]> git.proxmox.com Git - mirror_qemu.git/blame - target-i386/kvm.c
kvm: Introduce kvm_has_intx_set_mask
[mirror_qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
5802e066 21#include <linux/kvm_para.h>
05330448
AL
22
23#include "qemu-common.h"
24#include "sysemu.h"
25#include "kvm.h"
1d31f66b 26#include "kvm_i386.h"
05330448 27#include "cpu.h"
e22a25c9 28#include "gdbstub.h"
0e607a80 29#include "host-utils.h"
4c5b10b7 30#include "hw/pc.h"
408392b3 31#include "hw/apic.h"
35bed8ee 32#include "ioport.h"
eab70139 33#include "hyperv.h"
05330448
AL
34
35//#define DEBUG_KVM
36
37#ifdef DEBUG_KVM
8c0d577e 38#define DPRINTF(fmt, ...) \
05330448
AL
39 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
40#else
8c0d577e 41#define DPRINTF(fmt, ...) \
05330448
AL
42 do { } while (0)
43#endif
44
1a03675d
GC
45#define MSR_KVM_WALL_CLOCK 0x11
46#define MSR_KVM_SYSTEM_TIME 0x12
47
c0532a76
MT
48#ifndef BUS_MCEERR_AR
49#define BUS_MCEERR_AR 4
50#endif
51#ifndef BUS_MCEERR_AO
52#define BUS_MCEERR_AO 5
53#endif
54
94a8d39a
JK
55const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
56 KVM_CAP_INFO(SET_TSS_ADDR),
57 KVM_CAP_INFO(EXT_CPUID),
58 KVM_CAP_INFO(MP_STATE),
59 KVM_CAP_LAST_INFO
60};
25d2e361 61
c3a3a7d3
JK
62static bool has_msr_star;
63static bool has_msr_hsave_pa;
aa82ba54 64static bool has_msr_tsc_deadline;
c5999bfc 65static bool has_msr_async_pf_en;
bc9a839d 66static bool has_msr_pv_eoi_en;
21e87c46 67static bool has_msr_misc_enable;
25d2e361 68static int lm_capable_kernel;
b827df58 69
1d31f66b
PM
70bool kvm_allows_irq0_override(void)
71{
72 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
73}
74
b827df58
AK
75static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
76{
77 struct kvm_cpuid2 *cpuid;
78 int r, size;
79
80 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
7267c094 81 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
b827df58
AK
82 cpuid->nent = max;
83 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
84 if (r == 0 && cpuid->nent >= max) {
85 r = -E2BIG;
86 }
b827df58
AK
87 if (r < 0) {
88 if (r == -E2BIG) {
7267c094 89 g_free(cpuid);
b827df58
AK
90 return NULL;
91 } else {
92 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
93 strerror(-r));
94 exit(1);
95 }
96 }
97 return cpuid;
98}
99
0c31b744
GC
100struct kvm_para_features {
101 int cap;
102 int feature;
103} para_features[] = {
104 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
105 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
106 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
0c31b744 107 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
0c31b744
GC
108 { -1, -1 }
109};
110
ba9bc59e 111static int get_para_features(KVMState *s)
0c31b744
GC
112{
113 int i, features = 0;
114
115 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
ba9bc59e 116 if (kvm_check_extension(s, para_features[i].cap)) {
0c31b744
GC
117 features |= (1 << para_features[i].feature);
118 }
119 }
120
121 return features;
122}
0c31b744
GC
123
124
ba9bc59e 125uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 126 uint32_t index, int reg)
b827df58
AK
127{
128 struct kvm_cpuid2 *cpuid;
129 int i, max;
130 uint32_t ret = 0;
131 uint32_t cpuid_1_edx;
0c31b744 132 int has_kvm_features = 0;
b827df58 133
b827df58 134 max = 1;
ba9bc59e 135 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
b827df58
AK
136 max *= 2;
137 }
138
139 for (i = 0; i < cpuid->nent; ++i) {
c958a8bd
SY
140 if (cpuid->entries[i].function == function &&
141 cpuid->entries[i].index == index) {
0c31b744
GC
142 if (cpuid->entries[i].function == KVM_CPUID_FEATURES) {
143 has_kvm_features = 1;
144 }
b827df58
AK
145 switch (reg) {
146 case R_EAX:
147 ret = cpuid->entries[i].eax;
148 break;
149 case R_EBX:
150 ret = cpuid->entries[i].ebx;
151 break;
152 case R_ECX:
153 ret = cpuid->entries[i].ecx;
154 break;
155 case R_EDX:
156 ret = cpuid->entries[i].edx;
19ccb8ea
JK
157 switch (function) {
158 case 1:
159 /* KVM before 2.6.30 misreports the following features */
160 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
161 break;
162 case 0x80000001:
b827df58
AK
163 /* On Intel, kvm returns cpuid according to the Intel spec,
164 * so add missing bits according to the AMD spec:
165 */
ba9bc59e 166 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
c1667e40 167 ret |= cpuid_1_edx & 0x183f7ff;
19ccb8ea 168 break;
b827df58
AK
169 }
170 break;
171 }
172 }
173 }
174
7267c094 175 g_free(cpuid);
b827df58 176
0c31b744
GC
177 /* fallback for older kernels */
178 if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) {
ba9bc59e 179 ret = get_para_features(s);
b9bec74b 180 }
0c31b744
GC
181
182 return ret;
bb0300dc 183}
bb0300dc 184
3c85e74f
HY
185typedef struct HWPoisonPage {
186 ram_addr_t ram_addr;
187 QLIST_ENTRY(HWPoisonPage) list;
188} HWPoisonPage;
189
190static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
191 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
192
193static void kvm_unpoison_all(void *param)
194{
195 HWPoisonPage *page, *next_page;
196
197 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
198 QLIST_REMOVE(page, list);
199 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
7267c094 200 g_free(page);
3c85e74f
HY
201 }
202}
203
3c85e74f
HY
204static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
205{
206 HWPoisonPage *page;
207
208 QLIST_FOREACH(page, &hwpoison_page_list, list) {
209 if (page->ram_addr == ram_addr) {
210 return;
211 }
212 }
7267c094 213 page = g_malloc(sizeof(HWPoisonPage));
3c85e74f
HY
214 page->ram_addr = ram_addr;
215 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
216}
217
e7701825
MT
218static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
219 int *max_banks)
220{
221 int r;
222
14a09518 223 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
224 if (r > 0) {
225 *max_banks = r;
226 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
227 }
228 return -ENOSYS;
229}
230
317ac620 231static void kvm_mce_inject(CPUX86State *env, target_phys_addr_t paddr, int code)
e7701825 232{
c34d440a
JK
233 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
234 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
235 uint64_t mcg_status = MCG_STATUS_MCIP;
e7701825 236
c34d440a
JK
237 if (code == BUS_MCEERR_AR) {
238 status |= MCI_STATUS_AR | 0x134;
239 mcg_status |= MCG_STATUS_EIPV;
240 } else {
241 status |= 0xc0;
242 mcg_status |= MCG_STATUS_RIPV;
419fb20a 243 }
c34d440a
JK
244 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
245 (MCM_ADDR_PHYS << 6) | 0xc,
246 cpu_x86_support_mca_broadcast(env) ?
247 MCE_INJECT_BROADCAST : 0);
419fb20a 248}
419fb20a
JK
249
250static void hardware_memory_error(void)
251{
252 fprintf(stderr, "Hardware memory error!\n");
253 exit(1);
254}
255
317ac620 256int kvm_arch_on_sigbus_vcpu(CPUX86State *env, int code, void *addr)
419fb20a 257{
419fb20a
JK
258 ram_addr_t ram_addr;
259 target_phys_addr_t paddr;
260
261 if ((env->mcg_cap & MCG_SER_P) && addr
c34d440a
JK
262 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
263 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
9f213ed9 264 !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
419fb20a
JK
265 fprintf(stderr, "Hardware memory error for memory used by "
266 "QEMU itself instead of guest system!\n");
267 /* Hope we are lucky for AO MCE */
268 if (code == BUS_MCEERR_AO) {
269 return 0;
270 } else {
271 hardware_memory_error();
272 }
273 }
3c85e74f 274 kvm_hwpoison_page_add(ram_addr);
c34d440a 275 kvm_mce_inject(env, paddr, code);
e56ff191 276 } else {
419fb20a
JK
277 if (code == BUS_MCEERR_AO) {
278 return 0;
279 } else if (code == BUS_MCEERR_AR) {
280 hardware_memory_error();
281 } else {
282 return 1;
283 }
284 }
285 return 0;
286}
287
288int kvm_arch_on_sigbus(int code, void *addr)
289{
419fb20a 290 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
419fb20a
JK
291 ram_addr_t ram_addr;
292 target_phys_addr_t paddr;
293
294 /* Hope we are lucky for AO MCE */
c34d440a 295 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
9f213ed9
AK
296 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
297 &paddr)) {
419fb20a
JK
298 fprintf(stderr, "Hardware memory error for memory used by "
299 "QEMU itself instead of guest system!: %p\n", addr);
300 return 0;
301 }
3c85e74f 302 kvm_hwpoison_page_add(ram_addr);
c34d440a 303 kvm_mce_inject(first_cpu, paddr, code);
e56ff191 304 } else {
419fb20a
JK
305 if (code == BUS_MCEERR_AO) {
306 return 0;
307 } else if (code == BUS_MCEERR_AR) {
308 hardware_memory_error();
309 } else {
310 return 1;
311 }
312 }
313 return 0;
314}
e7701825 315
317ac620 316static int kvm_inject_mce_oldstyle(CPUX86State *env)
ab443475 317{
ab443475
JK
318 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
319 unsigned int bank, bank_num = env->mcg_cap & 0xff;
320 struct kvm_x86_mce mce;
321
322 env->exception_injected = -1;
323
324 /*
325 * There must be at least one bank in use if an MCE is pending.
