1761Non Volatile RAM M48T59
1762@item
1763PC-compatible serial ports
c7ba218d
BS
1764@item
17652 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
1766@item
1767Floppy disk
83469015
FB
1768@end itemize
1769
c7ba218d
BS
1770@c man begin OPTIONS
1771
1772The following options are specific to the Sparc64 emulation:
1773
1774@table @option
1775
4e257e5e 1776@item -prom-env @var{string}
34a3d239
BS
1777
1778Set OpenBIOS variables in NVRAM, for example:
1779
1780@example
1781qemu-system-sparc64 -prom-env 'auto-boot?=false'
1782@end example
1783
1784@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
1785
1786Set the emulated machine type. The default is sun4u.
1787
1788@end table
1789
1790@c man end
1791
24d4de45
TS
1792@node MIPS System emulator
1793@section MIPS System emulator
7544a042 1794@cindex system emulation (MIPS)
9d0a8e6f 1795
d9aedc32
TS
1796Four executables cover simulation of 32 and 64-bit MIPS systems in
1797both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1798@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 1799Five different machine types are emulated:
24d4de45
TS
1800
1801@itemize @minus
1802@item
1803A generic ISA PC-like machine "mips"
1804@item
1805The MIPS Malta prototype board "malta"
1806@item
d9aedc32 1807An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 1808@item
f0fc6f8f 1809MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
1810@item
1811A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
1812@end itemize
1813
1814The generic emulation is supported by Debian 'Etch' and is able to
1815install Debian into a virtual disk image. The following devices are
1816emulated:
3f9f3aa1
FB
1817
1818@itemize @minus
5fafdf24 1819@item
6bf5b4e8 1820A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
1821@item
1822PC style serial port
1823@item
24d4de45
TS
1824PC style IDE disk
1825@item
3f9f3aa1
FB
1826NE2000 network card
1827@end itemize
1828
24d4de45
TS
1829The Malta emulation supports the following devices:
1830
1831@itemize @minus
1832@item
0b64d008 1833Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
1834@item
1835PIIX4 PCI/USB/SMbus controller
1836@item
1837The Multi-I/O chip's serial device
1838@item
3a2eeac0 1839PCI network cards (PCnet32 and others)
24d4de45
TS
1840@item
1841Malta FPGA serial device
1842@item
1f605a76 1843Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
1844@end itemize
1845
1846The ACER Pica emulation supports:
1847
1848@itemize @minus
1849@item
1850MIPS R4000 CPU
1851@item
1852PC-style IRQ and DMA controllers
1853@item
1854PC Keyboard
1855@item
1856IDE controller
1857@end itemize
3f9f3aa1 1858
b5e4946f 1859The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
1860to what the proprietary MIPS emulator uses for running Linux.
1861It supports:
6bf5b4e8
TS
1862
1863@itemize @minus
1864@item
1865A range of MIPS CPUs, default is the 24Kf
1866@item
1867PC style serial port
1868@item
1869MIPSnet network emulation
1870@end itemize
1871
88cb0a02
AJ
1872The MIPS Magnum R4000 emulation supports:
1873
1874@itemize @minus
1875@item
1876MIPS R4000 CPU
1877@item
1878PC-style IRQ controller
1879@item
1880PC Keyboard
1881@item
1882SCSI controller
1883@item
1884G364 framebuffer
1885@end itemize
1886
1887
24d4de45
TS
1888@node ARM System emulator
1889@section ARM System emulator
7544a042 1890@cindex system emulation (ARM)
3f9f3aa1
FB
1891
1892Use the executable @file{qemu-system-arm} to simulate a ARM
1893machine. The ARM Integrator/CP board is emulated with the following
1894devices:
1895
1896@itemize @minus
1897@item
9ee6e8bb 1898ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
1899@item
1900Two PL011 UARTs
5fafdf24 1901@item
3f9f3aa1 1902SMC 91c111 Ethernet adapter
00a9bf19
PB
1903@item
1904PL110 LCD controller
1905@item
1906PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
1907@item
1908PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
1909@end itemize
1910
1911The ARM Versatile baseboard is emulated with the following devices:
1912
1913@itemize @minus
1914@item
9ee6e8bb 1915ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
1916@item
1917PL190 Vectored Interrupt Controller
1918@item
1919Four PL011 UARTs
5fafdf24 1920@item
00a9bf19
PB
1921SMC 91c111 Ethernet adapter
1922@item
1923PL110 LCD controller
1924@item
1925PL050 KMI with PS/2 keyboard and mouse.
