]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/kvm.c
qom: Drop parameter @errp of object_property_add() & friends
[mirror_qemu.git] / target / arm / kvm.c
CommitLineData
494b00c7
CD
1/*
2 * ARM implementation of KVM hooks
3 *
4 * Copyright Christoffer Dall 2009-2010
5 *
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
8 *
9 */
10
74c21bd0 11#include "qemu/osdep.h"
494b00c7 12#include <sys/ioctl.h>
494b00c7
CD
13
14#include <linux/kvm.h>
15
16#include "qemu-common.h"
17#include "qemu/timer.h"
2ecb2027 18#include "qemu/error-report.h"
db725815 19#include "qemu/main-loop.h"
dea101a1
AJ
20#include "qom/object.h"
21#include "qapi/error.h"
494b00c7
CD
22#include "sysemu/sysemu.h"
23#include "sysemu/kvm.h"
a27382e2 24#include "sysemu/kvm_int.h"
eb035b48 25#include "kvm_arm.h"
494b00c7 26#include "cpu.h"
b05c81d2 27#include "trace.h"
38df27c8 28#include "internals.h"
b05c81d2 29#include "hw/pci/pci.h"
4c663752 30#include "exec/memattrs.h"
4344af65 31#include "exec/address-spaces.h"
15eafc2e 32#include "hw/boards.h"
64552b6b 33#include "hw/irq.h"
03dd024f 34#include "qemu/log.h"
494b00c7
CD
35
36const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
37 KVM_CAP_LAST_INFO
38};
39
1a1753f7 40static bool cap_has_mp_state;
202ccb6b 41static bool cap_has_inject_serror_esr;
1a1753f7 42
c4487d76
PM
43static ARMHostCPUFeatures arm_host_cpu_features;
44
228d5e04
PS
45int kvm_arm_vcpu_init(CPUState *cs)
46{
47 ARMCPU *cpu = ARM_CPU(cs);
48 struct kvm_vcpu_init init;
49
50 init.target = cpu->kvm_target;
51 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
52
53 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
54}
55
14e99e0f
AJ
56int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
57{
58 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
59}
60
202ccb6b
DG
61void kvm_arm_init_serror_injection(CPUState *cs)
62{
63 cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
64 KVM_CAP_ARM_INJECT_SERROR_ESR);
65}
66
a96c0514
PM
67bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
68 int *fdarray,
69 struct kvm_vcpu_init *init)
70{
0cdb4020 71 int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
a96c0514
PM
72
73 kvmfd = qemu_open("/dev/kvm", O_RDWR);
74 if (kvmfd < 0) {
75 goto err;
76 }
77 vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
78 if (vmfd < 0) {
79 goto err;
80 }
81 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
82 if (cpufd < 0) {
83 goto err;
84 }
85
2f340e9c
PX
86 if (!init) {
87 /* Caller doesn't want the VCPU to be initialized, so skip it */
88 goto finish;
89 }
90
0cdb4020
AJ
91 if (init->target == -1) {
92 struct kvm_vcpu_init preferred;
93
94 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
95 if (!ret) {
96 init->target = preferred.target;
97 }
98 }
a96c0514
PM
99 if (ret >= 0) {
100 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
101 if (ret < 0) {
102 goto err;
103 }
2f340e9c 104 } else if (cpus_to_try) {
a96c0514
PM
105 /* Old kernel which doesn't know about the
106 * PREFERRED_TARGET ioctl: we know it will only support
107 * creating one kind of guest CPU which is its preferred
108 * CPU type.
109 */
0cdb4020
AJ
110 struct kvm_vcpu_init try;
111
a96c0514 112 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
0cdb4020
AJ
113 try.target = *cpus_to_try++;
114 memcpy(try.features, init->features, sizeof(init->features));
115 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
a96c0514
PM
116 if (ret >= 0) {
117 break;
118 }
119 }
120 if (ret < 0) {
121 goto err;
122 }
0cdb4020 123 init->target = try.target;
2f340e9c
PX
124 } else {
125 /* Treat a NULL cpus_to_try argument the same as an empty
126 * list, which means we will fail the call since this must
127 * be an old kernel which doesn't support PREFERRED_TARGET.
