]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/bfq-iosched.c
Merge branch 'nvme-4.12' of git://git.infradead.org/nvme into for-linus
[mirror_ubuntu-artful-kernel.git] / block / bfq-iosched.c
CommitLineData
aee69d78
PV
1/*
2 * Budget Fair Queueing (BFQ) I/O scheduler.
3 *
4 * Based on ideas and code from CFQ:
5 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
6 *
7 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8 * Paolo Valente <paolo.valente@unimore.it>
9 *
10 * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11 * Arianna Avanzini <avanzini@google.com>
12 *
13 * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License as
17 * published by the Free Software Foundation; either version 2 of the
18 * License, or (at your option) any later version.
19 *
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * General Public License for more details.
24 *
25 * BFQ is a proportional-share I/O scheduler, with some extra
26 * low-latency capabilities. BFQ also supports full hierarchical
27 * scheduling through cgroups. Next paragraphs provide an introduction
28 * on BFQ inner workings. Details on BFQ benefits, usage and
29 * limitations can be found in Documentation/block/bfq-iosched.txt.
30 *
31 * BFQ is a proportional-share storage-I/O scheduling algorithm based
32 * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33 * budgets, measured in number of sectors, to processes instead of
34 * time slices. The device is not granted to the in-service process
35 * for a given time slice, but until it has exhausted its assigned
36 * budget. This change from the time to the service domain enables BFQ
37 * to distribute the device throughput among processes as desired,
38 * without any distortion due to throughput fluctuations, or to device
39 * internal queueing. BFQ uses an ad hoc internal scheduler, called
40 * B-WF2Q+, to schedule processes according to their budgets. More
41 * precisely, BFQ schedules queues associated with processes. Each
42 * process/queue is assigned a user-configurable weight, and B-WF2Q+
43 * guarantees that each queue receives a fraction of the throughput
44 * proportional to its weight. Thanks to the accurate policy of
45 * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46 * processes issuing sequential requests (to boost the throughput),
47 * and yet guarantee a low latency to interactive and soft real-time
48 * applications.
49 *
50 * In particular, to provide these low-latency guarantees, BFQ
51 * explicitly privileges the I/O of two classes of time-sensitive
52 * applications: interactive and soft real-time. This feature enables
53 * BFQ to provide applications in these classes with a very low
54 * latency. Finally, BFQ also features additional heuristics for
55 * preserving both a low latency and a high throughput on NCQ-capable,
56 * rotational or flash-based devices, and to get the job done quickly
57 * for applications consisting in many I/O-bound processes.
58 *
43c1b3d6
PV
59 * NOTE: if the main or only goal, with a given device, is to achieve
60 * the maximum-possible throughput at all times, then do switch off
61 * all low-latency heuristics for that device, by setting low_latency
62 * to 0.
63 *
aee69d78
PV
64 * BFQ is described in [1], where also a reference to the initial, more
65 * theoretical paper on BFQ can be found. The interested reader can find
66 * in the latter paper full details on the main algorithm, as well as
67 * formulas of the guarantees and formal proofs of all the properties.
68 * With respect to the version of BFQ presented in these papers, this
69 * implementation adds a few more heuristics, such as the one that
70 * guarantees a low latency to soft real-time applications, and a
71 * hierarchical extension based on H-WF2Q+.
72 *
73 * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
74 * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
75 * with O(log N) complexity derives from the one introduced with EEVDF
76 * in [3].
77 *
78 * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
79 * Scheduler", Proceedings of the First Workshop on Mobile System
80 * Technologies (MST-2015), May 2015.
81 * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
82 *
83 * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
84 * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
85 * Oct 1997.
86 *
87 * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
88 *
89 * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
90 * First: A Flexible and Accurate Mechanism for Proportional Share
91 * Resource Allocation", technical report.
92 *
93 * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
94 */
95#include <linux/module.h>
96#include <linux/slab.h>
97#include <linux/blkdev.h>
e21b7a0b 98#include <linux/cgroup.h>
aee69d78
PV
99#include <linux/elevator.h>
100#include <linux/ktime.h>
101#include <linux/rbtree.h>
102#include <linux/ioprio.h>
103#include <linux/sbitmap.h>
104#include <linux/delay.h>
105
106#include "blk.h"
107#include "blk-mq.h"
108#include "blk-mq-tag.h"
109#include "blk-mq-sched.h"
ea25da48 110#include "bfq-iosched.h"
aee69d78 111
ea25da48
PV
112#define BFQ_BFQQ_FNS(name) \
113void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
114{ \
115 __set_bit(BFQQF_##name, &(bfqq)->flags); \
116} \
117void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
118{ \
119 __clear_bit(BFQQF_##name, &(bfqq)->flags); \
120} \
121int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
122{ \
123 return test_bit(BFQQF_##name, &(bfqq)->flags); \
44e44a1b
PV
124}
125
ea25da48
PV
126BFQ_BFQQ_FNS(just_created);
127BFQ_BFQQ_FNS(busy);
128BFQ_BFQQ_FNS(wait_request);
129BFQ_BFQQ_FNS(non_blocking_wait_rq);
130BFQ_BFQQ_FNS(fifo_expire);
131BFQ_BFQQ_FNS(idle_window);
132BFQ_BFQQ_FNS(sync);
133BFQ_BFQQ_FNS(IO_bound);
134BFQ_BFQQ_FNS(in_large_burst);
135BFQ_BFQQ_FNS(coop);
136BFQ_BFQQ_FNS(split_coop);
137BFQ_BFQQ_FNS(softrt_update);
138#undef BFQ_BFQQ_FNS \
aee69d78 139
ea25da48
PV
140/* Expiration time of sync (0) and async (1) requests, in ns. */
141static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
aee69d78 142
ea25da48
PV
143/* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
144static const int bfq_back_max = 16 * 1024;
aee69d78 145
ea25da48
PV
146/* Penalty of a backwards seek, in number of sectors. */
147static const int bfq_back_penalty = 2;
e21b7a0b 148
ea25da48
PV
149/* Idling period duration, in ns. */
150static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
aee69d78 151
ea25da48
PV
152/* Minimum number of assigned budgets for which stats are safe to compute. */
153static const int bfq_stats_min_budgets = 194;
aee69d78 154
ea25da48
PV
155/* Default maximum budget values, in sectors and number of requests. */
156static const int bfq_default_max_budget = 16 * 1024;
e21b7a0b 157
ea25da48
PV
158/*
159 * Async to sync throughput distribution is controlled as follows:
160 * when an async request is served, the entity is charged the number
161 * of sectors of the request, multiplied by the factor below
162 */
163static const int bfq_async_charge_factor = 10;
aee69d78 164
ea25da48
PV
165/* Default timeout values, in jiffies, approximating CFQ defaults. */
166const int bfq_timeout = HZ / 8;
aee69d78 167
ea25da48 168static struct kmem_cache *bfq_pool;
e21b7a0b 169
ea25da48
PV
170/* Below this threshold (in ns), we consider thinktime immediate. */
171#define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
e21b7a0b 172
ea25da48
PV
173/* hw_tag detection: parallel requests threshold and min samples needed. */
174#define BFQ_HW_QUEUE_THRESHOLD 4
175#define BFQ_HW_QUEUE_SAMPLES 32
aee69d78 176
ea25da48
PV
177#define BFQQ_SEEK_THR (sector_t)(8 * 100)
178#define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
179#define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
180#define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 32/8)
aee69d78 181
ea25da48
PV
182/* Min number of samples required to perform peak-rate update */
183#define BFQ_RATE_MIN_SAMPLES 32
184/* Min observation time interval required to perform a peak-rate update (ns) */
185#define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
186/* Target observation time interval for a peak-rate update (ns) */
187#define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
aee69d78 188
ea25da48
PV
189/* Shift used for peak rate fixed precision calculations. */
190#define BFQ_RATE_SHIFT 16
aee69d78 191
ea25da48
PV
192/*
193 * By default, BFQ computes the duration of the weight raising for
194 * interactive applications automatically, using the following formula:
195 * duration = (R / r) * T, where r is the peak rate of the device, and
196 * R and T are two reference parameters.
197 * In particular, R is the peak rate of the reference device (see below),
198 * and T is a reference time: given the systems that are likely to be
199 * installed on the reference device according to its speed class, T is
200 * about the maximum time needed, under BFQ and while reading two files in
201 * parallel, to load typical large applications on these systems.
202 * In practice, the slower/faster the device at hand is, the more/less it
203 * takes to load applications with respect to the reference device.
204 * Accordingly, the longer/shorter BFQ grants weight raising to interactive
205 * applications.
206 *
207 * BFQ uses four different reference pairs (R, T), depending on:
208 * . whether the device is rotational or non-rotational;
209 * . whether the device is slow, such as old or portable HDDs, as well as
210 * SD cards, or fast, such as newer HDDs and SSDs.
211 *
212 * The device's speed class is dynamically (re)detected in
213 * bfq_update_peak_rate() every time the estimated peak rate is updated.
214 *
215 * In the following definitions, R_slow[0]/R_fast[0] and
216 * T_slow[0]/T_fast[0] are the reference values for a slow/fast
217 * rotational device, whereas R_slow[1]/R_fast[1] and
218 * T_slow[1]/T_fast[1] are the reference values for a slow/fast
219 * non-rotational device. Finally, device_speed_thresh are the
220 * thresholds used to switch between speed classes. The reference
221 * rates are not the actual peak rates of the devices used as a
222 * reference, but slightly lower values. The reason for using these
223 * slightly lower values is that the peak-rate estimator tends to
224 * yield slightly lower values than the actual peak rate (it can yield
225 * the actual peak rate only if there is only one process doing I/O,
226 * and the process does sequential I/O).
227 *
228 * Both the reference peak rates and the thresholds are measured in
229 * sectors/usec, left-shifted by BFQ_RATE_SHIFT.
230 */
231static int R_slow[2] = {1000, 10700};
232static int R_fast[2] = {14000, 33000};
233/*
234 * To improve readability, a conversion function is used to initialize the
235 * following arrays, which entails that they can be initialized only in a
236 * function.
237 */
238static int T_slow[2];
239static int T_fast[2];
240static int device_speed_thresh[2];
aee69d78 241
ea25da48
PV
242#define RQ_BIC(rq) ((struct bfq_io_cq *) (rq)->elv.priv[0])
243#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
aee69d78 244
ea25da48 245struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
e21b7a0b 246{
ea25da48 247 return bic->bfqq[is_sync];
aee69d78
PV
248}
249
ea25da48 250void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
aee69d78 251{
ea25da48 252 bic->bfqq[is_sync] = bfqq;
aee69d78
PV
253}
254
ea25da48 255struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
aee69d78 256{
ea25da48 257 return bic->icq.q->elevator->elevator_data;
e21b7a0b 258}
aee69d78 259
ea25da48
PV
260/**
261 * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
262 * @icq: the iocontext queue.