1926@item
1927PCI host bridge. Note the emulated PCI bridge only provides access to
1928PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
1929This means some devices (eg. ne2k_pci NIC) are not usable, and others
1930(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 1931mapped control registers.
e6de1bad
PB
1932@item
1933PCI OHCI USB controller.
1934@item
1935LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
1936@item
1937PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
1938@end itemize
1939
21a88941
PB
1940Several variants of the ARM RealView baseboard are emulated,
1941including the EB, PB-A8 and PBX-A9. Due to interactions with the
1942bootloader, only certain Linux kernel configurations work out
1943of the box on these boards.
1944
1945Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1946enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
1947should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1948disabled and expect 1024M RAM.
1949
40c5c6cd 1950The following devices are emulated:
d7739d75
PB
1951
1952@itemize @minus
1953@item
f7c70325 1954ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
1955@item
1956ARM AMBA Generic/Distributed Interrupt Controller
1957@item
1958Four PL011 UARTs
5fafdf24 1959@item
0ef849d7 1960SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
1961@item
1962PL110 LCD controller
1963@item
1964PL050 KMI with PS/2 keyboard and mouse
1965@item
1966PCI host bridge
1967@item
1968PCI OHCI USB controller
1969@item
1970LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
1971@item
1972PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
1973@end itemize
1974
b00052e4
AZ
1975The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1976and "Terrier") emulation includes the following peripherals:
1977
1978@itemize @minus
1979@item
1980Intel PXA270 System-on-chip (ARM V5TE core)
1981@item
1982NAND Flash memory
1983@item
1984IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1985@item
1986On-chip OHCI USB controller
1987@item
1988On-chip LCD controller
1989@item
1990On-chip Real Time Clock
1991@item
1992TI ADS7846 touchscreen controller on SSP bus
1993@item
1994Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1995@item
1996GPIO-connected keyboard controller and LEDs
1997@item
549444e1 1998Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
1999@item
2000Three on-chip UARTs
2001@item
2002WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2003@end itemize
2004
02645926
AZ
2005The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2006following elements:
2007
2008@itemize @minus
2009@item
2010Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2011@item
2012ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2013@item
2014On-chip LCD controller
2015@item
2016On-chip Real Time Clock
2017@item
2018TI TSC2102i touchscreen controller / analog-digital converter / Audio
2019CODEC, connected through MicroWire and I@math{^2}S busses
2020@item
2021GPIO-connected matrix keypad
2022@item
2023Secure Digital card connected to OMAP MMC/SD host
2024@item
2025Three on-chip UARTs
2026@end itemize
2027
c30bb264
AZ
2028Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2029emulation supports the following elements:
2030
2031@itemize @minus
2032@item
2033Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2034@item
2035RAM and non-volatile OneNAND Flash memories
2036@item
2037Display connected to EPSON remote framebuffer chip and OMAP on-chip
2038display controller and a LS041y3 MIPI DBI-C controller
2039@item
2040TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2041driven through SPI bus
2042@item
2043National Semiconductor LM8323-controlled qwerty keyboard driven
2044through I@math{^2}C bus
2045@item
2046Secure Digital card connected to OMAP MMC/SD host
2047@item
2048Three OMAP on-chip UARTs and on-chip STI debugging console
2049@item
40c5c6cd 2050A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2051@item
c30bb264
AZ
2052Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2053TUSB6010 chip - only USB host mode is supported
2054@item
2055TI TMP105 temperature sensor driven through I@math{^2}C bus
2056@item
2057TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2058@item
2059Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2060through CBUS
2061@end itemize
2062
9ee6e8bb
PB
2063The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2064devices:
2065
2066@itemize @minus
2067@item
2068Cortex-M3 CPU core.
