]> git.proxmox.com Git - mirror_qemu.git/blobdiff - qemu-tech.texi
Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
[mirror_qemu.git] / qemu-tech.texi
index c86094b7c65d50f40c6477b2df474b55bd567476..3451cfaa5be412b3d0ffd840a44dd52390178a76 100644 (file)
-\input texinfo @c -*- texinfo -*-
-
-@iftex
-@settitle QEMU Internals
-@titlepage
-@sp 7
-@center @titlefont{QEMU Internals}
-@sp 3
-@end titlepage
-@end iftex
-
-@chapter Introduction
-
-@section Features
-
-QEMU is a FAST! processor emulator using a portable dynamic
-translator.
-
-QEMU has two operating modes:
-
-@itemize @minus
-
-@item 
-Full system emulation. In this mode, QEMU emulates a full system
-(usually a PC), including a processor and various peripherals. It can
-be used to launch an different Operating System without rebooting the
-PC or to debug system code.
-
-@item 
-User mode emulation (Linux host only). In this mode, QEMU can launch
-Linux processes compiled for one CPU on another CPU. It can be used to
-launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
-to ease cross-compilation and cross-debugging.
-
-@end itemize
-
-As QEMU requires no host kernel driver to run, it is very safe and
-easy to use.
-
-QEMU generic features:
-
-@itemize 
-
-@item User space only or full system emulation.
-
-@item Using dynamic translation to native code for reasonnable speed.
-
-@item Working on x86 and PowerPC hosts. Being tested on ARM, Sparc32, Alpha and S390.
-
-@item Self-modifying code support.
-
-@item Precise exceptions support.
-
-@item The virtual CPU is a library (@code{libqemu}) which can be used 
-in other projects (look at @file{qemu/tests/qruncom.c} to have an
-example of user mode @code{libqemu} usage).
-
-@end itemize
-
-QEMU user mode emulation features:
-@itemize 
-@item Generic Linux system call converter, including most ioctls.
-
-@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
-
-@item Accurate signal handling by remapping host signals to target signals. 
-@end itemize
-@end itemize
-
-QEMU full system emulation features:
-@itemize 
-@item QEMU can either use a full software MMU for maximum portability or use the host system call mmap() to simulate the target MMU.
-@end itemize
-
-@section x86 emulation
+@node Implementation notes
+@appendix Implementation notes
+
+@menu
+* CPU emulation::
+* Translator Internals::
+* QEMU compared to other emulators::
+* Managed start up options::
+* Bibliography::
+@end menu
+
+@node CPU emulation
+@section CPU emulation
+
+@menu
+* x86::     x86 and x86-64 emulation
+* ARM::     ARM emulation
+* MIPS::    MIPS emulation
+* PPC::     PowerPC emulation
+* SPARC::   Sparc32 and Sparc64 emulation
+* Xtensa::  Xtensa emulation
+@end menu
+
+@node x86
+@subsection x86 and x86-64 emulation
 
 QEMU x86 target features:
 
 
 QEMU x86 target features:
 
-@itemize 
+@itemize
 
 
-@item The virtual x86 CPU supports 16 bit and 32 bit addressing with segmentation. 
-LDT/GDT and IDT are emulated. VM86 mode is also supported to run DOSEMU.
+@item The virtual x86 CPU supports 16 bit and 32 bit addressing with segmentation.
+LDT/GDT and IDT are emulated. VM86 mode is also supported to run
+DOSEMU. There is some support for MMX/3DNow!, SSE, SSE2, SSE3, SSSE3,
+and SSE4 as well as x86-64 SVM.
 
 @item Support of host page sizes bigger than 4KB in user mode emulation.
 
 @item QEMU can emulate itself on x86.
 
 
 @item Support of host page sizes bigger than 4KB in user mode emulation.
 
 @item QEMU can emulate itself on x86.
 