263 */
264static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
e21b7a0b 265{
ea25da48
PV
266 /* bic->icq is the first member, %NULL will convert to %NULL */
267 return container_of(icq, struct bfq_io_cq, icq);
e21b7a0b 268}
aee69d78 269
ea25da48
PV
270/**
271 * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
272 * @bfqd: the lookup key.
273 * @ioc: the io_context of the process doing I/O.
274 * @q: the request queue.
275 */
276static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
277 struct io_context *ioc,
278 struct request_queue *q)
e21b7a0b 279{
ea25da48
PV
280 if (ioc) {
281 unsigned long flags;
282 struct bfq_io_cq *icq;
aee69d78 283
ea25da48
PV
284 spin_lock_irqsave(q->queue_lock, flags);
285 icq = icq_to_bic(ioc_lookup_icq(ioc, q));
286 spin_unlock_irqrestore(q->queue_lock, flags);
aee69d78 287
ea25da48 288 return icq;
e21b7a0b 289 }
e21b7a0b 290
ea25da48 291 return NULL;
aee69d78
PV
292}
293
ea25da48
PV
294/*
295 * Scheduler run of queue, if there are requests pending and no one in the
296 * driver that will restart queueing.
297 */
298void bfq_schedule_dispatch(struct bfq_data *bfqd)
aee69d78 299{
ea25da48
PV
300 if (bfqd->queued != 0) {
301 bfq_log(bfqd, "schedule dispatch");
302 blk_mq_run_hw_queues(bfqd->queue, true);
e21b7a0b 303 }
aee69d78
PV
304}
305
306#define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
307#define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
308
309#define bfq_sample_valid(samples) ((samples) > 80)
310
aee69d78
PV
311/*
312 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
313 * We choose the request that is closesr to the head right now. Distance
314 * behind the head is penalized and only allowed to a certain extent.
315 */
316static struct request *bfq_choose_req(struct bfq_data *bfqd,
317 struct request *rq1,
318 struct request *rq2,
319 sector_t last)
320{
321 sector_t s1, s2, d1 = 0, d2 = 0;
322 unsigned long back_max;
323#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
324#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
325 unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
326
327 if (!rq1 || rq1 == rq2)
328 return rq2;
329 if (!rq2)
330 return rq1;
331
332 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
333 return rq1;
334 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
335 return rq2;
336 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
337 return rq1;
338 else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
339 return rq2;
340
341 s1 = blk_rq_pos(rq1);
342 s2 = blk_rq_pos(rq2);
343
344 /*
345 * By definition, 1KiB is 2 sectors.
346 */
347 back_max = bfqd->bfq_back_max * 2;
348
349 /*
350 * Strict one way elevator _except_ in the case where we allow
351 * short backward seeks which are biased as twice the cost of a
352 * similar forward seek.
353 */
354 if (s1 >= last)
355 d1 = s1 - last;
356 else if (s1 + back_max >= last)
357 d1 = (last - s1) * bfqd->bfq_back_penalty;
358 else
359 wrap |= BFQ_RQ1_WRAP;
360
361 if (s2 >= last)
362 d2 = s2 - last;
363 else if (s2 + back_max >= last)
364 d2 = (last - s2) * bfqd->bfq_back_penalty;
365 else
366 wrap |= BFQ_RQ2_WRAP;
367
368 /* Found required data */
369
370 /*
371 * By doing switch() on the bit mask "wrap" we avoid having to
372 * check two variables for all permutations: --> faster!
373 */
374 switch (wrap) {
375 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
376 if (d1 < d2)
377 return rq1;
378 else if (d2 < d1)
379 return rq2;
380
381 if (s1 >= s2)
382 return rq1;
383 else
384 return rq2;
385
386 case BFQ_RQ2_WRAP:
387 return rq1;
388 case BFQ_RQ1_WRAP:
389 return rq2;
390 case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
391 default:
392 /*
393 * Since both rqs are wrapped,
394 * start with the one that's further behind head
395 * (--> only *one* back seek required),
396 * since back seek takes more time than forward.
397 */
398 if (s1 <= s2)
399 return rq1;
400 else
401 return rq2;
402 }
403}
404
36eca894
AA
405static struct bfq_queue *
406bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
407 sector_t sector, struct rb_node **ret_parent,
408 struct rb_node ***rb_link)
409{
410 struct rb_node **p, *parent;
411 struct bfq_queue *bfqq = NULL;
412
413 parent = NULL;
414 p = &root->rb_node;
415 while (*p) {
416 struct rb_node **n;
417
418 parent = *p;
419 bfqq = rb_entry(parent, struct bfq_queue, pos_node);
420
421 /*
422 * Sort strictly based on sector. Smallest to the left,
423 * largest to the right.
424 */
425 if (sector > blk_rq_pos(bfqq->next_rq))
426 n = &(*p)->rb_right;
427 else if (sector < blk_rq_pos(bfqq->next_rq))
428 n = &(*p)->rb_left;
429 else
430 break;
431 p = n;
432 bfqq = NULL;
433 }
434
435 *ret_parent = parent;
436 if (rb_link)
437 *rb_link = p;
438
439 bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
440 (unsigned long long)sector,
441 bfqq ? bfqq->pid : 0);
442
443 return bfqq;
444}
445
ea25da48 446void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
36eca894
AA
447{
448 struct rb_node **p, *parent;
449 struct bfq_queue *__bfqq;
450
451 if (bfqq->pos_root) {
452 rb_erase(&bfqq->pos_node, bfqq->pos_root);
453 bfqq->pos_root = NULL;
454 }
455
456 if (bfq_class_idle(bfqq))
457 return;
458 if (!bfqq->next_rq)
459 return;
460
461 bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
462 __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
463 blk_rq_pos(bfqq->next_rq), &parent, &p);
464 if (!__bfqq) {
465 rb_link_node(&bfqq->pos_node, parent, p);
466 rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
467 } else
468 bfqq->pos_root = NULL;
469}
470
1de0c4cd
AA
471/*
472 * Tell whether there are active queues or groups with differentiated weights.
473 */
474static bool bfq_differentiated_weights(struct bfq_data *bfqd)
475{
476 /*
477 * For weights to differ, at least one of the trees must contain
478 * at least two nodes.
479 */
480 return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
481 (bfqd->queue_weights_tree.rb_node->rb_left ||
482 bfqd->queue_weights_tree.rb_node->rb_right)
483#ifdef CONFIG_BFQ_GROUP_IOSCHED
484 ) ||
485 (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) &&
486 (bfqd->group_weights_tree.rb_node->rb_left ||
487 bfqd->group_weights_tree.rb_node->rb_right)
488#endif
489 );
490}
491
492/*
493 * The following function returns true if every queue must receive the
494 * same share of the throughput (this condition is used when deciding
495 * whether idling may be disabled, see the comments in the function
496 * bfq_bfqq_may_idle()).
497 *
498 * Such a scenario occurs when:
499 * 1) all active queues have the same weight,
500 * 2) all active groups at the same level in the groups tree have the same
501 * weight,
502 * 3) all active groups at the same level in the groups tree have the same
503 * number of children.
504 *
505 * Unfortunately, keeping the necessary state for evaluating exactly the
506 * above symmetry conditions would be quite complex and time-consuming.
507 * Therefore this function evaluates, instead, the following stronger
508 * sub-conditions, for which it is much easier to maintain the needed
509 * state:
510 * 1) all active queues have the same weight,
511 * 2) all active groups have the same weight,
512 * 3) all active groups have at most one active child each.
513 * In particular, the last two conditions are always true if hierarchical
514 * support and the cgroups interface are not enabled, thus no state needs
515 * to be maintained in this case.
516 */
517static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
518{
519 return !bfq_differentiated_weights(bfqd);
520}
521
522/*
523 * If the weight-counter tree passed as input contains no counter for
524 * the weight of the input entity, then add that counter; otherwise just
525 * increment the existing counter.
526 *
527 * Note that weight-counter trees contain few nodes in mostly symmetric
528 * scenarios. For example, if all queues have the same weight, then the
529 * weight-counter tree for the queues may contain at most one node.
530 * This holds even if low_latency is on, because weight-raised queues
531 * are not inserted in the tree.
532 * In most scenarios, the rate at which nodes are created/destroyed
533 * should be low too.
534 */
ea25da48
PV
535void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity,
536 struct rb_root *root)
1de0c4cd
AA
537{
538 struct rb_node **new = &(root->rb_node), *parent = NULL;
539
540 /*
541 * Do not insert if the entity is already associated with a
542 * counter, which happens if:
543 * 1) the entity is associated with a queue,
544 * 2) a request arrival has caused the queue to become both
545 * non-weight-raised, and hence change its weight, and
546 * backlogged; in this respect, each of the two events
547 * causes an invocation of this function,
548 * 3) this is the invocation of this function caused by the
549 * second event. This second invocation is actually useless,
550 * and we handle this fact by exiting immediately. More
551 * efficient or clearer solutions might possibly be adopted.
552 */
553 if (entity->weight_counter)
554 return;
555
556 while (*new) {
557 struct bfq_weight_counter *__counter = container_of(*new,
558 struct bfq_weight_counter,
559 weights_node);
560 parent = *new;
561
562 if (entity->weight == __counter->weight) {
563 entity->weight_counter = __counter;
564 goto inc_counter;
565 }
566 if (entity->weight < __counter->weight)
567 new = &((*new)->rb_left);
568 else
569 new = &((*new)->rb_right);
570 }
571
572 entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
573 GFP_ATOMIC);
574
575 /*
576 * In the unlucky event of an allocation failure, we just
577 * exit. This will cause the weight of entity to not be
578 * considered in bfq_differentiated_weights, which, in its
579 * turn, causes the scenario to be deemed wrongly symmetric in
580 * case entity's weight would have been the only weight making
581 * the scenario asymmetric. On the bright side, no unbalance
582 * will however occur when entity becomes inactive again (the
583 * invocation of this function is triggered by an activation
584 * of entity). In fact, bfq_weights_tree_remove does nothing
585 * if !entity->weight_counter.
586 */
587 if (unlikely(!entity->weight_counter))
588 return;
589
590 entity->weight_counter->weight = entity->weight;
591 rb_link_node(&entity->weight_counter->weights_node, parent, new);
592 rb_insert_color(&entity->weight_counter->weights_node, root);
593
594inc_counter:
595 entity->weight_counter->num_active++;
596}
597
598/*
599 * Decrement the weight counter associated with the entity, and, if the
600 * counter reaches 0, remove the counter from the tree.
601 * See the comments to the function bfq_weights_tree_add() for considerations
602 * about overhead.