128 */
129 goto err;
a96c0514
PM
130 }
131
2f340e9c 132finish:
a96c0514
PM
133 fdarray[0] = kvmfd;
134 fdarray[1] = vmfd;
135 fdarray[2] = cpufd;
136
137 return true;
138
139err:
140 if (cpufd >= 0) {
141 close(cpufd);
142 }
143 if (vmfd >= 0) {
144 close(vmfd);
145 }
146 if (kvmfd >= 0) {
147 close(kvmfd);
148 }
149
150 return false;
151}
152
153void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
154{
155 int i;
156
157 for (i = 2; i >= 0; i--) {
158 close(fdarray[i]);
159 }
160}
161
c4487d76 162void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
a96c0514 163{
c4487d76 164 CPUARMState *env = &cpu->env;
a96c0514 165
c4487d76
PM
166 if (!arm_host_cpu_features.dtb_compatible) {
167 if (!kvm_enabled() ||
168 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
169 /* We can't report this error yet, so flag that we need to
170 * in arm_cpu_realizefn().
171 */
172 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
173 cpu->host_cpu_probe_failed = true;
174 return;
175 }
a96c0514 176 }
c4487d76
PM
177
178 cpu->kvm_target = arm_host_cpu_features.target;
179 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
4674097c 180 cpu->isar = arm_host_cpu_features.isar;
c4487d76 181 env->features = arm_host_cpu_features.features;
a96c0514
PM
182}
183
dea101a1
AJ
184static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
185{
186 return !ARM_CPU(obj)->kvm_adjvtime;
187}
188
189static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
190{
191 ARM_CPU(obj)->kvm_adjvtime = !value;
192}
193
194/* KVM VCPU properties should be prefixed with "kvm-". */
195void kvm_arm_add_vcpu_properties(Object *obj)
196{
197 if (!kvm_enabled()) {
198 return;
199 }
200
201 ARM_CPU(obj)->kvm_adjvtime = true;
202 object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
d2623129 203 kvm_no_adjvtime_set);
dea101a1
AJ
204 object_property_set_description(obj, "kvm-no-adjvtime",
205 "Set on to disable the adjustment of "
206 "the virtual counter. VM stopped time "
7eecec7d 207 "will be counted.");
dea101a1
AJ
208}
209
ae502508
AJ
210bool kvm_arm_pmu_supported(CPUState *cpu)
211{
d70c996d 212 return kvm_check_extension(cpu->kvm_state, KVM_CAP_ARM_PMU_V3);
ae502508
AJ
213}
214
a27382e2
EA
215int kvm_arm_get_max_vm_ipa_size(MachineState *ms)
216{
217 KVMState *s = KVM_STATE(ms->accelerator);
218 int ret;
219
220 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
221 return ret > 0 ? ret : 40;
222}
223
b16565b3 224int kvm_arch_init(MachineState *ms, KVMState *s)
494b00c7 225{
fff9f555 226 int ret = 0;
494b00c7
CD
227 /* For ARM interrupt delivery is always asynchronous,
228 * whether we are using an in-kernel VGIC or not.
229 */
230 kvm_async_interrupts_allowed = true;
a96c0514 231
5d721b78
AG
232 /*
233 * PSCI wakes up secondary cores, so we always need to
234 * have vCPUs waiting in kernel space
235 */
236 kvm_halt_in_kernel_allowed = true;
237
1a1753f7
AB
238 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
239
fff9f555
EA
240 if (ms->smp.cpus > 256 &&
241 !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
242 error_report("Using more than 256 vcpus requires a host kernel "
243 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
244 ret = -EINVAL;
245 }
246
247 return ret;
494b00c7
CD
248}
249
250unsigned long kvm_arch_vcpu_id(CPUState *cpu)
251{
252 return cpu->cpu_index;
253}
254
eb035b48
PM
255/* We track all the KVM devices which need their memory addresses
256 * passing to the kernel in a list of these structures.
257 * When board init is complete we run through the list and
258 * tell the kernel the base addresses of the memory regions.
259 * We use a MemoryListener to track mapping and unmapping of
260 * the regions during board creation, so the board models don't
261 * need to do anything special for the KVM case.
