]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/arm64/kernel/cpufeature.c
arm64: Turn on KPTI only on CPUs that need it
[mirror_ubuntu-artful-kernel.git] / arch / arm64 / kernel / cpufeature.c
CommitLineData
359b7064
MZ
1/*
2 * Contains CPU feature definitions
3 *
4 * Copyright (C) 2015 ARM Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
9cdf8ec4 19#define pr_fmt(fmt) "CPU features: " fmt
359b7064 20
3c739b57 21#include <linux/bsearch.h>
2a6dcb2b 22#include <linux/cpumask.h>
3c739b57 23#include <linux/sort.h>
2a6dcb2b 24#include <linux/stop_machine.h>
359b7064 25#include <linux/types.h>
2077be67 26#include <linux/mm.h>
359b7064
MZ
27#include <asm/cpu.h>
28#include <asm/cpufeature.h>
dbb4e152 29#include <asm/cpu_ops.h>
13f417f3 30#include <asm/mmu_context.h>
338d4f49 31#include <asm/processor.h>
cdcf817b 32#include <asm/sysreg.h>
77c97b4e 33#include <asm/traps.h>
d88701be 34#include <asm/virt.h>
359b7064 35
9cdf8ec4
SP
36unsigned long elf_hwcap __read_mostly;
37EXPORT_SYMBOL_GPL(elf_hwcap);
38
39#ifdef CONFIG_COMPAT
40#define COMPAT_ELF_HWCAP_DEFAULT \
41 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
42 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
43 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
44 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
45 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
46 COMPAT_HWCAP_LPAE)
47unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
48unsigned int compat_elf_hwcap2 __read_mostly;
49#endif
50
51DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
4b65a5db 52EXPORT_SYMBOL(cpu_hwcaps);
9cdf8ec4 53
8effeaaf
MR
54static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
55{
56 /* file-wide pr_fmt adds "CPU features: " prefix */
57 pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
58 return 0;
59}
60
61static struct notifier_block cpu_hwcaps_notifier = {
62 .notifier_call = dump_cpu_hwcaps
63};
64
65static int __init register_cpu_hwcaps_dumper(void)
66{
67 atomic_notifier_chain_register(&panic_notifier_list,
68 &cpu_hwcaps_notifier);
69 return 0;
70}
71__initcall(register_cpu_hwcaps_dumper);
72
efd9e03f
CM
73DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
74EXPORT_SYMBOL(cpu_hwcap_keys);
75
fe4fbdbc 76#define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
3c739b57 77 { \
4f0a606b 78 .sign = SIGNED, \
fe4fbdbc 79 .visible = VISIBLE, \
3c739b57
SP
80 .strict = STRICT, \
81 .type = TYPE, \
82 .shift = SHIFT, \
83 .width = WIDTH, \
84 .safe_val = SAFE_VAL, \
85 }
86
0710cfdb 87/* Define a feature with unsigned values */
fe4fbdbc
SP
88#define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
89 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
4f0a606b 90
0710cfdb 91/* Define a feature with a signed value */
fe4fbdbc
SP
92#define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
93 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
0710cfdb 94
3c739b57
SP
95#define ARM64_FTR_END \
96 { \
97 .width = 0, \
98 }
99
70544196
JM
100/* meta feature for alternatives */
101static bool __maybe_unused
92406f0c
SP
102cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
103
70544196 104
4aa8a472
SP
105/*
106 * NOTE: Any changes to the visibility of features should be kept in
107 * sync with the documentation of the CPU feature register ABI.
108 */
5e49d73c 109static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
fe4fbdbc
SP
110 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
111 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
112 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
113 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
114 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
115 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
3c739b57
SP
116 ARM64_FTR_END,
117};
118
c8c3798d 119static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
c651aae5 120 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
cb567e79 121 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
c8c3798d 122 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
a7cf3005 123 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
c8c3798d
SP
124 ARM64_FTR_END,
125};
126
5e49d73c 127static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
e2da9106 128 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
fe4fbdbc
SP
129 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
130 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
131 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
3c739b57 132 /* Linux doesn't care about the EL3 */
fe4fbdbc
SP
133 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
134 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
135 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
136 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
3c739b57
SP
137 ARM64_FTR_END,
138};
139
5e49d73c 140static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
fe4fbdbc
SP
141 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
142 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
143 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
144 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
3c739b57 145 /* Linux shouldn't care about secure memory */
fe4fbdbc
SP
146 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
147 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
148 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
3c739b57
SP
149 /*
150 * Differing PARange is fine as long as all peripherals and memory are mapped
151 * within the minimum PARange of all CPUs
152 */
fe4fbdbc 153 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
3c739b57
SP
154 ARM64_FTR_END,
155};
156
5e49d73c 157static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
fe4fbdbc
SP
158 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
159 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
160 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
161 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
162 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
163 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
3c739b57
SP
164 ARM64_FTR_END,
165};
166
5e49d73c 167static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
fe4fbdbc
SP
168 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
169 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
170 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
171 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
172 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
406e3087
JM
173 ARM64_FTR_END,
174};
175
5e49d73c 176static const struct arm64_ftr_bits ftr_ctr[] = {
fe4fbdbc
SP
177 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RAO */
178 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0), /* CWG */
179 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
180 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
3c739b57
SP
181 /*
182 * Linux can handle differing I-cache policies. Userspace JITs will
ee7bc638 183 * make use of *minLine.
155433cb 184 * If we have differing I-cache policies, report it as the weakest - VIPT.
