]> git.proxmox.com Git - mirror_qemu.git/blame - target-i386/cpu.h
make Knoppix CD-ROM probe happy
[mirror_qemu.git] / target-i386 / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * i386 virtual CPU header
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20#ifndef CPU_I386_H
21#define CPU_I386_H
22
23#include "cpu-defs.h"
24
25#define R_EAX 0
26#define R_ECX 1
27#define R_EDX 2
28#define R_EBX 3
29#define R_ESP 4
30#define R_EBP 5
31#define R_ESI 6
32#define R_EDI 7
33
34#define R_AL 0
35#define R_CL 1
36#define R_DL 2
37#define R_BL 3
38#define R_AH 4
39#define R_CH 5
40#define R_DH 6
41#define R_BH 7
42
43#define R_ES 0
44#define R_CS 1
45#define R_SS 2
46#define R_DS 3
47#define R_FS 4
48#define R_GS 5
49
50/* segment descriptor fields */
51#define DESC_G_MASK (1 << 23)
52#define DESC_B_SHIFT 22
53#define DESC_B_MASK (1 << DESC_B_SHIFT)
54#define DESC_AVL_MASK (1 << 20)
55#define DESC_P_MASK (1 << 15)
56#define DESC_DPL_SHIFT 13
57#define DESC_S_MASK (1 << 12)
58#define DESC_TYPE_SHIFT 8
59#define DESC_A_MASK (1 << 8)
60
61#define DESC_CS_MASK (1 << 11)
62#define DESC_C_MASK (1 << 10)
63#define DESC_R_MASK (1 << 9)
64
65#define DESC_E_MASK (1 << 10)
66#define DESC_W_MASK (1 << 9)
67
68/* eflags masks */
69#define CC_C 0x0001
70#define CC_P 0x0004
71#define CC_A 0x0010
72#define CC_Z 0x0040
73#define CC_S 0x0080
74#define CC_O 0x0800
75
76#define TF_SHIFT 8
77#define IOPL_SHIFT 12
78#define VM_SHIFT 17
79
80#define TF_MASK 0x00000100
81#define IF_MASK 0x00000200
82#define DF_MASK 0x00000400
83#define IOPL_MASK 0x00003000
84#define NT_MASK 0x00004000
85#define RF_MASK 0x00010000
86#define VM_MASK 0x00020000
87#define AC_MASK 0x00040000
88#define VIF_MASK 0x00080000
89#define VIP_MASK 0x00100000
90#define ID_MASK 0x00200000
91
92/* hidden flags - used internally by qemu to represent additionnal cpu
93 states. Only the CPL and INHIBIT_IRQ are not redundant. We avoid
94 using the IOPL_MASK, TF_MASK and VM_MASK bit position to ease oring
95 with eflags. */
96/* current cpl */
97#define HF_CPL_SHIFT 0
98/* true if soft mmu is being used */
99#define HF_SOFTMMU_SHIFT 2
100/* true if hardware interrupts must be disabled for next instruction */
101#define HF_INHIBIT_IRQ_SHIFT 3
102/* 16 or 32 segments */
103#define HF_CS32_SHIFT 4
104#define HF_SS32_SHIFT 5
105/* zero base for DS, ES and SS */
106#define HF_ADDSEG_SHIFT 6
107
108#define HF_CPL_MASK (3 << HF_CPL_SHIFT)
109#define HF_SOFTMMU_MASK (1 << HF_SOFTMMU_SHIFT)
110#define HF_INHIBIT_IRQ_MASK (1 << HF_INHIBIT_IRQ_SHIFT)
111#define HF_CS32_MASK (1 << HF_CS32_SHIFT)
112#define HF_SS32_MASK (1 << HF_SS32_SHIFT)
113#define HF_ADDSEG_MASK (1 << HF_ADDSEG_SHIFT)
114
115#define CR0_PE_MASK (1 << 0)
116#define CR0_TS_MASK (1 << 3)
117#define CR0_WP_MASK (1 << 16)
118#define CR0_AM_MASK (1 << 18)
119#define CR0_PG_MASK (1 << 31)
