]> git.proxmox.com Git - mirror_qemu.git/blame - target/ppc/machine.c
target/ppc: always set PPC_MEM_TLBIE in pre 2.8 migration hack
[mirror_qemu.git] / target / ppc / machine.c
CommitLineData
0d75590d 1#include "qemu/osdep.h"
33c11879
PB
2#include "qemu-common.h"
3#include "cpu.h"
63c91552 4#include "exec/exec-all.h"
8dd3dca3
AJ
5#include "hw/hw.h"
6#include "hw/boards.h"
9c17d615 7#include "sysemu/kvm.h"
a90db158 8#include "helper_regs.h"
cd6a9bb6 9#include "mmu-hash64.h"
1e00b8d5 10#include "migration/cpu.h"
d5fc133e 11#include "qapi/error.h"
c363a37a 12#include "kvm_ppc.h"
8dd3dca3 13
a90db158 14static int cpu_load_old(QEMUFile *f, void *opaque, int version_id)
8dd3dca3 15{
a90db158
AK
16 PowerPCCPU *cpu = opaque;
17 CPUPPCState *env = &cpu->env;
a456d59c 18 unsigned int i, j;
bb593904 19 target_ulong sdr1;
30304420 20 uint32_t fpscr;
da91a00f 21 target_ulong xer;
a456d59c
BS
22
23 for (i = 0; i < 32; i++)
24 qemu_get_betls(f, &env->gpr[i]);
25#if !defined(TARGET_PPC64)
26 for (i = 0; i < 32; i++)
27 qemu_get_betls(f, &env->gprh[i]);
28#endif
29 qemu_get_betls(f, &env->lr);
30 qemu_get_betls(f, &env->ctr);
31 for (i = 0; i < 8; i++)
32 qemu_get_be32s(f, &env->crf[i]);
da91a00f
RH
33 qemu_get_betls(f, &xer);
34 cpu_write_xer(env, xer);
18b21a2f 35 qemu_get_betls(f, &env->reserve_addr);
a456d59c
BS
36 qemu_get_betls(f, &env->msr);
37 for (i = 0; i < 4; i++)
38 qemu_get_betls(f, &env->tgpr[i]);
39 for (i = 0; i < 32; i++) {
40 union {
41 float64 d;
42 uint64_t l;
43 } u;
44 u.l = qemu_get_be64(f);
45 env->fpr[i] = u.d;
46 }
30304420
DG
47 qemu_get_be32s(f, &fpscr);
48 env->fpscr = fpscr;
a456d59c 49 qemu_get_sbe32s(f, &env->access_type);
a456d59c 50#if defined(TARGET_PPC64)
9baea4a3 51 qemu_get_betls(f, &env->spr[SPR_ASR]);
a456d59c
BS
52 qemu_get_sbe32s(f, &env->slb_nr);
53#endif
bb593904 54 qemu_get_betls(f, &sdr1);
a456d59c
BS
55 for (i = 0; i < 32; i++)
56 qemu_get_betls(f, &env->sr[i]);
57 for (i = 0; i < 2; i++)
58 for (j = 0; j < 8; j++)
59 qemu_get_betls(f, &env->DBAT[i][j]);
60 for (i = 0; i < 2; i++)
61 for (j = 0; j < 8; j++)
62 qemu_get_betls(f, &env->IBAT[i][j]);
63 qemu_get_sbe32s(f, &env->nb_tlb);
64 qemu_get_sbe32s(f, &env->tlb_per_way);
65 qemu_get_sbe32s(f, &env->nb_ways);
66 qemu_get_sbe32s(f, &env->last_way);
67 qemu_get_sbe32s(f, &env->id_tlbs);
68 qemu_get_sbe32s(f, &env->nb_pids);
1c53accc 69 if (env->tlb.tlb6) {
a456d59c
BS
70 // XXX assumes 6xx
71 for (i = 0; i < env->nb_tlb; i++) {
1c53accc
AG
72 qemu_get_betls(f, &env->tlb.tlb6[i].pte0);
73 qemu_get_betls(f, &env->tlb.tlb6[i].pte1);
74 qemu_get_betls(f, &env->tlb.tlb6[i].EPN);
a456d59c
BS
75 }
76 }
77 for (i = 0; i < 4; i++)
78 qemu_get_betls(f, &env->pb[i]);
a456d59c
BS
79 for (i = 0; i < 1024; i++)
80 qemu_get_betls(f, &env->spr[i]);
e57ca75c 81 if (!cpu->vhyp) {
f3c75d42
AK
82 ppc_store_sdr1(env, sdr1);
83 }
a456d59c
BS
84 qemu_get_be32s(f, &env->vscr);
85 qemu_get_be64s(f, &env->spe_acc);
86 qemu_get_be32s(f, &env->spe_fscr);
87 qemu_get_betls(f, &env->msr_mask);
88 qemu_get_be32s(f, &env->flags);
89 qemu_get_sbe32s(f, &env->error_code);
90 qemu_get_be32s(f, &env->pending_interrupts);
a456d59c