326 * Find it and use its values for the event injection.
327 */
328 for (bank = 0; bank < bank_num; bank++) {
329 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
330 break;
331 }
332 }
333 assert(bank < bank_num);
334
335 mce.bank = bank;
336 mce.status = env->mce_banks[bank * 4 + 1];
337 mce.mcg_status = env->mcg_status;
338 mce.addr = env->mce_banks[bank * 4 + 2];
339 mce.misc = env->mce_banks[bank * 4 + 3];
340
341 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
342 }
ab443475
JK
343 return 0;
344}
345
1dfb4dd9 346static void cpu_update_state(void *opaque, int running, RunState state)
b8cc45d6 347{
317ac620 348 CPUX86State *env = opaque;
b8cc45d6
GC
349
350 if (running) {
351 env->tsc_valid = false;
352 }
353}
354
317ac620 355int kvm_arch_init_vcpu(CPUX86State *env)
05330448
AL
356{
357 struct {
486bd5a2
AL
358 struct kvm_cpuid2 cpuid;
359 struct kvm_cpuid_entry2 entries[100];
541dc0d4 360 } QEMU_PACKED cpuid_data;
ba9bc59e 361 KVMState *s = env->kvm_state;
486bd5a2 362 uint32_t limit, i, j, cpuid_i;
a33609ca 363 uint32_t unused;
bb0300dc 364 struct kvm_cpuid_entry2 *c;
bb0300dc 365 uint32_t signature[3];
e7429073 366 int r;
05330448 367
ba9bc59e 368 env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
6c0d7ee8
AP
369
370 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
a75b3e0f 371 j = env->cpuid_ext_features & CPUID_EXT_TSC_DEADLINE_TIMER;
ba9bc59e 372 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
6c0d7ee8 373 env->cpuid_ext_features |= i;
a75b3e0f
LJ
374 if (j && kvm_irqchip_in_kernel() &&
375 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
376 env->cpuid_ext_features |= CPUID_EXT_TSC_DEADLINE_TIMER;
377 }
6c0d7ee8 378
ba9bc59e 379 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
c958a8bd 380 0, R_EDX);
ba9bc59e 381 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
c958a8bd 382 0, R_ECX);
ba9bc59e 383 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
296acb64
JR
384 0, R_EDX);
385
05330448
AL
386 cpuid_i = 0;
387
bb0300dc 388 /* Paravirtualization CPUIDs */
bb0300dc
GN
389 c = &cpuid_data.entries[cpuid_i++];
390 memset(c, 0, sizeof(*c));
391 c->function = KVM_CPUID_SIGNATURE;
eab70139
VR
392 if (!hyperv_enabled()) {
393 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
394 c->eax = 0;
395 } else {
396 memcpy(signature, "Microsoft Hv", 12);
397 c->eax = HYPERV_CPUID_MIN;
398 }
bb0300dc
GN
399 c->ebx = signature[0];
400 c->ecx = signature[1];
401 c->edx = signature[2];
402
403 c = &cpuid_data.entries[cpuid_i++];
404 memset(c, 0, sizeof(*c));
405 c->function = KVM_CPUID_FEATURES;
ba9bc59e
JK
406 c->eax = env->cpuid_kvm_features &
407 kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
0c31b744 408
eab70139
VR
409 if (hyperv_enabled()) {
410 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
411 c->eax = signature[0];
412
413 c = &cpuid_data.entries[cpuid_i++];
414 memset(c, 0, sizeof(*c));
415 c->function = HYPERV_CPUID_VERSION;
416 c->eax = 0x00001bbc;
417 c->ebx = 0x00060001;
418
419 c = &cpuid_data.entries[cpuid_i++];
420 memset(c, 0, sizeof(*c));
421 c->function = HYPERV_CPUID_FEATURES;
422 if (hyperv_relaxed_timing_enabled()) {
423 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
424 }
425 if (hyperv_vapic_recommended()) {
426 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
427 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
428 }
429
430 c = &cpuid_data.entries[cpuid_i++];
431 memset(c, 0, sizeof(*c));
432 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
433 if (hyperv_relaxed_timing_enabled()) {
434 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
435 }
436 if (hyperv_vapic_recommended()) {
437 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
438 }
439 c->ebx = hyperv_get_spinlock_retries();
440
441 c = &cpuid_data.entries[cpuid_i++];
442 memset(c, 0, sizeof(*c));
443 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
444 c->eax = 0x40;
445 c->ebx = 0x40;
446
447 c = &cpuid_data.entries[cpuid_i++];
448 memset(c, 0, sizeof(*c));
449 c->function = KVM_CPUID_SIGNATURE_NEXT;
450 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
451 c->eax = 0;
452 c->ebx = signature[0];
453 c->ecx = signature[1];
454 c->edx = signature[2];
455 }
456
0c31b744 457 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
bb0300dc 458
bc9a839d
MT
459 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
460
a33609ca 461 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
462
463 for (i = 0; i <= limit; i++) {
bb0300dc 464 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
465
466 switch (i) {
a36b1029
AL
467 case 2: {
468 /* Keep reading function 2 till all the input is received */
469 int times;
470
a36b1029 471 c->function = i;
a33609ca
AL
472 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
473 KVM_CPUID_FLAG_STATE_READ_NEXT;
474 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
475 times = c->eax & 0xff;
a36b1029
AL
476
477 for (j = 1; j < times; ++j) {
a33609ca 478 c = &cpuid_data.entries[cpuid_i++];
a36b1029 479 c->function = i;
a33609ca
AL
480 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
481 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
482 }
483 break;
484 }
486bd5a2
AL
485 case 4:
486 case 0xb:
487 case 0xd:
488 for (j = 0; ; j++) {
31e8c696
AP
489 if (i == 0xd && j == 64) {
490 break;
491 }
486bd5a2
AL
492 c->function = i;
493 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
494 c->index = j;
a33609ca 495 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 496
b9bec74b 497 if (i == 4 && c->eax == 0) {
486bd5a2 498 break;
b9bec74b
JK
499 }
500 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 501 break;
b9bec74b
JK
502 }
503 if (i == 0xd && c->eax == 0) {
31e8c696 504 continue;
b9bec74b 505 }
a33609ca 506 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
507 }
508 break;
509 default:
486bd5a2 510 c->function = i;
a33609ca
AL
511 c->flags = 0;
512 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
513 break;
514 }
05330448 515 }
a33609ca 516 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
517
518 for (i = 0x80000000; i <= limit; i++) {
bb0300dc 519 c = &cpuid_data.entries[cpuid_i++];
05330448 520
05330448 521 c->function = i;
a33609ca
AL
522 c->flags = 0;
523 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
524 }
525
b3baa152
BW
526 /* Call Centaur's CPUID instructions they are supported. */
527 if (env->cpuid_xlevel2 > 0) {
528 env->cpuid_ext4_features &=
ba9bc59e 529 kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
b3baa152
BW
530 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
531
532 for (i = 0xC0000000; i <= limit; i++) {
533 c = &cpuid_data.entries[cpuid_i++];
534
535 c->function = i;
536 c->flags = 0;
537 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
538 }
539 }
540
05330448
AL
541 cpuid_data.cpuid.nent = cpuid_i;
542
e7701825
MT
543 if (((env->cpuid_version >> 8)&0xF) >= 6
544 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
545 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
546 uint64_t mcg_cap;
547 int banks;
32a42024 548 int ret;
e7701825 549
75d49497
JK
550 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
551 if (ret < 0) {
552 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
553 return ret;
e7701825 554 }
75d49497
JK
555
556 if (banks > MCE_BANKS_DEF) {
557 banks = MCE_BANKS_DEF;
558 }
559 mcg_cap &= MCE_CAP_DEF;
560 mcg_cap |= banks;
561 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
