]> git.proxmox.com Git - mirror_qemu.git/blame_incremental - qemu-doc.texi
Sun4m use 0 for nonexistent devices (Robert Reif)
[mirror_qemu.git] / qemu-doc.texi
... / ...
CommitLineData
1\input texinfo @c -*- texinfo -*-
2@c %**start of header
3@setfilename qemu-doc.info
4@settitle QEMU Emulator User Documentation
5@exampleindent 0
6@paragraphindent 0
7@c %**end of header
8
9@iftex
10@titlepage
11@sp 7
12@center @titlefont{QEMU Emulator}
13@sp 1
14@center @titlefont{User Documentation}
15@sp 3
16@end titlepage
17@end iftex
18
19@ifnottex
20@node Top
21@top
22
23@menu
24* Introduction::
25* Installation::
26* QEMU PC System emulator::
27* QEMU System emulator for non PC targets::
28* QEMU User space emulator::
29* compilation:: Compilation from the sources
30* Index::
31@end menu
32@end ifnottex
33
34@contents
35
36@node Introduction
37@chapter Introduction
38
39@menu
40* intro_features:: Features
41@end menu
42
43@node intro_features
44@section Features
45
46QEMU is a FAST! processor emulator using dynamic translation to
47achieve good emulation speed.
48
49QEMU has two operating modes:
50
51@itemize @minus
52
53@item
54Full system emulation. In this mode, QEMU emulates a full system (for
55example a PC), including one or several processors and various
56peripherals. It can be used to launch different Operating Systems
57without rebooting the PC or to debug system code.
58
59@item
60User mode emulation. In this mode, QEMU can launch
61processes compiled for one CPU on another CPU. It can be used to
62launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63to ease cross-compilation and cross-debugging.
64
65@end itemize
66
67QEMU can run without an host kernel driver and yet gives acceptable
68performance.
69
70For system emulation, the following hardware targets are supported:
71@itemize
72@item PC (x86 or x86_64 processor)
73@item ISA PC (old style PC without PCI bus)
74@item PREP (PowerPC processor)
75@item G3 BW PowerMac (PowerPC processor)
76@item Mac99 PowerMac (PowerPC processor, in progress)
77@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
79@item Malta board (32-bit and 64-bit MIPS processors)
80@item MIPS Magnum (64-bit MIPS processor)
81@item ARM Integrator/CP (ARM)
82@item ARM Versatile baseboard (ARM)
83@item ARM RealView Emulation baseboard (ARM)
84@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
85@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87@item Freescale MCF5208EVB (ColdFire V2).
88@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89@item Palm Tungsten|E PDA (OMAP310 processor)
90@item N800 and N810 tablets (OMAP2420 processor)
91@item MusicPal (MV88W8618 ARM processor)
92@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
93@item Siemens SX1 smartphone (OMAP310 processor)
94@end itemize
95
96For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
97
98@node Installation
99@chapter Installation
100
101If you want to compile QEMU yourself, see @ref{compilation}.
102
103@menu
104* install_linux:: Linux
105* install_windows:: Windows
106* install_mac:: Macintosh
107@end menu
108
109@node install_linux
110@section Linux
111
112If a precompiled package is available for your distribution - you just
113have to install it. Otherwise, see @ref{compilation}.
114
115@node install_windows
116@section Windows
117
118Download the experimental binary installer at
119@url{http://www.free.oszoo.org/@/download.html}.
120
121@node install_mac
122@section Mac OS X
123
124Download the experimental binary installer at
125@url{http://www.free.oszoo.org/@/download.html}.
126
127@node QEMU PC System emulator
128@chapter QEMU PC System emulator
129
130@menu
131* pcsys_introduction:: Introduction
132* pcsys_quickstart:: Quick Start
133* sec_invocation:: Invocation
134* pcsys_keys:: Keys
135* pcsys_monitor:: QEMU Monitor
136* disk_images:: Disk Images
137* pcsys_network:: Network emulation
138* direct_linux_boot:: Direct Linux Boot
139* pcsys_usb:: USB emulation
140* vnc_security:: VNC security
141* gdb_usage:: GDB usage
142* pcsys_os_specific:: Target OS specific information
143@end menu
144
145@node pcsys_introduction
146@section Introduction
147
148@c man begin DESCRIPTION
149
150The QEMU PC System emulator simulates the
151following peripherals:
152
153@itemize @minus
154@item
155i440FX host PCI bridge and PIIX3 PCI to ISA bridge
156@item
157Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
158extensions (hardware level, including all non standard modes).
159@item
160PS/2 mouse and keyboard
161@item
1622 PCI IDE interfaces with hard disk and CD-ROM support
163@item
164Floppy disk
165@item
166PCI/ISA PCI network adapters
167@item
168Serial ports
169@item
170Creative SoundBlaster 16 sound card
171@item
172ENSONIQ AudioPCI ES1370 sound card
173@item
174Intel 82801AA AC97 Audio compatible sound card
175@item
176Adlib(OPL2) - Yamaha YM3812 compatible chip
177@item
178Gravis Ultrasound GF1 sound card
179@item
180CS4231A compatible sound card
181@item
182PCI UHCI USB controller and a virtual USB hub.
183@end itemize
184
185SMP is supported with up to 255 CPUs.
186
187Note that adlib, ac97, gus and cs4231a are only available when QEMU
188was configured with --audio-card-list option containing the name(s) of
189required card(s).
190
191QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
192VGA BIOS.
193
194QEMU uses YM3812 emulation by Tatsuyuki Satoh.
195
196QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
197by Tibor "TS" Schütz.
198
199CS4231A is the chip used in Windows Sound System and GUSMAX products
200
201@c man end
202
203@node pcsys_quickstart
204@section Quick Start
205
206Download and uncompress the linux image (@file{linux.img}) and type:
207
208@example
209qemu linux.img
210@end example
211
212Linux should boot and give you a prompt.
213
214@node sec_invocation
215@section Invocation
216
217@example
218@c man begin SYNOPSIS
219usage: qemu [options] [@var{disk_image}]
220@c man end
221@end example
222
223@c man begin OPTIONS
224@var{disk_image} is a raw hard disk image for IDE hard disk 0.
225
226General options:
227@table @option
228@item -M @var{machine}
229Select the emulated @var{machine} (@code{-M ?} for list)
230
231@item -fda @var{file}
232@item -fdb @var{file}
233Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
234use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
235
236@item -hda @var{file}
237@item -hdb @var{file}
238@item -hdc @var{file}
239@item -hdd @var{file}
240Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
241
242@item -cdrom @var{file}
243Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
244@option{-cdrom} at the same time). You can use the host CD-ROM by
245using @file{/dev/cdrom} as filename (@pxref{host_drives}).
246
247@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
248
249Define a new drive. Valid options are:
250
251@table @code
252@item file=@var{file}
253This option defines which disk image (@pxref{disk_images}) to use with
254this drive. If the filename contains comma, you must double it
255(for instance, "file=my,,file" to use file "my,file").
256@item if=@var{interface}
257This option defines on which type on interface the drive is connected.
258Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
259@item bus=@var{bus},unit=@var{unit}
260These options define where is connected the drive by defining the bus number and
261the unit id.
262@item index=@var{index}
263This option defines where is connected the drive by using an index in the list
264of available connectors of a given interface type.
265@item media=@var{media}
266This option defines the type of the media: disk or cdrom.
267@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
268These options have the same definition as they have in @option{-hdachs}.
269@item snapshot=@var{snapshot}
270@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
271@item cache=@var{cache}
272@var{cache} is "none", "writeback", or "writethrough" and controls how the host cache is used to access block data.
273@item format=@var{format}
274Specify which disk @var{format} will be used rather than detecting
275the format. Can be used to specifiy format=raw to avoid interpreting
276an untrusted format header.
277@end table
278
279By default, writethrough caching is used for all block device. This means that
280the host page cache will be used to read and write data but write notification
281will be sent to the guest only when the data has been reported as written by
282the storage subsystem.
283
284Writeback caching will report data writes as completed as soon as the data is
285present in the host page cache. This is safe as long as you trust your host.
286If your host crashes or loses power, then the guest may experience data
287corruption. When using the @option{-snapshot} option, writeback caching is
288used by default.
289
290The host page can be avoided entirely with @option{cache=none}. This will
291attempt to do disk IO directly to the guests memory. QEMU may still perform
292an internal copy of the data.
293
294Some block drivers perform badly with @option{cache=writethrough}, most notably,
295qcow2. If performance is more important than correctness,
296@option{cache=writeback} should be used with qcow2. By default, if no explicit
297caching is specified for a qcow2 disk image, @option{cache=writeback} will be
298used. For all other disk types, @option{cache=writethrough} is the default.
299
300Instead of @option{-cdrom} you can use:
301@example
302qemu -drive file=file,index=2,media=cdrom
303@end example
304
305Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
306use:
307@example
308qemu -drive file=file,index=0,media=disk
309qemu -drive file=file,index=1,media=disk
310qemu -drive file=file,index=2,media=disk
311qemu -drive file=file,index=3,media=disk
312@end example
313
314You can connect a CDROM to the slave of ide0:
315@example
316qemu -drive file=file,if=ide,index=1,media=cdrom
317@end example
318
319If you don't specify the "file=" argument, you define an empty drive:
320@example
321qemu -drive if=ide,index=1,media=cdrom
322@end example
323
324You can connect a SCSI disk with unit ID 6 on the bus #0:
325@example
326qemu -drive file=file,if=scsi,bus=0,unit=6
327@end example
328
329Instead of @option{-fda}, @option{-fdb}, you can use:
330@example
331qemu -drive file=file,index=0,if=floppy
332qemu -drive file=file,index=1,if=floppy
333@end example
334
335By default, @var{interface} is "ide" and @var{index} is automatically
336incremented:
337@example
338qemu -drive file=a -drive file=b"
339@end example
340is interpreted like:
341@example
342qemu -hda a -hdb b
343@end example
344
345@item -boot [a|c|d|n]
346Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
347is the default.
348
349@item -snapshot
350Write to temporary files instead of disk image files. In this case,
351the raw disk image you use is not written back. You can however force
352the write back by pressing @key{C-a s} (@pxref{disk_images}).
353
354@item -no-fd-bootchk
355Disable boot signature checking for floppy disks in Bochs BIOS. It may
356be needed to boot from old floppy disks.
357
358@item -m @var{megs}
359Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB. Optionally,
360a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
361gigabytes respectively.