BS
91 qemu_get_be32s(f, &env->irq_input_state);
92 for (i = 0; i < POWERPC_EXCP_NB; i++)
93 qemu_get_betls(f, &env->excp_vectors[i]);
94 qemu_get_betls(f, &env->excp_prefix);
95 qemu_get_betls(f, &env->ivor_mask);
96 qemu_get_betls(f, &env->ivpr_mask);
97 qemu_get_betls(f, &env->hreset_vector);
a456d59c
BS
98 qemu_get_betls(f, &env->nip);
99 qemu_get_betls(f, &env->hflags);
100 qemu_get_betls(f, &env->hflags_nmsr);
9fb04491 101 qemu_get_sbe32(f); /* Discard unused mmu_idx */
011aba24 102 qemu_get_sbe32(f); /* Discard unused power_mode */
a456d59c 103
9fb04491
BH
104 /* Recompute mmu indices */
105 hreg_compute_mem_idx(env);
106
8dd3dca3
AJ
107 return 0;
108}
a90db158 109
2c21ee76 110static int get_avr(QEMUFile *f, void *pv, size_t size, VMStateField *field)
a90db158
AK
111{
112 ppc_avr_t *v = pv;
113
114 v->u64[0] = qemu_get_be64(f);
115 v->u64[1] = qemu_get_be64(f);
116
117 return 0;
118}
119
2c21ee76
JD
120static int put_avr(QEMUFile *f, void *pv, size_t size, VMStateField *field,
121 QJSON *vmdesc)
a90db158
AK
122{
123 ppc_avr_t *v = pv;
124
125 qemu_put_be64(f, v->u64[0]);
126 qemu_put_be64(f, v->u64[1]);
2c21ee76 127 return 0;
a90db158
AK
128}
129
cfd54a04 130static const VMStateInfo vmstate_info_avr = {
a90db158
AK
131 .name = "avr",
132 .get = get_avr,
133 .put = put_avr,
134};
135
136#define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \
137 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_avr, ppc_avr_t)
138
139#define VMSTATE_AVR_ARRAY(_f, _s, _n) \
140 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
141
146c11f1
DG
142static bool cpu_pre_2_8_migration(void *opaque, int version_id)
143{
144 PowerPCCPU *cpu = opaque;
145
146 return cpu->pre_2_8_migration;
147}
148
44b1ff31 149static int cpu_pre_save(void *opaque)
a90db158
AK
150{
151 PowerPCCPU *cpu = opaque;
152 CPUPPCState *env = &cpu->env;
153 int i;
16a2497b
DG
154 uint64_t insns_compat_mask =
155 PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
156 | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
157 | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
158 | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
159 | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
160 | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
161 | PPC_64B | PPC_64BX | PPC_ALTIVEC
162 | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
163 uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
164 | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
165 | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
166 | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
167 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
168 | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
a90db158
AK
169
170 env->spr[SPR_LR] = env->lr;
171 env->spr[SPR_CTR] = env->ctr;
aa378598 172 env->spr[SPR_XER] = cpu_read_xer(env);
a90db158
AK
173#if defined(TARGET_PPC64)
174 env->spr[SPR_CFAR] = env->cfar;
175#endif
176 env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
177
178 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
179 env->spr[SPR_DBAT0U + 2*i] = env->DBAT[0][i];
