]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - Documentation/rbtree.txt
seccomp: Add filter flag to opt-out of SSB mitigation
[mirror_ubuntu-artful-kernel.git] / Documentation / rbtree.txt
CommitLineData
ce0f95a5 1=================================
c742b531 2Red-black Trees (rbtree) in Linux
ce0f95a5
MCC
3=================================
4
5
6:Date: January 18, 2007
7:Author: Rob Landley <rob@landley.net>
c742b531
RL
8
9What are red-black trees, and what are they for?
10------------------------------------------------
11
12Red-black trees are a type of self-balancing binary search tree, used for
13storing sortable key/value data pairs. This differs from radix trees (which
14are used to efficiently store sparse arrays and thus use long integer indexes
15to insert/access/delete nodes) and hash tables (which are not kept sorted to
16be easily traversed in order, and must be tuned for a specific size and
17hash function where rbtrees scale gracefully storing arbitrary keys).
18
19Red-black trees are similar to AVL trees, but provide faster real-time bounded
20worst case performance for insertion and deletion (at most two rotations and
21three rotations, respectively, to balance the tree), with slightly slower
22(but still O(log n)) lookup time.
23
24To quote Linux Weekly News:
25
26 There are a number of red-black trees in use in the kernel.
17a9e7bb
RD
27 The deadline and CFQ I/O schedulers employ rbtrees to
28 track requests; the packet CD/DVD driver does the same.
c742b531
RL
29 The high-resolution timer code uses an rbtree to organize outstanding
30 timer requests. The ext3 filesystem tracks directory entries in a
31 red-black tree. Virtual memory areas (VMAs) are tracked with red-black
32 trees, as are epoll file descriptors, cryptographic keys, and network
33 packets in the "hierarchical token bucket" scheduler.
34
35This document covers use of the Linux rbtree implementation. For more
36information on the nature and implementation of Red Black Trees, see:
37
38 Linux Weekly News article on red-black trees
39 http://lwn.net/Articles/184495/
40
41 Wikipedia entry on red-black trees
42 http://en.wikipedia.org/wiki/Red-black_tree
43
44Linux implementation of red-black trees
45---------------------------------------
46
47Linux's rbtree implementation lives in the file "lib/rbtree.c". To use it,
48"#include <linux/rbtree.h>".
49
50The Linux rbtree implementation is optimized for speed, and thus has one
51less layer of indirection (and better cache locality) than more traditional
52tree implementations. Instead of using pointers to separate rb_node and data
53structures, each instance of struct rb_node is embedded in the data structure
54it organizes. And instead of using a comparison callback function pointer,
55users are expected to write their own tree search and insert functions
56which call the provided rbtree functions. Locking is also left up to the
57user of the rbtree code.
58
59Creating a new rbtree
60---------------------
61
ce0f95a5 62Data nodes in an rbtree tree are structures containing a struct rb_node member::
c742b531
RL
63
64 struct mytype {
65 struct rb_node node;
66 char *keystring;
67 };
68
69When dealing with a pointer to the embedded struct rb_node, the containing data
70structure may be accessed with the standard container_of() macro. In addition,
71individual members may be accessed directly via rb_entry(node, type, member).
72
73At the root of each rbtree is an rb_root structure, which is initialized to be
74empty via:
75
76 struct rb_root mytree = RB_ROOT;
77
78Searching for a value in an rbtree
79----------------------------------
80
81Writing a search function for your tree is fairly straightforward: start at the
82root, compare each value, and follow the left or right branch as necessary.
83
ce0f95a5 84Example::
c742b531
RL
85
86 struct mytype *my_search(struct rb_root *root, char *string)
87 {
88 struct rb_node *node = root->rb_node;
89
90 while (node) {
91 struct mytype *data = container_of(node, struct mytype, node);
92 int result;
93
94 result = strcmp(string, data->keystring);
95
96 if (result < 0)
97 node = node->rb_left;
98 else if (result > 0)
99 node = node->rb_right;
100 else
101 return data;
102 }
103 return NULL;
104 }
105
106Inserting data into an rbtree
107-----------------------------
108
109Inserting data in the tree involves first searching for the place to insert the
110new node, then inserting the node and rebalancing ("recoloring") the tree.