362
363@item -cpu @var{model}
364Select CPU model (-cpu ? for list and additional feature selection)
365
366@item -smp @var{n}
367Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
368CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
369to 4.
370
371@item -audio-help
372
373Will show the audio subsystem help: list of drivers, tunable
374parameters.
375
376@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
377
378Enable audio and selected sound hardware. Use ? to print all
379available sound hardware.
380
381@example
382qemu -soundhw sb16,adlib disk.img
383qemu -soundhw es1370 disk.img
384qemu -soundhw ac97 disk.img
385qemu -soundhw all disk.img
386qemu -soundhw ?
387@end example
388
389Note that Linux's i810_audio OSS kernel (for AC97) module might
390require manually specifying clocking.
391
392@example
393modprobe i810_audio clocking=48000
394@end example
395
396@item -localtime
397Set the real time clock to local time (the default is to UTC
398time). This option is needed to have correct date in MS-DOS or
399Windows.
400
401@item -startdate @var{date}
402Set the initial date of the real time clock. Valid formats for
403@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
404@code{2006-06-17}. The default value is @code{now}.
405
406@item -pidfile @var{file}
407Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
408from a script.
409
410@item -daemonize
411Daemonize the QEMU process after initialization. QEMU will not detach from
412standard IO until it is ready to receive connections on any of its devices.
413This option is a useful way for external programs to launch QEMU without having
414to cope with initialization race conditions.
415
416@item -win2k-hack
417Use it when installing Windows 2000 to avoid a disk full bug. After
418Windows 2000 is installed, you no longer need this option (this option
419slows down the IDE transfers).
420
421@item -option-rom @var{file}
422Load the contents of @var{file} as an option ROM.
423This option is useful to load things like EtherBoot.
424
425@item -name @var{name}
426Sets the @var{name} of the guest.
427This name will be displayed in the SDL window caption.
428The @var{name} will also be used for the VNC server.
429
430@end table
431
432Display options:
433@table @option
434
435@item -nographic
436
437Normally, QEMU uses SDL to display the VGA output. With this option,
438you can totally disable graphical output so that QEMU is a simple
439command line application. The emulated serial port is redirected on
440the console. Therefore, you can still use QEMU to debug a Linux kernel
441with a serial console.
442
443@item -curses
444
445Normally, QEMU uses SDL to display the VGA output. With this option,
446QEMU can display the VGA output when in text mode using a
447curses/ncurses interface. Nothing is displayed in graphical mode.
448
449@item -no-frame
450
451Do not use decorations for SDL windows and start them using the whole
452available screen space. This makes the using QEMU in a dedicated desktop
453workspace more convenient.
454
455@item -no-quit
456
457Disable SDL window close capability.
458
459@item -full-screen
460Start in full screen.
461
462@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
463
464Normally, QEMU uses SDL to display the VGA output. With this option,
465you can have QEMU listen on VNC display @var{display} and redirect the VGA
466display over the VNC session. It is very useful to enable the usb
467tablet device when using this option (option @option{-usbdevice
468tablet}). When using the VNC display, you must use the @option{-k}
469parameter to set the keyboard layout if you are not using en-us. Valid
470syntax for the @var{display} is
471
472@table @code
473
474@item @var{host}:@var{d}
475
476TCP connections will only be allowed from @var{host} on display @var{d}.
477By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
478be omitted in which case the server will accept connections from any host.
479
480@item @code{unix}:@var{path}
481
482Connections will be allowed over UNIX domain sockets where @var{path} is the
483location of a unix socket to listen for connections on.
484
485@item none
486
487VNC is initialized but not started. The monitor @code{change} command
488can be used to later start the VNC server.
489
490@end table
491
492Following the @var{display} value there may be one or more @var{option} flags
493separated by commas. Valid options are
494
495@table @code
496
497@item reverse
498
499Connect to a listening VNC client via a ``reverse'' connection. The
500client is specified by the @var{display}. For reverse network
501connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
502is a TCP port number, not a display number.
503
504@item password
505
506Require that password based authentication is used for client connections.
507The password must be set separately using the @code{change} command in the
508@ref{pcsys_monitor}
509
510@item tls
511
512Require that client use TLS when communicating with the VNC server. This
513uses anonymous TLS credentials so is susceptible to a man-in-the-middle
514attack. It is recommended that this option be combined with either the
515@var{x509} or @var{x509verify} options.
516
517@item x509=@var{/path/to/certificate/dir}
518
519Valid if @option{tls} is specified. Require that x509 credentials are used
520for negotiating the TLS session. The server will send its x509 certificate
521to the client. It is recommended that a password be set on the VNC server
522to provide authentication of the client when this is used. The path following
523this option specifies where the x509 certificates are to be loaded from.
524See the @ref{vnc_security} section for details on generating certificates.
525
526@item x509verify=@var{/path/to/certificate/dir}
527
528Valid if @option{tls} is specified. Require that x509 credentials are used
529for negotiating the TLS session. The server will send its x509 certificate
530to the client, and request that the client send its own x509 certificate.
531The server will validate the client's certificate against the CA certificate,
532and reject clients when validation fails. If the certificate authority is
533trusted, this is a sufficient authentication mechanism. You may still wish
534to set a password on the VNC server as a second authentication layer. The
535path following this option specifies where the x509 certificates are to
536be loaded from. See the @ref{vnc_security} section for details on generating
537certificates.
538
539@end table
540
541@item -k @var{language}
542
543Use keyboard layout @var{language} (for example @code{fr} for
544French). This option is only needed where it is not easy to get raw PC
545keycodes (e.g. on Macs, with some X11 servers or with a VNC
546display). You don't normally need to use it on PC/Linux or PC/Windows
547hosts.
548
549The available layouts are:
550@example
551ar de-ch es fo fr-ca hu ja mk no pt-br sv
552da en-gb et fr fr-ch is lt nl pl ru th
553de en-us fi fr-be hr it lv nl-be pt sl tr
554@end example
555
556The default is @code{en-us}.
557
558@end table
559
560USB options:
561@table @option
562
563@item -usb
564Enable the USB driver (will be the default soon)
565
566@item -usbdevice @var{devname}
567Add the USB device @var{devname}. @xref{usb_devices}.
568
569@table @code
570
571@item mouse
572Virtual Mouse. This will override the PS/2 mouse emulation when activated.
573
574@item tablet
575Pointer device that uses absolute coordinates (like a touchscreen). This
576means qemu is able to report the mouse position without having to grab the
577mouse. Also overrides the PS/2 mouse emulation when activated.
578
579@item disk:[format=@var{format}]:file
580Mass storage device based on file. The optional @var{format} argument
581will be used rather than detecting the format. Can be used to specifiy
582format=raw to avoid interpreting an untrusted format header.
583
584@item host:bus.addr
585Pass through the host device identified by bus.addr (Linux only).
586
587@item host:vendor_id:product_id
588Pass through the host device identified by vendor_id:product_id (Linux only).
589
590@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
591Serial converter to host character device @var{dev}, see @code{-serial} for the
592available devices.
593
594@item braille
595Braille device. This will use BrlAPI to display the braille output on a real
596or fake device.
597
598@item net:options
599Network adapter that supports CDC ethernet and RNDIS protocols.
600
601@end table
602
603@end table
604
605Network options:
606
607@table @option
608
609@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
610Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
611= 0 is the default). The NIC is an ne2k_pci by default on the PC
612target. Optionally, the MAC address can be changed. If no
613@option{-net} option is specified, a single NIC is created.
614Qemu can emulate several different models of network card.
615Valid values for @var{type} are
616@code{i82551}, @code{i82557b}, @code{i82559er},
617@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
618@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
619Not all devices are supported on all targets. Use -net nic,model=?
620for a list of available devices for your target.
621
622@item -net user[,vlan=@var{n}][,hostname=@var{name}]
623Use the user mode network stack which requires no administrator
624privilege to run. @option{hostname=name} can be used to specify the client
625hostname reported by the builtin DHCP server.
626
627@item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}]
628Connect the host TAP network interface @var{name} to VLAN @var{n}, use
629the network script @var{file} to configure it and the network script
630@var{dfile} to deconfigure it. If @var{name} is not provided, the OS
631automatically provides one. @option{fd}=@var{h} can be used to specify
632the handle of an already opened host TAP interface. The default network
633configure script is @file{/etc/qemu-ifup} and the default network
634deconfigure script is @file{/etc/qemu-ifdown}. Use @option{script=no}
635or @option{downscript=no} to disable script execution. Example:
636
637@example
638qemu linux.img -net nic -net tap
639@end example
640
641More complicated example (two NICs, each one connected to a TAP device)
642@example
643qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
644 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
645@end example
646
647
648@item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
649
650Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
651machine using a TCP socket connection. If @option{listen} is
652specified, QEMU waits for incoming connections on @var{port}
653(@var{host} is optional). @option{connect} is used to connect to
654another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
655specifies an already opened TCP socket.
656
657Example:
658@example
659# launch a first QEMU instance
660qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
661 -net socket,listen=:1234
662# connect the VLAN 0 of this instance to the VLAN 0
663# of the first instance
664qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
665 -net socket,connect=127.0.0.1:1234
666@end example
667
668@item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
669
670Create a VLAN @var{n} shared with another QEMU virtual
671machines using a UDP multicast socket, effectively making a bus for
672every QEMU with same multicast address @var{maddr} and @var{port}.
673NOTES:
674@enumerate
675@item
676Several QEMU can be running on different hosts and share same bus (assuming
677correct multicast setup for these hosts).
678@item
679mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
680@url{http://user-mode-linux.sf.net}.
681@item
682Use @option{fd=h} to specify an already opened UDP multicast socket.
683@end enumerate
684
685Example:
686@example
687# launch one QEMU instance
688qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
689 -net socket,mcast=230.0.0.1:1234
690# launch another QEMU instance on same "bus"
691qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
692 -net socket,mcast=230.0.0.1:1234
693# launch yet another QEMU instance on same "bus"
694qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
695 -net socket,mcast=230.0.0.1:1234
696@end example
697
698Example (User Mode Linux compat.):
699@example
700# launch QEMU instance (note mcast address selected
701# is UML's default)
702qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
703 -net socket,mcast=239.192.168.1:1102
704# launch UML
705/path/to/linux ubd0=/path/to/root_fs eth0=mcast
706@end example
707
708@item -net vde[,vlan=@var{n}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
709Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
710listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
711and MODE @var{octalmode} to change default ownership and permissions for
712communication port. This option is available only if QEMU has been compiled
713with vde support enabled.