180 env->spr[SPR_DBAT0U + 2*i + 1] = env->DBAT[1][i];
181 env->spr[SPR_IBAT0U + 2*i] = env->IBAT[0][i];
182 env->spr[SPR_IBAT0U + 2*i + 1] = env->IBAT[1][i];
183 }
184 for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
185 env->spr[SPR_DBAT4U + 2*i] = env->DBAT[0][i+4];
186 env->spr[SPR_DBAT4U + 2*i + 1] = env->DBAT[1][i+4];
187 env->spr[SPR_IBAT4U + 2*i] = env->IBAT[0][i+4];
188 env->spr[SPR_IBAT4U + 2*i + 1] = env->IBAT[1][i+4];
189 }
16a2497b
DG
190
191 /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
146c11f1
DG
192 if (cpu->pre_2_8_migration) {
193 cpu->mig_msr_mask = env->msr_mask;
194 cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
0ab2f8e3
GK
195 /* CPU models supported by old machines all have PPC_MEM_TLBIE,
196 * so we set it unconditionally to allow backward migration from
197 * a POWER9 host to a POWER8 host.
198 */
199 cpu->mig_insns_flags |= PPC_MEM_TLBIE;
146c11f1
DG
200 cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
201 cpu->mig_nb_BATs = env->nb_BATs;
202 }
44b1ff31
DDAG
203
204 return 0;
a90db158
AK
205}
206
d5fc133e
DG
207/*
208 * Determine if a given PVR is a "close enough" match to the CPU
209 * object. For TCG and KVM PR it would probably be sufficient to
210 * require an exact PVR match. However for KVM HV the user is
211 * restricted to a PVR exactly matching the host CPU. The correct way
212 * to handle this is to put the guest into an architected
213 * compatibility mode. However, to allow a more forgiving transition
214 * and migration from before this was widely done, we allow migration
215 * between sufficiently similar PVRs, as determined by the CPU class's
216 * pvr_match() hook.
217 */
218static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
219{
220 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
221
222 if (pvr == pcc->pvr) {
223 return true;
224 }
225 return pcc->pvr_match(pcc, pvr);
226}
227
a90db158
AK
228static int cpu_post_load(void *opaque, int version_id)
229{
230 PowerPCCPU *cpu = opaque;
231 CPUPPCState *env = &cpu->env;
232 int i;
2360b6e8 233 target_ulong msr;
a90db158 234
569be9f0 235 /*
d5fc133e
DG
236 * If we're operating in compat mode, we should be ok as long as
237 * the destination supports the same compatiblity mode.
238 *
239 * Otherwise, however, we require that the destination has exactly
240 * the same CPU model as the source.
569be9f0 241 */
d5fc133e
DG
242
243#if defined(TARGET_PPC64)
244 if (cpu->compat_pvr) {
e07cc192 245 uint32_t compat_pvr = cpu->compat_pvr;
d5fc133e
DG
246 Error *local_err = NULL;
247
e07cc192
SJS
248 cpu->compat_pvr = 0;
249 ppc_set_compat(cpu, compat_pvr, &local_err);
d5fc133e
DG
250 if (local_err) {
251 error_report_err(local_err);
d5fc133e
DG
252 return -1;
253 }
254 } else
255#endif
256 {
257 if (!pvr_match(cpu, env->spr[SPR_PVR])) {
258 return -1;
259 }
260 }
261
c363a37a
DHB
262 /*
263 * If we're running with KVM HV, there is a chance that the guest
264 * is running with KVM HV and its kernel does not have the
265 * capability of dealing with a different PVR other than this
266 * exact host PVR in KVM_SET_SREGS. If that happens, the
267 * guest freezes after migration.