120
121#define CR4_VME_MASK (1 << 0)
122#define CR4_PVI_MASK (1 << 1)
123#define CR4_TSD_MASK (1 << 2)
124#define CR4_DE_MASK (1 << 3)
125#define CR4_PSE_MASK (1 << 4)
126
127#define PG_PRESENT_BIT 0
128#define PG_RW_BIT 1
129#define PG_USER_BIT 2
130#define PG_PWT_BIT 3
131#define PG_PCD_BIT 4
132#define PG_ACCESSED_BIT 5
133#define PG_DIRTY_BIT 6
134#define PG_PSE_BIT 7
135#define PG_GLOBAL_BIT 8
136
137#define PG_PRESENT_MASK (1 << PG_PRESENT_BIT)
138#define PG_RW_MASK (1 << PG_RW_BIT)
139#define PG_USER_MASK (1 << PG_USER_BIT)
140#define PG_PWT_MASK (1 << PG_PWT_BIT)
141#define PG_PCD_MASK (1 << PG_PCD_BIT)
142#define PG_ACCESSED_MASK (1 << PG_ACCESSED_BIT)
143#define PG_DIRTY_MASK (1 << PG_DIRTY_BIT)
144#define PG_PSE_MASK (1 << PG_PSE_BIT)
145#define PG_GLOBAL_MASK (1 << PG_GLOBAL_BIT)
146
147#define PG_ERROR_W_BIT 1
148
149#define PG_ERROR_P_MASK 0x01
150#define PG_ERROR_W_MASK (1 << PG_ERROR_W_BIT)
151#define PG_ERROR_U_MASK 0x04
152#define PG_ERROR_RSVD_MASK 0x08
153
154#define MSR_IA32_APICBASE 0x1b
155#define MSR_IA32_APICBASE_BSP (1<<8)
156#define MSR_IA32_APICBASE_ENABLE (1<<11)
157#define MSR_IA32_APICBASE_BASE (0xfffff<<12)
158
159#define MSR_IA32_SYSENTER_CS 0x174
160#define MSR_IA32_SYSENTER_ESP 0x175
161#define MSR_IA32_SYSENTER_EIP 0x176
162
163#define EXCP00_DIVZ 0
164#define EXCP01_SSTP 1
165#define EXCP02_NMI 2
166#define EXCP03_INT3 3
167#define EXCP04_INTO 4
168#define EXCP05_BOUND 5
169#define EXCP06_ILLOP 6
170#define EXCP07_PREX 7
171#define EXCP08_DBLE 8
172#define EXCP09_XERR 9
173#define EXCP0A_TSS 10
174#define EXCP0B_NOSEG 11
175#define EXCP0C_STACK 12
176#define EXCP0D_GPF 13
177#define EXCP0E_PAGE 14
178#define EXCP10_COPR 16
179#define EXCP11_ALGN 17
180#define EXCP12_MCHK 18
181
182enum {
183 CC_OP_DYNAMIC, /* must use dynamic code to get cc_op */
184 CC_OP_EFLAGS, /* all cc are explicitely computed, CC_SRC = flags */
185 CC_OP_MUL, /* modify all flags, C, O = (CC_SRC != 0) */
186
187 CC_OP_ADDB, /* modify all flags, CC_DST = res, CC_SRC = src1 */
188 CC_OP_ADDW,
189 CC_OP_ADDL,
190
191 CC_OP_ADCB, /* modify all flags, CC_DST = res, CC_SRC = src1 */
192 CC_OP_ADCW,
193 CC_OP_ADCL,
194
195 CC_OP_SUBB, /* modify all flags, CC_DST = res, CC_SRC = src1 */
196 CC_OP_SUBW,
197 CC_OP_SUBL,
198
199 CC_OP_SBBB, /* modify all flags, CC_DST = res, CC_SRC = src1 */
200 CC_OP_SBBW,
201 CC_OP_SBBL,
202
203 CC_OP_LOGICB, /* modify all flags, CC_DST = res */
204 CC_OP_LOGICW,
205 CC_OP_LOGICL,
206
207 CC_OP_INCB, /* modify all flags except, CC_DST = res, CC_SRC = C */
208 CC_OP_INCW,
209 CC_OP_INCL,
210
211 CC_OP_DECB, /* modify all flags except, CC_DST = res, CC_SRC = C */
212 CC_OP_DECW,
213 CC_OP_DECL,
214
215 CC_OP_SHLB, /* modify all flags, CC_DST = res, CC_SRC.lsb = C */
216 CC_OP_SHLW,
217 CC_OP_SHLL,
218
219 CC_OP_SARB, /* modify all flags, CC_DST = res, CC_SRC.lsb = C */