714
715Example:
716@example
717# launch vde switch
718vde_switch -F -sock /tmp/myswitch
719# launch QEMU instance
720qemu linux.img -net nic -net vde,sock=/tmp/myswitch
721@end example
722
723@item -net none
724Indicate that no network devices should be configured. It is used to
725override the default configuration (@option{-net nic -net user}) which
726is activated if no @option{-net} options are provided.
727
728@item -tftp @var{dir}
729When using the user mode network stack, activate a built-in TFTP
730server. The files in @var{dir} will be exposed as the root of a TFTP server.
731The TFTP client on the guest must be configured in binary mode (use the command
732@code{bin} of the Unix TFTP client). The host IP address on the guest is as
733usual 10.0.2.2.
734
735@item -bootp @var{file}
736When using the user mode network stack, broadcast @var{file} as the BOOTP
737filename. In conjunction with @option{-tftp}, this can be used to network boot
738a guest from a local directory.
739
740Example (using pxelinux):
741@example
742qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
743@end example
744
745@item -smb @var{dir}
746When using the user mode network stack, activate a built-in SMB
747server so that Windows OSes can access to the host files in @file{@var{dir}}
748transparently.
749
750In the guest Windows OS, the line:
751@example
75210.0.2.4 smbserver
753@end example
754must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
755or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
756
757Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
758
759Note that a SAMBA server must be installed on the host OS in
760@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
7612.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
762
763@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
764
765When using the user mode network stack, redirect incoming TCP or UDP
766connections to the host port @var{host-port} to the guest
767@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
768is not specified, its value is 10.0.2.15 (default address given by the
769built-in DHCP server).
770
771For example, to redirect host X11 connection from screen 1 to guest
772screen 0, use the following:
773
774@example
775# on the host
776qemu -redir tcp:6001::6000 [...]
777# this host xterm should open in the guest X11 server
778xterm -display :1
779@end example
780
781To redirect telnet connections from host port 5555 to telnet port on
782the guest, use the following:
783
784@example
785# on the host
786qemu -redir tcp:5555::23 [...]
787telnet localhost 5555
788@end example
789
790Then when you use on the host @code{telnet localhost 5555}, you
791connect to the guest telnet server.
792
793@end table
794
795Bluetooth(R) options:
796@table @option
797
798@item -bt hci[...]
799Defines the function of the corresponding Bluetooth HCI. -bt options
800are matched with the HCIs present in the chosen machine type. For
801example when emulating a machine with only one HCI built into it, only
802the first @code{-bt hci[...]} option is valid and defines the HCI's
803logic. The Transport Layer is decided by the machine type. Currently
804the machines @code{n800} and @code{n810} have one HCI and all other
805machines have none.
806
807@anchor{bt-hcis}
808The following three types are recognized:
809
810@table @code
811@item -bt hci,null
812(default) The corresponding Bluetooth HCI assumes no internal logic
813and will not respond to any HCI commands or emit events.
814
815@item -bt hci,host[:@var{id}]
816(@code{bluez} only) The corresponding HCI passes commands / events
817to / from the physical HCI identified by the name @var{id} (default:
818@code{hci0}) on the computer running QEMU. Only available on @code{bluez}
819capable systems like Linux.
820
821@item -bt hci[,vlan=@var{n}]
822Add a virtual, standard HCI that will participate in the Bluetooth
823scatternet @var{n} (default @code{0}). Similarly to @option{-net}
824VLANs, devices inside a bluetooth network @var{n} can only communicate
825with other devices in the same network (scatternet).
826@end table
827
828@item -bt vhci[,vlan=@var{n}]
829(Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
830to the host bluetooth stack instead of to the emulated target. This
831allows the host and target machines to participate in a common scatternet
832and communicate. Requires the Linux @code{vhci} driver installed. Can
833be used as following:
834
835@example
836qemu [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
837@end example
838
839@item -bt device:@var{dev}[,vlan=@var{n}]
840Emulate a bluetooth device @var{dev} and place it in network @var{n}
841(default @code{0}). QEMU can only emulate one type of bluetooth devices
842currently:
843
844@table @code
845@item keyboard
846Virtual wireless keyboard implementing the HIDP bluetooth profile.
847@end table
848
849@end table
850
851Linux boot specific: When using these options, you can use a given
852Linux kernel without installing it in the disk image. It can be useful
853for easier testing of various kernels.
854
855@table @option
856
857@item -kernel @var{bzImage}
858Use @var{bzImage} as kernel image.
859
860@item -append @var{cmdline}
861Use @var{cmdline} as kernel command line
862
863@item -initrd @var{file}
864Use @var{file} as initial ram disk.
865
866@end table
867
868Debug/Expert options:
869@table @option
870
871@item -serial @var{dev}
872Redirect the virtual serial port to host character device
873@var{dev}. The default device is @code{vc} in graphical mode and
874@code{stdio} in non graphical mode.
875
876This option can be used several times to simulate up to 4 serials
877ports.
878
879Use @code{-serial none} to disable all serial ports.
880
881Available character devices are:
882@table @code
883@item vc[:WxH]
884Virtual console. Optionally, a width and height can be given in pixel with
885@example
886vc:800x600
887@end example
888It is also possible to specify width or height in characters:
889@example
890vc:80Cx24C
891@end example
892@item pty
893[Linux only] Pseudo TTY (a new PTY is automatically allocated)
894@item none
895No device is allocated.
896@item null
897void device
898@item /dev/XXX
899[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
900parameters are set according to the emulated ones.
901@item /dev/parport@var{N}
902[Linux only, parallel port only] Use host parallel port
903@var{N}. Currently SPP and EPP parallel port features can be used.
904@item file:@var{filename}
905Write output to @var{filename}. No character can be read.
906@item stdio
907[Unix only] standard input/output
908@item pipe:@var{filename}
909name pipe @var{filename}
910@item COM@var{n}
911[Windows only] Use host serial port @var{n}
912@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
913This implements UDP Net Console.
914When @var{remote_host} or @var{src_ip} are not specified
915they default to @code{0.0.0.0}.
916When not using a specified @var{src_port} a random port is automatically chosen.
917
918If you just want a simple readonly console you can use @code{netcat} or
919@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
920@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
921will appear in the netconsole session.
922
923If you plan to send characters back via netconsole or you want to stop
924and start qemu a lot of times, you should have qemu use the same
925source port each time by using something like @code{-serial
926udp::4555@@:4556} to qemu. Another approach is to use a patched
927version of netcat which can listen to a TCP port and send and receive
928characters via udp. If you have a patched version of netcat which
929activates telnet remote echo and single char transfer, then you can
930use the following options to step up a netcat redirector to allow
931telnet on port 5555 to access the qemu port.
932@table @code
933@item Qemu Options:
934-serial udp::4555@@:4556
935@item netcat options:
936-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
937@item telnet options:
938localhost 5555
939@end table
940
941
942@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
943The TCP Net Console has two modes of operation. It can send the serial
944I/O to a location or wait for a connection from a location. By default
945the TCP Net Console is sent to @var{host} at the @var{port}. If you use
946the @var{server} option QEMU will wait for a client socket application
947to connect to the port before continuing, unless the @code{nowait}
948option was specified. The @code{nodelay} option disables the Nagle buffering
949algorithm. If @var{host} is omitted, 0.0.0.0 is assumed. Only
950one TCP connection at a time is accepted. You can use @code{telnet} to
951connect to the corresponding character device.
952@table @code
953@item Example to send tcp console to 192.168.0.2 port 4444
954-serial tcp:192.168.0.2:4444
955@item Example to listen and wait on port 4444 for connection
956-serial tcp::4444,server
957@item Example to not wait and listen on ip 192.168.0.100 port 4444
958-serial tcp:192.168.0.100:4444,server,nowait
959@end table
960
961@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
962The telnet protocol is used instead of raw tcp sockets. The options
963work the same as if you had specified @code{-serial tcp}. The
964difference is that the port acts like a telnet server or client using
965telnet option negotiation. This will also allow you to send the
966MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
967sequence. Typically in unix telnet you do it with Control-] and then
968type "send break" followed by pressing the enter key.
969
970@item unix:@var{path}[,server][,nowait]
971A unix domain socket is used instead of a tcp socket. The option works the
972same as if you had specified @code{-serial tcp} except the unix domain socket
973@var{path} is used for connections.
974
975@item mon:@var{dev_string}
976This is a special option to allow the monitor to be multiplexed onto
977another serial port. The monitor is accessed with key sequence of
978@key{Control-a} and then pressing @key{c}. See monitor access
979@ref{pcsys_keys} in the -nographic section for more keys.
980@var{dev_string} should be any one of the serial devices specified
981above. An example to multiplex the monitor onto a telnet server
982listening on port 4444 would be:
983@table @code
984@item -serial mon:telnet::4444,server,nowait
985@end table
986
987@item braille
988Braille device. This will use BrlAPI to display the braille output on a real
989or fake device.
990
991@end table
992
993@item -parallel @var{dev}
994Redirect the virtual parallel port to host device @var{dev} (same
995devices as the serial port). On Linux hosts, @file{/dev/parportN} can
996be used to use hardware devices connected on the corresponding host
997parallel port.
998
999This option can be used several times to simulate up to 3 parallel
1000ports.
1001
1002Use @code{-parallel none} to disable all parallel ports.
1003
1004@item -monitor @var{dev}
1005Redirect the monitor to host device @var{dev} (same devices as the
1006serial port).
1007The default device is @code{vc} in graphical mode and @code{stdio} in
1008non graphical mode.
1009
1010@item -echr numeric_ascii_value
1011Change the escape character used for switching to the monitor when using
1012monitor and serial sharing. The default is @code{0x01} when using the
1013@code{-nographic} option. @code{0x01} is equal to pressing
1014@code{Control-a}. You can select a different character from the ascii
1015control keys where 1 through 26 map to Control-a through Control-z. For
1016instance you could use the either of the following to change the escape
1017character to Control-t.
1018@table @code
1019@item -echr 0x14
1020@item -echr 20
1021@end table
1022
1023@item -s
1024Wait gdb connection to port 1234 (@pxref{gdb_usage}).
1025@item -p @var{port}
1026Change gdb connection port. @var{port} can be either a decimal number
1027to specify a TCP port, or a host device (same devices as the serial port).
1028@item -S
1029Do not start CPU at startup (you must type 'c' in the monitor).
1030@item -d
1031Output log in /tmp/qemu.log
1032@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
1033Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
1034@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
1035translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
1036all those parameters. This option is useful for old MS-DOS disk
1037images.