2069@item
207064k Flash and 8k SRAM.
2071@item
2072Timers, UARTs, ADC and I@math{^2}C interface.
2073@item
2074OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2075@end itemize
2076
2077The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2078devices:
2079
2080@itemize @minus
2081@item
2082Cortex-M3 CPU core.
2083@item
2084256k Flash and 64k SRAM.
2085@item
2086Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2087@item
2088OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2089@end itemize
2090
57cd6e97
AZ
2091The Freecom MusicPal internet radio emulation includes the following
2092elements:
2093
2094@itemize @minus
2095@item
2096Marvell MV88W8618 ARM core.
2097@item
209832 MB RAM, 256 KB SRAM, 8 MB flash.
2099@item
2100Up to 2 16550 UARTs
2101@item
2102MV88W8xx8 Ethernet controller
2103@item
2104MV88W8618 audio controller, WM8750 CODEC and mixer
2105@item
e080e785 2106128×64 display with brightness control
57cd6e97
AZ
2107@item
21082 buttons, 2 navigation wheels with button function
2109@end itemize
2110
997641a8 2111The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2112The emulation includes the following elements:
997641a8
AZ
2113
2114@itemize @minus
2115@item
2116Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2117@item
2118ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2119V1
21201 Flash of 16MB and 1 Flash of 8MB
2121V2
21221 Flash of 32MB
2123@item
2124On-chip LCD controller
2125@item
2126On-chip Real Time Clock
2127@item
2128Secure Digital card connected to OMAP MMC/SD host
2129@item
2130Three on-chip UARTs
2131@end itemize
2132
3f9f3aa1
FB
2133A Linux 2.6 test image is available on the QEMU web site. More
2134information is available in the QEMU mailing-list archive.
9d0a8e6f 2135
d2c639d6
BS
2136@c man begin OPTIONS
2137
2138The following options are specific to the ARM emulation:
2139
2140@table @option
2141
2142@item -semihosting
2143Enable semihosting syscall emulation.
2144
2145On ARM this implements the "Angel" interface.
2146
2147Note that this allows guest direct access to the host filesystem,
2148so should only be used with trusted guest OS.
2149
2150@end table
2151
24d4de45
TS
2152@node ColdFire System emulator
2153@section ColdFire System emulator
7544a042
SW
2154@cindex system emulation (ColdFire)
2155@cindex system emulation (M68K)
209a4e69
PB
2156
2157Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2158The emulator is able to boot a uClinux kernel.
707e011b
PB
2159
2160The M5208EVB emulation includes the following devices:
2161
2162@itemize @minus
5fafdf24 2163@item
707e011b
PB
2164MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2165@item
2166Three Two on-chip UARTs.
2167@item
2168Fast Ethernet Controller (FEC)
2169@end itemize
2170
2171The AN5206 emulation includes the following devices:
209a4e69
PB
2172
2173@itemize @minus
5fafdf24 2174@item
209a4e69
PB
2175MCF5206 ColdFire V2 Microprocessor.
2176@item
2177Two on-chip UARTs.
2178@end itemize
2179
d2c639d6
BS
2180@c man begin OPTIONS
2181
7544a042 2182The following options are specific to the ColdFire emulation:
d2c639d6
BS
2183
2184@table @option
2185
2186@item -semihosting
2187Enable semihosting syscall emulation.
2188
2189On M68K this implements the "ColdFire GDB" interface used by libgloss.
2190
2191Note that this allows guest direct access to the host filesystem,
2192so should only be used with trusted guest OS.