562 if (ret < 0) {
563 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
564 return ret;
565 }
566
567 env->mcg_cap = mcg_cap;
e7701825 568 }
e7701825 569
b8cc45d6
GC
570 qemu_add_vm_change_state_handler(cpu_update_state, env);
571
7e680753 572 cpuid_data.cpuid.padding = 0;
e7429073 573 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
fdc9c41a
JK
574 if (r) {
575 return r;
576 }
e7429073 577
e7429073
JR
578 r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
579 if (r && env->tsc_khz) {
580 r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
581 if (r < 0) {
582 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
583 return r;
584 }
585 }
e7429073 586
fabacc0f
JK
587 if (kvm_has_xsave()) {
588 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
589 }
590
e7429073 591 return 0;
05330448
AL
592}
593
317ac620 594void kvm_arch_reset_vcpu(CPUX86State *env)
caa5af0f 595{
dd673288
IM
596 X86CPU *cpu = x86_env_get_cpu(env);
597
e73223a5 598 env->exception_injected = -1;
0e607a80 599 env->interrupt_injected = -1;
1a5e9d2f 600 env->xcr0 = 1;
ddced198 601 if (kvm_irqchip_in_kernel()) {
dd673288 602 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
ddced198
MT
603 KVM_MP_STATE_UNINITIALIZED;
604 } else {
605 env->mp_state = KVM_MP_STATE_RUNNABLE;
606 }
caa5af0f
JK
607}
608
c3a3a7d3 609static int kvm_get_supported_msrs(KVMState *s)
05330448 610{
75b10c43 611 static int kvm_supported_msrs;
c3a3a7d3 612 int ret = 0;
05330448
AL
613
614 /* first time */
75b10c43 615 if (kvm_supported_msrs == 0) {
05330448
AL
616 struct kvm_msr_list msr_list, *kvm_msr_list;
617
75b10c43 618 kvm_supported_msrs = -1;
05330448
AL
619
620 /* Obtain MSR list from KVM. These are the MSRs that we must
621 * save/restore */
4c9f7372 622 msr_list.nmsrs = 0;
c3a3a7d3 623 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 624 if (ret < 0 && ret != -E2BIG) {
c3a3a7d3 625 return ret;
6fb6d245 626 }
d9db889f
JK
627 /* Old kernel modules had a bug and could write beyond the provided
628 memory. Allocate at least a safe amount of 1K. */
7267c094 629 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
d9db889f
JK
630 msr_list.nmsrs *
631 sizeof(msr_list.indices[0])));
05330448 632
55308450 633 kvm_msr_list->nmsrs = msr_list.nmsrs;
c3a3a7d3 634 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
05330448
AL
635 if (ret >= 0) {
636 int i;
637
638 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
639 if (kvm_msr_list->indices[i] == MSR_STAR) {
c3a3a7d3 640 has_msr_star = true;
75b10c43
MT
641 continue;
642 }
643 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
c3a3a7d3 644 has_msr_hsave_pa = true;
75b10c43 645 continue;
05330448 646 }
aa82ba54
LJ
647 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
648 has_msr_tsc_deadline = true;
649 continue;
650 }
21e87c46
AK
651 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
652 has_msr_misc_enable = true;
653 continue;
654 }
05330448
AL
655 }
656 }
657
7267c094 658 g_free(kvm_msr_list);
05330448
AL
659 }
660
c3a3a7d3 661 return ret;
05330448
AL
662}
663
cad1e282 664int kvm_arch_init(KVMState *s)
20420430 665{
39d6960a 666 QemuOptsList *list = qemu_find_opts("machine");
11076198 667 uint64_t identity_base = 0xfffbc000;
39d6960a 668 uint64_t shadow_mem;
20420430 669 int ret;
25d2e361 670 struct utsname utsname;
20420430 671
c3a3a7d3 672 ret = kvm_get_supported_msrs(s);
20420430 673 if (ret < 0) {
20420430
SY
674 return ret;
675 }
25d2e361
MT
676
677 uname(&utsname);
678 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
679
4c5b10b7 680 /*
11076198
JK
681 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
682 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
683 * Since these must be part of guest physical memory, we need to allocate
684 * them, both by setting their start addresses in the kernel and by
685 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
686 *
687 * Older KVM versions may not support setting the identity map base. In
688 * that case we need to stick with the default, i.e. a 256K maximum BIOS
689 * size.
4c5b10b7 690 */
11076198
JK
691 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
692 /* Allows up to 16M BIOSes. */
693 identity_base = 0xfeffc000;
694
695 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
696 if (ret < 0) {
697 return ret;
698 }
4c5b10b7 699 }
e56ff191 700
11076198
JK
701 /* Set TSS base one page after EPT identity map. */
702 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
703 if (ret < 0) {
704 return ret;
705 }
706
11076198
JK
707 /* Tell fw_cfg to notify the BIOS to reserve the range. */
708 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 709 if (ret < 0) {
11076198 710 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
711 return ret;
712 }
3c85e74f 713 qemu_register_reset(kvm_unpoison_all, NULL);
20420430 714
39d6960a
JK
715 if (!QTAILQ_EMPTY(&list->head)) {
716 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
717 "kvm_shadow_mem", -1);
718 if (shadow_mem != -1) {
719 shadow_mem /= 4096;
720 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
721 if (ret < 0) {
722 return ret;
723 }
724 }
725 }
11076198 726 return 0;
05330448 727}
b9bec74b 728
05330448
AL
729static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
730{
731 lhs->selector = rhs->selector;
732 lhs->base = rhs->base;
733 lhs->limit = rhs->limit;
734 lhs->type = 3;
735 lhs->present = 1;
736 lhs->dpl = 3;
737 lhs->db = 0;
738 lhs->s = 1;
739 lhs->l = 0;
740 lhs->g = 0;
741 lhs->avl = 0;
742 lhs->unusable = 0;
743}
744
745static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
746{
747 unsigned flags = rhs->flags;
748 lhs->selector = rhs->selector;
749 lhs->base = rhs->base;
750 lhs->limit = rhs->limit;
751 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
752 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 753 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
754 lhs->db = (flags >> DESC_B_SHIFT) & 1;
755 lhs->s = (flags & DESC_S_MASK) != 0;
756 lhs->l = (flags >> DESC_L_SHIFT) & 1;
757 lhs->g = (flags & DESC_G_MASK) != 0;
758 lhs->avl = (flags & DESC_AVL_MASK) != 0;
759 lhs->unusable = 0;
7e680753 760 lhs->padding = 0;
05330448
AL
761}
762
763static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
764{
765 lhs->selector = rhs->selector;
766 lhs->base = rhs->base;
767 lhs->limit = rhs->limit;
b9bec74b
JK
768 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
769 (rhs->present * DESC_P_MASK) |
770 (rhs->dpl << DESC_DPL_SHIFT) |
771 (rhs->db << DESC_B_SHIFT) |
772 (rhs->s * DESC_S_MASK) |
773 (rhs->l << DESC_L_SHIFT) |
774 (rhs->g * DESC_G_MASK) |
775 (rhs->avl * DESC_AVL_MASK);
05330448
AL
776}
777
778static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
779{
b9bec74b 780 if (set) {
05330448 781 *kvm_reg = *qemu_reg;
b9bec74b 782 } else {
05330448 783 *qemu_reg = *kvm_reg;
b9bec74b 784 }
05330448
AL
785}
786
317ac620 787static int kvm_getput_regs(CPUX86State *env, int set)
05330448
AL
788{
789 struct kvm_regs regs;
790 int ret = 0;
791
792 if (!set) {
793 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
b9bec74b 794 if (ret < 0) {
05330448 795 return ret;
b9bec74b 796 }
05330448
AL
797 }
798
799 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
800 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
801 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
802 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
803 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