3c739b57 185 */
155433cb 186 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT), /* L1Ip */
fe4fbdbc 187 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* IminLine */
3c739b57
SP
188 ARM64_FTR_END,
189};
190
675b0563
AB
191struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
192 .name = "SYS_CTR_EL0",
193 .ftr_bits = ftr_ctr
194};
195
5e49d73c 196static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
fe4fbdbc
SP
197 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 28, 4, 0xf), /* InnerShr */
198 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 24, 4, 0), /* FCSE */
199 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
200 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 16, 4, 0), /* TCM */
201 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0), /* ShareLvl */
202 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0xf), /* OuterShr */
203 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
204 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
3c739b57
SP
205 ARM64_FTR_END,
206};
207
5e49d73c 208static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
fe4fbdbc
SP
209 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
210 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
211 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
212 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
213 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
b20d1ba3
WD
214 /*
215 * We can instantiate multiple PMU instances with different levels
216 * of support.
fe4fbdbc
SP
217 */
218 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
219 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
220 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
3c739b57
SP
221 ARM64_FTR_END,
222};
223
5e49d73c 224static const struct arm64_ftr_bits ftr_mvfr2[] = {
fe4fbdbc
SP
225 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0), /* FPMisc */
226 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0), /* SIMDMisc */
3c739b57
SP
227 ARM64_FTR_END,
228};
229
5e49d73c 230static const struct arm64_ftr_bits ftr_dczid[] = {
fe4fbdbc
SP
231 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
232 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
3c739b57
SP
233 ARM64_FTR_END,
234};
235
236
5e49d73c 237static const struct arm64_ftr_bits ftr_id_isar5[] = {
fe4fbdbc
SP
238 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
239 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
240 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
241 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
242 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
243 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
3c739b57
SP
244 ARM64_FTR_END,
245};
246
5e49d73c 247static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
fe4fbdbc 248 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0), /* ac2 */
3c739b57
SP
249 ARM64_FTR_END,
250};
251
5e49d73c 252static const struct arm64_ftr_bits ftr_id_pfr0[] = {
fe4fbdbc
SP
253 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0), /* State3 */
254 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0), /* State2 */
255 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0), /* State1 */
256 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0), /* State0 */
3c739b57
SP
257 ARM64_FTR_END,
258};
259
5e49d73c 260static const struct arm64_ftr_bits ftr_id_dfr0[] = {
fe4fbdbc
SP
261 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
262 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */
263 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
264 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
265 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
266 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
267 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
268 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
e5343503
SP
269 ARM64_FTR_END,
270};
271
3c739b57
SP
272/*
273 * Common ftr bits for a 32bit register with all hidden, strict
274 * attributes, with 4bit feature fields and a default safe value of
275 * 0. Covers the following 32bit registers:
276 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
277 */
5e49d73c 278static const struct arm64_ftr_bits ftr_generic_32bits[] = {
fe4fbdbc
SP
279 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
280 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
281 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
282 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
283 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
284 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
285 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
286 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
3c739b57
SP
287 ARM64_FTR_END,
288};
289
eab43e88
SP
290/* Table for a single 32bit feature value */
291static const struct arm64_ftr_bits ftr_single32[] = {
fe4fbdbc 292 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
3c739b57
SP
293 ARM64_FTR_END,
294};
295
eab43e88 296static const struct arm64_ftr_bits ftr_raz[] = {
3c739b57
SP
297 ARM64_FTR_END,
298};
299
6f2b7eef
AB
300#define ARM64_FTR_REG(id, table) { \
301 .sys_id = id, \
302 .reg = &(struct arm64_ftr_reg){ \
3c739b57
SP
303 .name = #id, \
304 .ftr_bits = &((table)[0]), \
6f2b7eef 305 }}
3c739b57 306
6f2b7eef
AB
307static const struct __ftr_reg_entry {
308 u32 sys_id;
309 struct arm64_ftr_reg *reg;
310} arm64_ftr_regs[] = {
3c739b57
SP
311
312 /* Op1 = 0, CRn = 0, CRm = 1 */
313 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
314 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
e5343503 315 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
3c739b57
SP
316 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
317 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
318 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
319 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
320
321 /* Op1 = 0, CRn = 0, CRm = 2 */
322 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
323 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
324 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
325 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
326 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
327 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
328 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
329
330 /* Op1 = 0, CRn = 0, CRm = 3 */
331 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
332 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
333 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
334
335 /* Op1 = 0, CRn = 0, CRm = 4 */
336 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
eab43e88 337 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
3c739b57
SP
338
339 /* Op1 = 0, CRn = 0, CRm = 5 */
340 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
eab43e88 341 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
3c739b57
SP
342
343 /* Op1 = 0, CRn = 0, CRm = 6 */
344 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
c8c3798d 345 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
3c739b57
SP
346
347 /* Op1 = 0, CRn = 0, CRm = 7 */
348 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
349 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
406e3087 350 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
3c739b57
SP
351
352 /* Op1 = 3, CRn = 0, CRm = 0 */
675b0563 353 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
3c739b57
SP
354 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
355
356 /* Op1 = 3, CRn = 14, CRm = 0 */
eab43e88 357 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
3c739b57
SP
358};
359
360static int search_cmp_ftr_reg(const void *id, const void *regp)
361{
6f2b7eef 362 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
3c739b57
SP
363}
364
365/*
366 * get_arm64_ftr_reg - Lookup a feature register entry using its
367 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
368 * ascending order of sys_id , we use binary search to find a matching
369 * entry.
370 *
371 * returns - Upon success, matching ftr_reg entry for id.
372 * - NULL on failure. It is upto the caller to decide
373 * the impact of a failure.