19d1bd0b
EA
262 *
263 * Sometimes the address must be OR'ed with some other fields
264 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
265 * @kda_addr_ormask aims at storing the value of those fields.
eb035b48
PM
266 */
267typedef struct KVMDevice {
268 struct kvm_arm_device_addr kda;
1da41cc1 269 struct kvm_device_attr kdattr;
19d1bd0b 270 uint64_t kda_addr_ormask;
eb035b48
PM
271 MemoryRegion *mr;
272 QSLIST_ENTRY(KVMDevice) entries;
1da41cc1 273 int dev_fd;
eb035b48
PM
274} KVMDevice;
275
b58deb34 276static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
eb035b48
PM
277
278static void kvm_arm_devlistener_add(MemoryListener *listener,
279 MemoryRegionSection *section)
280{
281 KVMDevice *kd;
282
283 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
284 if (section->mr == kd->mr) {
285 kd->kda.addr = section->offset_within_address_space;
286 }
287 }
288}
289
290static void kvm_arm_devlistener_del(MemoryListener *listener,
291 MemoryRegionSection *section)
292{
293 KVMDevice *kd;
294
295 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
296 if (section->mr == kd->mr) {
297 kd->kda.addr = -1;
298 }
299 }
300}
301
302static MemoryListener devlistener = {
303 .region_add = kvm_arm_devlistener_add,
304 .region_del = kvm_arm_devlistener_del,
305};
306
1da41cc1
CD
307static void kvm_arm_set_device_addr(KVMDevice *kd)
308{
309 struct kvm_device_attr *attr = &kd->kdattr;
310 int ret;
311
312 /* If the device control API is available and we have a device fd on the
313 * KVMDevice struct, let's use the newer API
314 */
315 if (kd->dev_fd >= 0) {
316 uint64_t addr = kd->kda.addr;
19d1bd0b
EA
317
318 addr |= kd->kda_addr_ormask;
1da41cc1
CD
319 attr->addr = (uintptr_t)&addr;
320 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
321 } else {
322 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
323 }
324
325 if (ret < 0) {
326 fprintf(stderr, "Failed to set device address: %s\n",
327 strerror(-ret));
328 abort();
329 }
330}
331
eb035b48
PM
332static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
333{
334 KVMDevice *kd, *tkd;
335
eb035b48
PM
336 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
337 if (kd->kda.addr != -1) {
1da41cc1 338 kvm_arm_set_device_addr(kd);
eb035b48 339 }
dfde4e6e 340 memory_region_unref(kd->mr);
5ff9aaab 341 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
eb035b48
PM
342 g_free(kd);
343 }
0bbe4354 344 memory_listener_unregister(&devlistener);
eb035b48
PM
345}
346
347static Notifier notify = {
348 .notify = kvm_arm_machine_init_done,
349};
350
1da41cc1 351void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
19d1bd0b 352 uint64_t attr, int dev_fd, uint64_t addr_ormask)
eb035b48
PM
353{
354 KVMDevice *kd;
355
356 if (!kvm_irqchip_in_kernel()) {
357 return;
358 }
359
360 if (QSLIST_EMPTY(&kvm_devices_head)) {
4344af65 361 memory_listener_register(&devlistener, &address_space_memory);
eb035b48
PM
362 qemu_add_machine_init_done_notifier(&notify);
363 }
364 kd = g_new0(KVMDevice, 1);
365 kd->mr = mr;
366 kd->kda.id = devid;
367 kd->kda.addr = -1;
1da41cc1
CD
368 kd->kdattr.flags = 0;
369 kd->kdattr.group = group;
370 kd->kdattr.attr = attr;
371 kd->dev_fd = dev_fd;
19d1bd0b 372 kd->kda_addr_ormask = addr_ormask;
eb035b48 373 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
dfde4e6e 374 memory_region_ref(kd->mr);
eb035b48
PM
375}
376
38df27c8
AB
377static int compare_u64(const void *a, const void *b)
378{
379 if (*(uint64_t *)a > *(uint64_t *)b) {
380 return 1;
381 }
382 if (*(uint64_t *)a < *(uint64_t *)b) {
383 return -1;
384 }
385 return 0;
386}
387
e5ac4200
AJ
388/*
389 * cpreg_values are sorted in ascending order by KVM register ID
390 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
391 * the storage for a KVM register by ID with a binary search.