1038
1039@item -L path
1040Set the directory for the BIOS, VGA BIOS and keymaps.
1041
1042@item -vga @var{type}
1043Select type of VGA card to emulate. Valid values for @var{type} are
1044@table @code
1045@item cirrus
1046Cirrus Logic GD5446 Video card. All Windows versions starting from
1047Windows 95 should recognize and use this graphic card. For optimal
1048performances, use 16 bit color depth in the guest and the host OS.
1049(This one is the default)
1050@item std
1051Standard VGA card with Bochs VBE extensions. If your guest OS
1052supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1053to use high resolution modes (>= 1280x1024x16) then you should use
1054this option.
1055@item vmware
1056VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1057recent XFree86/XOrg server or Windows guest with a driver for this
1058card.
1059@end table
1060
1061@item -no-acpi
1062Disable ACPI (Advanced Configuration and Power Interface) support. Use
1063it if your guest OS complains about ACPI problems (PC target machine
1064only).
1065
1066@item -no-reboot
1067Exit instead of rebooting.
1068
1069@item -no-shutdown
1070Don't exit QEMU on guest shutdown, but instead only stop the emulation.
1071This allows for instance switching to monitor to commit changes to the
1072disk image.
1073
1074@item -loadvm file
1075Start right away with a saved state (@code{loadvm} in monitor)
1076
1077@item -semihosting
1078Enable semihosting syscall emulation (ARM and M68K target machines only).
1079
1080On ARM this implements the "Angel" interface.
1081On M68K this implements the "ColdFire GDB" interface used by libgloss.
1082
1083Note that this allows guest direct access to the host filesystem,
1084so should only be used with trusted guest OS.
1085
1086@item -icount [N|auto]
1087Enable virtual instruction counter. The virtual cpu will execute one
1088instruction every 2^N ns of virtual time. If @code{auto} is specified
1089then the virtual cpu speed will be automatically adjusted to keep virtual
1090time within a few seconds of real time.
1091
1092Note that while this option can give deterministic behavior, it does not
1093provide cycle accurate emulation. Modern CPUs contain superscalar out of
1094order cores with complex cache hierarchies. The number of instructions
1095executed often has little or no correlation with actual performance.
1096@end table
1097
1098@c man end
1099
1100@node pcsys_keys
1101@section Keys
1102
1103@c man begin OPTIONS
1104
1105During the graphical emulation, you can use the following keys:
1106@table @key
1107@item Ctrl-Alt-f
1108Toggle full screen
1109
1110@item Ctrl-Alt-n
1111Switch to virtual console 'n'. Standard console mappings are:
1112@table @emph
1113@item 1
1114Target system display
1115@item 2
1116Monitor
1117@item 3
1118Serial port
1119@end table
1120
1121@item Ctrl-Alt
1122Toggle mouse and keyboard grab.
1123@end table
1124
1125In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
1126@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
1127
1128During emulation, if you are using the @option{-nographic} option, use
1129@key{Ctrl-a h} to get terminal commands:
1130
1131@table @key
1132@item Ctrl-a h
1133Print this help
1134@item Ctrl-a x
1135Exit emulator
1136@item Ctrl-a s
1137Save disk data back to file (if -snapshot)
1138@item Ctrl-a t
1139toggle console timestamps
1140@item Ctrl-a b
1141Send break (magic sysrq in Linux)
1142@item Ctrl-a c
1143Switch between console and monitor
1144@item Ctrl-a Ctrl-a
1145Send Ctrl-a
1146@end table
1147@c man end
1148
1149@ignore
1150
1151@c man begin SEEALSO
1152The HTML documentation of QEMU for more precise information and Linux
1153user mode emulator invocation.
1154@c man end
1155
1156@c man begin AUTHOR
1157Fabrice Bellard
1158@c man end
1159
1160@end ignore
1161
1162@node pcsys_monitor
1163@section QEMU Monitor
1164
1165The QEMU monitor is used to give complex commands to the QEMU
1166emulator. You can use it to:
1167
1168@itemize @minus
1169
1170@item
1171Remove or insert removable media images
1172(such as CD-ROM or floppies).
1173
1174@item
1175Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1176from a disk file.
1177
1178@item Inspect the VM state without an external debugger.
1179
1180@end itemize
1181
1182@subsection Commands
1183
1184The following commands are available:
1185
1186@table @option
1187
1188@item help or ? [@var{cmd}]
1189Show the help for all commands or just for command @var{cmd}.
1190
1191@item commit
1192Commit changes to the disk images (if -snapshot is used).
1193
1194@item info @var{subcommand}
1195Show various information about the system state.
1196
1197@table @option
1198@item info network
1199show the various VLANs and the associated devices
1200@item info block
1201show the block devices
1202@item info registers
1203show the cpu registers
1204@item info history
1205show the command line history
1206@item info pci
1207show emulated PCI device
1208@item info usb
1209show USB devices plugged on the virtual USB hub
1210@item info usbhost
1211show all USB host devices
1212@item info capture
1213show information about active capturing
1214@item info snapshots
1215show list of VM snapshots
1216@item info mice
1217show which guest mouse is receiving events
1218@end table
1219
1220@item q or quit
1221Quit the emulator.
1222
1223@item eject [-f] @var{device}
1224Eject a removable medium (use -f to force it).
1225
1226@item change @var{device} @var{setting}
1227
1228Change the configuration of a device.
1229
1230@table @option
1231@item change @var{diskdevice} @var{filename}
1232Change the medium for a removable disk device to point to @var{filename}. eg
1233
1234@example
1235(qemu) change ide1-cd0 /path/to/some.iso
1236@end example
1237
1238@item change vnc @var{display},@var{options}
1239Change the configuration of the VNC server. The valid syntax for @var{display}
1240and @var{options} are described at @ref{sec_invocation}. eg
1241
1242@example
1243(qemu) change vnc localhost:1
1244@end example
1245
1246@item change vnc password [@var{password}]
1247
1248Change the password associated with the VNC server. If the new password is not
1249supplied, the monitor will prompt for it to be entered. VNC passwords are only
1250significant up to 8 letters. eg
1251
1252@example
1253(qemu) change vnc password
1254Password: ********
1255@end example
1256
1257@end table
1258
1259@item screendump @var{filename}
1260Save screen into PPM image @var{filename}.
1261
1262@item mouse_move @var{dx} @var{dy} [@var{dz}]
1263Move the active mouse to the specified coordinates @var{dx} @var{dy}
1264with optional scroll axis @var{dz}.
1265
1266@item mouse_button @var{val}
1267Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1268
1269@item mouse_set @var{index}
1270Set which mouse device receives events at given @var{index}, index
1271can be obtained with
1272@example
1273info mice
1274@end example
1275
1276@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1277Capture audio into @var{filename}. Using sample rate @var{frequency}
1278bits per sample @var{bits} and number of channels @var{channels}.
1279
1280Defaults:
1281@itemize @minus
1282@item Sample rate = 44100 Hz - CD quality
1283@item Bits = 16
1284@item Number of channels = 2 - Stereo
1285@end itemize
1286
1287@item stopcapture @var{index}
1288Stop capture with a given @var{index}, index can be obtained with
1289@example
1290info capture
1291@end example
1292
1293@item log @var{item1}[,...]
1294Activate logging of the specified items to @file{/tmp/qemu.log}.
1295
1296@item savevm [@var{tag}|@var{id}]
1297Create a snapshot of the whole virtual machine. If @var{tag} is
1298provided, it is used as human readable identifier. If there is already
1299a snapshot with the same tag or ID, it is replaced. More info at
1300@ref{vm_snapshots}.
1301
1302@item loadvm @var{tag}|@var{id}
1303Set the whole virtual machine to the snapshot identified by the tag
1304@var{tag} or the unique snapshot ID @var{id}.
1305
1306@item delvm @var{tag}|@var{id}
1307Delete the snapshot identified by @var{tag} or @var{id}.
1308
1309@item stop
1310Stop emulation.
1311
1312@item c or cont
1313Resume emulation.
1314
1315@item gdbserver [@var{port}]
1316Start gdbserver session (default @var{port}=1234)
1317
1318@item x/fmt @var{addr}
1319Virtual memory dump starting at @var{addr}.
1320
1321@item xp /@var{fmt} @var{addr}
1322Physical memory dump starting at @var{addr}.
1323
1324@var{fmt} is a format which tells the command how to format the
1325data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1326
1327@table @var
1328@item count
1329is the number of items to be dumped.
1330
1331@item format
1332can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1333c (char) or i (asm instruction).
1334
1335@item size
1336can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1337@code{h} or @code{w} can be specified with the @code{i} format to
1338respectively select 16 or 32 bit code instruction size.
1339
1340@end table
1341
1342Examples:
1343@itemize
1344@item
1345Dump 10 instructions at the current instruction pointer:
1346@example
1347(qemu) x/10i $eip
13480x90107063: ret
13490x90107064: sti
13500x90107065: lea 0x0(%esi,1),%esi
13510x90107069: lea 0x0(%edi,1),%edi
13520x90107070: ret
13530x90107071: jmp 0x90107080
13540x90107073: nop
13550x90107074: nop
13560x90107075: nop
13570x90107076: nop
1358@end example
1359
1360@item
1361Dump 80 16 bit values at the start of the video memory.
1362@smallexample
1363(qemu) xp/80hx 0xb8000
13640x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
13650x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
13660x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
13670x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
13680x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
13690x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
13700x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
13710x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
13720x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
13730x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1374@end smallexample
1375@end itemize
1376
1377@item p or print/@var{fmt} @var{expr}
1378
1379Print expression value. Only the @var{format} part of @var{fmt} is
1380used.
1381
1382@item sendkey @var{keys}
1383
1384Send @var{keys} to the emulator. @var{keys} could be the name of the
1385key or @code{#} followed by the raw value in either decimal or hexadecimal
1386format. Use @code{-} to press several keys simultaneously. Example:
1387@example
1388sendkey ctrl-alt-f1
1389@end example
1390
1391This command is useful to send keys that your graphical user interface
1392intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1393
1394@item system_reset
1395
1396Reset the system.
1397
1398@item boot_set @var{bootdevicelist}
1399
1400Define new values for the boot device list. Those values will override
1401the values specified on the command line through the @code{-boot} option.
1402
1403The values that can be specified here depend on the machine type, but are
1404the same that can be specified in the @code{-boot} command line option.