374 */
375static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
376{
6f2b7eef
AB
377 const struct __ftr_reg_entry *ret;
378
379 ret = bsearch((const void *)(unsigned long)sys_id,
3c739b57
SP
380 arm64_ftr_regs,
381 ARRAY_SIZE(arm64_ftr_regs),
382 sizeof(arm64_ftr_regs[0]),
383 search_cmp_ftr_reg);
6f2b7eef
AB
384 if (ret)
385 return ret->reg;
386 return NULL;
3c739b57
SP
387}
388
5e49d73c
AB
389static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
390 s64 ftr_val)
3c739b57
SP
391{
392 u64 mask = arm64_ftr_mask(ftrp);
393
394 reg &= ~mask;
395 reg |= (ftr_val << ftrp->shift) & mask;
396 return reg;
397}
398
5e49d73c
AB
399static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
400 s64 cur)
3c739b57
SP
401{
402 s64 ret = 0;
403
404 switch (ftrp->type) {
405 case FTR_EXACT:
406 ret = ftrp->safe_val;
407 break;
408 case FTR_LOWER_SAFE:
409 ret = new < cur ? new : cur;
410 break;
411 case FTR_HIGHER_SAFE:
412 ret = new > cur ? new : cur;
413 break;
414 default:
415 BUG();
416 }
417
418 return ret;
419}
420
3c739b57
SP
421static void __init sort_ftr_regs(void)
422{
6f2b7eef
AB
423 int i;
424
425 /* Check that the array is sorted so that we can do the binary search */
426 for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
427 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
3c739b57
SP
428}
429
430/*
431 * Initialise the CPU feature register from Boot CPU values.
432 * Also initiliases the strict_mask for the register.
b389d799
MR
433 * Any bits that are not covered by an arm64_ftr_bits entry are considered
434 * RES0 for the system-wide value, and must strictly match.
3c739b57
SP
435 */
436static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
437{
438 u64 val = 0;
439 u64 strict_mask = ~0x0ULL;
fe4fbdbc 440 u64 user_mask = 0;
b389d799
MR
441 u64 valid_mask = 0;
442
5e49d73c 443 const struct arm64_ftr_bits *ftrp;
3c739b57
SP
444 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
445
446 BUG_ON(!reg);
447
448 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
b389d799 449 u64 ftr_mask = arm64_ftr_mask(ftrp);
3c739b57
SP
450 s64 ftr_new = arm64_ftr_value(ftrp, new);
451
452 val = arm64_ftr_set_value(ftrp, val, ftr_new);
b389d799
MR
453
454 valid_mask |= ftr_mask;
3c739b57 455 if (!ftrp->strict)
b389d799 456 strict_mask &= ~ftr_mask;
fe4fbdbc
SP
457 if (ftrp->visible)
458 user_mask |= ftr_mask;
459 else
460 reg->user_val = arm64_ftr_set_value(ftrp,
461 reg->user_val,
462 ftrp->safe_val);
3c739b57 463 }
b389d799
MR
464
465 val &= valid_mask;
466
3c739b57
SP
467 reg->sys_val = val;
468 reg->strict_mask = strict_mask;
fe4fbdbc 469 reg->user_mask = user_mask;
3c739b57
SP
470}
471
472void __init init_cpu_features(struct cpuinfo_arm64 *info)
473{
474 /* Before we start using the tables, make sure it is sorted */
475 sort_ftr_regs();
476
477 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
478 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
479 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
480 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
481 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
482 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
483 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
484 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
485 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
406e3087 486 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
3c739b57
SP
487 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
488 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
a6dc3cd7
SP
489
490 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
491 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
492 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
493 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
494 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
495 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
496 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
497 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
498 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
499 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
500 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
501 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
502 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
503 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
504 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
505 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
506 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
507 }
508
3c739b57
SP
509}
510
3086d391 511static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
3c739b57 512{
5e49d73c 513 const struct arm64_ftr_bits *ftrp;
3c739b57
SP
514
515 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
516 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
517 s64 ftr_new = arm64_ftr_value(ftrp, new);
518
519 if (ftr_cur == ftr_new)
520 continue;
521 /* Find a safe value */
522 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
523 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
524 }
525
526}
527
3086d391 528static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
cdcf817b 529{
3086d391
SP
530 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
531
532 BUG_ON(!regp);
533 update_cpu_ftr_reg(regp, val);
534 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
535 return 0;
536 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
537 regp->name, boot, cpu, val);
538 return 1;
539}
540
541/*
542 * Update system wide CPU feature registers with the values from a
543 * non-boot CPU. Also performs SANITY checks to make sure that there
544 * aren't any insane variations from that of the boot CPU.
545 */
546void update_cpu_features(int cpu,
547 struct cpuinfo_arm64 *info,
548 struct cpuinfo_arm64 *boot)
549{
550 int taint = 0;
551
552 /*
553 * The kernel can handle differing I-cache policies, but otherwise
554 * caches should look identical. Userspace JITs will make use of
555 * *minLine.
556 */
557 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
558 info->reg_ctr, boot->reg_ctr);
559
560 /*
561 * Userspace may perform DC ZVA instructions. Mismatched block sizes
562 * could result in too much or too little memory being zeroed if a
563 * process is preempted and migrated between CPUs.
564 */
565 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
566 info->reg_dczid, boot->reg_dczid);
567
568 /* If different, timekeeping will be broken (especially with KVM) */
569 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
570 info->reg_cntfrq, boot->reg_cntfrq);
571
572 /*
573 * The kernel uses self-hosted debug features and expects CPUs to
574 * support identical debug features. We presently need CTX_CMPs, WRPs,
575 * and BRPs to be identical.
576 * ID_AA64DFR1 is currently RES0.
577 */
578 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
579 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
580 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
581 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
582 /*
583 * Even in big.LITTLE, processors should be identical instruction-set
584 * wise.