-@item An extensive Linux x86 CPU test program is included @file{tests/test-i386}. 
+@item An extensive Linux x86 CPU test program is included @file{tests/test-i386}.
 It can be used to test other x86 virtual CPUs.
 
 @end itemize
 
 Current QEMU limitations:
 
 It can be used to test other x86 virtual CPUs.
 
 @end itemize
 
 Current QEMU limitations:
 
-@itemize 
-
-@item No SSE/MMX support (yet).
+@itemize
 
 
-@item No x86-64 support.
+@item Limited x86-64 support.
 
 @item IPC syscalls are missing.
 
 
 @item IPC syscalls are missing.
 
-@item The x86 segment limits and access rights are not tested at every 
+@item The x86 segment limits and access rights are not tested at every
 memory access (yet). Hopefully, very few OSes seem to rely on that for
 normal use.
 
 memory access (yet). Hopefully, very few OSes seem to rely on that for
 normal use.
 
-@item On non x86 host CPUs, @code{double}s are used instead of the non standard 
-10 byte @code{long double}s of x86 for floating point emulation to get
-maximum performances.
-
 @end itemize
 
 @end itemize
 
-@section ARM emulation
+@node ARM
+@subsection ARM emulation
 
 @itemize
 
 
 @itemize
 
@@ -122,374 +69,130 @@ maximum performances.
 
 @end itemize
 
 
 @end itemize
 
-@section PowerPC emulation
+@node MIPS
+@subsection MIPS emulation
 
 @itemize
 
 
 @itemize
 
-@item Full PowerPC 32 bit emulation, including privileged instructions, 
-FPU and MMU.
+@item The system emulation allows full MIPS32/MIPS64 Release 2 emulation,
+including privileged instructions, FPU and MMU, in both little and big
+endian modes.
 
 
-@item Can run most PowerPC Linux binaries.
+@item The Linux userland emulation can run many 32 bit MIPS Linux binaries.
 
 @end itemize
 
 
 @end itemize
 
-@section SPARC emulation
+Current QEMU limitations:
 