268 *
269 * The function kvmppc_pvr_workaround_required does this verification
270 * by first checking if the kernel has the cap, returning true immediately
271 * if that is the case. Otherwise, it checks if we're running in KVM PR.
272 * If the guest kernel does not have the cap and we're not running KVM-PR
273 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
274 * receive the PVR it expects as a workaround.
275 *
276 */
277#if defined(CONFIG_KVM)
278 if (kvmppc_pvr_workaround_required(cpu)) {
279 env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
280 }
281#endif
282
a90db158
AK
283 env->lr = env->spr[SPR_LR];
284 env->ctr = env->spr[SPR_CTR];
6a9620e6 285 cpu_write_xer(env, env->spr[SPR_XER]);
a90db158
AK
286#if defined(TARGET_PPC64)
287 env->cfar = env->spr[SPR_CFAR];
288#endif
289 env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
290
291 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
292 env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2*i];
293 env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2*i + 1];
294 env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2*i];
295 env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2*i + 1];
296 }
297 for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
298 env->DBAT[0][i+4] = env->spr[SPR_DBAT4U + 2*i];
299 env->DBAT[1][i+4] = env->spr[SPR_DBAT4U + 2*i + 1];
300 env->IBAT[0][i+4] = env->spr[SPR_IBAT4U + 2*i];
301 env->IBAT[1][i+4] = env->spr[SPR_IBAT4U + 2*i + 1];
302 }
303
e57ca75c 304 if (!cpu->vhyp) {
f3c75d42
AK
305 ppc_store_sdr1(env, env->spr[SPR_SDR1]);
306 }
2360b6e8 307
be1b21e8 308 /* Invalidate all supported msr bits except MSR_TGPR/MSR_HVB before restoring */
2360b6e8 309 msr = env->msr;
be1b21e8 310 env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
2360b6e8
MCA
311 ppc_store_msr(env, msr);
312
a90db158
AK
313 hreg_compute_mem_idx(env);
314
315 return 0;
316}
317
318static bool fpu_needed(void *opaque)
319{
320 PowerPCCPU *cpu = opaque;
321
322 return (cpu->env.insns_flags & PPC_FLOAT);
323}
324
325static const VMStateDescription vmstate_fpu = {
326 .name = "cpu/fpu",
327 .version_id = 1,
328 .minimum_version_id = 1,
5cd8cada 329 .needed = fpu_needed,
3aff6c2f 330 .fields = (VMStateField[]) {
a90db158
AK
331 VMSTATE_FLOAT64_ARRAY(env.fpr, PowerPCCPU, 32),
332 VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
333 VMSTATE_END_OF_LIST()
334 },
335};
336
337static bool altivec_needed(void *opaque)
338{
339 PowerPCCPU *cpu = opaque;
340
341 return (cpu->env.insns_flags & PPC_ALTIVEC);
342}
343
344static const VMStateDescription vmstate_altivec = {
345 .name = "cpu/altivec",
346 .version_id = 1,
347 .minimum_version_id = 1,
5cd8cada 348 .needed = altivec_needed,
3aff6c2f 349 .fields = (VMStateField[]) {
a90db158
AK
350 VMSTATE_AVR_ARRAY(env.avr, PowerPCCPU, 32),
351 VMSTATE_UINT32(env.vscr, PowerPCCPU),
352 VMSTATE_END_OF_LIST()
353 },
354};
355
356static bool vsx_needed(void *opaque)
357{
358 PowerPCCPU *cpu = opaque;
359
360 return (cpu->env.insns_flags2 & PPC2_VSX);
361}
362
363static const VMStateDescription vmstate_vsx = {
364 .name = "cpu/vsx",
365 .version_id = 1,
366 .minimum_version_id = 1,
5cd8cada 367 .needed = vsx_needed,
3aff6c2f 368 .fields = (VMStateField[]) {
a90db158
AK
369 VMSTATE_UINT64_ARRAY(env.vsr, PowerPCCPU, 32),
370 VMSTATE_END_OF_LIST()
371 },
372};
373