392 */
393static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
394{
395 uint64_t *res;
396
397 res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
398 sizeof(uint64_t), compare_u64);
399 assert(res);
400
401 return &cpu->cpreg_values[res - cpu->cpreg_indexes];
402}
403
c8a44709 404/* Initialize the ARMCPU cpreg list according to the kernel's
38df27c8
AB
405 * definition of what CPU registers it knows about (and throw away
406 * the previous TCG-created cpreg list).
407 */
408int kvm_arm_init_cpreg_list(ARMCPU *cpu)
409{
410 struct kvm_reg_list rl;
411 struct kvm_reg_list *rlp;
412 int i, ret, arraylen;
413 CPUState *cs = CPU(cpu);
414
415 rl.n = 0;
416 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
417 if (ret != -E2BIG) {
418 return ret;
419 }
420 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
421 rlp->n = rl.n;
422 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
423 if (ret) {
424 goto out;
425 }
426 /* Sort the list we get back from the kernel, since cpreg_tuples
427 * must be in strictly ascending order.
428 */
429 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
430
431 for (i = 0, arraylen = 0; i < rlp->n; i++) {
432 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
433 continue;
434 }
435 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
436 case KVM_REG_SIZE_U32:
437 case KVM_REG_SIZE_U64:
438 break;
439 default:
440 fprintf(stderr, "Can't handle size of register in kernel list\n");
441 ret = -EINVAL;
442 goto out;
443 }
444
445 arraylen++;
446 }
447
448 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
449 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
450 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
451 arraylen);
452 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
453 arraylen);
454 cpu->cpreg_array_len = arraylen;
455 cpu->cpreg_vmstate_array_len = arraylen;
456
457 for (i = 0, arraylen = 0; i < rlp->n; i++) {
458 uint64_t regidx = rlp->reg[i];
459 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
460 continue;
461 }
462 cpu->cpreg_indexes[arraylen] = regidx;
463 arraylen++;
464 }
465 assert(cpu->cpreg_array_len == arraylen);
466
467 if (!write_kvmstate_to_list(cpu)) {
468 /* Shouldn't happen unless kernel is inconsistent about
469 * what registers exist.
470 */
471 fprintf(stderr, "Initial read of kernel register state failed\n");
472 ret = -EINVAL;
473 goto out;
474 }
475
476out:
477 g_free(rlp);
478 return ret;
479}
480
ff047453
PM
481bool write_kvmstate_to_list(ARMCPU *cpu)
482{
483 CPUState *cs = CPU(cpu);
484 int i;
485 bool ok = true;
486
487 for (i = 0; i < cpu->cpreg_array_len; i++) {
488 struct kvm_one_reg r;
489 uint64_t regidx = cpu->cpreg_indexes[i];
490 uint32_t v32;
491 int ret;
492
493 r.id = regidx;
494
495 switch (regidx & KVM_REG_SIZE_MASK) {
496 case KVM_REG_SIZE_U32:
497 r.addr = (uintptr_t)&v32;
498 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
499 if (!ret) {
500 cpu->cpreg_values[i] = v32;
501 }
502 break;
503 case KVM_REG_SIZE_U64:
504 r.addr = (uintptr_t)(cpu->cpreg_values + i);
505 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
506 break;
507 default:
508 abort();
509 }
510 if (ret) {
511 ok = false;
512 }
513 }
514 return ok;
515}
516
4b7a6bf4 517bool write_list_to_kvmstate(ARMCPU *cpu, int level)
ff047453
PM
518{
519 CPUState *cs = CPU(cpu);
520 int i;
521 bool ok = true;
522
523 for (i = 0; i < cpu->cpreg_array_len; i++) {
524 struct kvm_one_reg r;
525 uint64_t regidx = cpu->cpreg_indexes[i];
526 uint32_t v32;
527 int ret;
528
4b7a6bf4
CD
529 if (kvm_arm_cpreg_level(regidx) > level) {
530 continue;
531 }
532
ff047453
PM
533 r.id = regidx;
534 switch (regidx & KVM_REG_SIZE_MASK) {
535 case KVM_REG_SIZE_U32:
536 v32 = cpu->cpreg_values[i];
537 r.addr = (uintptr_t)&v32;
538 break;
539 case KVM_REG_SIZE_U64:
540 r.addr = (uintptr_t)(cpu->cpreg_values + i);
541 break;
542 default:
543 abort();
544 }
545 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
546 if (ret) {
547 /* We might fail for "unknown register" and also for
548 * "you tried to set a register which is constant with
549 * a different value from what it actually contains".