804 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
805 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
806 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
807#ifdef TARGET_X86_64
808 kvm_getput_reg(&regs.r8, &env->regs[8], set);
809 kvm_getput_reg(&regs.r9, &env->regs[9], set);
810 kvm_getput_reg(&regs.r10, &env->regs[10], set);
811 kvm_getput_reg(&regs.r11, &env->regs[11], set);
812 kvm_getput_reg(&regs.r12, &env->regs[12], set);
813 kvm_getput_reg(&regs.r13, &env->regs[13], set);
814 kvm_getput_reg(&regs.r14, &env->regs[14], set);
815 kvm_getput_reg(&regs.r15, &env->regs[15], set);
816#endif
817
818 kvm_getput_reg(&regs.rflags, &env->eflags, set);
819 kvm_getput_reg(&regs.rip, &env->eip, set);
820
b9bec74b 821 if (set) {
05330448 822 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
b9bec74b 823 }
05330448
AL
824
825 return ret;
826}
827
317ac620 828static int kvm_put_fpu(CPUX86State *env)
05330448
AL
829{
830 struct kvm_fpu fpu;
831 int i;
832
833 memset(&fpu, 0, sizeof fpu);
834 fpu.fsw = env->fpus & ~(7 << 11);
835 fpu.fsw |= (env->fpstt & 7) << 11;
836 fpu.fcw = env->fpuc;
42cc8fa6
JK
837 fpu.last_opcode = env->fpop;
838 fpu.last_ip = env->fpip;
839 fpu.last_dp = env->fpdp;
b9bec74b
JK
840 for (i = 0; i < 8; ++i) {
841 fpu.ftwx |= (!env->fptags[i]) << i;
842 }
05330448
AL
843 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
844 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
845 fpu.mxcsr = env->mxcsr;
846
847 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
848}
849
6b42494b
JK
850#define XSAVE_FCW_FSW 0
851#define XSAVE_FTW_FOP 1
f1665b21
SY
852#define XSAVE_CWD_RIP 2
853#define XSAVE_CWD_RDP 4
854#define XSAVE_MXCSR 6
855#define XSAVE_ST_SPACE 8
856#define XSAVE_XMM_SPACE 40
857#define XSAVE_XSTATE_BV 128
858#define XSAVE_YMMH_SPACE 144
f1665b21 859
317ac620 860static int kvm_put_xsave(CPUX86State *env)
f1665b21 861{
fabacc0f 862 struct kvm_xsave* xsave = env->kvm_xsave_buf;
42cc8fa6 863 uint16_t cwd, swd, twd;
fabacc0f 864 int i, r;
f1665b21 865
b9bec74b 866 if (!kvm_has_xsave()) {
f1665b21 867 return kvm_put_fpu(env);
b9bec74b 868 }
f1665b21 869
f1665b21 870 memset(xsave, 0, sizeof(struct kvm_xsave));
6115c0a8 871 twd = 0;
f1665b21
SY
872 swd = env->fpus & ~(7 << 11);
873 swd |= (env->fpstt & 7) << 11;
874 cwd = env->fpuc;
b9bec74b 875 for (i = 0; i < 8; ++i) {
f1665b21 876 twd |= (!env->fptags[i]) << i;
b9bec74b 877 }
6b42494b
JK
878 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
879 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
42cc8fa6
JK
880 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
881 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
f1665b21
SY
882 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
883 sizeof env->fpregs);
884 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
885 sizeof env->xmm_regs);
886 xsave->region[XSAVE_MXCSR] = env->mxcsr;
887 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
888 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
889 sizeof env->ymmh_regs);
0f53994f 890 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
0f53994f 891 return r;
f1665b21
SY
892}
893
317ac620 894static int kvm_put_xcrs(CPUX86State *env)
f1665b21 895{
f1665b21
SY
896 struct kvm_xcrs xcrs;
897
b9bec74b 898 if (!kvm_has_xcrs()) {
f1665b21 899 return 0;
b9bec74b 900 }
f1665b21
SY
901
902 xcrs.nr_xcrs = 1;
903 xcrs.flags = 0;
904 xcrs.xcrs[0].xcr = 0;
905 xcrs.xcrs[0].value = env->xcr0;
906 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
f1665b21
SY
907}
908
317ac620 909static int kvm_put_sregs(CPUX86State *env)
05330448
AL
910{
911 struct kvm_sregs sregs;
912
0e607a80
JK
913 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
914 if (env->interrupt_injected >= 0) {
915 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
916 (uint64_t)1 << (env->interrupt_injected % 64);
917 }
05330448
AL
918
919 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
920 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
921 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
922 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
923 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
924 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
925 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 926 } else {
b9bec74b
JK
927 set_seg(&sregs.cs, &env->segs[R_CS]);
928 set_seg(&sregs.ds, &env->segs[R_DS]);
929 set_seg(&sregs.es, &env->segs[R_ES]);
930 set_seg(&sregs.fs, &env->segs[R_FS]);
931 set_seg(&sregs.gs, &env->segs[R_GS]);
932 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
933 }
934
935 set_seg(&sregs.tr, &env->tr);
936 set_seg(&sregs.ldt, &env->ldt);
937
938 sregs.idt.limit = env->idt.limit;
939 sregs.idt.base = env->idt.base;
7e680753 940 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
05330448
AL
941 sregs.gdt.limit = env->gdt.limit;
942 sregs.gdt.base = env->gdt.base;
7e680753 943 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
05330448
AL
944
945 sregs.cr0 = env->cr[0];
946 sregs.cr2 = env->cr[2];
947 sregs.cr3 = env->cr[3];
948 sregs.cr4 = env->cr[4];
949
4a942cea
BS
950 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
951 sregs.apic_base = cpu_get_apic_base(env->apic_state);
05330448
AL
952
953 sregs.efer = env->efer;
954
955 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
956}
957
958static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
959 uint32_t index, uint64_t value)
960{
961 entry->index = index;
962 entry->data = value;
963}
964
317ac620 965static int kvm_put_msrs(CPUX86State *env, int level)
05330448
AL
966{
967 struct {
968 struct kvm_msrs info;
969 struct kvm_msr_entry entries[100];
970 } msr_data;
971 struct kvm_msr_entry *msrs = msr_data.entries;
d8da8574 972 int n = 0;
05330448
AL
973
974 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
975 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
976 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
0c03266a 977 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
c3a3a7d3 978 if (has_msr_star) {
b9bec74b
JK
979 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
980 }
c3a3a7d3 981 if (has_msr_hsave_pa) {
75b10c43 982 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 983 }
aa82ba54
LJ
984 if (has_msr_tsc_deadline) {
985 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
986 }
21e87c46
AK
987 if (has_msr_misc_enable) {
988 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
989 env->msr_ia32_misc_enable);
990 }
05330448 991#ifdef TARGET_X86_64
25d2e361
MT
992 if (lm_capable_kernel) {
993 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
994 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
995 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
996 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
997 }
05330448 998#endif
ea643051 999 if (level == KVM_PUT_FULL_STATE) {
384331a6
MT
1000 /*
1001 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1002 * writeback. Until this is fixed, we only write the offset to SMP
1003 * guests after migration, desynchronizing the VCPUs, but avoiding
1004 * huge jump-backs that would occur without any writeback at all.
1005 */
1006 if (smp_cpus == 1 || env->tsc != 0) {
1007 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1008 }
ff5c186b
JK
1009 }
1010 /*
1011 * The following paravirtual MSRs have side effects on the guest or are
1012 * too heavy for normal writeback. Limit them to reset or full state
1013 * updates.