585 */
586 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
587 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
588 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
589 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
590
591 /*
592 * Differing PARange support is fine as long as all peripherals and
593 * memory are mapped within the minimum PARange of all CPUs.
594 * Linux should not care about secure memory.
595 */
596 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
597 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
598 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
599 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
406e3087
JM
600 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
601 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
3086d391
SP
602
603 /*
604 * EL3 is not our concern.
605 * ID_AA64PFR1 is currently RES0.
606 */
607 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
608 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
609 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
610 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
611
612 /*
a6dc3cd7
SP
613 * If we have AArch32, we care about 32-bit features for compat.
614 * If the system doesn't support AArch32, don't update them.
3086d391 615 */
46823dd1 616 if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
a6dc3cd7
SP
617 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
618
619 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
3086d391 620 info->reg_id_dfr0, boot->reg_id_dfr0);
a6dc3cd7 621 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
3086d391 622 info->reg_id_isar0, boot->reg_id_isar0);
a6dc3cd7 623 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
3086d391 624 info->reg_id_isar1, boot->reg_id_isar1);
a6dc3cd7 625 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
3086d391 626 info->reg_id_isar2, boot->reg_id_isar2);
a6dc3cd7 627 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
3086d391 628 info->reg_id_isar3, boot->reg_id_isar3);
a6dc3cd7 629 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
3086d391 630 info->reg_id_isar4, boot->reg_id_isar4);
a6dc3cd7 631 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
3086d391
SP
632 info->reg_id_isar5, boot->reg_id_isar5);
633
a6dc3cd7
SP
634 /*
635 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
636 * ACTLR formats could differ across CPUs and therefore would have to
637 * be trapped for virtualization anyway.
638 */
639 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
3086d391 640 info->reg_id_mmfr0, boot->reg_id_mmfr0);
a6dc3cd7 641 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
3086d391 642 info->reg_id_mmfr1, boot->reg_id_mmfr1);
a6dc3cd7 643 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
3086d391 644 info->reg_id_mmfr2, boot->reg_id_mmfr2);
a6dc3cd7 645 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
3086d391 646 info->reg_id_mmfr3, boot->reg_id_mmfr3);
a6dc3cd7 647 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
3086d391 648 info->reg_id_pfr0, boot->reg_id_pfr0);
a6dc3cd7 649 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
3086d391 650 info->reg_id_pfr1, boot->reg_id_pfr1);
a6dc3cd7 651 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
3086d391 652 info->reg_mvfr0, boot->reg_mvfr0);
a6dc3cd7 653 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
3086d391 654 info->reg_mvfr1, boot->reg_mvfr1);
a6dc3cd7 655 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
3086d391 656 info->reg_mvfr2, boot->reg_mvfr2);
a6dc3cd7 657 }
3086d391
SP
658
659 /*
660 * Mismatched CPU features are a recipe for disaster. Don't even
661 * pretend to support them.
662 */
8dd0ee65
WD
663 if (taint) {
664 pr_warn_once("Unsupported CPU feature variation detected.\n");
665 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
666 }
cdcf817b
SP
667}
668
46823dd1 669u64 read_sanitised_ftr_reg(u32 id)
b3f15378
SP
670{
671 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
672
673 /* We shouldn't get a request for an unsupported register */
674 BUG_ON(!regp);
675 return regp->sys_val;
676}
359b7064 677
965861d6
MR
678#define read_sysreg_case(r) \
679 case r: return read_sysreg_s(r)
680
92406f0c 681/*
46823dd1 682 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
92406f0c
SP
683 * Read the system register on the current CPU
684 */
46823dd1 685static u64 __read_sysreg_by_encoding(u32 sys_id)
92406f0c
SP
686{
687 switch (sys_id) {
965861d6
MR
688 read_sysreg_case(SYS_ID_PFR0_EL1);
689 read_sysreg_case(SYS_ID_PFR1_EL1);
690 read_sysreg_case(SYS_ID_DFR0_EL1);
691 read_sysreg_case(SYS_ID_MMFR0_EL1);
692 read_sysreg_case(SYS_ID_MMFR1_EL1);
693 read_sysreg_case(SYS_ID_MMFR2_EL1);
694 read_sysreg_case(SYS_ID_MMFR3_EL1);
695 read_sysreg_case(SYS_ID_ISAR0_EL1);
696 read_sysreg_case(SYS_ID_ISAR1_EL1);
697 read_sysreg_case(SYS_ID_ISAR2_EL1);
698 read_sysreg_case(SYS_ID_ISAR3_EL1);
699 read_sysreg_case(SYS_ID_ISAR4_EL1);
700 read_sysreg_case(SYS_ID_ISAR5_EL1);
701 read_sysreg_case(SYS_MVFR0_EL1);
702 read_sysreg_case(SYS_MVFR1_EL1);
703 read_sysreg_case(SYS_MVFR2_EL1);
704
705 read_sysreg_case(SYS_ID_AA64PFR0_EL1);
706 read_sysreg_case(SYS_ID_AA64PFR1_EL1);
707 read_sysreg_case(SYS_ID_AA64DFR0_EL1);
708 read_sysreg_case(SYS_ID_AA64DFR1_EL1);
709 read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
710 read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
711 read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
712 read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
713 read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
714
715 read_sysreg_case(SYS_CNTFRQ_EL0);
716 read_sysreg_case(SYS_CTR_EL0);
717 read_sysreg_case(SYS_DCZID_EL0);