550 */
551 ok = false;
552 }
553 }
554 return ok;
555}
556
e5ac4200
AJ
557void kvm_arm_cpu_pre_save(ARMCPU *cpu)
558{
559 /* KVM virtual time adjustment */
560 if (cpu->kvm_vtime_dirty) {
561 *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
562 }
563}
564
565void kvm_arm_cpu_post_load(ARMCPU *cpu)
566{
567 /* KVM virtual time adjustment */
568 if (cpu->kvm_adjvtime) {
569 cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
570 cpu->kvm_vtime_dirty = true;
571 }
572}
573
38df27c8
AB
574void kvm_arm_reset_vcpu(ARMCPU *cpu)
575{
25f2895e
CD
576 int ret;
577
38df27c8
AB
578 /* Re-init VCPU so that all registers are set to
579 * their respective reset values.
580 */
25f2895e
CD
581 ret = kvm_arm_vcpu_init(CPU(cpu));
582 if (ret < 0) {
583 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
584 abort();
585 }
586 if (!write_kvmstate_to_list(cpu)) {
587 fprintf(stderr, "write_kvmstate_to_list failed\n");
588 abort();
589 }
b698e4ee
PM
590 /*
591 * Sync the reset values also into the CPUState. This is necessary
592 * because the next thing we do will be a kvm_arch_put_registers()
593 * which will update the list values from the CPUState before copying
594 * the list values back to KVM. It's OK to ignore failure returns here
595 * for the same reason we do so in kvm_arch_get_registers().
596 */
597 write_list_to_cpustate(cpu);
38df27c8
AB
598}
599
1a1753f7
AB
600/*
601 * Update KVM's MP_STATE based on what QEMU thinks it is
602 */
603int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
604{
605 if (cap_has_mp_state) {
606 struct kvm_mp_state mp_state = {
062ba099
AB
607 .mp_state = (cpu->power_state == PSCI_OFF) ?
608 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
1a1753f7
AB
609 };
610 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
611 if (ret) {
612 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
613 __func__, ret, strerror(-ret));
614 return -1;
615 }
616 }
617
618 return 0;
619}
620
621/*
622 * Sync the KVM MP_STATE into QEMU
623 */
624int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
625{
626 if (cap_has_mp_state) {
627 struct kvm_mp_state mp_state;
628 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
629 if (ret) {
630 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
631 __func__, ret, strerror(-ret));
632 abort();
633 }
062ba099
AB
634 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
635 PSCI_OFF : PSCI_ON;
1a1753f7
AB
636 }
637
638 return 0;
639}
640
e5ac4200
AJ
641void kvm_arm_get_virtual_time(CPUState *cs)
642{
643 ARMCPU *cpu = ARM_CPU(cs);
644 struct kvm_one_reg reg = {
645 .id = KVM_REG_ARM_TIMER_CNT,
646 .addr = (uintptr_t)&cpu->kvm_vtime,
647 };
648 int ret;
649
650 if (cpu->kvm_vtime_dirty) {
651 return;
652 }
653
654 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
655 if (ret) {
656 error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
657 abort();
658 }
659
660 cpu->kvm_vtime_dirty = true;
661}
662
663void kvm_arm_put_virtual_time(CPUState *cs)
664{
665 ARMCPU *cpu = ARM_CPU(cs);
666 struct kvm_one_reg reg = {
667 .id = KVM_REG_ARM_TIMER_CNT,
668 .addr = (uintptr_t)&cpu->kvm_vtime,
669 };
670 int ret;
671
672 if (!cpu->kvm_vtime_dirty) {
673 return;
674 }
675
676 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
677 if (ret) {
678 error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
679 abort();
680 }
681
682 cpu->kvm_vtime_dirty = false;
683}
684
202ccb6b
DG
685int kvm_put_vcpu_events(ARMCPU *cpu)
686{
687 CPUARMState *env = &cpu->env;
688 struct kvm_vcpu_events events;
689 int ret;
690
691 if (!kvm_has_vcpu_events()) {
692 return 0;
693 }
694
695 memset(&events, 0, sizeof(events));
696 events.exception.serror_pending = env->serror.pending;
697
698 /* Inject SError to guest with specified syndrome if host kernel
699 * supports it, otherwise inject SError without syndrome.