111
112The search for insertion differs from the previous search by finding the
113location of the pointer on which to graft the new node. The new node also
114needs a link to its parent node for rebalancing purposes.
115
ce0f95a5 116Example::
c742b531
RL
117
118 int my_insert(struct rb_root *root, struct mytype *data)
119 {
120 struct rb_node **new = &(root->rb_node), *parent = NULL;
121
122 /* Figure out where to put new node */
123 while (*new) {
124 struct mytype *this = container_of(*new, struct mytype, node);
125 int result = strcmp(data->keystring, this->keystring);
126
127 parent = *new;
128 if (result < 0)
129 new = &((*new)->rb_left);
130 else if (result > 0)
131 new = &((*new)->rb_right);
132 else
133 return FALSE;
134 }
135
136 /* Add new node and rebalance tree. */
27af1da4 137 rb_link_node(&data->node, parent, new);
138 rb_insert_color(&data->node, root);
c742b531
RL
139
140 return TRUE;
141 }
142
143Removing or replacing existing data in an rbtree
144------------------------------------------------
145
ce0f95a5 146To remove an existing node from a tree, call::
c742b531
RL
147
148 void rb_erase(struct rb_node *victim, struct rb_root *tree);
149
ce0f95a5 150Example::
c742b531 151
27af1da4 152 struct mytype *data = mysearch(&mytree, "walrus");
c742b531
RL
153
154 if (data) {
27af1da4 155 rb_erase(&data->node, &mytree);
c742b531
RL
156 myfree(data);
157 }
158
ce0f95a5 159To replace an existing node in a tree with a new one with the same key, call::
c742b531
RL
160
161 void rb_replace_node(struct rb_node *old, struct rb_node *new,
162 struct rb_root *tree);
163
164Replacing a node this way does not re-sort the tree: If the new node doesn't
165have the same key as the old node, the rbtree will probably become corrupted.
166
167Iterating through the elements stored in an rbtree (in sort order)
168------------------------------------------------------------------
169
170Four functions are provided for iterating through an rbtree's contents in
171sorted order. These work on arbitrary trees, and should not need to be
ce0f95a5 172modified or wrapped (except for locking purposes)::
c742b531
RL
173
174 struct rb_node *rb_first(struct rb_root *tree);
175 struct rb_node *rb_last(struct rb_root *tree);
176 struct rb_node *rb_next(struct rb_node *node);
177 struct rb_node *rb_prev(struct rb_node *node);
178
179To start iterating, call rb_first() or rb_last() with a pointer to the root
180of the tree, which will return a pointer to the node structure contained in
181the first or last element in the tree. To continue, fetch the next or previous
182node by calling rb_next() or rb_prev() on the current node. This will return
183NULL when there are no more nodes left.
184
185The iterator functions return a pointer to the embedded struct rb_node, from
186which the containing data structure may be accessed with the container_of()
187macro, and individual members may be accessed directly via
188rb_entry(node, type, member).
189
ce0f95a5 190Example::
c742b531
RL
191
192 struct rb_node *node;
193 for (node = rb_first(&mytree); node; node = rb_next(node))
19034233 194 printk("key=%s\n", rb_entry(node, struct mytype, node)->keystring);
c742b531 195
17d9ddc7
PV
196Support for Augmented rbtrees
197-----------------------------
198
14b94af0
ML
199Augmented rbtree is an rbtree with "some" additional data stored in
200each node, where the additional data for node N must be a function of
201the contents of all nodes in the subtree rooted at N. This data can
202be used to augment some new functionality to rbtree. Augmented rbtree
203is an optional feature built on top of basic rbtree infrastructure.
204An rbtree user who wants this feature will have to call the augmentation
205functions with the user provided augmentation callback when inserting
206and erasing nodes.