718
92406f0c
SP
719 default:
720 BUG();
721 return 0;
722 }
723}
724
963fcd40
MZ
725#include <linux/irqchip/arm-gic-v3.h>
726
18ffa046
JM
727static bool
728feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
729{
28c5dcb2 730 int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
18ffa046
JM
731
732 return val >= entry->min_field_value;
733}
734
da8d02d1 735static bool
92406f0c 736has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
da8d02d1
SP
737{
738 u64 val;
94a9e04a 739
92406f0c
SP
740 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
741 if (scope == SCOPE_SYSTEM)
46823dd1 742 val = read_sanitised_ftr_reg(entry->sys_reg);
92406f0c 743 else
46823dd1 744 val = __read_sysreg_by_encoding(entry->sys_reg);
92406f0c 745
da8d02d1
SP
746 return feature_matches(val, entry);
747}
338d4f49 748
92406f0c 749static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
963fcd40
MZ
750{
751 bool has_sre;
752
92406f0c 753 if (!has_cpuid_feature(entry, scope))
963fcd40
MZ
754 return false;
755
756 has_sre = gic_enable_sre();
757 if (!has_sre)
758 pr_warn_once("%s present but disabled by higher exception level\n",
759 entry->desc);
760
761 return has_sre;
762}
763
92406f0c 764static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
d5370f75
WD
765{
766 u32 midr = read_cpuid_id();
d5370f75
WD
767
768 /* Cavium ThunderX pass 1.x and 2.x */
fa5ce3d1
RR
769 return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
770 MIDR_CPU_VAR_REV(0, 0),
771 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
d5370f75
WD
772}
773
92406f0c 774static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
d88701be
MZ
775{
776 return is_kernel_in_hyp_mode();
777}
778
d1745910
MZ
779static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
780 int __unused)
781{
2077be67 782 phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
d1745910
MZ
783
784 /*
785 * Activate the lower HYP offset only if:
786 * - the idmap doesn't clash with it,
787 * - the kernel is not running at EL2.
788 */
789 return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
790}
791
82e0191a
SP
792static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
793{
46823dd1 794 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
82e0191a
SP
795
796 return cpuid_feature_extract_signed_field(pfr0,
797 ID_AA64PFR0_FP_SHIFT) < 0;
798}
799
74951dcd
WD
800#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
801static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
802
803static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
804 int __unused)
805{
e2da9106
WD
806 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
807
74951dcd
WD
808 /* Forced on command line? */
809 if (__kpti_forced) {
810 pr_info_once("kernel page table isolation forced %s by command line option\n",
811 __kpti_forced > 0 ? "ON" : "OFF");
812 return __kpti_forced > 0;
813 }
814
815 /* Useful for KASLR robustness */
816 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
817 return true;
818
fca5f9cd
J
819 /* Don't force KPTI for CPUs that are not vulnerable */
820 switch (read_cpuid_id() & MIDR_CPU_MODEL_MASK) {
821 case MIDR_CAVIUM_THUNDERX2:
822 case MIDR_BRCM_VULCAN:
823 return false;
824 }
825
e2da9106
WD
826 /* Defer to CPU feature registers */
827 return !cpuid_feature_extract_unsigned_field(pfr0,
828 ID_AA64PFR0_CSV3_SHIFT);
74951dcd
WD
829}
830
831static int __init parse_kpti(char *str)
832{
833 bool enabled;
834 int ret = strtobool(str, &enabled);
835
836 if (ret)
837 return ret;
838
839 __kpti_forced = enabled ? 1 : -1;
840 return 0;
841}
842__setup("kpti=", parse_kpti);
843#endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
844
359b7064 845static const struct arm64_cpu_capabilities arm64_features[] = {
94a9e04a
MZ
846 {
847 .desc = "GIC system register CPU interface",
848 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
92406f0c 849 .def_scope = SCOPE_SYSTEM,
963fcd40 850 .matches = has_useable_gicv3_cpuif,
da8d02d1
SP
851 .sys_reg = SYS_ID_AA64PFR0_EL1,
852 .field_pos = ID_AA64PFR0_GIC_SHIFT,
ff96f7bc 853 .sign = FTR_UNSIGNED,
18ffa046 854 .min_field_value = 1,
94a9e04a 855 },
338d4f49
JM
856#ifdef CONFIG_ARM64_PAN
857 {
858 .desc = "Privileged Access Never",
859 .capability = ARM64_HAS_PAN,
92406f0c 860 .def_scope = SCOPE_SYSTEM,
da8d02d1
SP
861 .matches = has_cpuid_feature,
862 .sys_reg = SYS_ID_AA64MMFR1_EL1,
863 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
ff96f7bc 864 .sign = FTR_UNSIGNED,
338d4f49
JM
865 .min_field_value = 1,
866 .enable = cpu_enable_pan,
867 },
868#endif /* CONFIG_ARM64_PAN */
2e94da13
WD
869#if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
870 {
871 .desc = "LSE atomic instructions",
872 .capability = ARM64_HAS_LSE_ATOMICS,
92406f0c 873 .def_scope = SCOPE_SYSTEM,
da8d02d1
SP
874 .matches = has_cpuid_feature,
875 .sys_reg = SYS_ID_AA64ISAR0_EL1,
876 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
ff96f7bc 877 .sign = FTR_UNSIGNED,
2e94da13
WD
878 .min_field_value = 2,
879 },
880#endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
d5370f75
WD
881 {
882 .desc = "Software prefetching using PRFM",
883 .capability = ARM64_HAS_NO_HW_PREFETCH,
92406f0c 884 .def_scope = SCOPE_SYSTEM,
d5370f75
WD
885 .matches = has_no_hw_prefetch,
886 },
57f4959b
JM
887#ifdef CONFIG_ARM64_UAO
888 {
889 .desc = "User Access Override",
890 .capability = ARM64_HAS_UAO,
92406f0c 891 .def_scope = SCOPE_SYSTEM,
57f4959b
JM
892 .matches = has_cpuid_feature,
893 .sys_reg = SYS_ID_AA64MMFR2_EL1,
894 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
895 .min_field_value = 1,
c8b06e3f
JM
896 /*
897 * We rely on stop_machine() calling uao_thread_switch() to set
898 * UAO immediately after patching.