700 */
701 if (cap_has_inject_serror_esr) {
702 events.exception.serror_has_esr = env->serror.has_esr;
703 events.exception.serror_esr = env->serror.esr;
704 }
705
706 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
707 if (ret) {
708 error_report("failed to put vcpu events");
709 }
710
711 return ret;
712}
713
714int kvm_get_vcpu_events(ARMCPU *cpu)
715{
716 CPUARMState *env = &cpu->env;
717 struct kvm_vcpu_events events;
718 int ret;
719
720 if (!kvm_has_vcpu_events()) {
721 return 0;
722 }
723
724 memset(&events, 0, sizeof(events));
725 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
726 if (ret) {
727 error_report("failed to get vcpu events");
728 return ret;
729 }
730
731 env->serror.pending = events.exception.serror_pending;
732 env->serror.has_esr = events.exception.serror_has_esr;
733 env->serror.esr = events.exception.serror_esr;
734
735 return 0;
736}
737
494b00c7
CD
738void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
739{
740}
741
4c663752 742MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
494b00c7 743{
5d721b78
AG
744 ARMCPU *cpu;
745 uint32_t switched_level;
746
747 if (kvm_irqchip_in_kernel()) {
748 /*
749 * We only need to sync timer states with user-space interrupt
750 * controllers, so return early and save cycles if we don't.
751 */
752 return MEMTXATTRS_UNSPECIFIED;
753 }
754
755 cpu = ARM_CPU(cs);
756
757 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
758 if (run->s.regs.device_irq_level != cpu->device_irq_level) {
759 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
760
761 qemu_mutex_lock_iothread();
762
763 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
764 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
765 !!(run->s.regs.device_irq_level &
766 KVM_ARM_DEV_EL1_VTIMER));
767 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
768 }
769
770 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
771 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
772 !!(run->s.regs.device_irq_level &
773 KVM_ARM_DEV_EL1_PTIMER));
774 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
775 }
776
b1659527
AJ
777 if (switched_level & KVM_ARM_DEV_PMU) {
778 qemu_set_irq(cpu->pmu_interrupt,
779 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
780 switched_level &= ~KVM_ARM_DEV_PMU;
781 }
5d721b78
AG
782
783 if (switched_level) {
784 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
785 __func__, switched_level);
786 }
787
788 /* We also mark unknown levels as processed to not waste cycles */
789 cpu->device_irq_level = run->s.regs.device_irq_level;
790 qemu_mutex_unlock_iothread();
791 }
792
4c663752 793 return MEMTXATTRS_UNSPECIFIED;
494b00c7
CD
794}
795
e5ac4200
AJ
796void kvm_arm_vm_state_change(void *opaque, int running, RunState state)
797{
798 CPUState *cs = opaque;
799 ARMCPU *cpu = ARM_CPU(cs);
800
801 if (running) {
802 if (cpu->kvm_adjvtime) {
803 kvm_arm_put_virtual_time(cs);
804 }
805 } else {
806 if (cpu->kvm_adjvtime) {
807 kvm_arm_get_virtual_time(cs);
808 }
809 }
810}
2ecb2027 811
494b00c7
CD
812int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
813{
2ecb2027
AB
814 int ret = 0;
815
816 switch (run->exit_reason) {
817 case KVM_EXIT_DEBUG:
818 if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
819 ret = EXCP_DEBUG;
820 } /* otherwise return to guest */
821 break;
822 default:
823 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
824 __func__, run->exit_reason);
825 break;
826 }
827 return ret;
494b00c7
CD
828}
829
494b00c7
CD
830bool kvm_arch_stop_on_emulation_error(CPUState *cs)
831{
832 return true;
833}
834
835int kvm_arch_process_async_events(CPUState *cs)
836{
837 return 0;
838}
839
2ecb2027
AB
840/* The #ifdef protections are until 32bit headers are imported and can
841 * be removed once both 32 and 64 bit reach feature parity.