 @itemize
 
 
 @itemize
 
-@item Somewhat complete SPARC V8 emulation, including privileged
-instructions, FPU and MMU.
-
-@item Can run some SPARC Linux binaries.
-
-@end itemize
-
-@chapter QEMU Internals
-
-@section QEMU compared to other emulators
-
-Like bochs [3], QEMU emulates an x86 CPU. But QEMU is much faster than
-bochs as it uses dynamic compilation. Bochs is closely tied to x86 PC
-emulation while QEMU can emulate several processors.
-
-Like Valgrind [2], QEMU does user space emulation and dynamic
-translation. Valgrind is mainly a memory debugger while QEMU has no
-support for it (QEMU could be used to detect out of bound memory
-accesses as Valgrind, but it has no support to track uninitialised data
-as Valgrind does). The Valgrind dynamic translator generates better code
-than QEMU (in particular it does register allocation) but it is closely
-tied to an x86 host and target and has no support for precise exceptions
-and system emulation.
-
-EM86 [4] is the closest project to user space QEMU (and QEMU still uses
-some of its code, in particular the ELF file loader). EM86 was limited
-to an alpha host and used a proprietary and slow interpreter (the
-interpreter part of the FX!32 Digital Win32 code translator [5]).
-
-TWIN [6] is a Windows API emulator like Wine. It is less accurate than
-Wine but includes a protected mode x86 interpreter to launch x86 Windows
-executables. Such an approach has greater potential because most of the
-Windows API is executed natively but it is far more difficult to develop
-because all the data structures and function parameters exchanged
-between the API and the x86 code must be converted.
-
-User mode Linux [7] was the only solution before QEMU to launch a
-Linux kernel as a process while not needing any host kernel
-patches. However, user mode Linux requires heavy kernel patches while
-QEMU accepts unpatched Linux kernels. The price to pay is that QEMU is
-slower.
-
-The new Plex86 [8] PC virtualizer is done in the same spirit as the
-qemu-fast system emulator. It requires a patched Linux kernel to work
-(you cannot launch the same kernel on your PC), but the patches are
-really small. As it is a PC virtualizer (no emulation is done except
-for some priveledged instructions), it has the potential of being
-faster than QEMU. The downside is that a complicated (and potentially
-unsafe) host kernel patch is needed.
-
-The commercial PC Virtualizers (VMWare [9], VirtualPC [10], TwoOStwo
-[11]) are faster than QEMU, but they all need specific, proprietary
-and potentially unsafe host drivers. Moreover, they are unable to
-provide cycle exact simulation as an emulator can.
-
-@section Portable dynamic translation
-
-QEMU is a dynamic translator. When it first encounters a piece of code,
-it converts it to the host instruction set. Usually dynamic translators
-are very complicated and highly CPU dependent. QEMU uses some tricks
-which make it relatively easily portable and simple while achieving good
-performances.
-
-The basic idea is to split every x86 instruction into fewer simpler
-instructions. Each simple instruction is implemented by a piece of C
-code (see @file{target-i386/op.c}). Then a compile time tool
-(@file{dyngen}) takes the corresponding object file (@file{op.o})
-to generate a dynamic code generator which concatenates the simple
-instructions to build a function (see @file{op.h:dyngen_code()}).
-
-In essence, the process is similar to [1], but more work is done at
-compile time. 
-
-A key idea to get optimal performances is that constant parameters can
-be passed to the simple operations. For that purpose, dummy ELF
-relocations are generated with gcc for each constant parameter. Then,
-the tool (@file{dyngen}) can locate the relocations and generate the
-appriopriate C code to resolve them when building the dynamic code.
-
-That way, QEMU is no more difficult to port than a dynamic linker.
-
-To go even faster, GCC static register variables are used to keep the
-state of the virtual CPU.
-
-@section Register allocation
-
-Since QEMU uses fixed simple instructions, no efficient register
-allocation can be done. However, because RISC CPUs have a lot of
-register, most of the virtual CPU state can be put in registers without
-doing complicated register allocation.
-
-@section Condition code optimisations
-
-Good CPU condition codes emulation (@code{EFLAGS} register on x86) is a
-critical point to get good performances. QEMU uses lazy condition code
-evaluation: instead of computing the condition codes after each x86
-instruction, it just stores one operand (called @code{CC_SRC}), the
-result (called @code{CC_DST}) and the type of operation (called
-@code{CC_OP}).
-
-@code{CC_OP} is almost never explicitely set in the generated code
-because it is known at translation time.
-
-In order to increase performances, a backward pass is performed on the
-generated simple instructions (see
-@code{target-i386/translate.c:optimize_flags()}). When it can be proved that
-the condition codes are not needed by the next instructions, no
-condition codes are computed at all.
-
-@section CPU state optimisations
-
-The x86 CPU has many internal states which change the way it evaluates
-instructions. In order to achieve a good speed, the translation phase
-considers that some state information of the virtual x86 CPU cannot
-change in it. For example, if the SS, DS and ES segments have a zero
-base, then the translator does not even generate an addition for the
-segment base.
-
-[The FPU stack pointer register is not handled that way yet].
-
-@section Translation cache
-
-A 16 MByte cache holds the most recently used translations. For
-simplicity, it is completely flushed when it is full. A translation unit
-contains just a single basic block (a block of x86 instructions
-terminated by a jump or by a virtual CPU state change which the
-translator cannot deduce statically).
-
-@section Direct block chaining
-
-After each translated basic block is executed, QEMU uses the simulated
-Program Counter (PC) and other cpu state informations (such as the CS
-segment base value) to find the next basic block.
-
-In order to accelerate the most common cases where the new simulated PC
-is known, QEMU can patch a basic block so that it jumps directly to the
-next one.
-
-The most portable code uses an indirect jump. An indirect jump makes
-it easier to make the jump target modification atomic. On some host
-architectures (such as x86 or PowerPC), the @code{JUMP} opcode is
-directly patched so that the block chaining has no overhead.
-
-@section Self-modifying code and translated code invalidation
-
-Self-modifying code is a special challenge in x86 emulation because no
-instruction cache invalidation is signaled by the application when code
-is modified.
-
-When translated code is generated for a basic block, the corresponding
-host page is write protected if it is not already read-only (with the
-system call @code{mprotect()}). Then, if a write access is done to the
-page, Linux raises a SEGV signal. QEMU then invalidates all the
-translated code in the page and enables write accesses to the page.
-
-Correct translated code invalidation is done efficiently by maintaining
-a linked list of every translated block contained in a given page. Other
-linked lists are also maintained to undo direct block chaining. 
-
-Although the overhead of doing @code{mprotect()} calls is important,
-most MSDOS programs can be emulated at reasonnable speed with QEMU and
-DOSEMU.
+@item Self-modifying code is not always handled correctly.
 