603 */
ea25da48
PV
604void bfq_weights_tree_remove(struct bfq_data *bfqd, struct bfq_entity *entity,
605 struct rb_root *root)
1de0c4cd
AA
606{
607 if (!entity->weight_counter)
608 return;
609
610 entity->weight_counter->num_active--;
611 if (entity->weight_counter->num_active > 0)
612 goto reset_entity_pointer;
613
614 rb_erase(&entity->weight_counter->weights_node, root);
615 kfree(entity->weight_counter);
616
617reset_entity_pointer:
618 entity->weight_counter = NULL;
619}
620
aee69d78
PV
621/*
622 * Return expired entry, or NULL to just start from scratch in rbtree.
623 */
624static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
625 struct request *last)
626{
627 struct request *rq;
628
629 if (bfq_bfqq_fifo_expire(bfqq))
630 return NULL;
631
632 bfq_mark_bfqq_fifo_expire(bfqq);
633
634 rq = rq_entry_fifo(bfqq->fifo.next);
635
636 if (rq == last || ktime_get_ns() < rq->fifo_time)
637 return NULL;
638
639 bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
640 return rq;
641}
642
643static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
644 struct bfq_queue *bfqq,
645 struct request *last)
646{
647 struct rb_node *rbnext = rb_next(&last->rb_node);
648 struct rb_node *rbprev = rb_prev(&last->rb_node);
649 struct request *next, *prev = NULL;
650
651 /* Follow expired path, else get first next available. */
652 next = bfq_check_fifo(bfqq, last);
653 if (next)
654 return next;
655
656 if (rbprev)
657 prev = rb_entry_rq(rbprev);
658
659 if (rbnext)
660 next = rb_entry_rq(rbnext);
661 else {
662 rbnext = rb_first(&bfqq->sort_list);
663 if (rbnext && rbnext != &last->rb_node)
664 next = rb_entry_rq(rbnext);
665 }
666
667 return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
668}
669
c074170e 670/* see the definition of bfq_async_charge_factor for details */
aee69d78
PV
671static unsigned long bfq_serv_to_charge(struct request *rq,
672 struct bfq_queue *bfqq)
673{
44e44a1b 674 if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
c074170e
PV
675 return blk_rq_sectors(rq);
676
cfd69712
PV
677 /*
678 * If there are no weight-raised queues, then amplify service
679 * by just the async charge factor; otherwise amplify service
680 * by twice the async charge factor, to further reduce latency
681 * for weight-raised queues.
682 */
683 if (bfqq->bfqd->wr_busy_queues == 0)
684 return blk_rq_sectors(rq) * bfq_async_charge_factor;
685
686 return blk_rq_sectors(rq) * 2 * bfq_async_charge_factor;
aee69d78
PV
687}
688
689/**
690 * bfq_updated_next_req - update the queue after a new next_rq selection.
691 * @bfqd: the device data the queue belongs to.
692 * @bfqq: the queue to update.
693 *
694 * If the first request of a queue changes we make sure that the queue
695 * has enough budget to serve at least its first request (if the
696 * request has grown). We do this because if the queue has not enough
697 * budget for its first request, it has to go through two dispatch
698 * rounds to actually get it dispatched.
699 */
700static void bfq_updated_next_req(struct bfq_data *bfqd,
701 struct bfq_queue *bfqq)
702{
703 struct bfq_entity *entity = &bfqq->entity;
704 struct request *next_rq = bfqq->next_rq;
705 unsigned long new_budget;
706
707 if (!next_rq)
708 return;
709
710 if (bfqq == bfqd->in_service_queue)
711 /*
712 * In order not to break guarantees, budgets cannot be
713 * changed after an entity has been selected.
714 */
715 return;
716
717 new_budget = max_t(unsigned long, bfqq->max_budget,
718 bfq_serv_to_charge(next_rq, bfqq));
719 if (entity->budget != new_budget) {
720 entity->budget = new_budget;
721 bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
722 new_budget);
e21b7a0b 723 bfq_requeue_bfqq(bfqd, bfqq);
aee69d78
PV
724 }
725}
726
36eca894
AA
727static void
728bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
729{
730 if (bic->saved_idle_window)
731 bfq_mark_bfqq_idle_window(bfqq);
732 else
733 bfq_clear_bfqq_idle_window(bfqq);
734
735 if (bic->saved_IO_bound)
736 bfq_mark_bfqq_IO_bound(bfqq);
737 else
738 bfq_clear_bfqq_IO_bound(bfqq);
739
740 bfqq->ttime = bic->saved_ttime;
741 bfqq->wr_coeff = bic->saved_wr_coeff;
742 bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
743 bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
744 bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
745
e1b2324d 746 if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
36eca894 747 time_is_before_jiffies(bfqq->last_wr_start_finish +
e1b2324d 748 bfqq->wr_cur_max_time))) {
36eca894
AA
749 bfq_log_bfqq(bfqq->bfqd, bfqq,
750 "resume state: switching off wr");
751
752 bfqq->wr_coeff = 1;
753 }
754
755 /* make sure weight will be updated, however we got here */
756 bfqq->entity.prio_changed = 1;
757}
758
759static int bfqq_process_refs(struct bfq_queue *bfqq)
760{
761 return bfqq->ref - bfqq->allocated - bfqq->entity.on_st;
762}
763
e1b2324d
AA
764/* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
765static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
766{
767 struct bfq_queue *item;
768 struct hlist_node *n;
769
770 hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
771 hlist_del_init(&item->burst_list_node);
772 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
773 bfqd->burst_size = 1;
774 bfqd->burst_parent_entity = bfqq->entity.parent;
775}
776
777/* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
778static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
779{
780 /* Increment burst size to take into account also bfqq */
781 bfqd->burst_size++;
782
783 if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
784 struct bfq_queue *pos, *bfqq_item;
785 struct hlist_node *n;
786
787 /*
788 * Enough queues have been activated shortly after each
789 * other to consider this burst as large.
790 */
791 bfqd->large_burst = true;
792
793 /*
794 * We can now mark all queues in the burst list as
795 * belonging to a large burst.
796 */
797 hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
798 burst_list_node)
799 bfq_mark_bfqq_in_large_burst(bfqq_item);
800 bfq_mark_bfqq_in_large_burst(bfqq);
801
802 /*
803 * From now on, and until the current burst finishes, any
804 * new queue being activated shortly after the last queue
805 * was inserted in the burst can be immediately marked as
806 * belonging to a large burst. So the burst list is not
807 * needed any more. Remove it.
808 */
809 hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
810 burst_list_node)
811 hlist_del_init(&pos->burst_list_node);
812 } else /*
813 * Burst not yet large: add bfqq to the burst list. Do
814 * not increment the ref counter for bfqq, because bfqq
815 * is removed from the burst list before freeing bfqq
816 * in put_queue.
817 */
818 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
819}
820
821/*
822 * If many queues belonging to the same group happen to be created
823 * shortly after each other, then the processes associated with these
824 * queues have typically a common goal. In particular, bursts of queue
825 * creations are usually caused by services or applications that spawn
826 * many parallel threads/processes. Examples are systemd during boot,
827 * or git grep. To help these processes get their job done as soon as
828 * possible, it is usually better to not grant either weight-raising
829 * or device idling to their queues.
830 *
831 * In this comment we describe, firstly, the reasons why this fact
832 * holds, and, secondly, the next function, which implements the main
833 * steps needed to properly mark these queues so that they can then be
834 * treated in a different way.
835 *
836 * The above services or applications benefit mostly from a high
837 * throughput: the quicker the requests of the activated queues are
838 * cumulatively served, the sooner the target job of these queues gets
839 * completed. As a consequence, weight-raising any of these queues,
840 * which also implies idling the device for it, is almost always
841 * counterproductive. In most cases it just lowers throughput.
842 *
843 * On the other hand, a burst of queue creations may be caused also by
844 * the start of an application that does not consist of a lot of
845 * parallel I/O-bound threads. In fact, with a complex application,
846 * several short processes may need to be executed to start-up the
847 * application. In this respect, to start an application as quickly as
848 * possible, the best thing to do is in any case to privilege the I/O
849 * related to the application with respect to all other
850 * I/O. Therefore, the best strategy to start as quickly as possible
851 * an application that causes a burst of queue creations is to
852 * weight-raise all the queues created during the burst. This is the
853 * exact opposite of the best strategy for the other type of bursts.
854 *
855 * In the end, to take the best action for each of the two cases, the
856 * two types of bursts need to be distinguished. Fortunately, this
857 * seems relatively easy, by looking at the sizes of the bursts. In
858 * particular, we found a threshold such that only bursts with a
859 * larger size than that threshold are apparently caused by
860 * services or commands such as systemd or git grep. For brevity,
861 * hereafter we call just 'large' these bursts. BFQ *does not*
862 * weight-raise queues whose creation occurs in a large burst. In
863 * addition, for each of these queues BFQ performs or does not perform
864 * idling depending on which choice boosts the throughput more. The
865 * exact choice depends on the device and request pattern at
866 * hand.
867 *
868 * Unfortunately, false positives may occur while an interactive task
869 * is starting (e.g., an application is being started). The
870 * consequence is that the queues associated with the task do not
871 * enjoy weight raising as expected. Fortunately these false positives
872 * are very rare. They typically occur if some service happens to
873 * start doing I/O exactly when the interactive task starts.
874 *
875 * Turning back to the next function, it implements all the steps
876 * needed to detect the occurrence of a large burst and to properly
877 * mark all the queues belonging to it (so that they can then be
878 * treated in a different way). This goal is achieved by maintaining a
879 * "burst list" that holds, temporarily, the queues that belong to the
880 * burst in progress. The list is then used to mark these queues as
881 * belonging to a large burst if the burst does become large. The main
882 * steps are the following.
883 *
884 * . when the very first queue is created, the queue is inserted into the
885 * list (as it could be the first queue in a possible burst)
886 *
887 * . if the current burst has not yet become large, and a queue Q that does
888 * not yet belong to the burst is activated shortly after the last time
889 * at which a new queue entered the burst list, then the function appends
890 * Q to the burst list
891 *
892 * . if, as a consequence of the previous step, the burst size reaches
893 * the large-burst threshold, then
894 *
895 * . all the queues in the burst list are marked as belonging to a
896 * large burst
897 *
898 * . the burst list is deleted; in fact, the burst list already served
899 * its purpose (keeping temporarily track of the queues in a burst,
900 * so as to be able to mark them as belonging to a large burst in the
901 * previous sub-step), and now is not needed any more
902 *
903 * . the device enters a large-burst mode
904 *
905 * . if a queue Q that does not belong to the burst is created while
906 * the device is in large-burst mode and shortly after the last time
907 * at which a queue either entered the burst list or was marked as
908 * belonging to the current large burst, then Q is immediately marked
909 * as belonging to a large burst.