2193
2194@end table
2195
7544a042
SW
2196@node Cris System emulator
2197@section Cris System emulator
2198@cindex system emulation (Cris)
2199
2200TODO
2201
2202@node Microblaze System emulator
2203@section Microblaze System emulator
2204@cindex system emulation (Microblaze)
2205
2206TODO
2207
2208@node SH4 System emulator
2209@section SH4 System emulator
2210@cindex system emulation (SH4)
2211
2212TODO
2213
3aeaea65
MF
2214@node Xtensa System emulator
2215@section Xtensa System emulator
2216@cindex system emulation (Xtensa)
2217
2218Two executables cover simulation of both Xtensa endian options,
2219@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2220Two different machine types are emulated:
2221
2222@itemize @minus
2223@item
2224Xtensa emulator pseudo board "sim"
2225@item
2226Avnet LX60/LX110/LX200 board
2227@end itemize
2228
b5e4946f 2229The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2230to one provided by the proprietary Tensilica ISS.
2231It supports:
2232
2233@itemize @minus
2234@item
2235A range of Xtensa CPUs, default is the DC232B
2236@item
2237Console and filesystem access via semihosting calls
2238@end itemize
2239
2240The Avnet LX60/LX110/LX200 emulation supports:
2241
2242@itemize @minus
2243@item
2244A range of Xtensa CPUs, default is the DC232B
2245@item
224616550 UART
2247@item
2248OpenCores 10/100 Mbps Ethernet MAC
2249@end itemize
2250
2251@c man begin OPTIONS
2252
2253The following options are specific to the Xtensa emulation:
2254
2255@table @option
2256
2257@item -semihosting
2258Enable semihosting syscall emulation.
2259
2260Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2261Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2262
2263Note that this allows guest direct access to the host filesystem,
2264so should only be used with trusted guest OS.
2265
2266@end table
5fafdf24
TS
2267@node QEMU User space emulator
2268@chapter QEMU User space emulator
83195237
FB
2269
2270@menu
2271* Supported Operating Systems ::
2272* Linux User space emulator::
2273* Mac OS X/Darwin User space emulator ::
84778508 2274* BSD User space emulator ::
83195237
FB
2275@end menu
2276
2277@node Supported Operating Systems
2278@section Supported Operating Systems
2279
2280The following OS are supported in user space emulation:
2281
2282@itemize @minus
2283@item
4be456f1 2284Linux (referred as qemu-linux-user)
83195237 2285@item
4be456f1 2286Mac OS X/Darwin (referred as qemu-darwin-user)
84778508
BS
2287@item
2288BSD (referred as qemu-bsd-user)
83195237
FB
2289@end itemize
2290
2291@node Linux User space emulator
2292@section Linux User space emulator
386405f7 2293
debc7065
FB
2294@menu
2295* Quick Start::
2296* Wine launch::
2297* Command line options::
79737e4a 2298* Other binaries::
debc7065
FB
2299@end menu
2300
2301@node Quick Start
83195237 2302@subsection Quick Start
df0f11a0 2303
1f673135 2304In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2305itself and all the target (x86) dynamic libraries used by it.
386405f7 2306
1f673135 2307@itemize
386405f7 2308
1f673135
FB
2309@item On x86, you can just try to launch any process by using the native
2310libraries:
386405f7 2311
5fafdf24 2312@example
1f673135
FB
2313qemu-i386 -L / /bin/ls
2314@end example
386405f7 2315
1f673135
FB
2316@code{-L /} tells that the x86 dynamic linker must be searched with a
2317@file{/} prefix.
386405f7 2318
dbcf5e82
TS
2319@item Since QEMU is also a linux process, you can launch qemu with
2320qemu (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2321
5fafdf24 2322@example
1f673135
FB
2323qemu-i386 -L / qemu-i386 -L / /bin/ls
2324@end example
386405f7 2325
1f673135
FB
2326@item On non x86 CPUs, you need first to download at least an x86 glibc
2327(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2328@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2329
1f673135 2330@example
5fafdf24 2331unset LD_LIBRARY_PATH
1f673135 2332@end example
1eb87257 2333
1f673135 2334Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2335
1f673135
FB
2336@example
2337qemu-i386 tests/i386/ls
2338@end example
4c3b5a48 2339You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2340QEMU is automatically launched by the Linux kernel when you try to
2341launch x86 executables. It requires the @code{binfmt_misc} module in the
2342Linux kernel.