80b3f79b
AK
374#ifdef TARGET_PPC64
375/* Transactional memory state */
376static bool tm_needed(void *opaque)
377{
378 PowerPCCPU *cpu = opaque;
379 CPUPPCState *env = &cpu->env;
380 return msr_ts;
381}
382
383static const VMStateDescription vmstate_tm = {
384 .name = "cpu/tm",
385 .version_id = 1,
386 .minimum_version_id = 1,
387 .minimum_version_id_old = 1,
5cd8cada 388 .needed = tm_needed,
80b3f79b
AK
389 .fields = (VMStateField []) {
390 VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
391 VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
392 VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
393 VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
394 VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
395 VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
396 VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
397 VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
398 VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
399 VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
400 VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
401 VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
402 VMSTATE_END_OF_LIST()
403 },
404};
405#endif
406
a90db158
AK
407static bool sr_needed(void *opaque)
408{
409#ifdef TARGET_PPC64
410 PowerPCCPU *cpu = opaque;
411
412 return !(cpu->env.mmu_model & POWERPC_MMU_64);
413#else
414 return true;
415#endif
416}
417
418static const VMStateDescription vmstate_sr = {
419 .name = "cpu/sr",
420 .version_id = 1,
421 .minimum_version_id = 1,
5cd8cada 422 .needed = sr_needed,
3aff6c2f 423 .fields = (VMStateField[]) {
a90db158
AK
424 VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
425 VMSTATE_END_OF_LIST()
426 },
427};
428
429#ifdef TARGET_PPC64
2c21ee76 430static int get_slbe(QEMUFile *f, void *pv, size_t size, VMStateField *field)
a90db158
AK
431{
432 ppc_slb_t *v = pv;
433
434 v->esid = qemu_get_be64(f);
435 v->vsid = qemu_get_be64(f);
436
437 return 0;
438}
439
2c21ee76
JD
440static int put_slbe(QEMUFile *f, void *pv, size_t size, VMStateField *field,
441 QJSON *vmdesc)
a90db158
AK
442{
443 ppc_slb_t *v = pv;
444
445 qemu_put_be64(f, v->esid);
446 qemu_put_be64(f, v->vsid);
2c21ee76 447 return 0;
a90db158
AK
448}
449
cfd54a04 450static const VMStateInfo vmstate_info_slbe = {
a90db158
AK
451 .name = "slbe",
452 .get = get_slbe,
453 .put = put_slbe,
454};
455
456#define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \
457 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
458
459#define VMSTATE_SLB_ARRAY(_f, _s, _n) \
460 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
461
462static bool slb_needed(void *opaque)
463{
464 PowerPCCPU *cpu = opaque;
465
466 /* We don't support any of the old segment table based 64-bit CPUs */
467 return (cpu->env.mmu_model & POWERPC_MMU_64);
468}
469
cd6a9bb6
DG
470static int slb_post_load(void *opaque, int version_id)
471{
472 PowerPCCPU *cpu = opaque;
473 CPUPPCState *env = &cpu->env;
474 int i;
475
476 /* We've pulled in the raw esid and vsid values from the migration
477 * stream, but we need to recompute the page size pointers */
478 for (i = 0; i < env->slb_nr; i++) {
479 if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
480 /* Migration source had bad values in its SLB */
481 return -1;
482 }
483 }
484
485 return 0;
486}
487
a90db158
AK