1014 */
1015 if (level >= KVM_PUT_RESET_STATE) {
ea643051
JK
1016 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1017 env->system_time_msr);
1018 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
c5999bfc
JK
1019 if (has_msr_async_pf_en) {
1020 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1021 env->async_pf_en_msr);
1022 }
bc9a839d
MT
1023 if (has_msr_pv_eoi_en) {
1024 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1025 env->pv_eoi_en_msr);
1026 }
eab70139
VR
1027 if (hyperv_hypercall_available()) {
1028 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1029 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1030 }
1031 if (hyperv_vapic_recommended()) {
1032 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1033 }
ea643051 1034 }
57780495 1035 if (env->mcg_cap) {
d8da8574 1036 int i;
b9bec74b 1037
c34d440a
JK
1038 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1039 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1040 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1041 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
1042 }
1043 }
1a03675d 1044
05330448
AL
1045 msr_data.info.nmsrs = n;
1046
1047 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1048
1049}
1050
1051
317ac620 1052static int kvm_get_fpu(CPUX86State *env)
05330448
AL
1053{
1054 struct kvm_fpu fpu;
1055 int i, ret;
1056
1057 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
b9bec74b 1058 if (ret < 0) {
05330448 1059 return ret;
b9bec74b 1060 }
05330448
AL
1061
1062 env->fpstt = (fpu.fsw >> 11) & 7;
1063 env->fpus = fpu.fsw;
1064 env->fpuc = fpu.fcw;
42cc8fa6
JK
1065 env->fpop = fpu.last_opcode;
1066 env->fpip = fpu.last_ip;
1067 env->fpdp = fpu.last_dp;
b9bec74b
JK
1068 for (i = 0; i < 8; ++i) {
1069 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1070 }
05330448
AL
1071 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1072 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1073 env->mxcsr = fpu.mxcsr;
1074
1075 return 0;
1076}
1077
317ac620 1078static int kvm_get_xsave(CPUX86State *env)
f1665b21 1079{
fabacc0f 1080 struct kvm_xsave* xsave = env->kvm_xsave_buf;
f1665b21 1081 int ret, i;
42cc8fa6 1082 uint16_t cwd, swd, twd;
f1665b21 1083
b9bec74b 1084 if (!kvm_has_xsave()) {
f1665b21 1085 return kvm_get_fpu(env);
b9bec74b 1086 }
f1665b21 1087
f1665b21 1088 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
0f53994f 1089 if (ret < 0) {
f1665b21 1090 return ret;
0f53994f 1091 }
f1665b21 1092
6b42494b
JK
1093 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1094 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1095 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1096 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
f1665b21
SY
1097 env->fpstt = (swd >> 11) & 7;
1098 env->fpus = swd;
1099 env->fpuc = cwd;
b9bec74b 1100 for (i = 0; i < 8; ++i) {
f1665b21 1101 env->fptags[i] = !((twd >> i) & 1);
b9bec74b 1102 }
42cc8fa6
JK
1103 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1104 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
f1665b21
SY
1105 env->mxcsr = xsave->region[XSAVE_MXCSR];
1106 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1107 sizeof env->fpregs);
1108 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1109 sizeof env->xmm_regs);
1110 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1111 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1112 sizeof env->ymmh_regs);
1113 return 0;
f1665b21
SY
1114}
1115
317ac620 1116static int kvm_get_xcrs(CPUX86State *env)
f1665b21 1117{
f1665b21
SY
1118 int i, ret;
1119 struct kvm_xcrs xcrs;
1120
b9bec74b 1121 if (!kvm_has_xcrs()) {
f1665b21 1122 return 0;
b9bec74b 1123 }
f1665b21
SY
1124
1125 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
b9bec74b 1126 if (ret < 0) {
f1665b21 1127 return ret;
b9bec74b 1128 }
f1665b21 1129
b9bec74b 1130 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21
SY
1131 /* Only support xcr0 now */
1132 if (xcrs.xcrs[0].xcr == 0) {
1133 env->xcr0 = xcrs.xcrs[0].value;
1134 break;
1135 }
b9bec74b 1136 }
f1665b21 1137 return 0;
f1665b21
SY
1138}
1139
317ac620 1140static int kvm_get_sregs(CPUX86State *env)
05330448
AL
1141{
1142 struct kvm_sregs sregs;
1143 uint32_t hflags;
0e607a80 1144 int bit, i, ret;
05330448
AL
1145
1146 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
b9bec74b 1147 if (ret < 0) {
05330448 1148 return ret;
b9bec74b 1149 }
05330448 1150
0e607a80
JK
1151 /* There can only be one pending IRQ set in the bitmap at a time, so try
1152 to find it and save its number instead (-1 for none). */
1153 env->interrupt_injected = -1;
1154 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1155 if (sregs.interrupt_bitmap[i]) {
1156 bit = ctz64(sregs.interrupt_bitmap[i]);
1157 env->interrupt_injected = i * 64 + bit;
1158 break;
1159 }
1160 }
05330448
AL
1161
1162 get_seg(&env->segs[R_CS], &sregs.cs);
1163 get_seg(&env->segs[R_DS], &sregs.ds);
1164 get_seg(&env->segs[R_ES], &sregs.es);
1165 get_seg(&env->segs[R_FS], &sregs.fs);
1166 get_seg(&env->segs[R_GS], &sregs.gs);
1167 get_seg(&env->segs[R_SS], &sregs.ss);
1168
1169 get_seg(&env->tr, &sregs.tr);
1170 get_seg(&env->ldt, &sregs.ldt);
1171
1172 env->idt.limit = sregs.idt.limit;
1173 env->idt.base = sregs.idt.base;
1174 env->gdt.limit = sregs.gdt.limit;
1175 env->gdt.base = sregs.gdt.base;
1176
1177 env->cr[0] = sregs.cr0;
1178 env->cr[2] = sregs.cr2;
1179 env->cr[3] = sregs.cr3;
1180 env->cr[4] = sregs.cr4;
1181
05330448 1182 env->efer = sregs.efer;
cce47516
JK
1183
1184 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
05330448 1185
b9bec74b
JK
1186#define HFLAG_COPY_MASK \
1187 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1188 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1189 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1190 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
05330448
AL
1191
1192 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1193 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1194 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
b9bec74b 1195 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
05330448
AL
1196 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1197 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
b9bec74b 1198 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
05330448
AL
1199
1200 if (env->efer & MSR_EFER_LMA) {
1201 hflags |= HF_LMA_MASK;
1202 }
1203
1204 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1205 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1206 } else {
1207 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
b9bec74b 1208 (DESC_B_SHIFT - HF_CS32_SHIFT);
05330448 1209 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
b9bec74b
JK
1210 (DESC_B_SHIFT - HF_SS32_SHIFT);
1211 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1212 !(hflags & HF_CS32_MASK)) {
1213 hflags |= HF_ADDSEG_MASK;
1214 } else {
1215 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1216 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1217 }
05330448
AL
1218 }
1219 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
1220
1221 return 0;
1222}
1223
317ac620 1224static int kvm_get_msrs(CPUX86State *env)
05330448
AL
1225{
1226 struct {
1227 struct kvm_msrs info;
1228 struct kvm_msr_entry entries[100];
1229 } msr_data;
1230 struct kvm_msr_entry *msrs = msr_data.entries;
1231 int ret, i, n;
1232
1233 n = 0;
1234 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1235 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1236 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
0c03266a 1237 msrs[n++].index = MSR_PAT;
c3a3a7d3 1238 if (has_msr_star) {
b9bec74b
JK
1239 msrs[n++].index = MSR_STAR;
1240 }
c3a3a7d3 1241 if (has_msr_hsave_pa) {
75b10c43 1242 msrs[n++].index = MSR_VM_HSAVE_PA;
b9bec74b 1243 }