910 *
911 * . if a queue Q that does not belong to the burst is created a while
912 * later, i.e., not shortly after, than the last time at which a queue
913 * either entered the burst list or was marked as belonging to the
914 * current large burst, then the current burst is deemed as finished and:
915 *
916 * . the large-burst mode is reset if set
917 *
918 * . the burst list is emptied
919 *
920 * . Q is inserted in the burst list, as Q may be the first queue
921 * in a possible new burst (then the burst list contains just Q
922 * after this step).
923 */
924static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
925{
926 /*
927 * If bfqq is already in the burst list or is part of a large
928 * burst, or finally has just been split, then there is
929 * nothing else to do.
930 */
931 if (!hlist_unhashed(&bfqq->burst_list_node) ||
932 bfq_bfqq_in_large_burst(bfqq) ||
933 time_is_after_eq_jiffies(bfqq->split_time +
934 msecs_to_jiffies(10)))
935 return;
936
937 /*
938 * If bfqq's creation happens late enough, or bfqq belongs to
939 * a different group than the burst group, then the current
940 * burst is finished, and related data structures must be
941 * reset.
942 *
943 * In this respect, consider the special case where bfqq is
944 * the very first queue created after BFQ is selected for this
945 * device. In this case, last_ins_in_burst and
946 * burst_parent_entity are not yet significant when we get
947 * here. But it is easy to verify that, whether or not the
948 * following condition is true, bfqq will end up being
949 * inserted into the burst list. In particular the list will
950 * happen to contain only bfqq. And this is exactly what has
951 * to happen, as bfqq may be the first queue of the first
952 * burst.
953 */
954 if (time_is_before_jiffies(bfqd->last_ins_in_burst +
955 bfqd->bfq_burst_interval) ||
956 bfqq->entity.parent != bfqd->burst_parent_entity) {
957 bfqd->large_burst = false;
958 bfq_reset_burst_list(bfqd, bfqq);
959 goto end;
960 }
961
962 /*
963 * If we get here, then bfqq is being activated shortly after the
964 * last queue. So, if the current burst is also large, we can mark
965 * bfqq as belonging to this large burst immediately.
966 */
967 if (bfqd->large_burst) {
968 bfq_mark_bfqq_in_large_burst(bfqq);
969 goto end;
970 }
971
972 /*
973 * If we get here, then a large-burst state has not yet been
974 * reached, but bfqq is being activated shortly after the last
975 * queue. Then we add bfqq to the burst.
976 */
977 bfq_add_to_burst(bfqd, bfqq);
978end:
979 /*
980 * At this point, bfqq either has been added to the current
981 * burst or has caused the current burst to terminate and a
982 * possible new burst to start. In particular, in the second
983 * case, bfqq has become the first queue in the possible new
984 * burst. In both cases last_ins_in_burst needs to be moved
985 * forward.
986 */
987 bfqd->last_ins_in_burst = jiffies;
988}
989
aee69d78
PV
990static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
991{
992 struct bfq_entity *entity = &bfqq->entity;
993
994 return entity->budget - entity->service;
995}
996
997/*
998 * If enough samples have been computed, return the current max budget
999 * stored in bfqd, which is dynamically updated according to the
1000 * estimated disk peak rate; otherwise return the default max budget
1001 */
1002static int bfq_max_budget(struct bfq_data *bfqd)
1003{
1004 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1005 return bfq_default_max_budget;
1006 else
1007 return bfqd->bfq_max_budget;
1008}
1009
1010/*
1011 * Return min budget, which is a fraction of the current or default
1012 * max budget (trying with 1/32)
1013 */
1014static int bfq_min_budget(struct bfq_data *bfqd)
1015{
1016 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1017 return bfq_default_max_budget / 32;
1018 else
1019 return bfqd->bfq_max_budget / 32;
1020}
1021
aee69d78
PV
1022/*
1023 * The next function, invoked after the input queue bfqq switches from
1024 * idle to busy, updates the budget of bfqq. The function also tells
1025 * whether the in-service queue should be expired, by returning
1026 * true. The purpose of expiring the in-service queue is to give bfqq
1027 * the chance to possibly preempt the in-service queue, and the reason
44e44a1b
PV
1028 * for preempting the in-service queue is to achieve one of the two
1029 * goals below.
aee69d78 1030 *
44e44a1b
PV
1031 * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1032 * expired because it has remained idle. In particular, bfqq may have
1033 * expired for one of the following two reasons:
aee69d78
PV
1034 *
1035 * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1036 * and did not make it to issue a new request before its last
1037 * request was served;
1038 *
1039 * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1040 * a new request before the expiration of the idling-time.
1041 *
1042 * Even if bfqq has expired for one of the above reasons, the process
1043 * associated with the queue may be however issuing requests greedily,
1044 * and thus be sensitive to the bandwidth it receives (bfqq may have
1045 * remained idle for other reasons: CPU high load, bfqq not enjoying
1046 * idling, I/O throttling somewhere in the path from the process to
1047 * the I/O scheduler, ...). But if, after every expiration for one of
1048 * the above two reasons, bfqq has to wait for the service of at least
1049 * one full budget of another queue before being served again, then
1050 * bfqq is likely to get a much lower bandwidth or resource time than
1051 * its reserved ones. To address this issue, two countermeasures need
1052 * to be taken.
1053 *
1054 * First, the budget and the timestamps of bfqq need to be updated in
1055 * a special way on bfqq reactivation: they need to be updated as if
1056 * bfqq did not remain idle and did not expire. In fact, if they are
1057 * computed as if bfqq expired and remained idle until reactivation,
1058 * then the process associated with bfqq is treated as if, instead of
1059 * being greedy, it stopped issuing requests when bfqq remained idle,
1060 * and restarts issuing requests only on this reactivation. In other
1061 * words, the scheduler does not help the process recover the "service
1062 * hole" between bfqq expiration and reactivation. As a consequence,
1063 * the process receives a lower bandwidth than its reserved one. In
1064 * contrast, to recover this hole, the budget must be updated as if
1065 * bfqq was not expired at all before this reactivation, i.e., it must
1066 * be set to the value of the remaining budget when bfqq was
1067 * expired. Along the same line, timestamps need to be assigned the
1068 * value they had the last time bfqq was selected for service, i.e.,
1069 * before last expiration. Thus timestamps need to be back-shifted
1070 * with respect to their normal computation (see [1] for more details
1071 * on this tricky aspect).
1072 *
1073 * Secondly, to allow the process to recover the hole, the in-service
1074 * queue must be expired too, to give bfqq the chance to preempt it
1075 * immediately. In fact, if bfqq has to wait for a full budget of the
1076 * in-service queue to be completed, then it may become impossible to
1077 * let the process recover the hole, even if the back-shifted
1078 * timestamps of bfqq are lower than those of the in-service queue. If
1079 * this happens for most or all of the holes, then the process may not
1080 * receive its reserved bandwidth. In this respect, it is worth noting
1081 * that, being the service of outstanding requests unpreemptible, a
1082 * little fraction of the holes may however be unrecoverable, thereby
1083 * causing a little loss of bandwidth.
1084 *
1085 * The last important point is detecting whether bfqq does need this
1086 * bandwidth recovery. In this respect, the next function deems the
1087 * process associated with bfqq greedy, and thus allows it to recover
1088 * the hole, if: 1) the process is waiting for the arrival of a new
1089 * request (which implies that bfqq expired for one of the above two
1090 * reasons), and 2) such a request has arrived soon. The first
1091 * condition is controlled through the flag non_blocking_wait_rq,
1092 * while the second through the flag arrived_in_time. If both
1093 * conditions hold, then the function computes the budget in the
1094 * above-described special way, and signals that the in-service queue
1095 * should be expired. Timestamp back-shifting is done later in
1096 * __bfq_activate_entity.
44e44a1b
PV
1097 *
1098 * 2. Reduce latency. Even if timestamps are not backshifted to let
1099 * the process associated with bfqq recover a service hole, bfqq may
1100 * however happen to have, after being (re)activated, a lower finish
1101 * timestamp than the in-service queue. That is, the next budget of
1102 * bfqq may have to be completed before the one of the in-service
1103 * queue. If this is the case, then preempting the in-service queue
1104 * allows this goal to be achieved, apart from the unpreemptible,
1105 * outstanding requests mentioned above.
1106 *
1107 * Unfortunately, regardless of which of the above two goals one wants
1108 * to achieve, service trees need first to be updated to know whether
1109 * the in-service queue must be preempted. To have service trees
1110 * correctly updated, the in-service queue must be expired and
1111 * rescheduled, and bfqq must be scheduled too. This is one of the
1112 * most costly operations (in future versions, the scheduling
1113 * mechanism may be re-designed in such a way to make it possible to
1114 * know whether preemption is needed without needing to update service
1115 * trees). In addition, queue preemptions almost always cause random
1116 * I/O, and thus loss of throughput. Because of these facts, the next
1117 * function adopts the following simple scheme to avoid both costly
1118 * operations and too frequent preemptions: it requests the expiration
1119 * of the in-service queue (unconditionally) only for queues that need
1120 * to recover a hole, or that either are weight-raised or deserve to
1121 * be weight-raised.
aee69d78
PV
1122 */
1123static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1124 struct bfq_queue *bfqq,
44e44a1b
PV
1125 bool arrived_in_time,
1126 bool wr_or_deserves_wr)
aee69d78
PV
1127{
1128 struct bfq_entity *entity = &bfqq->entity;
1129
1130 if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
1131 /*
1132 * We do not clear the flag non_blocking_wait_rq here, as
1133 * the latter is used in bfq_activate_bfqq to signal
1134 * that timestamps need to be back-shifted (and is
1135 * cleared right after).
1136 */
1137
1138 /*
1139 * In next assignment we rely on that either
1140 * entity->service or entity->budget are not updated
1141 * on expiration if bfqq is empty (see
1142 * __bfq_bfqq_recalc_budget). Thus both quantities
1143 * remain unchanged after such an expiration, and the
1144 * following statement therefore assigns to
1145 * entity->budget the remaining budget on such an
1146 * expiration. For clarity, entity->service is not
1147 * updated on expiration in any case, and, in normal
1148 * operation, is reset only when bfqq is selected for
1149 * service (see bfq_get_next_queue).
1150 */
1151 entity->budget = min_t(unsigned long,
1152 bfq_bfqq_budget_left(bfqq),
1153 bfqq->max_budget);
1154
1155 return true;
1156 }
1157
1158 entity->budget = max_t(unsigned long, bfqq->max_budget,
1159 bfq_serv_to_charge(bfqq->next_rq, bfqq));
1160 bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
44e44a1b
PV
1161 return wr_or_deserves_wr;
1162}
1163
1164static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
1165{
1166 u64 dur;
1167
1168 if (bfqd->bfq_wr_max_time > 0)
1169 return bfqd->bfq_wr_max_time;
1170
1171 dur = bfqd->RT_prod;
1172 do_div(dur, bfqd->peak_rate);
1173
1174 /*
1175 * Limit duration between 3 and 13 seconds. Tests show that
1176 * higher values than 13 seconds often yield the opposite of
1177 * the desired result, i.e., worsen responsiveness by letting
1178 * non-interactive and non-soft-real-time applications
1179 * preserve weight raising for a too long time interval.