2f175074 207
9c079add 208C files implementing augmented rbtree manipulation must include
121e0248 209<linux/rbtree_augmented.h> instead of <linux/rbtree.h>. Note that
9c079add
ML
210linux/rbtree_augmented.h exposes some rbtree implementations details
211you are not expected to rely on; please stick to the documented APIs
212there and do not include <linux/rbtree_augmented.h> from header files
213either so as to minimize chances of your users accidentally relying on
214such implementation details.
215
14b94af0
ML
216On insertion, the user must update the augmented information on the path
217leading to the inserted node, then call rb_link_node() as usual and
218rb_augment_inserted() instead of the usual rb_insert_color() call.
219If rb_augment_inserted() rebalances the rbtree, it will callback into
220a user provided function to update the augmented information on the
221affected subtrees.
2f175074 222
14b94af0
ML
223When erasing a node, the user must call rb_erase_augmented() instead of
224rb_erase(). rb_erase_augmented() calls back into user provided functions
225to updated the augmented information on affected subtrees.
17d9ddc7 226
14b94af0
ML
227In both cases, the callbacks are provided through struct rb_augment_callbacks.
2283 callbacks must be defined:
229
230- A propagation callback, which updates the augmented value for a given
231 node and its ancestors, up to a given stop point (or NULL to update
232 all the way to the root).
233
234- A copy callback, which copies the augmented value for a given subtree
235 to a newly assigned subtree root.
236
237- A tree rotation callback, which copies the augmented value for a given
238 subtree to a newly assigned subtree root AND recomputes the augmented
239 information for the former subtree root.
240
9c079add
ML
241The compiled code for rb_erase_augmented() may inline the propagation and
242copy callbacks, which results in a large function, so each augmented rbtree
243user should have a single rb_erase_augmented() call site in order to limit
244compiled code size.
245
14b94af0 246
ce0f95a5
MCC
247Sample usage
248^^^^^^^^^^^^
17d9ddc7
PV
249
250Interval tree is an example of augmented rb tree. Reference -
251"Introduction to Algorithms" by Cormen, Leiserson, Rivest and Stein.
252More details about interval trees:
253
254Classical rbtree has a single key and it cannot be directly used to store
255interval ranges like [lo:hi] and do a quick lookup for any overlap with a new
256lo:hi or to find whether there is an exact match for a new lo:hi.
257
258However, rbtree can be augmented to store such interval ranges in a structured
259way making it possible to do efficient lookup and exact match.
260
261This "extra information" stored in each node is the maximum hi
c98be0c9 262(max_hi) value among all the nodes that are its descendants. This
17d9ddc7
PV
263information can be maintained at each node just be looking at the node
264and its immediate children. And this will be used in O(log n) lookup
265for lowest match (lowest start address among all possible matches)
ce0f95a5 266with something like::
17d9ddc7 267
ce0f95a5
MCC
268 struct interval_tree_node *
269 interval_tree_first_match(struct rb_root *root,
270 unsigned long start, unsigned long last)
271 {
14b94af0
ML
272 struct interval_tree_node *node;
273
274 if (!root->rb_node)
275 return NULL;
276 node = rb_entry(root->rb_node, struct interval_tree_node, rb);
277
278 while (true) {
279 if (node->rb.rb_left) {
280 struct interval_tree_node *left =
281 rb_entry(node->rb.rb_left,
282 struct interval_tree_node, rb);
283 if (left->__subtree_last >= start) {
284 /*
285 * Some nodes in left subtree satisfy Cond2.
286 * Iterate to find the leftmost such node N.
287 * If it also satisfies Cond1, that's the match
288 * we are looking for. Otherwise, there is no
289 * matching interval as nodes to the right of N
290 * can't satisfy Cond1 either.