488static const VMStateDescription vmstate_slb = {
489 .name = "cpu/slb",
490 .version_id = 1,
491 .minimum_version_id = 1,
5cd8cada 492 .needed = slb_needed,
cd6a9bb6 493 .post_load = slb_post_load,
3aff6c2f 494 .fields = (VMStateField[]) {
d2164ad3 495 VMSTATE_INT32_EQUAL(env.slb_nr, PowerPCCPU, NULL),
d83af167 496 VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
a90db158
AK
497 VMSTATE_END_OF_LIST()
498 }
499};
500#endif /* TARGET_PPC64 */
501
502static const VMStateDescription vmstate_tlb6xx_entry = {
503 .name = "cpu/tlb6xx_entry",
504 .version_id = 1,
505 .minimum_version_id = 1,
3aff6c2f 506 .fields = (VMStateField[]) {
a90db158
AK
507 VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
508 VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
509 VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
510 VMSTATE_END_OF_LIST()
511 },
512};
513
514static bool tlb6xx_needed(void *opaque)
515{
516 PowerPCCPU *cpu = opaque;
517 CPUPPCState *env = &cpu->env;
518
519 return env->nb_tlb && (env->tlb_type == TLB_6XX);
520}
521
522static const VMStateDescription vmstate_tlb6xx = {
523 .name = "cpu/tlb6xx",
524 .version_id = 1,
525 .minimum_version_id = 1,
5cd8cada 526 .needed = tlb6xx_needed,
3aff6c2f 527 .fields = (VMStateField[]) {
d2164ad3 528 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
a90db158
AK
529 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
530 env.nb_tlb,
531 vmstate_tlb6xx_entry,
532 ppc6xx_tlb_t),
533 VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
534 VMSTATE_END_OF_LIST()
535 }
536};
537
538static const VMStateDescription vmstate_tlbemb_entry = {
539 .name = "cpu/tlbemb_entry",
540 .version_id = 1,
541 .minimum_version_id = 1,
3aff6c2f 542 .fields = (VMStateField[]) {
a90db158
AK
543 VMSTATE_UINT64(RPN, ppcemb_tlb_t),
544 VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
545 VMSTATE_UINTTL(PID, ppcemb_tlb_t),
546 VMSTATE_UINTTL(size, ppcemb_tlb_t),
547 VMSTATE_UINT32(prot, ppcemb_tlb_t),
548 VMSTATE_UINT32(attr, ppcemb_tlb_t),
549 VMSTATE_END_OF_LIST()
550 },
551};
552
553static bool tlbemb_needed(void *opaque)
554{
555 PowerPCCPU *cpu = opaque;
556 CPUPPCState *env = &cpu->env;
557
558 return env->nb_tlb && (env->tlb_type == TLB_EMB);
559}
560
561static bool pbr403_needed(void *opaque)
562{
563 PowerPCCPU *cpu = opaque;
564 uint32_t pvr = cpu->env.spr[SPR_PVR];
565
566 return (pvr & 0xffff0000) == 0x00200000;
567}
568
569static const VMStateDescription vmstate_pbr403 = {
570 .name = "cpu/pbr403",
571 .version_id = 1,
572 .minimum_version_id = 1,
5cd8cada 573 .needed = pbr403_needed,
3aff6c2f 574 .fields = (VMStateField[]) {
a90db158
AK
575 VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4),
576 VMSTATE_END_OF_LIST()
577 },
578};
579
580static const VMStateDescription vmstate_tlbemb = {
581 .name = "cpu/tlb6xx",
582 .version_id = 1,
583 .minimum_version_id = 1,
5cd8cada 584 .needed = tlbemb_needed,
3aff6c2f 585 .fields = (VMStateField[]) {
d2164ad3 586 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
a90db158
AK
587 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
588 env.nb_tlb,
589 vmstate_tlbemb_entry,
590 ppcemb_tlb_t),
591 /* 403 protection registers */
592 VMSTATE_END_OF_LIST()
593 },
5cd8cada
JQ
594 .subsections = (const VMStateDescription*[]) {
595 &vmstate_pbr403,
596 NULL
a90db158
AK
597 }
598};
599
600static const VMStateDescription vmstate_tlbmas_entry = {