1405
1406@item usb_add @var{devname}
1407
1408Add the USB device @var{devname}. For details of available devices see
1409@ref{usb_devices}
1410
1411@item usb_del @var{devname}
1412
1413Remove the USB device @var{devname} from the QEMU virtual USB
1414hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1415command @code{info usb} to see the devices you can remove.
1416
1417@end table
1418
1419@subsection Integer expressions
1420
1421The monitor understands integers expressions for every integer
1422argument. You can use register names to get the value of specifics
1423CPU registers by prefixing them with @emph{$}.
1424
1425@node disk_images
1426@section Disk Images
1427
1428Since version 0.6.1, QEMU supports many disk image formats, including
1429growable disk images (their size increase as non empty sectors are
1430written), compressed and encrypted disk images. Version 0.8.3 added
1431the new qcow2 disk image format which is essential to support VM
1432snapshots.
1433
1434@menu
1435* disk_images_quickstart:: Quick start for disk image creation
1436* disk_images_snapshot_mode:: Snapshot mode
1437* vm_snapshots:: VM snapshots
1438* qemu_img_invocation:: qemu-img Invocation
1439* qemu_nbd_invocation:: qemu-nbd Invocation
1440* host_drives:: Using host drives
1441* disk_images_fat_images:: Virtual FAT disk images
1442* disk_images_nbd:: NBD access
1443@end menu
1444
1445@node disk_images_quickstart
1446@subsection Quick start for disk image creation
1447
1448You can create a disk image with the command:
1449@example
1450qemu-img create myimage.img mysize
1451@end example
1452where @var{myimage.img} is the disk image filename and @var{mysize} is its
1453size in kilobytes. You can add an @code{M} suffix to give the size in
1454megabytes and a @code{G} suffix for gigabytes.
1455
1456See @ref{qemu_img_invocation} for more information.
1457
1458@node disk_images_snapshot_mode
1459@subsection Snapshot mode
1460
1461If you use the option @option{-snapshot}, all disk images are
1462considered as read only. When sectors in written, they are written in
1463a temporary file created in @file{/tmp}. You can however force the
1464write back to the raw disk images by using the @code{commit} monitor
1465command (or @key{C-a s} in the serial console).
1466
1467@node vm_snapshots
1468@subsection VM snapshots
1469
1470VM snapshots are snapshots of the complete virtual machine including
1471CPU state, RAM, device state and the content of all the writable
1472disks. In order to use VM snapshots, you must have at least one non
1473removable and writable block device using the @code{qcow2} disk image
1474format. Normally this device is the first virtual hard drive.
1475
1476Use the monitor command @code{savevm} to create a new VM snapshot or
1477replace an existing one. A human readable name can be assigned to each
1478snapshot in addition to its numerical ID.
1479
1480Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1481a VM snapshot. @code{info snapshots} lists the available snapshots
1482with their associated information:
1483
1484@example
1485(qemu) info snapshots
1486Snapshot devices: hda
1487Snapshot list (from hda):
1488ID TAG VM SIZE DATE VM CLOCK
14891 start 41M 2006-08-06 12:38:02 00:00:14.954
14902 40M 2006-08-06 12:43:29 00:00:18.633
14913 msys 40M 2006-08-06 12:44:04 00:00:23.514
1492@end example
1493
1494A VM snapshot is made of a VM state info (its size is shown in
1495@code{info snapshots}) and a snapshot of every writable disk image.
1496The VM state info is stored in the first @code{qcow2} non removable
1497and writable block device. The disk image snapshots are stored in
1498every disk image. The size of a snapshot in a disk image is difficult
1499to evaluate and is not shown by @code{info snapshots} because the
1500associated disk sectors are shared among all the snapshots to save
1501disk space (otherwise each snapshot would need a full copy of all the
1502disk images).
1503
1504When using the (unrelated) @code{-snapshot} option
1505(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1506but they are deleted as soon as you exit QEMU.
1507
1508VM snapshots currently have the following known limitations:
1509@itemize
1510@item
1511They cannot cope with removable devices if they are removed or
1512inserted after a snapshot is done.
1513@item
1514A few device drivers still have incomplete snapshot support so their
1515state is not saved or restored properly (in particular USB).
1516@end itemize
1517
1518@node qemu_img_invocation
1519@subsection @code{qemu-img} Invocation
1520
1521@include qemu-img.texi
1522
1523@node qemu_nbd_invocation
1524@subsection @code{qemu-nbd} Invocation
1525
1526@include qemu-nbd.texi
1527
1528@node host_drives
1529@subsection Using host drives
1530
1531In addition to disk image files, QEMU can directly access host
1532devices. We describe here the usage for QEMU version >= 0.8.3.
1533
1534@subsubsection Linux
1535
1536On Linux, you can directly use the host device filename instead of a
1537disk image filename provided you have enough privileges to access
1538it. For example, use @file{/dev/cdrom} to access to the CDROM or
1539@file{/dev/fd0} for the floppy.
1540
1541@table @code
1542@item CD
1543You can specify a CDROM device even if no CDROM is loaded. QEMU has
1544specific code to detect CDROM insertion or removal. CDROM ejection by
1545the guest OS is supported. Currently only data CDs are supported.
1546@item Floppy
1547You can specify a floppy device even if no floppy is loaded. Floppy
1548removal is currently not detected accurately (if you change floppy
1549without doing floppy access while the floppy is not loaded, the guest
1550OS will think that the same floppy is loaded).
1551@item Hard disks
1552Hard disks can be used. Normally you must specify the whole disk
1553(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1554see it as a partitioned disk. WARNING: unless you know what you do, it
1555is better to only make READ-ONLY accesses to the hard disk otherwise
1556you may corrupt your host data (use the @option{-snapshot} command
1557line option or modify the device permissions accordingly).
1558@end table
1559
1560@subsubsection Windows
1561
1562@table @code
1563@item CD
1564The preferred syntax is the drive letter (e.g. @file{d:}). The
1565alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1566supported as an alias to the first CDROM drive.
1567
1568Currently there is no specific code to handle removable media, so it
1569is better to use the @code{change} or @code{eject} monitor commands to
1570change or eject media.
1571@item Hard disks
1572Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1573where @var{N} is the drive number (0 is the first hard disk).
1574
1575WARNING: unless you know what you do, it is better to only make
1576READ-ONLY accesses to the hard disk otherwise you may corrupt your
1577host data (use the @option{-snapshot} command line so that the
1578modifications are written in a temporary file).
1579@end table
1580
1581
1582@subsubsection Mac OS X
1583
1584@file{/dev/cdrom} is an alias to the first CDROM.
1585
1586Currently there is no specific code to handle removable media, so it
1587is better to use the @code{change} or @code{eject} monitor commands to
1588change or eject media.
1589
1590@node disk_images_fat_images
1591@subsection Virtual FAT disk images
1592
1593QEMU can automatically create a virtual FAT disk image from a
1594directory tree. In order to use it, just type:
1595
1596@example
1597qemu linux.img -hdb fat:/my_directory
1598@end example
1599
1600Then you access access to all the files in the @file{/my_directory}
1601directory without having to copy them in a disk image or to export
1602them via SAMBA or NFS. The default access is @emph{read-only}.
1603
1604Floppies can be emulated with the @code{:floppy:} option:
1605
1606@example
1607qemu linux.img -fda fat:floppy:/my_directory
1608@end example
1609
1610A read/write support is available for testing (beta stage) with the
1611@code{:rw:} option:
1612
1613@example
1614qemu linux.img -fda fat:floppy:rw:/my_directory
1615@end example
1616
1617What you should @emph{never} do:
1618@itemize
1619@item use non-ASCII filenames ;
1620@item use "-snapshot" together with ":rw:" ;
1621@item expect it to work when loadvm'ing ;
1622@item write to the FAT directory on the host system while accessing it with the guest system.
1623@end itemize
1624
1625@node disk_images_nbd
1626@subsection NBD access
1627
1628QEMU can access directly to block device exported using the Network Block Device
1629protocol.
1630
1631@example
1632qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
1633@end example
1634
1635If the NBD server is located on the same host, you can use an unix socket instead
1636of an inet socket:
1637
1638@example
1639qemu linux.img -hdb nbd:unix:/tmp/my_socket
1640@end example
1641
1642In this case, the block device must be exported using qemu-nbd:
1643
1644@example
1645qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
1646@end example
1647
1648The use of qemu-nbd allows to share a disk between several guests:
1649@example
1650qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
1651@end example
1652
1653and then you can use it with two guests:
1654@example
1655qemu linux1.img -hdb nbd:unix:/tmp/my_socket
1656qemu linux2.img -hdb nbd:unix:/tmp/my_socket
1657@end example
1658
1659@node pcsys_network
1660@section Network emulation
1661
1662QEMU can simulate several network cards (PCI or ISA cards on the PC
1663target) and can connect them to an arbitrary number of Virtual Local
1664Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1665VLAN. VLAN can be connected between separate instances of QEMU to
1666simulate large networks. For simpler usage, a non privileged user mode
1667network stack can replace the TAP device to have a basic network
1668connection.
1669
1670@subsection VLANs
1671
1672QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1673connection between several network devices. These devices can be for
1674example QEMU virtual Ethernet cards or virtual Host ethernet devices
1675(TAP devices).
1676
1677@subsection Using TAP network interfaces
1678
1679This is the standard way to connect QEMU to a real network. QEMU adds
1680a virtual network device on your host (called @code{tapN}), and you
1681can then configure it as if it was a real ethernet card.
1682
1683@subsubsection Linux host
1684
1685As an example, you can download the @file{linux-test-xxx.tar.gz}
1686archive and copy the script @file{qemu-ifup} in @file{/etc} and
1687configure properly @code{sudo} so that the command @code{ifconfig}
1688contained in @file{qemu-ifup} can be executed as root. You must verify
1689that your host kernel supports the TAP network interfaces: the
1690device @file{/dev/net/tun} must be present.
1691
1692See @ref{sec_invocation} to have examples of command lines using the
1693TAP network interfaces.
1694
1695@subsubsection Windows host
1696
1697There is a virtual ethernet driver for Windows 2000/XP systems, called
1698TAP-Win32. But it is not included in standard QEMU for Windows,
1699so you will need to get it separately. It is part of OpenVPN package,
1700so download OpenVPN from : @url{http://openvpn.net/}.