1180 *
1181 * On the other end, lower values than 3 seconds make it
1182 * difficult for most interactive tasks to complete their jobs
1183 * before weight-raising finishes.
1184 */
1185 if (dur > msecs_to_jiffies(13000))
1186 dur = msecs_to_jiffies(13000);
1187 else if (dur < msecs_to_jiffies(3000))
1188 dur = msecs_to_jiffies(3000);
1189
1190 return dur;
1191}
1192
1193static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1194 struct bfq_queue *bfqq,
1195 unsigned int old_wr_coeff,
1196 bool wr_or_deserves_wr,
77b7dcea 1197 bool interactive,
e1b2324d 1198 bool in_burst,
77b7dcea 1199 bool soft_rt)
44e44a1b
PV
1200{
1201 if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1202 /* start a weight-raising period */
77b7dcea
PV
1203 if (interactive) {
1204 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1205 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1206 } else {
1207 bfqq->wr_start_at_switch_to_srt = jiffies;
1208 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1209 BFQ_SOFTRT_WEIGHT_FACTOR;
1210 bfqq->wr_cur_max_time =
1211 bfqd->bfq_wr_rt_max_time;
1212 }
44e44a1b
PV
1213
1214 /*
1215 * If needed, further reduce budget to make sure it is
1216 * close to bfqq's backlog, so as to reduce the
1217 * scheduling-error component due to a too large
1218 * budget. Do not care about throughput consequences,
1219 * but only about latency. Finally, do not assign a
1220 * too small budget either, to avoid increasing
1221 * latency by causing too frequent expirations.
1222 */
1223 bfqq->entity.budget = min_t(unsigned long,
1224 bfqq->entity.budget,
1225 2 * bfq_min_budget(bfqd));
1226 } else if (old_wr_coeff > 1) {
77b7dcea
PV
1227 if (interactive) { /* update wr coeff and duration */
1228 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1229 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
e1b2324d
AA
1230 } else if (in_burst)
1231 bfqq->wr_coeff = 1;
1232 else if (soft_rt) {
77b7dcea
PV
1233 /*
1234 * The application is now or still meeting the
1235 * requirements for being deemed soft rt. We
1236 * can then correctly and safely (re)charge
1237 * the weight-raising duration for the
1238 * application with the weight-raising
1239 * duration for soft rt applications.
1240 *
1241 * In particular, doing this recharge now, i.e.,
1242 * before the weight-raising period for the
1243 * application finishes, reduces the probability
1244 * of the following negative scenario:
1245 * 1) the weight of a soft rt application is
1246 * raised at startup (as for any newly
1247 * created application),
1248 * 2) since the application is not interactive,
1249 * at a certain time weight-raising is
1250 * stopped for the application,
1251 * 3) at that time the application happens to
1252 * still have pending requests, and hence
1253 * is destined to not have a chance to be
1254 * deemed soft rt before these requests are
1255 * completed (see the comments to the
1256 * function bfq_bfqq_softrt_next_start()
1257 * for details on soft rt detection),
1258 * 4) these pending requests experience a high
1259 * latency because the application is not
1260 * weight-raised while they are pending.
1261 */
1262 if (bfqq->wr_cur_max_time !=
1263 bfqd->bfq_wr_rt_max_time) {
1264 bfqq->wr_start_at_switch_to_srt =
1265 bfqq->last_wr_start_finish;
1266
1267 bfqq->wr_cur_max_time =
1268 bfqd->bfq_wr_rt_max_time;
1269 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1270 BFQ_SOFTRT_WEIGHT_FACTOR;
1271 }
1272 bfqq->last_wr_start_finish = jiffies;
1273 }
44e44a1b
PV
1274 }
1275}
1276
1277static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1278 struct bfq_queue *bfqq)
1279{
1280 return bfqq->dispatched == 0 &&
1281 time_is_before_jiffies(
1282 bfqq->budget_timeout +
1283 bfqd->bfq_wr_min_idle_time);
aee69d78
PV
1284}
1285
1286static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1287 struct bfq_queue *bfqq,
44e44a1b
PV
1288 int old_wr_coeff,
1289 struct request *rq,
1290 bool *interactive)
aee69d78 1291{
e1b2324d
AA
1292 bool soft_rt, in_burst, wr_or_deserves_wr,
1293 bfqq_wants_to_preempt,
44e44a1b 1294 idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
aee69d78
PV
1295 /*
1296 * See the comments on
1297 * bfq_bfqq_update_budg_for_activation for
1298 * details on the usage of the next variable.
1299 */
1300 arrived_in_time = ktime_get_ns() <=
1301 bfqq->ttime.last_end_request +
1302 bfqd->bfq_slice_idle * 3;
1303
e21b7a0b
AA
1304 bfqg_stats_update_io_add(bfqq_group(RQ_BFQQ(rq)), bfqq, rq->cmd_flags);
1305
aee69d78 1306 /*
44e44a1b
PV
1307 * bfqq deserves to be weight-raised if:
1308 * - it is sync,
e1b2324d 1309 * - it does not belong to a large burst,
36eca894
AA
1310 * - it has been idle for enough time or is soft real-time,
1311 * - is linked to a bfq_io_cq (it is not shared in any sense).
44e44a1b 1312 */
e1b2324d 1313 in_burst = bfq_bfqq_in_large_burst(bfqq);
77b7dcea 1314 soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
e1b2324d 1315 !in_burst &&
77b7dcea 1316 time_is_before_jiffies(bfqq->soft_rt_next_start);
e1b2324d 1317 *interactive = !in_burst && idle_for_long_time;
44e44a1b
PV
1318 wr_or_deserves_wr = bfqd->low_latency &&
1319 (bfqq->wr_coeff > 1 ||
36eca894
AA
1320 (bfq_bfqq_sync(bfqq) &&
1321 bfqq->bic && (*interactive || soft_rt)));
44e44a1b
PV
1322
1323 /*
1324 * Using the last flag, update budget and check whether bfqq
1325 * may want to preempt the in-service queue.
aee69d78
PV
1326 */
1327 bfqq_wants_to_preempt =
1328 bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
44e44a1b
PV
1329 arrived_in_time,
1330 wr_or_deserves_wr);
aee69d78 1331
e1b2324d
AA
1332 /*
1333 * If bfqq happened to be activated in a burst, but has been
1334 * idle for much more than an interactive queue, then we
1335 * assume that, in the overall I/O initiated in the burst, the
1336 * I/O associated with bfqq is finished. So bfqq does not need
1337 * to be treated as a queue belonging to a burst
1338 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1339 * if set, and remove bfqq from the burst list if it's
1340 * there. We do not decrement burst_size, because the fact
1341 * that bfqq does not need to belong to the burst list any
1342 * more does not invalidate the fact that bfqq was created in
1343 * a burst.
1344 */
1345 if (likely(!bfq_bfqq_just_created(bfqq)) &&
1346 idle_for_long_time &&
1347 time_is_before_jiffies(
1348 bfqq->budget_timeout +
1349 msecs_to_jiffies(10000))) {
1350 hlist_del_init(&bfqq->burst_list_node);
1351 bfq_clear_bfqq_in_large_burst(bfqq);
1352 }
1353
1354 bfq_clear_bfqq_just_created(bfqq);
1355
1356
aee69d78
PV
1357 if (!bfq_bfqq_IO_bound(bfqq)) {
1358 if (arrived_in_time) {
1359 bfqq->requests_within_timer++;
1360 if (bfqq->requests_within_timer >=
1361 bfqd->bfq_requests_within_timer)
1362 bfq_mark_bfqq_IO_bound(bfqq);
1363 } else
1364 bfqq->requests_within_timer = 0;
1365 }
1366
44e44a1b 1367 if (bfqd->low_latency) {
36eca894
AA
1368 if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1369 /* wraparound */
1370 bfqq->split_time =
1371 jiffies - bfqd->bfq_wr_min_idle_time - 1;
1372
1373 if (time_is_before_jiffies(bfqq->split_time +
1374 bfqd->bfq_wr_min_idle_time)) {
1375 bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1376 old_wr_coeff,
1377 wr_or_deserves_wr,
1378 *interactive,
e1b2324d 1379 in_burst,
36eca894
AA
1380 soft_rt);
1381
1382 if (old_wr_coeff != bfqq->wr_coeff)
1383 bfqq->entity.prio_changed = 1;
1384 }
44e44a1b
PV
1385 }
1386
77b7dcea
PV
1387 bfqq->last_idle_bklogged = jiffies;
1388 bfqq->service_from_backlogged = 0;
1389 bfq_clear_bfqq_softrt_update(bfqq);
1390
aee69d78
PV
1391 bfq_add_bfqq_busy(bfqd, bfqq);
1392
1393 /*
1394 * Expire in-service queue only if preemption may be needed
1395 * for guarantees. In this respect, the function
1396 * next_queue_may_preempt just checks a simple, necessary
1397 * condition, and not a sufficient condition based on
1398 * timestamps. In fact, for the latter condition to be
1399 * evaluated, timestamps would need first to be updated, and
1400 * this operation is quite costly (see the comments on the
1401 * function bfq_bfqq_update_budg_for_activation).
1402 */
1403 if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
77b7dcea 1404 bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
aee69d78
PV
1405 next_queue_may_preempt(bfqd))
1406 bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1407 false, BFQQE_PREEMPTED);
1408}
1409
1410static void bfq_add_request(struct request *rq)
1411{
1412 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1413 struct bfq_data *bfqd = bfqq->bfqd;
1414 struct request *next_rq, *prev;
44e44a1b
PV
1415 unsigned int old_wr_coeff = bfqq->wr_coeff;
1416 bool interactive = false;
aee69d78
PV
1417
1418 bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1419 bfqq->queued[rq_is_sync(rq)]++;
1420 bfqd->queued++;
1421
1422 elv_rb_add(&bfqq->sort_list, rq);
1423
1424 /*
1425 * Check if this request is a better next-serve candidate.
1426 */
1427 prev = bfqq->next_rq;
1428 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
1429 bfqq->next_rq = next_rq;
1430
36eca894
AA
1431 /*
1432 * Adjust priority tree position, if next_rq changes.