 
-Note that QEMU also invalidates pages of translated code when it detects
-that memory mappings are modified with @code{mmap()} or @code{munmap()}.
+@item 64 bit userland emulation is not implemented.
 
 
-When using a software MMU, the code invalidation is more efficient: if
-a given code page is invalidated too often because of write accesses,
-then a bitmap representing all the code inside the page is
-built. Every store into that page checks the bitmap to see if the code
-really needs to be invalidated. It avoids invalidating the code when
-only data is modified in the page.
+@item The system emulation is not complete enough to run real firmware.
 
 
-@section Exception support
+@item The watchpoint debug facility is not implemented.
 
 
-longjmp() is used when an exception such as division by zero is
-encountered. 
+@end itemize
 
 
-The host SIGSEGV and SIGBUS signal handlers are used to get invalid
-memory accesses. The exact CPU state can be retrieved because all the
-x86 registers are stored in fixed host registers. The simulated program
-counter is found by retranslating the corresponding basic block and by
-looking where the host program counter was at the exception point.
+@node PPC
+@subsection PowerPC emulation
 
 
-The virtual CPU cannot retrieve the exact @code{EFLAGS} register because
-in some cases it is not computed because of condition code
-optimisations. It is not a big concern because the emulated code can
-still be restarted in any cases.
+@itemize
 
 
-@section MMU emulation
+@item Full PowerPC 32 bit emulation, including privileged instructions,
+FPU and MMU.
 
 
-For system emulation, QEMU uses the mmap() system call to emulate the
-target CPU MMU. It works as long the emulated OS does not use an area
-reserved by the host OS (such as the area above 0xc0000000 on x86
-Linux).
+@item Can run most PowerPC Linux binaries.
 
 
-In order to be able to launch any OS, QEMU also supports a soft
-MMU. In that mode, the MMU virtual to physical address translation is
-done at every memory access. QEMU uses an address translation cache to
-speed up the translation.
+@end itemize
 
 
-In order to avoid flushing the translated code each time the MMU
-mappings change, QEMU uses a physically indexed translation cache. It
-means that each basic block is indexed with its physical address. 
+@node SPARC
+@subsection Sparc32 and Sparc64 emulation
 
 
-When MMU mappings change, only the chaining of the basic blocks is
-reset (i.e. a basic block can no longer jump directly to another one).
+@itemize
 
 
-@section Hardware interrupts
+@item Full SPARC V8 emulation, including privileged
+instructions, FPU and MMU. SPARC V9 emulation includes most privileged
+and VIS instructions, FPU and I/D MMU. Alignment is fully enforced.
 
 
-In order to be faster, QEMU does not check at every basic block if an
-hardware interrupt is pending. Instead, the user must asynchrously
-call a specific function to tell that an interrupt is pending. This
-function resets the chaining of the currently executing basic
-block. It ensures that the execution will return soon in the main loop
-of the CPU emulator. Then the main loop can test if the interrupt is
-pending and handle it.
+@item Can run most 32-bit SPARC Linux binaries, SPARC32PLUS Linux binaries and
+some 64-bit SPARC Linux binaries.
 