220 CC_OP_SARW,
221 CC_OP_SARL,
222
223 CC_OP_NB,
224};
225
226#ifdef __i386__
227#define USE_X86LDOUBLE
228#endif
229
230#ifdef USE_X86LDOUBLE
231typedef long double CPU86_LDouble;
232#else
233typedef double CPU86_LDouble;
234#endif
235
236typedef struct SegmentCache {
237 uint32_t selector;
238 uint8_t *base;
239 uint32_t limit;
240 uint32_t flags;
241} SegmentCache;
242
243typedef struct CPUX86State {
244 /* standard registers */
245 uint32_t regs[8];
246 uint32_t eip;
247 uint32_t eflags; /* eflags register. During CPU emulation, CC
248 flags and DF are set to zero because they are
249 stored elsewhere */
250
251 /* emulator internal eflags handling */
252 uint32_t cc_src;
253 uint32_t cc_dst;
254 uint32_t cc_op;
255 int32_t df; /* D flag : 1 if D = 0, -1 if D = 1 */
256 uint32_t hflags; /* hidden flags, see HF_xxx constants */
257
258 /* FPU state */
259 unsigned int fpstt; /* top of stack index */
260 unsigned int fpus;
261 unsigned int fpuc;
262 uint8_t fptags[8]; /* 0 = valid, 1 = empty */
263 CPU86_LDouble fpregs[8];
264
265 /* emulator internal variables */
266 CPU86_LDouble ft0;
267 union {
268 float f;
269 double d;
270 int i32;
271 int64_t i64;
272 } fp_convert;
273
274 /* segments */
275 SegmentCache segs[6]; /* selector values */
276 SegmentCache ldt;
277 SegmentCache tr;
278 SegmentCache gdt; /* only base and limit are used */
279 SegmentCache idt; /* only base and limit are used */
280
281 /* sysenter registers */
282 uint32_t sysenter_cs;
283 uint32_t sysenter_esp;
284 uint32_t sysenter_eip;
285
286 /* exception/interrupt handling */
287 jmp_buf jmp_env;
288 int exception_index;
289 int error_code;
290 int exception_is_int;
291 int exception_next_eip;
292 struct TranslationBlock *current_tb; /* currently executing TB */
293 uint32_t cr[5]; /* NOTE: cr1 is unused */
294 uint32_t dr[8]; /* debug registers */
295 int interrupt_request;
296 int user_mode_only; /* user mode only simulation */
297
298 /* soft mmu support */
299 /* 0 = kernel, 1 = user */
300 CPUTLBEntry tlb_read[2][CPU_TLB_SIZE];
301 CPUTLBEntry tlb_write[2][CPU_TLB_SIZE];
302
303 /* ice debug support */
304 uint32_t breakpoints[MAX_BREAKPOINTS];
305 int nb_breakpoints;
306 int singlestep_enabled;
307
308 /* user data */
309 void *opaque;
310} CPUX86State;
311
312#ifndef IN_OP_I386
313void cpu_x86_outb(CPUX86State *env, int addr, int val);
314void cpu_x86_outw(CPUX86State *env, int addr, int val);
315void cpu_x86_outl(CPUX86State *env, int addr, int val);
316int cpu_x86_inb(CPUX86State *env, int addr);
317int cpu_x86_inw(CPUX86State *env, int addr);
318int cpu_x86_inl(CPUX86State *env, int addr);
319#endif
320
321CPUX86State *cpu_x86_init(void);
322int cpu_x86_exec(CPUX86State *s);
323void cpu_x86_close(CPUX86State *s);
324int cpu_x86_get_pic_interrupt(CPUX86State *s);
325