899 */
57f4959b
JM
900 },
901#endif /* CONFIG_ARM64_UAO */
70544196
JM
902#ifdef CONFIG_ARM64_PAN
903 {
904 .capability = ARM64_ALT_PAN_NOT_UAO,
92406f0c 905 .def_scope = SCOPE_SYSTEM,
70544196
JM
906 .matches = cpufeature_pan_not_uao,
907 },
908#endif /* CONFIG_ARM64_PAN */
d88701be
MZ
909 {
910 .desc = "Virtualization Host Extensions",
911 .capability = ARM64_HAS_VIRT_HOST_EXTN,
92406f0c 912 .def_scope = SCOPE_SYSTEM,
d88701be
MZ
913 .matches = runs_at_el2,
914 },
042446a3
SP
915 {
916 .desc = "32-bit EL0 Support",
917 .capability = ARM64_HAS_32BIT_EL0,
92406f0c 918 .def_scope = SCOPE_SYSTEM,
042446a3
SP
919 .matches = has_cpuid_feature,
920 .sys_reg = SYS_ID_AA64PFR0_EL1,
921 .sign = FTR_UNSIGNED,
922 .field_pos = ID_AA64PFR0_EL0_SHIFT,
923 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
924 },
d1745910
MZ
925 {
926 .desc = "Reduced HYP mapping offset",
927 .capability = ARM64_HYP_OFFSET_LOW,
928 .def_scope = SCOPE_SYSTEM,
929 .matches = hyp_offset_low,
930 },
74951dcd
WD
931#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
932 {
e2da9106 933 .desc = "Kernel page table isolation (KPTI)",
74951dcd
WD
934 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
935 .def_scope = SCOPE_SYSTEM,
936 .matches = unmap_kernel_at_el0,
937 },
938#endif
82e0191a
SP
939 {
940 /* FP/SIMD is not implemented */
941 .capability = ARM64_HAS_NO_FPSIMD,
942 .def_scope = SCOPE_SYSTEM,
943 .min_field_value = 0,
944 .matches = has_no_fpsimd,
945 },
3c55f98c
RM
946#ifdef CONFIG_ARM64_PMEM
947 {
948 .desc = "Data cache clean to Point of Persistence",
949 .capability = ARM64_HAS_DCPOP,
950 .def_scope = SCOPE_SYSTEM,
951 .matches = has_cpuid_feature,
952 .sys_reg = SYS_ID_AA64ISAR1_EL1,
953 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
954 .min_field_value = 1,
955 },
956#endif
359b7064
MZ
957 {},
958};
959
ff96f7bc 960#define HWCAP_CAP(reg, field, s, min_value, type, cap) \
37b01d53
SP
961 { \
962 .desc = #cap, \
92406f0c 963 .def_scope = SCOPE_SYSTEM, \
37b01d53
SP
964 .matches = has_cpuid_feature, \
965 .sys_reg = reg, \
966 .field_pos = field, \
ff96f7bc 967 .sign = s, \
37b01d53
SP
968 .min_field_value = min_value, \
969 .hwcap_type = type, \
970 .hwcap = cap, \
971 }
972
f3efb675 973static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
ff96f7bc
SP
974 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
975 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
976 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
977 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
978 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
979 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
f92f5ce0 980 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
ff96f7bc 981 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
bf500618 982 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
ff96f7bc 983 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
bf500618 984 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
a7cf3005 985 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
c8c3798d 986 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
cb567e79 987 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
c651aae5 988 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
75283501
SP
989 {},
990};
991
992static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
37b01d53 993#ifdef CONFIG_COMPAT
ff96f7bc
SP
994 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
995 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
996 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
997 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
998 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
37b01d53
SP
999#endif
1000 {},
1001};
1002
f3efb675 1003static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
37b01d53
SP
1004{
1005 switch (cap->hwcap_type) {
1006 case CAP_HWCAP:
1007 elf_hwcap |= cap->hwcap;
1008 break;
1009#ifdef CONFIG_COMPAT
1010 case CAP_COMPAT_HWCAP:
1011 compat_elf_hwcap |= (u32)cap->hwcap;
1012 break;
1013 case CAP_COMPAT_HWCAP2:
1014 compat_elf_hwcap2 |= (u32)cap->hwcap;
1015 break;
1016#endif
1017 default:
1018 WARN_ON(1);
1019 break;
1020 }
1021}
1022
1023/* Check if we have a particular HWCAP enabled */
f3efb675 1024static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
37b01d53
SP
1025{
1026 bool rc;
1027
1028 switch (cap->hwcap_type) {
1029 case CAP_HWCAP:
1030 rc = (elf_hwcap & cap->hwcap) != 0;
1031 break;
1032#ifdef CONFIG_COMPAT
1033 case CAP_COMPAT_HWCAP:
1034 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1035 break;
1036 case CAP_COMPAT_HWCAP2:
1037 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1038 break;
1039#endif
1040 default:
1041 WARN_ON(1);
1042 rc = false;
1043 }
1044
1045 return rc;
1046}
1047
75283501 1048static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
37b01d53 1049{
77c97b4e
SP
1050 /* We support emulation of accesses to CPU ID feature registers */
1051 elf_hwcap |= HWCAP_CPUID;
75283501 1052 for (; hwcaps->matches; hwcaps++)
92406f0c 1053 if (hwcaps->matches(hwcaps, hwcaps->def_scope))
75283501 1054 cap_set_elf_hwcap(hwcaps);
37b01d53
SP
1055}
1056
a064dfc8
SP
1057/*
1058 * Check if the current CPU has a given feature capability.