aa82ba54
LJ
1244 if (has_msr_tsc_deadline) {
1245 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1246 }
21e87c46
AK
1247 if (has_msr_misc_enable) {
1248 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1249 }
b8cc45d6
GC
1250
1251 if (!env->tsc_valid) {
1252 msrs[n++].index = MSR_IA32_TSC;
1354869c 1253 env->tsc_valid = !runstate_is_running();
b8cc45d6
GC
1254 }
1255
05330448 1256#ifdef TARGET_X86_64
25d2e361
MT
1257 if (lm_capable_kernel) {
1258 msrs[n++].index = MSR_CSTAR;
1259 msrs[n++].index = MSR_KERNELGSBASE;
1260 msrs[n++].index = MSR_FMASK;
1261 msrs[n++].index = MSR_LSTAR;
1262 }
05330448 1263#endif
1a03675d
GC
1264 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1265 msrs[n++].index = MSR_KVM_WALL_CLOCK;
c5999bfc
JK
1266 if (has_msr_async_pf_en) {
1267 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1268 }
bc9a839d
MT
1269 if (has_msr_pv_eoi_en) {
1270 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1271 }
1a03675d 1272
57780495
MT
1273 if (env->mcg_cap) {
1274 msrs[n++].index = MSR_MCG_STATUS;
1275 msrs[n++].index = MSR_MCG_CTL;
b9bec74b 1276 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 1277 msrs[n++].index = MSR_MC0_CTL + i;
b9bec74b 1278 }
57780495 1279 }
57780495 1280
05330448
AL
1281 msr_data.info.nmsrs = n;
1282 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
b9bec74b 1283 if (ret < 0) {
05330448 1284 return ret;
b9bec74b 1285 }
05330448
AL
1286
1287 for (i = 0; i < ret; i++) {
1288 switch (msrs[i].index) {
1289 case MSR_IA32_SYSENTER_CS:
1290 env->sysenter_cs = msrs[i].data;
1291 break;
1292 case MSR_IA32_SYSENTER_ESP:
1293 env->sysenter_esp = msrs[i].data;
1294 break;
1295 case MSR_IA32_SYSENTER_EIP:
1296 env->sysenter_eip = msrs[i].data;
1297 break;
0c03266a
JK
1298 case MSR_PAT:
1299 env->pat = msrs[i].data;
1300 break;
05330448
AL
1301 case MSR_STAR:
1302 env->star = msrs[i].data;
1303 break;
1304#ifdef TARGET_X86_64
1305 case MSR_CSTAR:
1306 env->cstar = msrs[i].data;
1307 break;
1308 case MSR_KERNELGSBASE:
1309 env->kernelgsbase = msrs[i].data;
1310 break;
1311 case MSR_FMASK:
1312 env->fmask = msrs[i].data;
1313 break;
1314 case MSR_LSTAR:
1315 env->lstar = msrs[i].data;
1316 break;
1317#endif
1318 case MSR_IA32_TSC:
1319 env->tsc = msrs[i].data;
1320 break;
aa82ba54
LJ
1321 case MSR_IA32_TSCDEADLINE:
1322 env->tsc_deadline = msrs[i].data;
1323 break;
aa851e36
MT
1324 case MSR_VM_HSAVE_PA:
1325 env->vm_hsave = msrs[i].data;
1326 break;
1a03675d
GC
1327 case MSR_KVM_SYSTEM_TIME:
1328 env->system_time_msr = msrs[i].data;
1329 break;
1330 case MSR_KVM_WALL_CLOCK:
1331 env->wall_clock_msr = msrs[i].data;
1332 break;
57780495
MT
1333 case MSR_MCG_STATUS:
1334 env->mcg_status = msrs[i].data;
1335 break;
1336 case MSR_MCG_CTL:
1337 env->mcg_ctl = msrs[i].data;
1338 break;
21e87c46
AK
1339 case MSR_IA32_MISC_ENABLE:
1340 env->msr_ia32_misc_enable = msrs[i].data;
1341 break;
57780495 1342 default:
57780495
MT
1343 if (msrs[i].index >= MSR_MC0_CTL &&
1344 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1345 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 1346 }
d8da8574 1347 break;
f6584ee2
GN
1348 case MSR_KVM_ASYNC_PF_EN:
1349 env->async_pf_en_msr = msrs[i].data;
1350 break;
bc9a839d
MT
1351 case MSR_KVM_PV_EOI_EN:
1352 env->pv_eoi_en_msr = msrs[i].data;
1353 break;
05330448
AL
1354 }
1355 }
1356
1357 return 0;
1358}
1359
317ac620 1360static int kvm_put_mp_state(CPUX86State *env)
9bdbe550
HB
1361{
1362 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1363
1364 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1365}
1366
317ac620 1367static int kvm_get_mp_state(CPUX86State *env)
9bdbe550
HB
1368{
1369 struct kvm_mp_state mp_state;
1370 int ret;
1371
1372 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1373 if (ret < 0) {
1374 return ret;
1375 }
1376 env->mp_state = mp_state.mp_state;
c14750e8
JK
1377 if (kvm_irqchip_in_kernel()) {
1378 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1379 }
9bdbe550
HB
1380 return 0;
1381}
1382
317ac620 1383static int kvm_get_apic(CPUX86State *env)
680c1c6f
JK
1384{
1385 DeviceState *apic = env->apic_state;
1386 struct kvm_lapic_state kapic;
1387 int ret;
1388
3d4b2649 1389 if (apic && kvm_irqchip_in_kernel()) {
680c1c6f
JK
1390 ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic);
1391 if (ret < 0) {
1392 return ret;
1393 }
1394
1395 kvm_get_apic_state(apic, &kapic);
1396 }
1397 return 0;
1398}
1399
317ac620 1400static int kvm_put_apic(CPUX86State *env)
680c1c6f
JK
1401{
1402 DeviceState *apic = env->apic_state;
1403 struct kvm_lapic_state kapic;
1404
3d4b2649 1405 if (apic && kvm_irqchip_in_kernel()) {
680c1c6f
JK
1406 kvm_put_apic_state(apic, &kapic);
1407
1408 return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic);
1409 }
1410 return 0;
1411}
1412
317ac620 1413static int kvm_put_vcpu_events(CPUX86State *env, int level)
a0fb002c 1414{
a0fb002c
JK
1415 struct kvm_vcpu_events events;
1416
1417 if (!kvm_has_vcpu_events()) {
1418 return 0;
1419 }
1420
31827373
JK
1421 events.exception.injected = (env->exception_injected >= 0);
1422 events.exception.nr = env->exception_injected;
a0fb002c
JK
1423 events.exception.has_error_code = env->has_error_code;
1424 events.exception.error_code = env->error_code;
7e680753 1425 events.exception.pad = 0;
a0fb002c
JK
1426
1427 events.interrupt.injected = (env->interrupt_injected >= 0);
1428 events.interrupt.nr = env->interrupt_injected;
1429 events.interrupt.soft = env->soft_interrupt;
1430
1431 events.nmi.injected = env->nmi_injected;
1432 events.nmi.pending = env->nmi_pending;
1433 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
7e680753 1434 events.nmi.pad = 0;
a0fb002c
JK
1435
1436 events.sipi_vector = env->sipi_vector;
1437
ea643051
JK
1438 events.flags = 0;
1439 if (level >= KVM_PUT_RESET_STATE) {
1440 events.flags |=
1441 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1442 }
aee028b9 1443
a0fb002c 1444 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
1445}
1446
317ac620 1447static int kvm_get_vcpu_events(CPUX86State *env)
a0fb002c 1448{
a0fb002c
JK
1449 struct kvm_vcpu_events events;
1450 int ret;
1451
1452 if (!kvm_has_vcpu_events()) {
1453 return 0;
1454 }
1455
1456 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1457 if (ret < 0) {
1458 return ret;
1459 }
31827373 1460 env->exception_injected =
a0fb002c
JK
1461 events.exception.injected ? events.exception.nr : -1;
1462 env->has_error_code = events.exception.has_error_code;
1463 env->error_code = events.exception.error_code;
1464
1465 env->interrupt_injected =
1466 events.interrupt.injected ? events.interrupt.nr : -1;
1467 env->soft_interrupt = events.interrupt.soft;
1468
1469 env->nmi_injected = events.nmi.injected;
1470 env->nmi_pending = events.nmi.pending;
1471 if (events.nmi.masked) {
1472 env->hflags2 |= HF2_NMI_MASK;
1473 } else {
1474 env->hflags2 &= ~HF2_NMI_MASK;
1475 }
1476
1477 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
1478
1479 return 0;
1480}
1481
317ac620 1482static int kvm_guest_debug_workarounds(CPUX86State *env)
b0b1d690
JK
1483{
1484 int ret = 0;
b0b1d690
JK
1485 unsigned long reinject_trap = 0;
1486
1487 if (!kvm_has_vcpu_events()) {
1488 if (env->exception_injected == 1) {
1489 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1490 } else if (env->exception_injected == 3) {
1491 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1492 }
1493 env->exception_injected = -1;
1494 }
1495
1496 /*
1497 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1498 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1499 * by updating the debug state once again if single-stepping is on.
1500 * Another reason to call kvm_update_guest_debug here is a pending debug
1501 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1502 * reinject them via SET_GUEST_DEBUG.