1eb87257 2343
1f673135
FB
2344@item The x86 version of QEMU is also included. You can try weird things such as:
2345@example
debc7065
FB
2346qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2347 /usr/local/qemu-i386/bin/ls-i386
1f673135 2348@end example
1eb20527 2349
1f673135 2350@end itemize
1eb20527 2351
debc7065 2352@node Wine launch
83195237 2353@subsection Wine launch
1eb20527 2354
1f673135 2355@itemize
386405f7 2356
1f673135
FB
2357@item Ensure that you have a working QEMU with the x86 glibc
2358distribution (see previous section). In order to verify it, you must be
2359able to do:
386405f7 2360
1f673135
FB
2361@example
2362qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2363@end example
386405f7 2364
1f673135 2365@item Download the binary x86 Wine install
5fafdf24 2366(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2367
1f673135 2368@item Configure Wine on your account. Look at the provided script
debc7065 2369@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2370@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2371
1f673135 2372@item Then you can try the example @file{putty.exe}:
386405f7 2373
1f673135 2374@example
debc7065
FB
2375qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2376 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2377@end example
386405f7 2378
1f673135 2379@end itemize
fd429f2f 2380
debc7065 2381@node Command line options
83195237 2382@subsection Command line options
1eb20527 2383
1f673135 2384@example
68a1c816 2385usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
1f673135 2386@end example
1eb20527 2387
1f673135
FB
2388@table @option
2389@item -h
2390Print the help
3b46e624 2391@item -L path
1f673135
FB
2392Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2393@item -s size
2394Set the x86 stack size in bytes (default=524288)
34a3d239
BS
2395@item -cpu model
2396Select CPU model (-cpu ? for list and additional feature selection)
f66724c9
SW
2397@item -ignore-environment
2398Start with an empty environment. Without this option,
40c5c6cd 2399the initial environment is a copy of the caller's environment.
f66724c9
SW
2400@item -E @var{var}=@var{value}
2401Set environment @var{var} to @var{value}.
2402@item -U @var{var}
2403Remove @var{var} from the environment.
379f6698
PB
2404@item -B offset
2405Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2406the address region required by guest applications is reserved on the host.
2407This option is currently only supported on some hosts.
68a1c816
PB
2408@item -R size
2409Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2410"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2411@end table
2412
1f673135 2413Debug options:
386405f7 2414
1f673135
FB
2415@table @option
2416@item -d
2417Activate log (logfile=/tmp/qemu.log)
2418@item -p pagesize
2419Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2420@item -g port
2421Wait gdb connection to port
1b530a6d
AJ
2422@item -singlestep
2423Run the emulation in single step mode.
1f673135 2424@end table
386405f7 2425
b01bcae6
AZ
2426Environment variables:
2427
2428@table @env
2429@item QEMU_STRACE
2430Print system calls and arguments similar to the 'strace' program
2431(NOTE: the actual 'strace' program will not work because the user
2432space emulator hasn't implemented ptrace). At the moment this is
2433incomplete. All system calls that don't have a specific argument
2434format are printed with information for six arguments. Many
2435flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2436@end table
b01bcae6 2437
79737e4a 2438@node Other binaries
83195237 2439@subsection Other binaries
79737e4a 2440
7544a042
SW
2441@cindex user mode (Alpha)
2442@command{qemu-alpha} TODO.
2443
2444@cindex user mode (ARM)
2445@command{qemu-armeb} TODO.
2446
2447@cindex user mode (ARM)
79737e4a
PB
2448@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2449binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2450configurations), and arm-uclinux bFLT format binaries.