1701
1702@subsection Using the user mode network stack
1703
1704By using the option @option{-net user} (default configuration if no
1705@option{-net} option is specified), QEMU uses a completely user mode
1706network stack (you don't need root privilege to use the virtual
1707network). The virtual network configuration is the following:
1708
1709@example
1710
1711 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1712 | (10.0.2.2)
1713 |
1714 ----> DNS server (10.0.2.3)
1715 |
1716 ----> SMB server (10.0.2.4)
1717@end example
1718
1719The QEMU VM behaves as if it was behind a firewall which blocks all
1720incoming connections. You can use a DHCP client to automatically
1721configure the network in the QEMU VM. The DHCP server assign addresses
1722to the hosts starting from 10.0.2.15.
1723
1724In order to check that the user mode network is working, you can ping
1725the address 10.0.2.2 and verify that you got an address in the range
172610.0.2.x from the QEMU virtual DHCP server.
1727
1728Note that @code{ping} is not supported reliably to the internet as it
1729would require root privileges. It means you can only ping the local
1730router (10.0.2.2).
1731
1732When using the built-in TFTP server, the router is also the TFTP
1733server.
1734
1735When using the @option{-redir} option, TCP or UDP connections can be
1736redirected from the host to the guest. It allows for example to
1737redirect X11, telnet or SSH connections.
1738
1739@subsection Connecting VLANs between QEMU instances
1740
1741Using the @option{-net socket} option, it is possible to make VLANs
1742that span several QEMU instances. See @ref{sec_invocation} to have a
1743basic example.
1744
1745@node direct_linux_boot
1746@section Direct Linux Boot
1747
1748This section explains how to launch a Linux kernel inside QEMU without
1749having to make a full bootable image. It is very useful for fast Linux
1750kernel testing.
1751
1752The syntax is:
1753@example
1754qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1755@end example
1756
1757Use @option{-kernel} to provide the Linux kernel image and
1758@option{-append} to give the kernel command line arguments. The
1759@option{-initrd} option can be used to provide an INITRD image.
1760
1761When using the direct Linux boot, a disk image for the first hard disk
1762@file{hda} is required because its boot sector is used to launch the
1763Linux kernel.
1764
1765If you do not need graphical output, you can disable it and redirect
1766the virtual serial port and the QEMU monitor to the console with the
1767@option{-nographic} option. The typical command line is:
1768@example
1769qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1770 -append "root=/dev/hda console=ttyS0" -nographic
1771@end example
1772
1773Use @key{Ctrl-a c} to switch between the serial console and the
1774monitor (@pxref{pcsys_keys}).
1775
1776@node pcsys_usb
1777@section USB emulation
1778
1779QEMU emulates a PCI UHCI USB controller. You can virtually plug
1780virtual USB devices or real host USB devices (experimental, works only
1781on Linux hosts). Qemu will automatically create and connect virtual USB hubs
1782as necessary to connect multiple USB devices.
1783
1784@menu
1785* usb_devices::
1786* host_usb_devices::
1787@end menu
1788@node usb_devices
1789@subsection Connecting USB devices
1790
1791USB devices can be connected with the @option{-usbdevice} commandline option
1792or the @code{usb_add} monitor command. Available devices are:
1793
1794@table @code
1795@item mouse
1796Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1797@item tablet
1798Pointer device that uses absolute coordinates (like a touchscreen).
1799This means qemu is able to report the mouse position without having
1800to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
1801@item disk:@var{file}
1802Mass storage device based on @var{file} (@pxref{disk_images})
1803@item host:@var{bus.addr}
1804Pass through the host device identified by @var{bus.addr}
1805(Linux only)
1806@item host:@var{vendor_id:product_id}
1807Pass through the host device identified by @var{vendor_id:product_id}
1808(Linux only)
1809@item wacom-tablet
1810Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1811above but it can be used with the tslib library because in addition to touch
1812coordinates it reports touch pressure.
1813@item keyboard
1814Standard USB keyboard. Will override the PS/2 keyboard (if present).
1815@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1816Serial converter. This emulates an FTDI FT232BM chip connected to host character
1817device @var{dev}. The available character devices are the same as for the
1818@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1819used to override the default 0403:6001. For instance,
1820@example
1821usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1822@end example
1823will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1824serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1825@item braille
1826Braille device. This will use BrlAPI to display the braille output on a real
1827or fake device.
1828@item net:@var{options}
1829Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1830specifies NIC options as with @code{-net nic,}@var{options} (see description).
1831For instance, user-mode networking can be used with
1832@example
1833qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1834@end example
1835Currently this cannot be used in machines that support PCI NICs.
1836@item bt[:@var{hci-type}]
1837Bluetooth dongle whose type is specified in the same format as with
1838the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1839no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1840This USB device implements the USB Transport Layer of HCI. Example
1841usage:
1842@example
1843qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1844@end example
1845@end table
1846
1847@node host_usb_devices
1848@subsection Using host USB devices on a Linux host
1849
1850WARNING: this is an experimental feature. QEMU will slow down when
1851using it. USB devices requiring real time streaming (i.e. USB Video
1852Cameras) are not supported yet.
1853
1854@enumerate
1855@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1856is actually using the USB device. A simple way to do that is simply to
1857disable the corresponding kernel module by renaming it from @file{mydriver.o}
1858to @file{mydriver.o.disabled}.
1859
1860@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1861@example
1862ls /proc/bus/usb
1863001 devices drivers
1864@end example
1865
1866@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1867@example
1868chown -R myuid /proc/bus/usb
1869@end example
1870
1871@item Launch QEMU and do in the monitor:
1872@example
1873info usbhost
1874 Device 1.2, speed 480 Mb/s
1875 Class 00: USB device 1234:5678, USB DISK
1876@end example
1877You should see the list of the devices you can use (Never try to use
1878hubs, it won't work).
1879
1880@item Add the device in QEMU by using:
1881@example
1882usb_add host:1234:5678
1883@end example
1884
1885Normally the guest OS should report that a new USB device is
1886plugged. You can use the option @option{-usbdevice} to do the same.
1887
1888@item Now you can try to use the host USB device in QEMU.
1889
1890@end enumerate
1891
1892When relaunching QEMU, you may have to unplug and plug again the USB
1893device to make it work again (this is a bug).
1894
1895@node vnc_security
1896@section VNC security
1897
1898The VNC server capability provides access to the graphical console
1899of the guest VM across the network. This has a number of security
1900considerations depending on the deployment scenarios.
1901
1902@menu
1903* vnc_sec_none::
1904* vnc_sec_password::
1905* vnc_sec_certificate::
1906* vnc_sec_certificate_verify::
1907* vnc_sec_certificate_pw::
1908* vnc_generate_cert::
1909@end menu
1910@node vnc_sec_none
1911@subsection Without passwords
1912
1913The simplest VNC server setup does not include any form of authentication.
1914For this setup it is recommended to restrict it to listen on a UNIX domain
1915socket only. For example
1916
1917@example
1918qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1919@end example
1920
1921This ensures that only users on local box with read/write access to that
1922path can access the VNC server. To securely access the VNC server from a
1923remote machine, a combination of netcat+ssh can be used to provide a secure
1924tunnel.
1925
1926@node vnc_sec_password
1927@subsection With passwords
1928
1929The VNC protocol has limited support for password based authentication. Since
1930the protocol limits passwords to 8 characters it should not be considered
1931to provide high security. The password can be fairly easily brute-forced by
1932a client making repeat connections. For this reason, a VNC server using password
1933authentication should be restricted to only listen on the loopback interface
1934or UNIX domain sockets. Password authentication is requested with the @code{password}
1935option, and then once QEMU is running the password is set with the monitor. Until
1936the monitor is used to set the password all clients will be rejected.
1937
1938@example
1939qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1940(qemu) change vnc password
1941Password: ********
1942(qemu)
1943@end example
1944
1945@node vnc_sec_certificate
1946@subsection With x509 certificates
1947
1948The QEMU VNC server also implements the VeNCrypt extension allowing use of
1949TLS for encryption of the session, and x509 certificates for authentication.
1950The use of x509 certificates is strongly recommended, because TLS on its
1951own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1952support provides a secure session, but no authentication. This allows any
1953client to connect, and provides an encrypted session.
1954
1955@example
1956qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1957@end example
1958
1959In the above example @code{/etc/pki/qemu} should contain at least three files,
1960@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1961users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1962NB the @code{server-key.pem} file should be protected with file mode 0600 to
1963only be readable by the user owning it.
1964
1965@node vnc_sec_certificate_verify
1966@subsection With x509 certificates and client verification
1967
1968Certificates can also provide a means to authenticate the client connecting.
1969The server will request that the client provide a certificate, which it will
1970then validate against the CA certificate. This is a good choice if deploying
1971in an environment with a private internal certificate authority.
1972
1973@example
1974qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1975@end example
1976
1977
1978@node vnc_sec_certificate_pw
1979@subsection With x509 certificates, client verification and passwords
1980
1981Finally, the previous method can be combined with VNC password authentication
1982to provide two layers of authentication for clients.
1983
1984@example
1985qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1986(qemu) change vnc password
1987Password: ********
1988(qemu)
1989@end example
1990
1991@node vnc_generate_cert
1992@subsection Generating certificates for VNC
1993
1994The GNU TLS packages provides a command called @code{certtool} which can
1995be used to generate certificates and keys in PEM format. At a minimum it
1996is neccessary to setup a certificate authority, and issue certificates to
1997each server. If using certificates for authentication, then each client
1998will also need to be issued a certificate. The recommendation is for the
1999server to keep its certificates in either @code{/etc/pki/qemu} or for
2000unprivileged users in @code{$HOME/.pki/qemu}.
2001
2002@menu
2003* vnc_generate_ca::
2004* vnc_generate_server::
2005* vnc_generate_client::
2006@end menu
2007@node vnc_generate_ca
2008@subsubsection Setup the Certificate Authority
2009
2010This step only needs to be performed once per organization / organizational
2011unit. First the CA needs a private key. This key must be kept VERY secret
2012and secure. If this key is compromised the entire trust chain of the certificates
2013issued with it is lost.
2014
2015@example
2016# certtool --generate-privkey > ca-key.pem
2017@end example
2018
2019A CA needs to have a public certificate. For simplicity it can be a self-signed
2020certificate, or one issue by a commercial certificate issuing authority. To
2021generate a self-signed certificate requires one core piece of information, the
2022name of the organization.
2023
2024@example
2025# cat > ca.info <<EOF
2026cn = Name of your organization
2027ca
2028cert_signing_key
2029EOF
2030# certtool --generate-self-signed \
2031 --load-privkey ca-key.pem
2032 --template ca.info \
2033 --outfile ca-cert.pem
2034@end example
2035
2036The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
2037TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
2038
2039@node vnc_generate_server
2040@subsubsection Issuing server certificates
2041
2042Each server (or host) needs to be issued with a key and certificate. When connecting
2043the certificate is sent to the client which validates it against the CA certificate.