1503 */
1504 if (reinject_trap ||
1505 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1506 ret = kvm_update_guest_debug(env, reinject_trap);
1507 }
b0b1d690
JK
1508 return ret;
1509}
1510
317ac620 1511static int kvm_put_debugregs(CPUX86State *env)
ff44f1a3 1512{
ff44f1a3
JK
1513 struct kvm_debugregs dbgregs;
1514 int i;
1515
1516 if (!kvm_has_debugregs()) {
1517 return 0;
1518 }
1519
1520 for (i = 0; i < 4; i++) {
1521 dbgregs.db[i] = env->dr[i];
1522 }
1523 dbgregs.dr6 = env->dr[6];
1524 dbgregs.dr7 = env->dr[7];
1525 dbgregs.flags = 0;
1526
1527 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
1528}
1529
317ac620 1530static int kvm_get_debugregs(CPUX86State *env)
ff44f1a3 1531{
ff44f1a3
JK
1532 struct kvm_debugregs dbgregs;
1533 int i, ret;
1534
1535 if (!kvm_has_debugregs()) {
1536 return 0;
1537 }
1538
1539 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1540 if (ret < 0) {
b9bec74b 1541 return ret;
ff44f1a3
JK
1542 }
1543 for (i = 0; i < 4; i++) {
1544 env->dr[i] = dbgregs.db[i];
1545 }
1546 env->dr[4] = env->dr[6] = dbgregs.dr6;
1547 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
1548
1549 return 0;
1550}
1551
317ac620 1552int kvm_arch_put_registers(CPUX86State *env, int level)
05330448
AL
1553{
1554 int ret;
1555
b7680cb6 1556 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
dbaa07c4 1557
05330448 1558 ret = kvm_getput_regs(env, 1);
b9bec74b 1559 if (ret < 0) {
05330448 1560 return ret;
b9bec74b 1561 }
f1665b21 1562 ret = kvm_put_xsave(env);
b9bec74b 1563 if (ret < 0) {
f1665b21 1564 return ret;
b9bec74b 1565 }
f1665b21 1566 ret = kvm_put_xcrs(env);
b9bec74b 1567 if (ret < 0) {
05330448 1568 return ret;
b9bec74b 1569 }
05330448 1570 ret = kvm_put_sregs(env);
b9bec74b 1571 if (ret < 0) {
05330448 1572 return ret;
b9bec74b 1573 }
ab443475
JK
1574 /* must be before kvm_put_msrs */
1575 ret = kvm_inject_mce_oldstyle(env);
1576 if (ret < 0) {
1577 return ret;
1578 }
ea643051 1579 ret = kvm_put_msrs(env, level);
b9bec74b 1580 if (ret < 0) {
05330448 1581 return ret;
b9bec74b 1582 }
ea643051
JK
1583 if (level >= KVM_PUT_RESET_STATE) {
1584 ret = kvm_put_mp_state(env);
b9bec74b 1585 if (ret < 0) {
ea643051 1586 return ret;
b9bec74b 1587 }
680c1c6f
JK
1588 ret = kvm_put_apic(env);
1589 if (ret < 0) {
1590 return ret;
1591 }
ea643051 1592 }
ea643051 1593 ret = kvm_put_vcpu_events(env, level);
b9bec74b 1594 if (ret < 0) {
a0fb002c 1595 return ret;
b9bec74b 1596 }
0d75a9ec 1597 ret = kvm_put_debugregs(env);
b9bec74b 1598 if (ret < 0) {
b0b1d690 1599 return ret;
b9bec74b 1600 }
b0b1d690
JK
1601 /* must be last */
1602 ret = kvm_guest_debug_workarounds(env);
b9bec74b 1603 if (ret < 0) {
ff44f1a3 1604 return ret;
b9bec74b 1605 }
05330448
AL
1606 return 0;
1607}
1608
317ac620 1609int kvm_arch_get_registers(CPUX86State *env)
05330448
AL
1610{
1611 int ret;
1612
b7680cb6 1613 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
dbaa07c4 1614
05330448 1615 ret = kvm_getput_regs(env, 0);
b9bec74b 1616 if (ret < 0) {
05330448 1617 return ret;
b9bec74b 1618 }
f1665b21 1619 ret = kvm_get_xsave(env);
b9bec74b 1620 if (ret < 0) {
f1665b21 1621 return ret;
b9bec74b 1622 }
f1665b21 1623 ret = kvm_get_xcrs(env);
b9bec74b 1624 if (ret < 0) {
05330448 1625 return ret;
b9bec74b 1626 }
05330448 1627 ret = kvm_get_sregs(env);
b9bec74b 1628 if (ret < 0) {
05330448 1629 return ret;
b9bec74b 1630 }
05330448 1631 ret = kvm_get_msrs(env);
b9bec74b 1632 if (ret < 0) {
05330448 1633 return ret;
b9bec74b 1634 }
5a2e3c2e 1635 ret = kvm_get_mp_state(env);
b9bec74b 1636 if (ret < 0) {
5a2e3c2e 1637 return ret;
b9bec74b 1638 }
680c1c6f
JK
1639 ret = kvm_get_apic(env);
1640 if (ret < 0) {
1641 return ret;
1642 }
a0fb002c 1643 ret = kvm_get_vcpu_events(env);
b9bec74b 1644 if (ret < 0) {
a0fb002c 1645 return ret;
b9bec74b 1646 }
ff44f1a3 1647 ret = kvm_get_debugregs(env);
b9bec74b 1648 if (ret < 0) {
ff44f1a3 1649 return ret;
b9bec74b 1650 }
05330448
AL
1651 return 0;
1652}
1653
317ac620 1654void kvm_arch_pre_run(CPUX86State *env, struct kvm_run *run)
05330448 1655{
ce377af3
JK
1656 int ret;
1657
276ce815
LJ
1658 /* Inject NMI */
1659 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1660 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1661 DPRINTF("injected NMI\n");
ce377af3
JK
1662 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1663 if (ret < 0) {
1664 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1665 strerror(-ret));
1666 }
276ce815
LJ
1667 }
1668
db1669bc 1669 if (!kvm_irqchip_in_kernel()) {
d362e757
JK
1670 /* Force the VCPU out of its inner loop to process any INIT requests
1671 * or pending TPR access reports. */
1672 if (env->interrupt_request &
1673 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
db1669bc 1674 env->exit_request = 1;
05330448 1675 }
05330448 1676
db1669bc
JK
1677 /* Try to inject an interrupt if the guest can accept it */
1678 if (run->ready_for_interrupt_injection &&
1679 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1680 (env->eflags & IF_MASK)) {
1681 int irq;
1682
1683 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1684 irq = cpu_get_pic_interrupt(env);
1685 if (irq >= 0) {
1686 struct kvm_interrupt intr;
1687
1688 intr.irq = irq;
db1669bc 1689 DPRINTF("injected interrupt %d\n", irq);
ce377af3
JK
1690 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1691 if (ret < 0) {
1692 fprintf(stderr,
1693 "KVM: injection failed, interrupt lost (%s)\n",
1694 strerror(-ret));
1695 }
db1669bc
JK
1696 }
1697 }
05330448 1698
db1669bc
JK
1699 /* If we have an interrupt but the guest is not ready to receive an
1700 * interrupt, request an interrupt window exit. This will
1701 * cause a return to userspace as soon as the guest is ready to
1702 * receive interrupts. */
1703 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1704 run->request_interrupt_window = 1;
1705 } else {
1706 run->request_interrupt_window = 0;
1707 }
1708
1709 DPRINTF("setting tpr\n");
1710 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1711 }
05330448
AL
1712}
1713
317ac620 1714void kvm_arch_post_run(CPUX86State *env, struct kvm_run *run)
05330448 1715{
b9bec74b 1716 if (run->if_flag) {
05330448 1717 env->eflags |= IF_MASK;
b9bec74b 1718 } else {
05330448 1719 env->eflags &= ~IF_MASK;
b9bec74b 1720 }
4a942cea
BS
1721 cpu_set_apic_tpr(env->apic_state, run->cr8);
1722 cpu_set_apic_base(env->apic_state, run->apic_base);
05330448
AL
1723}
1724
317ac620 1725int kvm_arch_process_async_events(CPUX86State *env)
0af691d7 1726{
232fc23b
AF
1727 X86CPU *cpu = x86_env_get_cpu(env);
1728
ab443475
JK
1729 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1730 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1731 assert(env->mcg_cap);
1732
1733 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1734
1735 kvm_cpu_synchronize_state(env);
1736
1737 if (env->exception_injected == EXCP08_DBLE) {
1738 /* this means triple fault */
1739 qemu_system_reset_request();
1740 env->exit_request = 1;
1741 return 0;
1742 }
1743 env->exception_injected = EXCP12_MCHK;
1744 env->has_error_code = 0;
1745
1746 env->halted = 0;
1747 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1748 env->mp_state = KVM_MP_STATE_RUNNABLE;
1749 }
1750 }
1751
db1669bc
JK
1752 if (kvm_irqchip_in_kernel()) {
1753 return 0;
1754 }
1755
5d62c43a
JK
1756 if (env->interrupt_request & CPU_INTERRUPT_POLL) {
1757 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
1758 apic_poll_irq(env->apic_state);
1759 }
4601f7b0
JK
1760 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1761 (env->eflags & IF_MASK)) ||
1762 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
6792a57b
JK
1763 env->halted = 0;
1764 }
0af691d7
MT
1765 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1766 kvm_cpu_synchronize_state(env);
232fc23b 1767 do_cpu_init(cpu);
0af691d7 1768 }
0af691d7
MT
1769 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1770 kvm_cpu_synchronize_state(env);
232fc23b 1771 do_cpu_sipi(cpu);
0af691d7 1772 }
d362e757
JK
1773 if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1774 env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1775 kvm_cpu_synchronize_state(env);
1776 apic_handle_tpr_access_report(env->apic_state, env->eip,
1777 env->tpr_access_type);
1778 }
0af691d7
MT
1779
1780 return env->halted;
1781}
1782
317ac620 1783static int kvm_handle_halt(CPUX86State *env)
05330448
AL
1784{