2451
7544a042
SW
2452@cindex user mode (ColdFire)
2453@cindex user mode (M68K)
e6e5906b
PB
2454@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2455(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2456coldfire uClinux bFLT format binaries.
2457
79737e4a
PB
2458The binary format is detected automatically.
2459
7544a042
SW
2460@cindex user mode (Cris)
2461@command{qemu-cris} TODO.
2462
2463@cindex user mode (i386)
2464@command{qemu-i386} TODO.
2465@command{qemu-x86_64} TODO.
2466
2467@cindex user mode (Microblaze)
2468@command{qemu-microblaze} TODO.
2469
2470@cindex user mode (MIPS)
2471@command{qemu-mips} TODO.
2472@command{qemu-mipsel} TODO.
2473
2474@cindex user mode (PowerPC)
2475@command{qemu-ppc64abi32} TODO.
2476@command{qemu-ppc64} TODO.
2477@command{qemu-ppc} TODO.
2478
2479@cindex user mode (SH4)
2480@command{qemu-sh4eb} TODO.
2481@command{qemu-sh4} TODO.
2482
2483@cindex user mode (SPARC)
34a3d239
BS
2484@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2485
a785e42e
BS
2486@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2487(Sparc64 CPU, 32 bit ABI).
2488
2489@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2490SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2491
83195237
FB
2492@node Mac OS X/Darwin User space emulator
2493@section Mac OS X/Darwin User space emulator
2494
2495@menu
2496* Mac OS X/Darwin Status::
2497* Mac OS X/Darwin Quick Start::
2498* Mac OS X/Darwin Command line options::
2499@end menu
2500
2501@node Mac OS X/Darwin Status
2502@subsection Mac OS X/Darwin Status
2503
2504@itemize @minus
2505@item
2506target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2507@item
2508target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2509@item
dbcf5e82 2510target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
83195237
FB
2511@item
2512target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2513@end itemize
2514
2515[1] If you're host commpage can be executed by qemu.
2516
2517@node Mac OS X/Darwin Quick Start
2518@subsection Quick Start
2519
2520In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2521itself and all the target dynamic libraries used by it. If you don't have the FAT
2522libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2523CD or compile them by hand.
2524
2525@itemize
2526
2527@item On x86, you can just try to launch any process by using the native
2528libraries:
2529
5fafdf24 2530@example
dbcf5e82 2531qemu-i386 /bin/ls
83195237
FB
2532@end example
2533
2534or to run the ppc version of the executable:
2535
5fafdf24 2536@example
dbcf5e82 2537qemu-ppc /bin/ls
83195237
FB
2538@end example
2539
2540@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2541are installed:
2542
5fafdf24 2543@example
dbcf5e82 2544qemu-i386 -L /opt/x86_root/ /bin/ls
83195237
FB
2545@end example
2546
2547@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2548@file{/opt/x86_root/usr/bin/dyld}.
2549
2550@end itemize
2551
2552@node Mac OS X/Darwin Command line options
2553@subsection Command line options
2554
2555@example
dbcf5e82 2556usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
83195237
FB
2557@end example
2558
2559@table @option
2560@item -h
2561Print the help
3b46e624 2562@item -L path
83195237
FB
2563Set the library root path (default=/)
2564@item -s size
2565Set the stack size in bytes (default=524288)
2566@end table
2567
2568Debug options:
2569
2570@table @option
2571@item -d
2572Activate log (logfile=/tmp/qemu.log)
2573@item -p pagesize
2574Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2575@item -singlestep
2576Run the emulation in single step mode.
83195237
FB
2577@end table
2578
84778508
BS
2579@node BSD User space emulator
2580@section BSD User space emulator
2581
2582@menu
2583* BSD Status::
2584* BSD Quick Start::
2585* BSD Command line options::
2586@end menu
2587
2588@node BSD Status
2589@subsection BSD Status
2590
2591@itemize @minus
2592@item
2593target Sparc64 on Sparc64: Some trivial programs work.