 
-@section User emulation specific details
+@end itemize
 
 
-@subsection Linux system call translation
+Current QEMU limitations:
 
 
-QEMU includes a generic system call translator for Linux. It means that
-the parameters of the system calls can be converted to fix the
-endianness and 32/64 bit issues. The IOCTLs are converted with a generic
-type description system (see @file{ioctls.h} and @file{thunk.c}).
+@itemize
 
 
-QEMU supports host CPUs which have pages bigger than 4KB. It records all
-the mappings the process does and try to emulated the @code{mmap()}
-system calls in cases where the host @code{mmap()} call would fail
-because of bad page alignment.
+@item IPC syscalls are missing.
 
 
-@subsection Linux signals
+@item Floating point exception support is buggy.
 
 
-Normal and real-time signals are queued along with their information
-(@code{siginfo_t}) as it is done in the Linux kernel. Then an interrupt
-request is done to the virtual CPU. When it is interrupted, one queued
-signal is handled by generating a stack frame in the virtual CPU as the
-Linux kernel does. The @code{sigreturn()} system call is emulated to return
-from the virtual signal handler.
+@item Atomic instructions are not correctly implemented.
 
 
-Some signals (such as SIGALRM) directly come from the host. Other
-signals are synthetized from the virtual CPU exceptions such as SIGFPE
-when a division by zero is done (see @code{main.c:cpu_loop()}).
+@item There are still some problems with Sparc64 emulators.
 
 
-The blocked signal mask is still handled by the host Linux kernel so
-that most signal system calls can be redirected directly to the host
-Linux kernel. Only the @code{sigaction()} and @code{sigreturn()} system
-calls need to be fully emulated (see @file{signal.c}).
+@end itemize
 
 
-@subsection clone() system call and threads
+@node Xtensa
+@subsection Xtensa emulation
 
 
-The Linux clone() system call is usually used to create a thread. QEMU
-uses the host clone() system call so that real host threads are created
-for each emulated thread. One virtual CPU instance is created for each
-thread.
+@itemize
 
 
-The virtual x86 CPU atomic operations are emulated with a global lock so
-that their semantic is preserved.
+@item Core Xtensa ISA emulation, including most options: code density,
+loop, extended L32R, 16- and 32-bit multiplication, 32-bit division,
+MAC16, miscellaneous operations, boolean, FP coprocessor, coprocessor
+context, debug, multiprocessor synchronization,
+conditional store, exceptions, relocatable vectors, unaligned exception,
+interrupts (including high priority and timer), hardware alignment,
+region protection, region translation, MMU, windowed registers, thread
+pointer, processor ID.
 
 
-Note that currently there are still some locking issues in QEMU. In
-particular, the translated cache flush is not protected yet against
-reentrancy.
+@item Not implemented options: data/instruction cache (including cache
+prefetch and locking), XLMI, processor interface. Also options not
+covered by the core ISA (e.g. FLIX, wide branches) are not implemented.
 
 
-@subsection Self-virtualization
+@item Can run most Xtensa Linux binaries.
 
 
-QEMU was conceived so that ultimately it can emulate itself. Although
-it is not very useful, it is an important test to show the power of the
-emulator.
+@item New core configuration that requires no additional instructions
+may be created from overlay with minimal amount of hand-written code.
 