1433 */
1434 if (prev != bfqq->next_rq)
1435 bfq_pos_tree_add_move(bfqd, bfqq);
1436
aee69d78 1437 if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
44e44a1b
PV
1438 bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
1439 rq, &interactive);
1440 else {
1441 if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
1442 time_is_before_jiffies(
1443 bfqq->last_wr_start_finish +
1444 bfqd->bfq_wr_min_inter_arr_async)) {
1445 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1446 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1447
cfd69712 1448 bfqd->wr_busy_queues++;
44e44a1b
PV
1449 bfqq->entity.prio_changed = 1;
1450 }
1451 if (prev != bfqq->next_rq)
1452 bfq_updated_next_req(bfqd, bfqq);
1453 }
1454
1455 /*
1456 * Assign jiffies to last_wr_start_finish in the following
1457 * cases:
1458 *
1459 * . if bfqq is not going to be weight-raised, because, for
1460 * non weight-raised queues, last_wr_start_finish stores the
1461 * arrival time of the last request; as of now, this piece
1462 * of information is used only for deciding whether to
1463 * weight-raise async queues
1464 *
1465 * . if bfqq is not weight-raised, because, if bfqq is now
1466 * switching to weight-raised, then last_wr_start_finish
1467 * stores the time when weight-raising starts
1468 *
1469 * . if bfqq is interactive, because, regardless of whether
1470 * bfqq is currently weight-raised, the weight-raising
1471 * period must start or restart (this case is considered
1472 * separately because it is not detected by the above
1473 * conditions, if bfqq is already weight-raised)
77b7dcea
PV
1474 *
1475 * last_wr_start_finish has to be updated also if bfqq is soft
1476 * real-time, because the weight-raising period is constantly
1477 * restarted on idle-to-busy transitions for these queues, but
1478 * this is already done in bfq_bfqq_handle_idle_busy_switch if
1479 * needed.
44e44a1b
PV
1480 */
1481 if (bfqd->low_latency &&
1482 (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
1483 bfqq->last_wr_start_finish = jiffies;
aee69d78
PV
1484}
1485
1486static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
1487 struct bio *bio,
1488 struct request_queue *q)
1489{
1490 struct bfq_queue *bfqq = bfqd->bio_bfqq;
1491
1492
1493 if (bfqq)
1494 return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
1495
1496 return NULL;
1497}
1498
ab0e43e9
PV
1499static sector_t get_sdist(sector_t last_pos, struct request *rq)
1500{
1501 if (last_pos)
1502 return abs(blk_rq_pos(rq) - last_pos);
1503
1504 return 0;
1505}
1506
aee69d78
PV
1507#if 0 /* Still not clear if we can do without next two functions */
1508static void bfq_activate_request(struct request_queue *q, struct request *rq)
1509{
1510 struct bfq_data *bfqd = q->elevator->elevator_data;
1511
1512 bfqd->rq_in_driver++;
aee69d78
PV
1513}
1514
1515static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
1516{
1517 struct bfq_data *bfqd = q->elevator->elevator_data;
1518
1519 bfqd->rq_in_driver--;
1520}
1521#endif
1522
1523static void bfq_remove_request(struct request_queue *q,
1524 struct request *rq)
1525{
1526 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1527 struct bfq_data *bfqd = bfqq->bfqd;
1528 const int sync = rq_is_sync(rq);
1529
1530 if (bfqq->next_rq == rq) {
1531 bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
1532 bfq_updated_next_req(bfqd, bfqq);
1533 }
1534
1535 if (rq->queuelist.prev != &rq->queuelist)
1536 list_del_init(&rq->queuelist);
1537 bfqq->queued[sync]--;
1538 bfqd->queued--;
1539 elv_rb_del(&bfqq->sort_list, rq);
1540
1541 elv_rqhash_del(q, rq);
1542 if (q->last_merge == rq)
1543 q->last_merge = NULL;
1544
1545 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
1546 bfqq->next_rq = NULL;
1547
1548 if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
e21b7a0b 1549 bfq_del_bfqq_busy(bfqd, bfqq, false);
aee69d78
PV
1550 /*
1551 * bfqq emptied. In normal operation, when
1552 * bfqq is empty, bfqq->entity.service and
1553 * bfqq->entity.budget must contain,
1554 * respectively, the service received and the
1555 * budget used last time bfqq emptied. These
1556 * facts do not hold in this case, as at least
1557 * this last removal occurred while bfqq is
1558 * not in service. To avoid inconsistencies,
1559 * reset both bfqq->entity.service and
1560 * bfqq->entity.budget, if bfqq has still a
1561 * process that may issue I/O requests to it.
1562 */
1563 bfqq->entity.budget = bfqq->entity.service = 0;
1564 }
36eca894
AA
1565
1566 /*
1567 * Remove queue from request-position tree as it is empty.
1568 */
1569 if (bfqq->pos_root) {
1570 rb_erase(&bfqq->pos_node, bfqq->pos_root);
1571 bfqq->pos_root = NULL;
1572 }
aee69d78
PV
1573 }
1574
1575 if (rq->cmd_flags & REQ_META)
1576 bfqq->meta_pending--;
e21b7a0b
AA
1577
1578 bfqg_stats_update_io_remove(bfqq_group(bfqq), rq->cmd_flags);
aee69d78
PV
1579}
1580
1581static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
1582{
1583 struct request_queue *q = hctx->queue;
1584 struct bfq_data *bfqd = q->elevator->elevator_data;
1585 struct request *free = NULL;
1586 /*
1587 * bfq_bic_lookup grabs the queue_lock: invoke it now and
1588 * store its return value for later use, to avoid nesting
1589 * queue_lock inside the bfqd->lock. We assume that the bic
1590 * returned by bfq_bic_lookup does not go away before
1591 * bfqd->lock is taken.
1592 */
1593 struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
1594 bool ret;
1595
1596 spin_lock_irq(&bfqd->lock);
1597
1598 if (bic)
1599 bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
1600 else
1601 bfqd->bio_bfqq = NULL;
1602 bfqd->bio_bic = bic;
1603
1604 ret = blk_mq_sched_try_merge(q, bio, &free);
1605
1606 if (free)
1607 blk_mq_free_request(free);
1608 spin_unlock_irq(&bfqd->lock);
1609
1610 return ret;
1611}
1612
1613static int bfq_request_merge(struct request_queue *q, struct request **req,
1614 struct bio *bio)
1615{
1616 struct bfq_data *bfqd = q->elevator->elevator_data;
1617 struct request *__rq;
1618
1619 __rq = bfq_find_rq_fmerge(bfqd, bio, q);
1620 if (__rq && elv_bio_merge_ok(__rq, bio)) {
1621 *req = __rq;
1622 return ELEVATOR_FRONT_MERGE;
1623 }
1624
1625 return ELEVATOR_NO_MERGE;
1626}
1627
1628static void bfq_request_merged(struct request_queue *q, struct request *req,
1629 enum elv_merge type)
1630{
1631 if (type == ELEVATOR_FRONT_MERGE &&
1632 rb_prev(&req->rb_node) &&
1633 blk_rq_pos(req) <
1634 blk_rq_pos(container_of(rb_prev(&req->rb_node),
1635 struct request, rb_node))) {
1636 struct bfq_queue *bfqq = RQ_BFQQ(req);
1637 struct bfq_data *bfqd = bfqq->bfqd;
1638 struct request *prev, *next_rq;
1639
1640 /* Reposition request in its sort_list */
1641 elv_rb_del(&bfqq->sort_list, req);
1642 elv_rb_add(&bfqq->sort_list, req);
1643
1644 /* Choose next request to be served for bfqq */
1645 prev = bfqq->next_rq;
1646 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
1647 bfqd->last_position);
1648 bfqq->next_rq = next_rq;
1649 /*
36eca894
AA
1650 * If next_rq changes, update both the queue's budget to
1651 * fit the new request and the queue's position in its
1652 * rq_pos_tree.
aee69d78 1653 */
36eca894 1654 if (prev != bfqq->next_rq) {
aee69d78 1655 bfq_updated_next_req(bfqd, bfqq);
36eca894
AA
1656 bfq_pos_tree_add_move(bfqd, bfqq);
1657 }
aee69d78
PV
1658 }
1659}
1660
1661static void bfq_requests_merged(struct request_queue *q, struct request *rq,
1662 struct request *next)
1663{
1664 struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next);
1665
1666 if (!RB_EMPTY_NODE(&rq->rb_node))
e21b7a0b 1667 goto end;
aee69d78
PV
1668 spin_lock_irq(&bfqq->bfqd->lock);
1669
1670 /*
1671 * If next and rq belong to the same bfq_queue and next is older
1672 * than rq, then reposition rq in the fifo (by substituting next
1673 * with rq). Otherwise, if next and rq belong to different
1674 * bfq_queues, never reposition rq: in fact, we would have to
1675 * reposition it with respect to next's position in its own fifo,
1676 * which would most certainly be too expensive with respect to
1677 * the benefits.
1678 */
1679 if (bfqq == next_bfqq &&
1680 !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1681 next->fifo_time < rq->fifo_time) {
1682 list_del_init(&rq->queuelist);
1683 list_replace_init(&next->queuelist, &rq->queuelist);
1684 rq->fifo_time = next->fifo_time;
1685 }
1686
1687 if (bfqq->next_rq == next)
1688 bfqq->next_rq = rq;
1689
1690 bfq_remove_request(q, next);
1691
1692 spin_unlock_irq(&bfqq->bfqd->lock);
e21b7a0b
AA
1693end:
1694 bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
aee69d78
PV
1695}
1696
44e44a1b
PV
1697/* Must be called with bfqq != NULL */
1698static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
1699{
cfd69712
PV
1700 if (bfq_bfqq_busy(bfqq))
1701 bfqq->bfqd->wr_busy_queues--;
44e44a1b
PV
1702 bfqq->wr_coeff = 1;
1703 bfqq->wr_cur_max_time = 0;
77b7dcea 1704 bfqq->last_wr_start_finish = jiffies;
44e44a1b
PV
1705 /*
1706 * Trigger a weight change on the next invocation of
1707 * __bfq_entity_update_weight_prio.