2594@end itemize
2595
2596@node BSD Quick Start
2597@subsection Quick Start
2598
2599In order to launch a BSD process, QEMU needs the process executable
2600itself and all the target dynamic libraries used by it.
2601
2602@itemize
2603
2604@item On Sparc64, you can just try to launch any process by using the native
2605libraries:
2606
2607@example
2608qemu-sparc64 /bin/ls
2609@end example
2610
2611@end itemize
2612
2613@node BSD Command line options
2614@subsection Command line options
2615
2616@example
2617usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2618@end example
2619
2620@table @option
2621@item -h
2622Print the help
2623@item -L path
2624Set the library root path (default=/)
2625@item -s size
2626Set the stack size in bytes (default=524288)
f66724c9
SW
2627@item -ignore-environment
2628Start with an empty environment. Without this option,
40c5c6cd 2629the initial environment is a copy of the caller's environment.
f66724c9
SW
2630@item -E @var{var}=@var{value}
2631Set environment @var{var} to @var{value}.
2632@item -U @var{var}
2633Remove @var{var} from the environment.
84778508
BS
2634@item -bsd type
2635Set the type of the emulated BSD Operating system. Valid values are
2636FreeBSD, NetBSD and OpenBSD (default).
2637@end table
2638
2639Debug options:
2640
2641@table @option
2642@item -d
2643Activate log (logfile=/tmp/qemu.log)
2644@item -p pagesize
2645Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2646@item -singlestep
2647Run the emulation in single step mode.
84778508
BS
2648@end table
2649
15a34c63
FB
2650@node compilation
2651@chapter Compilation from the sources
2652
debc7065
FB
2653@menu
2654* Linux/Unix::
2655* Windows::
2656* Cross compilation for Windows with Linux::
2657* Mac OS X::
47eacb4f 2658* Make targets::
debc7065
FB
2659@end menu
2660
2661@node Linux/Unix
7c3fc84d
FB
2662@section Linux/Unix
2663
2664@subsection Compilation
2665
2666First you must decompress the sources:
2667@example
2668cd /tmp
2669tar zxvf qemu-x.y.z.tar.gz
2670cd qemu-x.y.z
2671@end example
2672
2673Then you configure QEMU and build it (usually no options are needed):
2674@example
2675./configure
2676make
2677@end example
2678
2679Then type as root user:
2680@example
2681make install
2682@end example
2683to install QEMU in @file{/usr/local}.
2684
debc7065 2685@node Windows
15a34c63
FB
2686@section Windows
2687
2688@itemize
2689@item Install the current versions of MSYS and MinGW from
2690@url{http://www.mingw.org/}. You can find detailed installation
2691instructions in the download section and the FAQ.
2692
5fafdf24 2693@item Download
15a34c63 2694the MinGW development library of SDL 1.2.x
debc7065 2695(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
d0a96f3d
ST
2696@url{http://www.libsdl.org}. Unpack it in a temporary place and
2697edit the @file{sdl-config} script so that it gives the
15a34c63
FB
2698correct SDL directory when invoked.
2699
d0a96f3d
ST
2700@item Install the MinGW version of zlib and make sure
2701@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2702MinGW's default header and linker search paths.
d0a96f3d 2703
15a34c63 2704@item Extract the current version of QEMU.
5fafdf24 2705
15a34c63
FB
2706@item Start the MSYS shell (file @file{msys.bat}).
2707
5fafdf24 2708@item Change to the QEMU directory. Launch @file{./configure} and
15a34c63
FB
2709@file{make}. If you have problems using SDL, verify that
2710@file{sdl-config} can be launched from the MSYS command line.
2711
5fafdf24 2712@item You can install QEMU in @file{Program Files/Qemu} by typing
15a34c63
FB
2713@file{make install}. Don't forget to copy @file{SDL.dll} in
2714@file{Program Files/Qemu}.
2715
2716@end itemize
2717
debc7065 2718@node Cross compilation for Windows with Linux
15a34c63
FB
2719@section Cross compilation for Windows with Linux
2720
2721@itemize
2722@item
2723Install the MinGW cross compilation tools available at
2724@url{http://www.mingw.org/}.