 
-Achieving self-virtualization is not easy because there may be address
-space conflicts. QEMU solves this problem by being an executable ELF
-shared object as the ld-linux.so ELF interpreter. That way, it can be
-relocated at load time.
+@end itemize
 
 
-@section Bibliography
+@node Managed start up options
+@section Managed start up options
 
 
+In system mode emulation, it's possible to create a VM in a paused state using
+the -S command line option. In this state the machine is completely initialized
+according to command line options and ready to execute VM code but VCPU threads
+are not executing any code. The VM state in this paused state depends on the way
+QEMU was started. It could be in:
 @table @asis
 @table @asis
-
-@item [1] 
-@url{http://citeseer.nj.nec.com/piumarta98optimizing.html}, Optimizing
-direct threaded code by selective inlining (1998) by Ian Piumarta, Fabio
-Riccardi.
-
-@item [2]
-@url{http://developer.kde.org/~sewardj/}, Valgrind, an open-source
-memory debugger for x86-GNU/Linux, by Julian Seward.
-
-@item [3]
-@url{http://bochs.sourceforge.net/}, the Bochs IA-32 Emulator Project,
-by Kevin Lawton et al.
-
-@item [4]
-@url{http://www.cs.rose-hulman.edu/~donaldlf/em86/index.html}, the EM86
-x86 emulator on Alpha-Linux.
-
-@item [5]
-@url{http://www.usenix.org/publications/library/proceedings/usenix-nt97/full_papers/chernoff/chernoff.pdf},
-DIGITAL FX!32: Running 32-Bit x86 Applications on Alpha NT, by Anton
-Chernoff and Ray Hookway.
-
-@item [6]
-@url{http://www.willows.com/}, Windows API library emulation from
-Willows Software.
-
-@item [7]
-@url{http://user-mode-linux.sourceforge.net/}, 
-The User-mode Linux Kernel.
-
-@item [8]
-@url{http://www.plex86.org/}, 
-The new Plex86 project.
-
-@item [9]
-@url{http://www.vmware.com/}, 
-The VMWare PC virtualizer.
-
-@item [10]
-@url{http://www.microsoft.com/windowsxp/virtualpc/}, 
-The VirtualPC PC virtualizer.
-
-@item [11]
-@url{http://www.twoostwo.org/}, 
-The TwoOStwo PC virtualizer.
-
+@item initial state (after reset/power on state)
+@item with direct kernel loading, the initial state could be amended to execute
+code loaded by QEMU in the VM's RAM and with incoming migration
+@item with incoming migration, initial state will by amended with the migrated
+machine state after migration completes.
 @end table
 
 @end table
 
-@chapter Regression Tests
-
-In the directory @file{tests/}, various interesting testing programs
-are available. There are used for regression testing.
-
-@section @file{test-i386}
-
-This program executes most of the 16 bit and 32 bit x86 instructions and
-generates a text output. It can be compared with the output obtained with
-a real CPU or another emulator. The target @code{make test} runs this
-program and a @code{diff} on the generated output.
-
-The Linux system call @code{modify_ldt()} is used to create x86 selectors
-to test some 16 bit addressing and 32 bit with segmentation cases.
-
-The Linux system call @code{vm86()} is used to test vm86 emulation.
-
-Various exceptions are raised to test most of the x86 user space
-exception reporting.
-
-@section @file{linux-test}
-
-This program tests various Linux system calls. It is used to verify
-that the system call parameters are correctly converted between target
-and host CPUs.
-
-@section @file{qruncom.c}
-
-Example of usage of @code{libqemu} to emulate a user mode i386 CPU.
+This paused state is typically used by users to query machine state and/or
+additionally configure the machine (by hotplugging devices) in runtime before
+allowing VM code to run.
+
+However, at the -S pause point, it's impossible to configure options that affect
+initial VM creation (like: -smp/-m/-numa ...) or cold plug devices. The
+experimental --preconfig command line option  allows pausing QEMU
+before the initial VM creation, in a ``preconfig'' state, where additional
+queries and configuration can be performed via QMP before moving on to
+the resulting configuration startup. In the preconfig state, QEMU only allows
+a limited set of commands over the QMP monitor, where the commands do not
+depend on an initialized machine, including but not limited to:
+@table @asis
+@item qmp_capabilities
+@item query-qmp-schema
+@item query-commands
+@item query-status
+@item x-exit-preconfig
+@end table