1785 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1786 (env->eflags & IF_MASK)) &&
1787 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1788 env->halted = 1;
bb4ea393 1789 return EXCP_HLT;
05330448
AL
1790 }
1791
bb4ea393 1792 return 0;
05330448
AL
1793}
1794
317ac620 1795static int kvm_handle_tpr_access(CPUX86State *env)
d362e757
JK
1796{
1797 struct kvm_run *run = env->kvm_run;
1798
1799 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1800 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1801 : TPR_ACCESS_READ);
1802 return 1;
1803}
1804
317ac620 1805int kvm_arch_insert_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
e22a25c9 1806{
38972938 1807 static const uint8_t int3 = 0xcc;
64bf3f4e 1808
e22a25c9 1809 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
b9bec74b 1810 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 1811 return -EINVAL;
b9bec74b 1812 }
e22a25c9
AL
1813 return 0;
1814}
1815
317ac620 1816int kvm_arch_remove_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
e22a25c9
AL
1817{
1818 uint8_t int3;
1819
1820 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
b9bec74b 1821 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 1822 return -EINVAL;
b9bec74b 1823 }
e22a25c9
AL
1824 return 0;
1825}
1826
1827static struct {
1828 target_ulong addr;
1829 int len;
1830 int type;
1831} hw_breakpoint[4];
1832
1833static int nb_hw_breakpoint;
1834
1835static int find_hw_breakpoint(target_ulong addr, int len, int type)
1836{
1837 int n;
1838
b9bec74b 1839 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 1840 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 1841 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 1842 return n;
b9bec74b
JK
1843 }
1844 }
e22a25c9
AL
1845 return -1;
1846}
1847
1848int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1849 target_ulong len, int type)
1850{
1851 switch (type) {
1852 case GDB_BREAKPOINT_HW:
1853 len = 1;
1854 break;
1855 case GDB_WATCHPOINT_WRITE:
1856 case GDB_WATCHPOINT_ACCESS:
1857 switch (len) {
1858 case 1:
1859 break;
1860 case 2:
1861 case 4:
1862 case 8:
b9bec74b 1863 if (addr & (len - 1)) {
e22a25c9 1864 return -EINVAL;
b9bec74b 1865 }
e22a25c9
AL
1866 break;
1867 default:
1868 return -EINVAL;
1869 }
1870 break;
1871 default:
1872 return -ENOSYS;
1873 }
1874
b9bec74b 1875 if (nb_hw_breakpoint == 4) {
e22a25c9 1876 return -ENOBUFS;
b9bec74b
JK
1877 }
1878 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 1879 return -EEXIST;
b9bec74b 1880 }
e22a25c9
AL
1881 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1882 hw_breakpoint[nb_hw_breakpoint].len = len;
1883 hw_breakpoint[nb_hw_breakpoint].type = type;
1884 nb_hw_breakpoint++;
1885
1886 return 0;
1887}
1888
1889int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1890 target_ulong len, int type)
1891{
1892 int n;
1893
1894 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 1895 if (n < 0) {
e22a25c9 1896 return -ENOENT;
b9bec74b 1897 }
e22a25c9
AL
1898 nb_hw_breakpoint--;
1899 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1900
1901 return 0;
1902}
1903
1904void kvm_arch_remove_all_hw_breakpoints(void)
1905{
1906 nb_hw_breakpoint = 0;
1907}
1908
1909static CPUWatchpoint hw_watchpoint;
1910
f2574737 1911static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
e22a25c9 1912{
f2574737 1913 int ret = 0;
e22a25c9
AL
1914 int n;
1915
1916 if (arch_info->exception == 1) {
1917 if (arch_info->dr6 & (1 << 14)) {
b9bec74b 1918 if (cpu_single_env->singlestep_enabled) {
f2574737 1919 ret = EXCP_DEBUG;
b9bec74b 1920 }
e22a25c9 1921 } else {
b9bec74b
JK
1922 for (n = 0; n < 4; n++) {
1923 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
1924 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1925 case 0x0:
f2574737 1926 ret = EXCP_DEBUG;
e22a25c9
AL
1927 break;
1928 case 0x1:
f2574737 1929 ret = EXCP_DEBUG;
e22a25c9
AL
1930 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1931 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1932 hw_watchpoint.flags = BP_MEM_WRITE;
1933 break;
1934 case 0x3:
f2574737 1935 ret = EXCP_DEBUG;
e22a25c9
AL
1936 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1937 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1938 hw_watchpoint.flags = BP_MEM_ACCESS;
1939 break;
1940 }
b9bec74b
JK
1941 }
1942 }
e22a25c9 1943 }
b9bec74b 1944 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
f2574737 1945 ret = EXCP_DEBUG;
b9bec74b 1946 }
f2574737 1947 if (ret == 0) {
b0b1d690
JK
1948 cpu_synchronize_state(cpu_single_env);
1949 assert(cpu_single_env->exception_injected == -1);
1950
f2574737 1951 /* pass to guest */
b0b1d690
JK
1952 cpu_single_env->exception_injected = arch_info->exception;
1953 cpu_single_env->has_error_code = 0;
1954 }
e22a25c9 1955
f2574737 1956 return ret;
e22a25c9
AL
1957}
1958
317ac620 1959void kvm_arch_update_guest_debug(CPUX86State *env, struct kvm_guest_debug *dbg)
e22a25c9
AL
1960{
1961 const uint8_t type_code[] = {
1962 [GDB_BREAKPOINT_HW] = 0x0,
1963 [GDB_WATCHPOINT_WRITE] = 0x1,
1964 [GDB_WATCHPOINT_ACCESS] = 0x3
1965 };
1966 const uint8_t len_code[] = {
1967 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1968 };
1969 int n;
1970
b9bec74b 1971 if (kvm_sw_breakpoints_active(env)) {
e22a25c9 1972 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 1973 }
e22a25c9
AL
1974 if (nb_hw_breakpoint > 0) {
1975 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1976 dbg->arch.debugreg[7] = 0x0600;
1977 for (n = 0; n < nb_hw_breakpoint; n++) {
1978 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1979 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1980 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 1981 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
1982 }
1983 }
1984}
4513d923 1985
2a4dac83
JK
1986static bool host_supports_vmx(void)
1987{
1988 uint32_t ecx, unused;
1989
1990 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1991 return ecx & CPUID_EXT_VMX;
1992}
1993
1994#define VMX_INVALID_GUEST_STATE 0x80000021
1995
317ac620 1996int kvm_arch_handle_exit(CPUX86State *env, struct kvm_run *run)
2a4dac83
JK
1997{
1998 uint64_t code;
1999 int ret;
2000
2001 switch (run->exit_reason) {
2002 case KVM_EXIT_HLT:
2003 DPRINTF("handle_hlt\n");
2004 ret = kvm_handle_halt(env);
2005 break;
2006 case KVM_EXIT_SET_TPR:
2007 ret = 0;
2008 break;
d362e757
JK
2009 case KVM_EXIT_TPR_ACCESS:
2010 ret = kvm_handle_tpr_access(env);
2011 break;
2a4dac83
JK
2012 case KVM_EXIT_FAIL_ENTRY:
2013 code = run->fail_entry.hardware_entry_failure_reason;
2014 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2015 code);
2016 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2017 fprintf(stderr,
12619721 2018 "\nIf you're running a guest on an Intel machine without "
2a4dac83
JK
2019 "unrestricted mode\n"
2020 "support, the failure can be most likely due to the guest "
2021 "entering an invalid\n"
2022 "state for Intel VT. For example, the guest maybe running "
2023 "in big real mode\n"
2024 "which is not supported on less recent Intel processors."
2025 "\n\n");
2026 }
2027 ret = -1;
2028 break;
2029 case KVM_EXIT_EXCEPTION:
2030 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2031 run->ex.exception, run->ex.error_code);
2032 ret = -1;
2033 break;
f2574737
JK
2034 case KVM_EXIT_DEBUG:
2035 DPRINTF("kvm_exit_debug\n");
2036 ret = kvm_handle_debug(&run->debug.arch);
2037 break;
2a4dac83
JK
2038 default:
2039 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2040 ret = -1;
2041 break;
2042 }
2043
2044 return ret;
2045}
2046
317ac620 2047bool kvm_arch_stop_on_emulation_error(CPUX86State *env)
4513d923 2048{
d1f86636 2049 kvm_cpu_synchronize_state(env);
b9bec74b
JK
2050 return !(env->cr[0] & CR0_PE_MASK) ||
2051 ((env->segs[R_CS].selector & 3) != 3);
4513d923 2052}
84b058d7
JK
2053
2054void kvm_arch_init_irq_routing(KVMState *s)
2055{
2056 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2057 /* If kernel can't do irq routing, interrupt source
2058 * override 0->2 cannot be set up as required by HPET.
2059 * So we have to disable it.
2060 */
2061 no_hpet = 1;
2062 }
cc7e0ddf 2063 /* We know at this point that we're using the in-kernel
614e41bc 2064 * irqchip, so we can use irqfds, and on x86 we know
f3e1bed8 2065 * we can use msi via irqfd and GSI routing.
cc7e0ddf
PM
2066 */
2067 kvm_irqfds_allowed = true;
614e41bc 2068 kvm_msi_via_irqfd_allowed = true;
f3e1bed8 2069 kvm_gsi_routing_allowed = true;
84b058d7 2070}