1708 */
1709 bfqq->entity.prio_changed = 1;
1710}
1711
ea25da48
PV
1712void bfq_end_wr_async_queues(struct bfq_data *bfqd,
1713 struct bfq_group *bfqg)
44e44a1b
PV
1714{
1715 int i, j;
1716
1717 for (i = 0; i < 2; i++)
1718 for (j = 0; j < IOPRIO_BE_NR; j++)
1719 if (bfqg->async_bfqq[i][j])
1720 bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
1721 if (bfqg->async_idle_bfqq)
1722 bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
1723}
1724
1725static void bfq_end_wr(struct bfq_data *bfqd)
1726{
1727 struct bfq_queue *bfqq;
1728
1729 spin_lock_irq(&bfqd->lock);
1730
1731 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
1732 bfq_bfqq_end_wr(bfqq);
1733 list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
1734 bfq_bfqq_end_wr(bfqq);
1735 bfq_end_wr_async(bfqd);
1736
1737 spin_unlock_irq(&bfqd->lock);
1738}
1739
36eca894
AA
1740static sector_t bfq_io_struct_pos(void *io_struct, bool request)
1741{
1742 if (request)
1743 return blk_rq_pos(io_struct);
1744 else
1745 return ((struct bio *)io_struct)->bi_iter.bi_sector;
1746}
1747
1748static int bfq_rq_close_to_sector(void *io_struct, bool request,
1749 sector_t sector)
1750{
1751 return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
1752 BFQQ_CLOSE_THR;
1753}
1754
1755static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
1756 struct bfq_queue *bfqq,
1757 sector_t sector)
1758{
1759 struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
1760 struct rb_node *parent, *node;
1761 struct bfq_queue *__bfqq;
1762
1763 if (RB_EMPTY_ROOT(root))
1764 return NULL;
1765
1766 /*
1767 * First, if we find a request starting at the end of the last
1768 * request, choose it.
1769 */
1770 __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
1771 if (__bfqq)
1772 return __bfqq;
1773
1774 /*
1775 * If the exact sector wasn't found, the parent of the NULL leaf
1776 * will contain the closest sector (rq_pos_tree sorted by
1777 * next_request position).
1778 */
1779 __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
1780 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
1781 return __bfqq;
1782
1783 if (blk_rq_pos(__bfqq->next_rq) < sector)
1784 node = rb_next(&__bfqq->pos_node);
1785 else
1786 node = rb_prev(&__bfqq->pos_node);
1787 if (!node)
1788 return NULL;
1789
1790 __bfqq = rb_entry(node, struct bfq_queue, pos_node);
1791 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
1792 return __bfqq;
1793
1794 return NULL;
1795}
1796
1797static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
1798 struct bfq_queue *cur_bfqq,
1799 sector_t sector)
1800{
1801 struct bfq_queue *bfqq;
1802
1803 /*
1804 * We shall notice if some of the queues are cooperating,
1805 * e.g., working closely on the same area of the device. In
1806 * that case, we can group them together and: 1) don't waste
1807 * time idling, and 2) serve the union of their requests in
1808 * the best possible order for throughput.
1809 */
1810 bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
1811 if (!bfqq || bfqq == cur_bfqq)
1812 return NULL;
1813
1814 return bfqq;
1815}
1816
1817static struct bfq_queue *
1818bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
1819{
1820 int process_refs, new_process_refs;
1821 struct bfq_queue *__bfqq;
1822
1823 /*
1824 * If there are no process references on the new_bfqq, then it is
1825 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
1826 * may have dropped their last reference (not just their last process
1827 * reference).
1828 */
1829 if (!bfqq_process_refs(new_bfqq))
1830 return NULL;
1831
1832 /* Avoid a circular list and skip interim queue merges. */
1833 while ((__bfqq = new_bfqq->new_bfqq)) {
1834 if (__bfqq == bfqq)
1835 return NULL;
1836 new_bfqq = __bfqq;
1837 }
1838
1839 process_refs = bfqq_process_refs(bfqq);
1840 new_process_refs = bfqq_process_refs(new_bfqq);
1841 /*
1842 * If the process for the bfqq has gone away, there is no
1843 * sense in merging the queues.
1844 */
1845 if (process_refs == 0 || new_process_refs == 0)
1846 return NULL;
1847
1848 bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
1849 new_bfqq->pid);
1850
1851 /*
1852 * Merging is just a redirection: the requests of the process
1853 * owning one of the two queues are redirected to the other queue.
1854 * The latter queue, in its turn, is set as shared if this is the
1855 * first time that the requests of some process are redirected to
1856 * it.
1857 *
6fa3e8d3
PV
1858 * We redirect bfqq to new_bfqq and not the opposite, because
1859 * we are in the context of the process owning bfqq, thus we
1860 * have the io_cq of this process. So we can immediately
1861 * configure this io_cq to redirect the requests of the
1862 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
1863 * not available any more (new_bfqq->bic == NULL).
36eca894 1864 *
6fa3e8d3
PV
1865 * Anyway, even in case new_bfqq coincides with the in-service
1866 * queue, redirecting requests the in-service queue is the
1867 * best option, as we feed the in-service queue with new
1868 * requests close to the last request served and, by doing so,
1869 * are likely to increase the throughput.
36eca894
AA
1870 */
1871 bfqq->new_bfqq = new_bfqq;
1872 new_bfqq->ref += process_refs;
1873 return new_bfqq;
1874}
1875
1876static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
1877 struct bfq_queue *new_bfqq)
1878{
1879 if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
1880 (bfqq->ioprio_class != new_bfqq->ioprio_class))
1881 return false;
1882
1883 /*
1884 * If either of the queues has already been detected as seeky,
1885 * then merging it with the other queue is unlikely to lead to
1886 * sequential I/O.
1887 */
1888 if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
1889 return false;
1890
1891 /*
1892 * Interleaved I/O is known to be done by (some) applications
1893 * only for reads, so it does not make sense to merge async
1894 * queues.
1895 */
1896 if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
1897 return false;
1898
1899 return true;
1900}
1901
1902/*
1903 * If this function returns true, then bfqq cannot be merged. The idea
1904 * is that true cooperation happens very early after processes start
1905 * to do I/O. Usually, late cooperations are just accidental false
1906 * positives. In case bfqq is weight-raised, such false positives
1907 * would evidently degrade latency guarantees for bfqq.
1908 */
1909static bool wr_from_too_long(struct bfq_queue *bfqq)
1910{
1911 return bfqq->wr_coeff > 1 &&
1912 time_is_before_jiffies(bfqq->last_wr_start_finish +
1913 msecs_to_jiffies(100));
1914}
1915
1916/*
1917 * Attempt to schedule a merge of bfqq with the currently in-service
1918 * queue or with a close queue among the scheduled queues. Return
1919 * NULL if no merge was scheduled, a pointer to the shared bfq_queue
1920 * structure otherwise.
1921 *
1922 * The OOM queue is not allowed to participate to cooperation: in fact, since
1923 * the requests temporarily redirected to the OOM queue could be redirected
1924 * again to dedicated queues at any time, the state needed to correctly
1925 * handle merging with the OOM queue would be quite complex and expensive
1926 * to maintain. Besides, in such a critical condition as an out of memory,
1927 * the benefits of queue merging may be little relevant, or even negligible.
1928 *
1929 * Weight-raised queues can be merged only if their weight-raising
1930 * period has just started. In fact cooperating processes are usually
1931 * started together. Thus, with this filter we avoid false positives
1932 * that would jeopardize low-latency guarantees.
1933 *
1934 * WARNING: queue merging may impair fairness among non-weight raised
1935 * queues, for at least two reasons: 1) the original weight of a
1936 * merged queue may change during the merged state, 2) even being the
1937 * weight the same, a merged queue may be bloated with many more
1938 * requests than the ones produced by its originally-associated
1939 * process.
1940 */
1941static struct bfq_queue *
1942bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1943 void *io_struct, bool request)
1944{
1945 struct bfq_queue *in_service_bfqq, *new_bfqq;
1946
1947 if (bfqq->new_bfqq)
1948 return bfqq->new_bfqq;
1949
1950 if (!io_struct ||
1951 wr_from_too_long(bfqq) ||
1952 unlikely(bfqq == &bfqd->oom_bfqq))
1953 return NULL;
1954
1955 /* If there is only one backlogged queue, don't search. */
1956 if (bfqd->busy_queues == 1)
1957 return NULL;
1958
1959 in_service_bfqq = bfqd->in_service_queue;
1960
6fa3e8d3
PV
1961 if (!in_service_bfqq || in_service_bfqq == bfqq
1962 || wr_from_too_long(in_service_bfqq) ||
36eca894
AA
1963 unlikely(in_service_bfqq == &bfqd->oom_bfqq))
1964 goto check_scheduled;
1965
1966 if (bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) &&
1967 bfqq->entity.parent == in_service_bfqq->entity.parent &&
1968 bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
1969 new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
1970 if (new_bfqq)
1971 return new_bfqq;
1972 }
1973 /*
1974 * Check whether there is a cooperator among currently scheduled
1975 * queues. The only thing we need is that the bio/request is not
1976 * NULL, as we need it to establish whether a cooperator exists.
1977 */
1978check_scheduled:
1979 new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
1980 bfq_io_struct_pos(io_struct, request));
1981
1982 if (new_bfqq && !wr_from_too_long(new_bfqq) &&
1983 likely(new_bfqq != &bfqd->oom_bfqq) &&
1984 bfq_may_be_close_cooperator(bfqq, new_bfqq))
1985 return bfq_setup_merge(bfqq, new_bfqq);
1986
1987 return NULL;
1988}
1989
1990static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
1991{
1992 struct bfq_io_cq *bic = bfqq->bic;
1993
1994 /*
1995 * If !bfqq->bic, the queue is already shared or its requests
1996 * have already been redirected to a shared queue; both idle window
1997 * and weight raising state have already been saved. Do nothing.
1998 */
1999 if (!bic)
2000 return;
2001
2002 bic->saved_ttime = bfqq->ttime;
2003 bic->saved_idle_window = bfq_bfqq_idle_window(bfqq);
2004 bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
e1b2324d
AA
2005 bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2006 bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
36eca894
AA
2007 bic->saved_wr_coeff = bfqq->wr_coeff;
2008 bic->saved_wr_start_at_switch_to_srt = bfqq->wr_start_at_switch_to_srt;
2009 bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2010 bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2011}
2012
36eca894
AA
2013static void
2014bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2015 struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2016{
2017 bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2018 (unsigned long)new_bfqq->pid);
2019 /* Save weight raising and idle window of the merged queues */
2020 bfq_bfqq_save_state(bfqq);
2021 bfq_bfqq_save_state(new_bfqq);
2022 if (bfq_bfqq_IO_bound(bfqq))
2023 bfq_mark_bfqq_IO_bound(new_bfqq);
2024 bfq_clear_bfqq_IO_bound(bfqq);
2025
2026 /*
2027 * If bfqq is weight-raised, then let new_bfqq inherit
2028 * weight-raising. To reduce false positives, neglect the case
2029 * where bfqq has just been created, but has not yet made it
2030 * to be weight-raised (which may happen because EQM may merge
2031 * bfqq even before bfq_add_request is executed for the first
e1b2324d
AA
2032 * time for bfqq). Handling this case would however be very
2033 * easy, thanks to the flag just_created.