1059 * Should be called from non-preemptible context.
1060 */
1061static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1062 unsigned int cap)
1063{
1064 const struct arm64_cpu_capabilities *caps;
1065
1066 if (WARN_ON(preemptible()))
1067 return false;
1068
1069 for (caps = cap_array; caps->desc; caps++)
1070 if (caps->capability == cap &&
1071 caps->matches &&
1072 caps->matches(caps, SCOPE_LOCAL_CPU))
1073 return true;
1074 return false;
1075}
1076
ce8b602c 1077void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
359b7064
MZ
1078 const char *info)
1079{
75283501 1080 for (; caps->matches; caps++) {
92406f0c 1081 if (!caps->matches(caps, caps->def_scope))
359b7064
MZ
1082 continue;
1083
75283501
SP
1084 if (!cpus_have_cap(caps->capability) && caps->desc)
1085 pr_info("%s %s\n", info, caps->desc);
1086 cpus_set_cap(caps->capability);
359b7064 1087 }
ce8b602c
SP
1088}
1089
1090/*
dbb4e152
SP
1091 * Run through the enabled capabilities and enable() it on all active
1092 * CPUs
ce8b602c 1093 */
8e231852 1094void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
ce8b602c 1095{
63a1e1c9
MR
1096 for (; caps->matches; caps++) {
1097 unsigned int num = caps->capability;
1098
1099 if (!cpus_have_cap(num))
1100 continue;
1101
1102 /* Ensure cpus_have_const_cap(num) works */
1103 static_branch_enable(&cpu_hwcap_keys[num]);
1104
1105 if (caps->enable) {
2a6dcb2b
JM
1106 /*
1107 * Use stop_machine() as it schedules the work allowing
1108 * us to modify PSTATE, instead of on_each_cpu() which
1109 * uses an IPI, giving us a PSTATE that disappears when
1110 * we return.
1111 */
1112 stop_machine(caps->enable, NULL, cpu_online_mask);
63a1e1c9
MR
1113 }
1114 }
dbb4e152
SP
1115}
1116
dbb4e152
SP
1117/*
1118 * Flag to indicate if we have computed the system wide
1119 * capabilities based on the boot time active CPUs. This
1120 * will be used to determine if a new booting CPU should
1121 * go through the verification process to make sure that it
1122 * supports the system capabilities, without using a hotplug
1123 * notifier.
1124 */
1125static bool sys_caps_initialised;
1126
1127static inline void set_sys_caps_initialised(void)
1128{
1129 sys_caps_initialised = true;
1130}
1131
1132/*
13f417f3
SP
1133 * Check for CPU features that are used in early boot
1134 * based on the Boot CPU value.
dbb4e152 1135 */
13f417f3 1136static void check_early_cpu_features(void)
dbb4e152 1137{
ac1ad20f 1138 verify_cpu_run_el();
13f417f3 1139 verify_cpu_asid_bits();
dbb4e152 1140}
1c076303 1141
75283501
SP
1142static void
1143verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1144{
1145
92406f0c
SP
1146 for (; caps->matches; caps++)
1147 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
75283501
SP
1148 pr_crit("CPU%d: missing HWCAP: %s\n",
1149 smp_processor_id(), caps->desc);
1150 cpu_die_early();
1151 }
75283501
SP
1152}
1153
1154static void
a064dfc8 1155verify_local_cpu_features(const struct arm64_cpu_capabilities *caps_list)
75283501 1156{
a064dfc8 1157 const struct arm64_cpu_capabilities *caps = caps_list;
75283501 1158 for (; caps->matches; caps++) {
92406f0c 1159 if (!cpus_have_cap(caps->capability))
75283501
SP
1160 continue;
1161 /*
1162 * If the new CPU misses an advertised feature, we cannot proceed
1163 * further, park the cpu.
1164 */
a064dfc8 1165 if (!__this_cpu_has_cap(caps_list, caps->capability)) {
75283501
SP
1166 pr_crit("CPU%d: missing feature: %s\n",
1167 smp_processor_id(), caps->desc);
1168 cpu_die_early();
1169 }
1170 if (caps->enable)
1171 caps->enable(NULL);
1172 }
1173}
1174
dbb4e152
SP
1175/*
1176 * Run through the enabled system capabilities and enable() it on this CPU.
1177 * The capabilities were decided based on the available CPUs at the boot time.
1178 * Any new CPU should match the system wide status of the capability. If the
1179 * new CPU doesn't have a capability which the system now has enabled, we
1180 * cannot do anything to fix it up and could cause unexpected failures. So
1181 * we park the CPU.
1182 */
c47a1900 1183static void verify_local_cpu_capabilities(void)
dbb4e152 1184{
c47a1900
SP
1185 verify_local_cpu_errata_workarounds();
1186 verify_local_cpu_features(arm64_features);
1187 verify_local_elf_hwcaps(arm64_elf_hwcaps);
1188 if (system_supports_32bit_el0())
1189 verify_local_elf_hwcaps(compat_elf_hwcaps);
1190}
dbb4e152 1191
c47a1900
SP
1192void check_local_cpu_capabilities(void)
1193{
1194 /*
1195 * All secondary CPUs should conform to the early CPU features
1196 * in use by the kernel based on boot CPU.
1197 */
13f417f3
SP
1198 check_early_cpu_features();
1199
dbb4e152 1200 /*
c47a1900
SP
1201 * If we haven't finalised the system capabilities, this CPU gets
1202 * a chance to update the errata work arounds.