2725
d0a96f3d
ST
2726@item Download
2727the MinGW development library of SDL 1.2.x
2728(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2729@url{http://www.libsdl.org}. Unpack it in a temporary place and
2730edit the @file{sdl-config} script so that it gives the
2731correct SDL directory when invoked. Set up the @code{PATH} environment
2732variable so that @file{sdl-config} can be launched by
15a34c63
FB
2733the QEMU configuration script.
2734
d0a96f3d
ST
2735@item Install the MinGW version of zlib and make sure
2736@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2737MinGW's default header and linker search paths.
d0a96f3d 2738
5fafdf24 2739@item
15a34c63
FB
2740Configure QEMU for Windows cross compilation:
2741@example
d0a96f3d
ST
2742PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2743@end example
2744The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2745MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
40c5c6cd 2746We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
d0a96f3d
ST
2747use --cross-prefix to specify the name of the cross compiler.
2748You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/Qemu}.
2749
2750Under Fedora Linux, you can run:
2751@example
2752yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
15a34c63 2753@end example
d0a96f3d 2754to get a suitable cross compilation environment.
15a34c63 2755
5fafdf24 2756@item You can install QEMU in the installation directory by typing
d0a96f3d 2757@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
5fafdf24 2758installation directory.
15a34c63
FB
2759
2760@end itemize
2761
d0a96f3d 2762Wine can be used to launch the resulting qemu.exe compiled for Win32.
15a34c63 2763
debc7065 2764@node Mac OS X
15a34c63
FB
2765@section Mac OS X
2766
2767The Mac OS X patches are not fully merged in QEMU, so you should look
2768at the QEMU mailing list archive to have all the necessary
2769information.
2770
47eacb4f
SW
2771@node Make targets
2772@section Make targets
2773
2774@table @code
2775
2776@item make
2777@item make all
2778Make everything which is typically needed.
2779
2780@item install
2781TODO
2782
2783@item install-doc
2784TODO
2785
2786@item make clean
2787Remove most files which were built during make.
2788
2789@item make distclean
2790Remove everything which was built during make.
2791
2792@item make dvi
2793@item make html
2794@item make info
2795@item make pdf
2796Create documentation in dvi, html, info or pdf format.
2797
2798@item make cscope
2799TODO
2800
2801@item make defconfig
2802(Re-)create some build configuration files.
2803User made changes will be overwritten.
2804
2805@item tar
2806@item tarbin
2807TODO
2808
2809@end table
2810
7544a042
SW
2811@node License
2812@appendix License
2813
2814QEMU is a trademark of Fabrice Bellard.
2815
2816QEMU is released under the GNU General Public License (TODO: add link).
2817Parts of QEMU have specific licenses, see file LICENSE.
2818
2819TODO (refer to file LICENSE, include it, include the GPL?)
2820
debc7065 2821@node Index
7544a042
SW
2822@appendix Index
2823@menu
2824* Concept Index::
2825* Function Index::
2826* Keystroke Index::
2827* Program Index::
2828* Data Type Index::
2829* Variable Index::
2830@end menu
2831
2832@node Concept Index
2833@section Concept Index
2834This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
2835@printindex cp
2836
7544a042
SW
2837@node Function Index
2838@section Function Index
2839This index could be used for command line options and monitor functions.
2840@printindex fn
2841
2842@node Keystroke Index
2843@section Keystroke Index
2844
2845This is a list of all keystrokes which have a special function
2846in system emulation.
2847
2848@printindex ky
2849
2850@node Program Index
2851@section Program Index
2852@printindex pg
2853
2854@node Data Type Index
2855@section Data Type Index
2856
2857This index could be used for qdev device names and options.
2858
2859@printindex tp
2860
2861@node Variable Index
2862@section Variable Index
2863@printindex vr
2864
debc7065 2865@bye