2044The core piece of information for a server certificate is the hostname. This should
2045be the fully qualified hostname that the client will connect with, since the client
2046will typically also verify the hostname in the certificate. On the host holding the
2047secure CA private key:
2048
2049@example
2050# cat > server.info <<EOF
2051organization = Name of your organization
2052cn = server.foo.example.com
2053tls_www_server
2054encryption_key
2055signing_key
2056EOF
2057# certtool --generate-privkey > server-key.pem
2058# certtool --generate-certificate \
2059 --load-ca-certificate ca-cert.pem \
2060 --load-ca-privkey ca-key.pem \
2061 --load-privkey server server-key.pem \
2062 --template server.info \
2063 --outfile server-cert.pem
2064@end example
2065
2066The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
2067to the server for which they were generated. The @code{server-key.pem} is security
2068sensitive and should be kept protected with file mode 0600 to prevent disclosure.
2069
2070@node vnc_generate_client
2071@subsubsection Issuing client certificates
2072
2073If the QEMU VNC server is to use the @code{x509verify} option to validate client
2074certificates as its authentication mechanism, each client also needs to be issued
2075a certificate. The client certificate contains enough metadata to uniquely identify
2076the client, typically organization, state, city, building, etc. On the host holding
2077the secure CA private key:
2078
2079@example
2080# cat > client.info <<EOF
2081country = GB
2082state = London
2083locality = London
2084organiazation = Name of your organization
2085cn = client.foo.example.com
2086tls_www_client
2087encryption_key
2088signing_key
2089EOF
2090# certtool --generate-privkey > client-key.pem
2091# certtool --generate-certificate \
2092 --load-ca-certificate ca-cert.pem \
2093 --load-ca-privkey ca-key.pem \
2094 --load-privkey client-key.pem \
2095 --template client.info \
2096 --outfile client-cert.pem
2097@end example
2098
2099The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
2100copied to the client for which they were generated.
2101
2102@node gdb_usage
2103@section GDB usage
2104
2105QEMU has a primitive support to work with gdb, so that you can do
2106'Ctrl-C' while the virtual machine is running and inspect its state.
2107
2108In order to use gdb, launch qemu with the '-s' option. It will wait for a
2109gdb connection:
2110@example
2111> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
2112 -append "root=/dev/hda"
2113Connected to host network interface: tun0
2114Waiting gdb connection on port 1234
2115@end example
2116
2117Then launch gdb on the 'vmlinux' executable:
2118@example
2119> gdb vmlinux
2120@end example
2121
2122In gdb, connect to QEMU:
2123@example
2124(gdb) target remote localhost:1234
2125@end example
2126
2127Then you can use gdb normally. For example, type 'c' to launch the kernel:
2128@example
2129(gdb) c
2130@end example
2131
2132Here are some useful tips in order to use gdb on system code:
2133
2134@enumerate
2135@item
2136Use @code{info reg} to display all the CPU registers.
2137@item
2138Use @code{x/10i $eip} to display the code at the PC position.
2139@item
2140Use @code{set architecture i8086} to dump 16 bit code. Then use
2141@code{x/10i $cs*16+$eip} to dump the code at the PC position.
2142@end enumerate
2143
2144Advanced debugging options:
2145
2146The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
2147@table @code
2148@item maintenance packet qqemu.sstepbits
2149
2150This will display the MASK bits used to control the single stepping IE:
2151@example
2152(gdb) maintenance packet qqemu.sstepbits
2153sending: "qqemu.sstepbits"
2154received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
2155@end example
2156@item maintenance packet qqemu.sstep
2157
2158This will display the current value of the mask used when single stepping IE:
2159@example
2160(gdb) maintenance packet qqemu.sstep
2161sending: "qqemu.sstep"
2162received: "0x7"
2163@end example
2164@item maintenance packet Qqemu.sstep=HEX_VALUE
2165
2166This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
2167@example
2168(gdb) maintenance packet Qqemu.sstep=0x5
2169sending: "qemu.sstep=0x5"
2170received: "OK"
2171@end example
2172@end table
2173
2174@node pcsys_os_specific
2175@section Target OS specific information
2176
2177@subsection Linux
2178
2179To have access to SVGA graphic modes under X11, use the @code{vesa} or
2180the @code{cirrus} X11 driver. For optimal performances, use 16 bit
2181color depth in the guest and the host OS.
2182
2183When using a 2.6 guest Linux kernel, you should add the option
2184@code{clock=pit} on the kernel command line because the 2.6 Linux
2185kernels make very strict real time clock checks by default that QEMU
2186cannot simulate exactly.
2187
2188When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2189not activated because QEMU is slower with this patch. The QEMU
2190Accelerator Module is also much slower in this case. Earlier Fedora
2191Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
2192patch by default. Newer kernels don't have it.
2193
2194@subsection Windows
2195
2196If you have a slow host, using Windows 95 is better as it gives the
2197best speed. Windows 2000 is also a good choice.
2198
2199@subsubsection SVGA graphic modes support
2200
2201QEMU emulates a Cirrus Logic GD5446 Video
2202card. All Windows versions starting from Windows 95 should recognize
2203and use this graphic card. For optimal performances, use 16 bit color
2204depth in the guest and the host OS.
2205
2206If you are using Windows XP as guest OS and if you want to use high
2207resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
22081280x1024x16), then you should use the VESA VBE virtual graphic card
2209(option @option{-std-vga}).
2210
2211@subsubsection CPU usage reduction
2212
2213Windows 9x does not correctly use the CPU HLT
2214instruction. The result is that it takes host CPU cycles even when
2215idle. You can install the utility from
2216@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2217problem. Note that no such tool is needed for NT, 2000 or XP.
2218
2219@subsubsection Windows 2000 disk full problem
2220
2221Windows 2000 has a bug which gives a disk full problem during its
2222installation. When installing it, use the @option{-win2k-hack} QEMU
2223option to enable a specific workaround. After Windows 2000 is
2224installed, you no longer need this option (this option slows down the
2225IDE transfers).
2226
2227@subsubsection Windows 2000 shutdown
2228
2229Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2230can. It comes from the fact that Windows 2000 does not automatically
2231use the APM driver provided by the BIOS.
2232
2233In order to correct that, do the following (thanks to Struan
2234Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2235Add/Troubleshoot a device => Add a new device & Next => No, select the
2236hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2237(again) a few times. Now the driver is installed and Windows 2000 now
2238correctly instructs QEMU to shutdown at the appropriate moment.
2239
2240@subsubsection Share a directory between Unix and Windows
2241
2242See @ref{sec_invocation} about the help of the option @option{-smb}.
2243
2244@subsubsection Windows XP security problem
2245
2246Some releases of Windows XP install correctly but give a security
2247error when booting:
2248@example
2249A problem is preventing Windows from accurately checking the
2250license for this computer. Error code: 0x800703e6.
2251@end example
2252
2253The workaround is to install a service pack for XP after a boot in safe
2254mode. Then reboot, and the problem should go away. Since there is no
2255network while in safe mode, its recommended to download the full
2256installation of SP1 or SP2 and transfer that via an ISO or using the
2257vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2258
2259@subsection MS-DOS and FreeDOS
2260
2261@subsubsection CPU usage reduction
2262
2263DOS does not correctly use the CPU HLT instruction. The result is that
2264it takes host CPU cycles even when idle. You can install the utility
2265from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2266problem.
2267
2268@node QEMU System emulator for non PC targets
2269@chapter QEMU System emulator for non PC targets
2270
2271QEMU is a generic emulator and it emulates many non PC
2272machines. Most of the options are similar to the PC emulator. The
2273differences are mentioned in the following sections.
2274
2275@menu
2276* QEMU PowerPC System emulator::
2277* Sparc32 System emulator::
2278* Sparc64 System emulator::
2279* MIPS System emulator::
2280* ARM System emulator::
2281* ColdFire System emulator::
2282@end menu
2283
2284@node QEMU PowerPC System emulator
2285@section QEMU PowerPC System emulator
2286
2287Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2288or PowerMac PowerPC system.
2289
2290QEMU emulates the following PowerMac peripherals:
2291
2292@itemize @minus
2293@item
2294UniNorth PCI Bridge
2295@item
2296PCI VGA compatible card with VESA Bochs Extensions
2297@item
22982 PMAC IDE interfaces with hard disk and CD-ROM support
2299@item
2300NE2000 PCI adapters
2301@item
2302Non Volatile RAM
2303@item
2304VIA-CUDA with ADB keyboard and mouse.
2305@end itemize
2306
2307QEMU emulates the following PREP peripherals:
2308
2309@itemize @minus
2310@item
2311PCI Bridge
2312@item
2313PCI VGA compatible card with VESA Bochs Extensions
2314@item
23152 IDE interfaces with hard disk and CD-ROM support
2316@item
2317Floppy disk
2318@item
2319NE2000 network adapters
2320@item
2321Serial port
2322@item
2323PREP Non Volatile RAM
2324@item
2325PC compatible keyboard and mouse.
2326@end itemize
2327
2328QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2329@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2330
2331@c man begin OPTIONS
2332
2333The following options are specific to the PowerPC emulation:
2334
2335@table @option
2336
2337@item -g WxH[xDEPTH]
2338
2339Set the initial VGA graphic mode. The default is 800x600x15.
2340
2341@end table
2342
2343@c man end
2344
2345
2346More information is available at
2347@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2348
2349@node Sparc32 System emulator
2350@section Sparc32 System emulator
2351
2352Use the executable @file{qemu-system-sparc} to simulate the following
2353Sun4m architecture machines:
2354@itemize @minus
2355@item
2356SPARCstation 4
2357@item
2358SPARCstation 5
2359@item
2360SPARCstation 10
2361@item
2362SPARCstation 20
2363@item
2364SPARCserver 600MP
2365@item
2366SPARCstation LX
2367@item
2368SPARCstation Voyager
2369@item
2370SPARCclassic
2371@item
2372SPARCbook
2373@end itemize
2374
2375The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2376but Linux limits the number of usable CPUs to 4.
2377
2378It's also possible to simulate a SPARCstation 2 (sun4c architecture),
2379SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
2380emulators are not usable yet.