291 */
292 node = left;
293 continue;
294 }
17d9ddc7 295 }
14b94af0
ML
296 if (node->start <= last) { /* Cond1 */
297 if (node->last >= start) /* Cond2 */
298 return node; /* node is leftmost match */
299 if (node->rb.rb_right) {
300 node = rb_entry(node->rb.rb_right,
301 struct interval_tree_node, rb);
302 if (node->__subtree_last >= start)
303 continue;
304 }
305 }
306 return NULL; /* No match */
307 }
ce0f95a5 308 }
14b94af0 309
ce0f95a5 310Insertion/removal are defined using the following augmented callbacks::
14b94af0 311
ce0f95a5
MCC
312 static inline unsigned long
313 compute_subtree_last(struct interval_tree_node *node)
314 {
14b94af0
ML
315 unsigned long max = node->last, subtree_last;
316 if (node->rb.rb_left) {
317 subtree_last = rb_entry(node->rb.rb_left,
318 struct interval_tree_node, rb)->__subtree_last;
319 if (max < subtree_last)
320 max = subtree_last;
321 }
322 if (node->rb.rb_right) {
323 subtree_last = rb_entry(node->rb.rb_right,
324 struct interval_tree_node, rb)->__subtree_last;
325 if (max < subtree_last)
326 max = subtree_last;
327 }
328 return max;
ce0f95a5 329 }
14b94af0 330
ce0f95a5
MCC
331 static void augment_propagate(struct rb_node *rb, struct rb_node *stop)
332 {
14b94af0
ML
333 while (rb != stop) {
334 struct interval_tree_node *node =
335 rb_entry(rb, struct interval_tree_node, rb);
336 unsigned long subtree_last = compute_subtree_last(node);
337 if (node->__subtree_last == subtree_last)
338 break;
339 node->__subtree_last = subtree_last;
340 rb = rb_parent(&node->rb);
341 }
ce0f95a5 342 }
14b94af0 343
ce0f95a5
MCC
344 static void augment_copy(struct rb_node *rb_old, struct rb_node *rb_new)
345 {
14b94af0
ML
346 struct interval_tree_node *old =
347 rb_entry(rb_old, struct interval_tree_node, rb);
348 struct interval_tree_node *new =
349 rb_entry(rb_new, struct interval_tree_node, rb);
350
351 new->__subtree_last = old->__subtree_last;
ce0f95a5 352 }
14b94af0 353
ce0f95a5
MCC
354 static void augment_rotate(struct rb_node *rb_old, struct rb_node *rb_new)
355 {
14b94af0
ML
356 struct interval_tree_node *old =
357 rb_entry(rb_old, struct interval_tree_node, rb);
358 struct interval_tree_node *new =
359 rb_entry(rb_new, struct interval_tree_node, rb);
360
361 new->__subtree_last = old->__subtree_last;
362 old->__subtree_last = compute_subtree_last(old);
ce0f95a5 363 }
14b94af0 364
ce0f95a5 365 static const struct rb_augment_callbacks augment_callbacks = {
14b94af0 366 augment_propagate, augment_copy, augment_rotate
ce0f95a5 367 };
14b94af0 368
ce0f95a5
MCC
369 void interval_tree_insert(struct interval_tree_node *node,
370 struct rb_root *root)
371 {
14b94af0
ML
372 struct rb_node **link = &root->rb_node, *rb_parent = NULL;
373 unsigned long start = node->start, last = node->last;
374 struct interval_tree_node *parent;
375
376 while (*link) {
377 rb_parent = *link;
378 parent = rb_entry(rb_parent, struct interval_tree_node, rb);
379 if (parent->__subtree_last < last)
380 parent->__subtree_last = last;
381 if (start < parent->start)
382 link = &parent->rb.rb_left;
383 else
384 link = &parent->rb.rb_right;
17d9ddc7 385 }
14b94af0
ML
386
387 node->__subtree_last = last;
388 rb_link_node(&node->rb, rb_parent, link);
389 rb_insert_augmented(&node->rb, root, &augment_callbacks);
ce0f95a5 390 }
17d9ddc7 391
ce0f95a5
MCC
392 void interval_tree_remove(struct interval_tree_node *node,
393 struct rb_root *root)
394 {
14b94af0 395 rb_erase_augmented(&node->rb, root, &augment_callbacks);
ce0f95a5 396 }