842 */
494b00c7
CD
843void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
844{
2ecb2027
AB
845#ifdef KVM_GUESTDBG_USE_SW_BP
846 if (kvm_sw_breakpoints_active(cs)) {
847 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
848 }
849#endif
e4482ab7
AB
850#ifdef KVM_GUESTDBG_USE_HW
851 if (kvm_arm_hw_debug_active(cs)) {
852 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
853 kvm_arm_copy_hw_debug_data(&dbg->arch);
854 }
855#endif
494b00c7 856}
b3a1c626
AK
857
858void kvm_arch_init_irq_routing(KVMState *s)
859{
860}
1da41cc1 861
4376c40d 862int kvm_arch_irqchip_create(KVMState *s)
1da41cc1 863{
4376c40d
PB
864 if (kvm_kernel_irqchip_split()) {
865 perror("-machine kernel_irqchip=split is not supported on ARM.");
866 exit(1);
15eafc2e
PB
867 }
868
1da41cc1
CD
869 /* If we can create the VGIC using the newer device control API, we
870 * let the device do this when it initializes itself, otherwise we
871 * fall back to the old API */
34e85cd9
PF
872 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
873}
1da41cc1 874
34e85cd9
PF
875int kvm_arm_vgic_probe(void)
876{
d45efe47
EA
877 int val = 0;
878
34e85cd9
PF
879 if (kvm_create_device(kvm_state,
880 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
d45efe47
EA
881 val |= KVM_ARM_VGIC_V3;
882 }
883 if (kvm_create_device(kvm_state,
884 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
885 val |= KVM_ARM_VGIC_V2;
1da41cc1 886 }
d45efe47 887 return val;
1da41cc1 888}
9e03a040 889
f6530926
EA
890int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
891{
892 int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
893 int cpu_idx1 = cpu % 256;
894 int cpu_idx2 = cpu / 256;
895
896 kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
897 (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
898
899 return kvm_set_irq(kvm_state, kvm_irq, !!level);
900}
901
9e03a040 902int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
dc9f06ca 903 uint64_t address, uint32_t data, PCIDevice *dev)
9e03a040 904{
b05c81d2
EA
905 AddressSpace *as = pci_device_iommu_address_space(dev);
906 hwaddr xlat, len, doorbell_gpa;
907 MemoryRegionSection mrs;
908 MemoryRegion *mr;
909 int ret = 1;
910
911 if (as == &address_space_memory) {
912 return 0;
913 }
914
915 /* MSI doorbell address is translated by an IOMMU */
916
917 rcu_read_lock();
bc6b1cec
PM
918 mr = address_space_translate(as, address, &xlat, &len, true,
919 MEMTXATTRS_UNSPECIFIED);
b05c81d2
EA
920 if (!mr) {
921 goto unlock;
922 }
923 mrs = memory_region_find(mr, xlat, 1);
924 if (!mrs.mr) {
925 goto unlock;
926 }
927
928 doorbell_gpa = mrs.offset_within_address_space;
929 memory_region_unref(mrs.mr);
930
931 route->u.msi.address_lo = doorbell_gpa;
932 route->u.msi.address_hi = doorbell_gpa >> 32;
933
934 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
935
936 ret = 0;
937
938unlock:
939 rcu_read_unlock();
940 return ret;
9e03a040 941}
1850b6b7 942
38d87493
PX
943int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
944 int vector, PCIDevice *dev)
945{
946 return 0;
947}
948
949int kvm_arch_release_virq_post(int virq)
950{
951 return 0;
952}
953
1850b6b7
EA
954int kvm_arch_msi_data_to_gsi(uint32_t data)
955{
956 return (data - 32) & 0xffff;
957}