601 .name = "cpu/tlbmas_entry",
602 .version_id = 1,
603 .minimum_version_id = 1,
3aff6c2f 604 .fields = (VMStateField[]) {
a90db158
AK
605 VMSTATE_UINT32(mas8, ppcmas_tlb_t),
606 VMSTATE_UINT32(mas1, ppcmas_tlb_t),
607 VMSTATE_UINT64(mas2, ppcmas_tlb_t),
608 VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
609 VMSTATE_END_OF_LIST()
610 },
611};
612
613static bool tlbmas_needed(void *opaque)
614{
615 PowerPCCPU *cpu = opaque;
616 CPUPPCState *env = &cpu->env;
617
618 return env->nb_tlb && (env->tlb_type == TLB_MAS);
619}
620
621static const VMStateDescription vmstate_tlbmas = {
622 .name = "cpu/tlbmas",
623 .version_id = 1,
624 .minimum_version_id = 1,
5cd8cada 625 .needed = tlbmas_needed,
3aff6c2f 626 .fields = (VMStateField[]) {
d2164ad3 627 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
a90db158
AK
628 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
629 env.nb_tlb,
630 vmstate_tlbmas_entry,
631 ppcmas_tlb_t),
632 VMSTATE_END_OF_LIST()
633 }
634};
635
d5fc133e
DG
636static bool compat_needed(void *opaque)
637{
638 PowerPCCPU *cpu = opaque;
639
640 assert(!(cpu->compat_pvr && !cpu->vhyp));
641 return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
642}
643
644static const VMStateDescription vmstate_compat = {
645 .name = "cpu/compat",
646 .version_id = 1,
647 .minimum_version_id = 1,
648 .needed = compat_needed,
649 .fields = (VMStateField[]) {
650 VMSTATE_UINT32(compat_pvr, PowerPCCPU),
651 VMSTATE_END_OF_LIST()
652 }
653};
654
a90db158
AK
655const VMStateDescription vmstate_ppc_cpu = {
656 .name = "cpu",
657 .version_id = 5,
658 .minimum_version_id = 5,
659 .minimum_version_id_old = 4,
660 .load_state_old = cpu_load_old,
661 .pre_save = cpu_pre_save,
662 .post_load = cpu_post_load,
3aff6c2f 663 .fields = (VMStateField[]) {
569be9f0 664 VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
a90db158
AK
665
666 /* User mode architected state */
667 VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
668#if !defined(TARGET_PPC64)
669 VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
670#endif
671 VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
672 VMSTATE_UINTTL(env.nip, PowerPCCPU),
673
674 /* SPRs */
675 VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
676 VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
677
678 /* Reservation */
679 VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
680
681 /* Supervisor mode architected state */
682 VMSTATE_UINTTL(env.msr, PowerPCCPU),
683
684 /* Internal state */
685 VMSTATE_UINTTL(env.hflags_nmsr, PowerPCCPU),
686 /* FIXME: access_type? */
687
688 /* Sanity checking */
146c11f1
DG
689 VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
690 VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
691 VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
692 cpu_pre_2_8_migration),
693 VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
a90db158
AK
694 VMSTATE_END_OF_LIST()
695 },
5cd8cada
JQ
696 .subsections = (const VMStateDescription*[]) {
697 &vmstate_fpu,
698 &vmstate_altivec,
699 &vmstate_vsx,
700 &vmstate_sr,
a90db158 701#ifdef TARGET_PPC64
5cd8cada
JQ
702 &vmstate_tm,
703 &vmstate_slb,
a90db158 704#endif /* TARGET_PPC64 */
5cd8cada
JQ
705 &vmstate_tlb6xx,
706 &vmstate_tlbemb,
707 &vmstate_tlbmas,
d5fc133e 708 &vmstate_compat,
5cd8cada 709 NULL
a90db158
AK
710 }
711};