2381
2382QEMU emulates the following sun4m/sun4c/sun4d peripherals:
2383
2384@itemize @minus
2385@item
2386IOMMU or IO-UNITs
2387@item
2388TCX Frame buffer
2389@item
2390Lance (Am7990) Ethernet
2391@item
2392Non Volatile RAM M48T02/M48T08
2393@item
2394Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2395and power/reset logic
2396@item
2397ESP SCSI controller with hard disk and CD-ROM support
2398@item
2399Floppy drive (not on SS-600MP)
2400@item
2401CS4231 sound device (only on SS-5, not working yet)
2402@end itemize
2403
2404The number of peripherals is fixed in the architecture. Maximum
2405memory size depends on the machine type, for SS-5 it is 256MB and for
2406others 2047MB.
2407
2408Since version 0.8.2, QEMU uses OpenBIOS
2409@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2410firmware implementation. The goal is to implement a 100% IEEE
24111275-1994 (referred to as Open Firmware) compliant firmware.
2412
2413A sample Linux 2.6 series kernel and ram disk image are available on
2414the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2415some kernel versions work. Please note that currently Solaris kernels
2416don't work probably due to interface issues between OpenBIOS and
2417Solaris.
2418
2419@c man begin OPTIONS
2420
2421The following options are specific to the Sparc32 emulation:
2422
2423@table @option
2424
2425@item -g WxHx[xDEPTH]
2426
2427Set the initial TCX graphic mode. The default is 1024x768x8, currently
2428the only other possible mode is 1024x768x24.
2429
2430@item -prom-env string
2431
2432Set OpenBIOS variables in NVRAM, for example:
2433
2434@example
2435qemu-system-sparc -prom-env 'auto-boot?=false' \
2436 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2437@end example
2438
2439@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
2440
2441Set the emulated machine type. Default is SS-5.
2442
2443@end table
2444
2445@c man end
2446
2447@node Sparc64 System emulator
2448@section Sparc64 System emulator
2449
2450Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2451(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2452Niagara (T1) machine. The emulator is not usable for anything yet, but
2453it can launch some kernels.
2454
2455QEMU emulates the following peripherals:
2456
2457@itemize @minus
2458@item
2459UltraSparc IIi APB PCI Bridge
2460@item
2461PCI VGA compatible card with VESA Bochs Extensions
2462@item
2463PS/2 mouse and keyboard
2464@item
2465Non Volatile RAM M48T59
2466@item
2467PC-compatible serial ports
2468@item
24692 PCI IDE interfaces with hard disk and CD-ROM support
2470@item
2471Floppy disk
2472@end itemize
2473
2474@c man begin OPTIONS
2475
2476The following options are specific to the Sparc64 emulation:
2477
2478@table @option
2479
2480@item -prom-env string
2481
2482Set OpenBIOS variables in NVRAM, for example:
2483
2484@example
2485qemu-system-sparc64 -prom-env 'auto-boot?=false'
2486@end example
2487
2488@item -M [sun4u|sun4v|Niagara]
2489
2490Set the emulated machine type. The default is sun4u.
2491
2492@end table
2493
2494@c man end
2495
2496@node MIPS System emulator
2497@section MIPS System emulator
2498
2499Four executables cover simulation of 32 and 64-bit MIPS systems in
2500both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2501@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2502Five different machine types are emulated:
2503
2504@itemize @minus
2505@item
2506A generic ISA PC-like machine "mips"
2507@item
2508The MIPS Malta prototype board "malta"
2509@item
2510An ACER Pica "pica61". This machine needs the 64-bit emulator.
2511@item
2512MIPS emulator pseudo board "mipssim"
2513@item
2514A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2515@end itemize
2516
2517The generic emulation is supported by Debian 'Etch' and is able to
2518install Debian into a virtual disk image. The following devices are
2519emulated:
2520
2521@itemize @minus
2522@item
2523A range of MIPS CPUs, default is the 24Kf
2524@item
2525PC style serial port
2526@item
2527PC style IDE disk
2528@item
2529NE2000 network card
2530@end itemize
2531
2532The Malta emulation supports the following devices:
2533
2534@itemize @minus
2535@item
2536Core board with MIPS 24Kf CPU and Galileo system controller
2537@item
2538PIIX4 PCI/USB/SMbus controller
2539@item
2540The Multi-I/O chip's serial device
2541@item
2542PCnet32 PCI network card
2543@item
2544Malta FPGA serial device
2545@item
2546Cirrus VGA graphics card
2547@end itemize
2548
2549The ACER Pica emulation supports:
2550
2551@itemize @minus
2552@item
2553MIPS R4000 CPU
2554@item
2555PC-style IRQ and DMA controllers
2556@item
2557PC Keyboard
2558@item
2559IDE controller
2560@end itemize
2561
2562The mipssim pseudo board emulation provides an environment similiar
2563to what the proprietary MIPS emulator uses for running Linux.
2564It supports:
2565
2566@itemize @minus
2567@item
2568A range of MIPS CPUs, default is the 24Kf
2569@item
2570PC style serial port
2571@item
2572MIPSnet network emulation
2573@end itemize
2574
2575The MIPS Magnum R4000 emulation supports:
2576
2577@itemize @minus
2578@item
2579MIPS R4000 CPU
2580@item
2581PC-style IRQ controller
2582@item
2583PC Keyboard
2584@item
2585SCSI controller
2586@item
2587G364 framebuffer
2588@end itemize
2589
2590
2591@node ARM System emulator
2592@section ARM System emulator
2593
2594Use the executable @file{qemu-system-arm} to simulate a ARM
2595machine. The ARM Integrator/CP board is emulated with the following
2596devices:
2597
2598@itemize @minus
2599@item
2600ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2601@item
2602Two PL011 UARTs
2603@item
2604SMC 91c111 Ethernet adapter
2605@item
2606PL110 LCD controller
2607@item
2608PL050 KMI with PS/2 keyboard and mouse.
2609@item
2610PL181 MultiMedia Card Interface with SD card.
2611@end itemize
2612
2613The ARM Versatile baseboard is emulated with the following devices:
2614
2615@itemize @minus
2616@item
2617ARM926E, ARM1136 or Cortex-A8 CPU
2618@item
2619PL190 Vectored Interrupt Controller
2620@item
2621Four PL011 UARTs
2622@item
2623SMC 91c111 Ethernet adapter
2624@item
2625PL110 LCD controller
2626@item
2627PL050 KMI with PS/2 keyboard and mouse.
2628@item
2629PCI host bridge. Note the emulated PCI bridge only provides access to
2630PCI memory space. It does not provide access to PCI IO space.
2631This means some devices (eg. ne2k_pci NIC) are not usable, and others
2632(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2633mapped control registers.
2634@item
2635PCI OHCI USB controller.
2636@item
2637LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2638@item
2639PL181 MultiMedia Card Interface with SD card.
2640@end itemize
2641
2642The ARM RealView Emulation baseboard is emulated with the following devices:
2643
2644@itemize @minus
2645@item
2646ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2647@item
2648ARM AMBA Generic/Distributed Interrupt Controller
2649@item
2650Four PL011 UARTs
2651@item
2652SMC 91c111 Ethernet adapter
2653@item
2654PL110 LCD controller
2655@item
2656PL050 KMI with PS/2 keyboard and mouse
2657@item
2658PCI host bridge
2659@item
2660PCI OHCI USB controller
2661@item
2662LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2663@item
2664PL181 MultiMedia Card Interface with SD card.
2665@end itemize
2666
2667The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2668and "Terrier") emulation includes the following peripherals:
2669
2670@itemize @minus
2671@item
2672Intel PXA270 System-on-chip (ARM V5TE core)
2673@item
2674NAND Flash memory
2675@item
2676IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2677@item
2678On-chip OHCI USB controller
2679@item
2680On-chip LCD controller
2681@item
2682On-chip Real Time Clock
2683@item
2684TI ADS7846 touchscreen controller on SSP bus
2685@item
2686Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2687@item
2688GPIO-connected keyboard controller and LEDs
2689@item
2690Secure Digital card connected to PXA MMC/SD host
2691@item
2692Three on-chip UARTs
2693@item
2694WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2695@end itemize
2696
2697The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2698following elements:
2699
2700@itemize @minus
2701@item
2702Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2703@item
2704ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2705@item
2706On-chip LCD controller
2707@item
2708On-chip Real Time Clock
2709@item
2710TI TSC2102i touchscreen controller / analog-digital converter / Audio
2711CODEC, connected through MicroWire and I@math{^2}S busses
2712@item
2713GPIO-connected matrix keypad
2714@item
2715Secure Digital card connected to OMAP MMC/SD host
2716@item
2717Three on-chip UARTs
2718@end itemize
2719
2720Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2721emulation supports the following elements:
2722
2723@itemize @minus
2724@item
2725Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2726@item
2727RAM and non-volatile OneNAND Flash memories
2728@item
2729Display connected to EPSON remote framebuffer chip and OMAP on-chip
2730display controller and a LS041y3 MIPI DBI-C controller
2731@item
2732TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2733driven through SPI bus
2734@item
2735National Semiconductor LM8323-controlled qwerty keyboard driven
2736through I@math{^2}C bus
2737@item
2738Secure Digital card connected to OMAP MMC/SD host
2739@item
2740Three OMAP on-chip UARTs and on-chip STI debugging console
2741@item
2742A Bluetooth(R) transciever and HCI connected to an UART
2743@item
2744Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2745TUSB6010 chip - only USB host mode is supported
2746@item
2747TI TMP105 temperature sensor driven through I@math{^2}C bus
2748@item
2749TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2750@item
2751Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2752through CBUS
2753@end itemize
2754
2755The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2756devices:
2757
2758@itemize @minus
2759@item
2760Cortex-M3 CPU core.
2761@item
276264k Flash and 8k SRAM.
2763@item
2764Timers, UARTs, ADC and I@math{^2}C interface.
2765@item
2766OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2767@end itemize
2768
2769The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2770devices:
2771
2772@itemize @minus
2773@item
2774Cortex-M3 CPU core.
2775@item
2776256k Flash and 64k SRAM.
2777@item
2778Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2779@item
2780OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2781@end itemize
2782
2783The Freecom MusicPal internet radio emulation includes the following
2784elements:
2785
2786@itemize @minus
2787@item
2788Marvell MV88W8618 ARM core.
2789@item
279032 MB RAM, 256 KB SRAM, 8 MB flash.
2791@item
2792Up to 2 16550 UARTs
2793@item
2794MV88W8xx8 Ethernet controller
2795@item
2796MV88W8618 audio controller, WM8750 CODEC and mixer
2797@item
2798