1203 * Otherwise, this CPU should verify that it has all the system
1204 * advertised capabilities.
dbb4e152
SP
1205 */
1206 if (!sys_caps_initialised)
c47a1900
SP
1207 update_cpu_errata_workarounds();
1208 else
1209 verify_local_cpu_capabilities();
359b7064
MZ
1210}
1211
a7c61a34 1212static void __init setup_feature_capabilities(void)
359b7064 1213{
ce8b602c
SP
1214 update_cpu_capabilities(arm64_features, "detected feature:");
1215 enable_cpu_capabilities(arm64_features);
359b7064
MZ
1216}
1217
63a1e1c9
MR
1218DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1219EXPORT_SYMBOL(arm64_const_caps_ready);
1220
1221static void __init mark_const_caps_ready(void)
1222{
1223 static_branch_enable(&arm64_const_caps_ready);
1224}
1225
8f413758
MZ
1226extern const struct arm64_cpu_capabilities arm64_errata[];
1227
1228bool this_cpu_has_cap(unsigned int cap)
1229{
1230 return (__this_cpu_has_cap(arm64_features, cap) ||
1231 __this_cpu_has_cap(arm64_errata, cap));
1232}
1233
9cdf8ec4 1234void __init setup_cpu_features(void)
359b7064 1235{
9cdf8ec4
SP
1236 u32 cwg;
1237 int cls;
1238
dbb4e152
SP
1239 /* Set the CPU feature capabilies */
1240 setup_feature_capabilities();
8e231852 1241 enable_errata_workarounds();
63a1e1c9 1242 mark_const_caps_ready();
75283501 1243 setup_elf_hwcaps(arm64_elf_hwcaps);
643d703d
SP
1244
1245 if (system_supports_32bit_el0())
1246 setup_elf_hwcaps(compat_elf_hwcaps);
dbb4e152
SP
1247
1248 /* Advertise that we have computed the system capabilities */
1249 set_sys_caps_initialised();
1250
9cdf8ec4
SP
1251 /*
1252 * Check for sane CTR_EL0.CWG value.
1253 */
1254 cwg = cache_type_cwg();
1255 cls = cache_line_size();
1256 if (!cwg)
1257 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1258 cls);
1259 if (L1_CACHE_BYTES < cls)
1260 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1261 L1_CACHE_BYTES, cls);
359b7064 1262}
70544196
JM
1263
1264static bool __maybe_unused
92406f0c 1265cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
70544196 1266{
a4023f68 1267 return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
70544196 1268}
77c97b4e
SP
1269
1270/*
1271 * We emulate only the following system register space.
1272 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1273 * See Table C5-6 System instruction encodings for System register accesses,
1274 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1275 */
1276static inline bool __attribute_const__ is_emulated(u32 id)
1277{
1278 return (sys_reg_Op0(id) == 0x3 &&
1279 sys_reg_CRn(id) == 0x0 &&
1280 sys_reg_Op1(id) == 0x0 &&
1281 (sys_reg_CRm(id) == 0 ||
1282 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1283}
1284
1285/*
1286 * With CRm == 0, reg should be one of :
1287 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1288 */
1289static inline int emulate_id_reg(u32 id, u64 *valp)
1290{
1291 switch (id) {
1292 case SYS_MIDR_EL1:
1293 *valp = read_cpuid_id();
1294 break;
1295 case SYS_MPIDR_EL1:
1296 *valp = SYS_MPIDR_SAFE_VAL;
1297 break;
1298 case SYS_REVIDR_EL1:
1299 /* IMPLEMENTATION DEFINED values are emulated with 0 */
1300 *valp = 0;
1301 break;
1302 default:
1303 return -EINVAL;
1304 }
1305
1306 return 0;
1307}
1308
1309static int emulate_sys_reg(u32 id, u64 *valp)
1310{
1311 struct arm64_ftr_reg *regp;
1312
1313 if (!is_emulated(id))
1314 return -EINVAL;
1315
1316 if (sys_reg_CRm(id) == 0)
1317 return emulate_id_reg(id, valp);
1318
1319 regp = get_arm64_ftr_reg(id);
1320 if (regp)
1321 *valp = arm64_ftr_reg_user_value(regp);
1322 else
1323 /*
1324 * The untracked registers are either IMPLEMENTATION DEFINED
1325 * (e.g, ID_AFR0_EL1) or reserved RAZ.
1326 */
1327 *valp = 0;
1328 return 0;
1329}
1330
1331static int emulate_mrs(struct pt_regs *regs, u32 insn)
1332{
1333 int rc;
1334 u32 sys_reg, dst;
1335 u64 val;
1336
1337 /*
1338 * sys_reg values are defined as used in mrs/msr instruction.
1339 * shift the imm value to get the encoding.
1340 */
1341 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1342 rc = emulate_sys_reg(sys_reg, &val);
1343 if (!rc) {
1344 dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
521c6461 1345 pt_regs_write_reg(regs, dst, val);
77c97b4e
SP
1346 regs->pc += 4;
1347 }
1348
1349 return rc;
1350}
1351
1352static struct undef_hook mrs_hook = {
1353 .instr_mask = 0xfff00000,
1354 .instr_val = 0xd5300000,
1355 .pstate_mask = COMPAT_PSR_MODE_MASK,
1356 .pstate_val = PSR_MODE_EL0t,
1357 .fn = emulate_mrs,
1358};
1359
1360static int __init enable_mrs_emulation(void)
1361{
1362 register_undef_hook(&mrs_hook);
1363 return 0;
1364}
1365
ce1c3575 1366core_initcall(enable_mrs_emulation);