326/* this function must always be used to load data in the segment
327 cache: it synchronizes the hflags with the segment cache values */
328static inline void cpu_x86_load_seg_cache(CPUX86State *env,
329 int seg_reg, unsigned int selector,
330 uint8_t *base, unsigned int limit,
331 unsigned int flags)
332{
333 SegmentCache *sc;
334 unsigned int new_hflags;
335
336 sc = &env->segs[seg_reg];
337 sc->selector = selector;
338 sc->base = base;
339 sc->limit = limit;
340 sc->flags = flags;
341
342 /* update the hidden flags */
343 new_hflags = (env->segs[R_CS].flags & DESC_B_MASK)
344 >> (DESC_B_SHIFT - HF_CS32_SHIFT);
345 new_hflags |= (env->segs[R_SS].flags & DESC_B_MASK)
346 >> (DESC_B_SHIFT - HF_SS32_SHIFT);
347 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
348 /* XXX: try to avoid this test. The problem comes from the
349 fact that is real mode or vm86 mode we only modify the
350 'base' and 'selector' fields of the segment cache to go
351 faster. A solution may be to force addseg to one in
352 translate-i386.c. */
353 new_hflags |= HF_ADDSEG_MASK;
354 } else {
355 new_hflags |= (((unsigned long)env->segs[R_DS].base |
356 (unsigned long)env->segs[R_ES].base |
357 (unsigned long)env->segs[R_SS].base) != 0) <<
358 HF_ADDSEG_SHIFT;
359 }
360 env->hflags = (env->hflags &
361 ~(HF_CS32_MASK | HF_SS32_MASK | HF_ADDSEG_MASK)) | new_hflags;
362}
363
364/* wrapper, just in case memory mappings must be changed */
365static inline void cpu_x86_set_cpl(CPUX86State *s, int cpl)
366{
367#if HF_CPL_MASK == 3
368 s->hflags = (s->hflags & ~HF_CPL_MASK) | cpl;
369#else
370#error HF_CPL_MASK is hardcoded
371#endif
372}
373
374/* the following helpers are only usable in user mode simulation as
375 they can trigger unexpected exceptions */
376void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector);
377void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32);
378void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32);
379
380/* you can call this signal handler from your SIGBUS and SIGSEGV
381 signal handlers to inform the virtual CPU of exceptions. non zero
382 is returned if the signal was handled by the virtual CPU. */
383struct siginfo;
384int cpu_x86_signal_handler(int host_signum, struct siginfo *info,
385 void *puc);
386
387/* MMU defines */
388void cpu_x86_init_mmu(CPUX86State *env);
389extern int phys_ram_size;
390extern int phys_ram_fd;
391extern uint8_t *phys_ram_base;
461c0471
FB
392extern int a20_enabled;
393
394void cpu_x86_set_a20(CPUX86State *env, int a20_state);
2c0262af
FB
395
396/* used to debug */
397#define X86_DUMP_FPU 0x0001 /* dump FPU state too */
398#define X86_DUMP_CCOP 0x0002 /* dump qemu flag cache */
399void cpu_x86_dump_state(CPUX86State *env, FILE *f, int flags);
400
401#define TARGET_PAGE_BITS 12
402#include "cpu-all.h"
403
404#endif /* CPU_I386_H */