36eca894
AA
2034 */
2035 if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2036 new_bfqq->wr_coeff = bfqq->wr_coeff;
2037 new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2038 new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2039 new_bfqq->wr_start_at_switch_to_srt =
2040 bfqq->wr_start_at_switch_to_srt;
2041 if (bfq_bfqq_busy(new_bfqq))
2042 bfqd->wr_busy_queues++;
2043 new_bfqq->entity.prio_changed = 1;
2044 }
2045
2046 if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2047 bfqq->wr_coeff = 1;
2048 bfqq->entity.prio_changed = 1;
2049 if (bfq_bfqq_busy(bfqq))
2050 bfqd->wr_busy_queues--;
2051 }
2052
2053 bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2054 bfqd->wr_busy_queues);
2055
36eca894
AA
2056 /*
2057 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2058 */
2059 bic_set_bfqq(bic, new_bfqq, 1);
2060 bfq_mark_bfqq_coop(new_bfqq);
2061 /*
2062 * new_bfqq now belongs to at least two bics (it is a shared queue):
2063 * set new_bfqq->bic to NULL. bfqq either:
2064 * - does not belong to any bic any more, and hence bfqq->bic must
2065 * be set to NULL, or
2066 * - is a queue whose owning bics have already been redirected to a
2067 * different queue, hence the queue is destined to not belong to
2068 * any bic soon and bfqq->bic is already NULL (therefore the next
2069 * assignment causes no harm).
2070 */
2071 new_bfqq->bic = NULL;
2072 bfqq->bic = NULL;
2073 /* release process reference to bfqq */
2074 bfq_put_queue(bfqq);
2075}
2076
aee69d78
PV
2077static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2078 struct bio *bio)
2079{
2080 struct bfq_data *bfqd = q->elevator->elevator_data;
2081 bool is_sync = op_is_sync(bio->bi_opf);
36eca894 2082 struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
aee69d78
PV
2083
2084 /*
2085 * Disallow merge of a sync bio into an async request.
2086 */
2087 if (is_sync && !rq_is_sync(rq))
2088 return false;
2089
2090 /*
2091 * Lookup the bfqq that this bio will be queued with. Allow
2092 * merge only if rq is queued there.
2093 */
2094 if (!bfqq)
2095 return false;
2096
36eca894
AA
2097 /*
2098 * We take advantage of this function to perform an early merge
2099 * of the queues of possible cooperating processes.
2100 */
2101 new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2102 if (new_bfqq) {
2103 /*
2104 * bic still points to bfqq, then it has not yet been
2105 * redirected to some other bfq_queue, and a queue
2106 * merge beween bfqq and new_bfqq can be safely
2107 * fulfillled, i.e., bic can be redirected to new_bfqq
2108 * and bfqq can be put.
2109 */
2110 bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2111 new_bfqq);
2112 /*
2113 * If we get here, bio will be queued into new_queue,
2114 * so use new_bfqq to decide whether bio and rq can be
2115 * merged.
2116 */
2117 bfqq = new_bfqq;
2118
2119 /*
2120 * Change also bqfd->bio_bfqq, as
2121 * bfqd->bio_bic now points to new_bfqq, and
2122 * this function may be invoked again (and then may
2123 * use again bqfd->bio_bfqq).
2124 */
2125 bfqd->bio_bfqq = bfqq;
2126 }
2127
aee69d78
PV
2128 return bfqq == RQ_BFQQ(rq);
2129}
2130
44e44a1b
PV
2131/*
2132 * Set the maximum time for the in-service queue to consume its
2133 * budget. This prevents seeky processes from lowering the throughput.
2134 * In practice, a time-slice service scheme is used with seeky
2135 * processes.
2136 */
2137static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2138 struct bfq_queue *bfqq)
2139{
77b7dcea
PV
2140 unsigned int timeout_coeff;
2141
2142 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2143 timeout_coeff = 1;
2144 else
2145 timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2146
44e44a1b
PV
2147 bfqd->last_budget_start = ktime_get();
2148
2149 bfqq->budget_timeout = jiffies +
77b7dcea 2150 bfqd->bfq_timeout * timeout_coeff;
44e44a1b
PV
2151}
2152
aee69d78
PV
2153static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2154 struct bfq_queue *bfqq)
2155{
2156 if (bfqq) {
e21b7a0b 2157 bfqg_stats_update_avg_queue_size(bfqq_group(bfqq));
aee69d78
PV
2158 bfq_clear_bfqq_fifo_expire(bfqq);
2159
2160 bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2161
77b7dcea
PV
2162 if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2163 bfqq->wr_coeff > 1 &&
2164 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2165 time_is_before_jiffies(bfqq->budget_timeout)) {
2166 /*
2167 * For soft real-time queues, move the start
2168 * of the weight-raising period forward by the
2169 * time the queue has not received any
2170 * service. Otherwise, a relatively long
2171 * service delay is likely to cause the
2172 * weight-raising period of the queue to end,
2173 * because of the short duration of the
2174 * weight-raising period of a soft real-time
2175 * queue. It is worth noting that this move
2176 * is not so dangerous for the other queues,
2177 * because soft real-time queues are not
2178 * greedy.
2179 *
2180 * To not add a further variable, we use the
2181 * overloaded field budget_timeout to
2182 * determine for how long the queue has not
2183 * received service, i.e., how much time has
2184 * elapsed since the queue expired. However,
2185 * this is a little imprecise, because
2186 * budget_timeout is set to jiffies if bfqq
2187 * not only expires, but also remains with no
2188 * request.
2189 */
2190 if (time_after(bfqq->budget_timeout,
2191 bfqq->last_wr_start_finish))
2192 bfqq->last_wr_start_finish +=
2193 jiffies - bfqq->budget_timeout;
2194 else
2195 bfqq->last_wr_start_finish = jiffies;
2196 }
2197
44e44a1b 2198 bfq_set_budget_timeout(bfqd, bfqq);
aee69d78
PV
2199 bfq_log_bfqq(bfqd, bfqq,
2200 "set_in_service_queue, cur-budget = %d",
2201 bfqq->entity.budget);
2202 }
2203
2204 bfqd->in_service_queue = bfqq;
2205}
2206
2207/*
2208 * Get and set a new queue for service.
2209 */
2210static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2211{
2212 struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2213
2214 __bfq_set_in_service_queue(bfqd, bfqq);
2215 return bfqq;
2216}
2217
aee69d78
PV
2218static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2219{
2220 struct bfq_queue *bfqq = bfqd->in_service_queue;
aee69d78
PV
2221 u32 sl;
2222
aee69d78
PV
2223 bfq_mark_bfqq_wait_request(bfqq);
2224
2225 /*
2226 * We don't want to idle for seeks, but we do want to allow
2227 * fair distribution of slice time for a process doing back-to-back
2228 * seeks. So allow a little bit of time for him to submit a new rq.
2229 */
2230 sl = bfqd->bfq_slice_idle;
2231 /*
1de0c4cd
AA
2232 * Unless the queue is being weight-raised or the scenario is
2233 * asymmetric, grant only minimum idle time if the queue
2234 * is seeky. A long idling is preserved for a weight-raised
2235 * queue, or, more in general, in an asymmetric scenario,
2236 * because a long idling is needed for guaranteeing to a queue
2237 * its reserved share of the throughput (in particular, it is
2238 * needed if the queue has a higher weight than some other
2239 * queue).
aee69d78 2240 */
1de0c4cd
AA
2241 if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
2242 bfq_symmetric_scenario(bfqd))
aee69d78
PV
2243 sl = min_t(u64, sl, BFQ_MIN_TT);
2244
2245 bfqd->last_idling_start = ktime_get();
2246 hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2247 HRTIMER_MODE_REL);
e21b7a0b 2248 bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
aee69d78
PV
2249}
2250
ab0e43e9
PV
2251/*
2252 * In autotuning mode, max_budget is dynamically recomputed as the
2253 * amount of sectors transferred in timeout at the estimated peak
2254 * rate. This enables BFQ to utilize a full timeslice with a full
2255 * budget, even if the in-service queue is served at peak rate. And
2256 * this maximises throughput with sequential workloads.
2257 */
2258static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2259{
2260 return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2261 jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2262}
2263
44e44a1b
PV
2264/*
2265 * Update parameters related to throughput and responsiveness, as a
2266 * function of the estimated peak rate. See comments on
2267 * bfq_calc_max_budget(), and on T_slow and T_fast arrays.
2268 */
2269static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2270{
2271 int dev_type = blk_queue_nonrot(bfqd->queue);
2272
2273 if (bfqd->bfq_user_max_budget == 0)
2274 bfqd->bfq_max_budget =
2275 bfq_calc_max_budget(bfqd);
2276
2277 if (bfqd->device_speed == BFQ_BFQD_FAST &&
2278 bfqd->peak_rate < device_speed_thresh[dev_type]) {
2279 bfqd->device_speed = BFQ_BFQD_SLOW;
2280 bfqd->RT_prod = R_slow[dev_type] *
2281 T_slow[dev_type];
2282 } else if (bfqd->device_speed == BFQ_BFQD_SLOW &&
2283 bfqd->peak_rate > device_speed_thresh[dev_type]) {
2284 bfqd->device_speed = BFQ_BFQD_FAST;
2285 bfqd->RT_prod = R_fast[dev_type] *
2286 T_fast[dev_type];
2287 }
2288
2289 bfq_log(bfqd,
2290"dev_type %s dev_speed_class = %s (%llu sects/sec), thresh %llu setcs/sec",
2291 dev_type == 0 ? "ROT" : "NONROT",
2292 bfqd->device_speed == BFQ_BFQD_FAST ? "FAST" : "SLOW",
2293 bfqd->device_speed == BFQ_BFQD_FAST ?
2294 (USEC_PER_SEC*(u64)R_fast[dev_type])>>BFQ_RATE_SHIFT :
2295 (USEC_PER_SEC*(u64)R_slow[dev_type])>>BFQ_RATE_SHIFT,
2296 (USEC_PER_SEC*(u64)device_speed_thresh[dev_type])>>
2297 BFQ_RATE_SHIFT);
2298}
2299
ab0e43e9
PV
2300static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2301 struct request *rq)
2302{
2303 if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2304 bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2305 bfqd->peak_rate_samples = 1;
2306 bfqd->sequential_samples = 0;
2307 bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
2308 blk_rq_sectors(rq);
2309 } else /* no new rq dispatched, just reset the number of samples */
2310 bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
2311
2312 bfq_log(bfqd,
2313 "reset_rate_computation at end, sample %u/%u tot_sects %llu",
2314 bfqd->peak_rate_samples, bfqd->sequential_samples,
2315 bfqd->tot_sectors_dispatched);
2316}
2317
2318static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
2319{
2320 u32 rate, weight, divisor;
2321
2322 /*
2323 * For the convergence property to hold (see comments on
2324 * bfq_update_peak_rate()) and for the assessment to be
2325 * reliable, a minimum number of samples must be present, and
2326 * a minimum amount of time must have elapsed. If not so, do
2327 * not compute new rate. Just reset parameters, to get ready
2328 * for a new evaluation attempt.
2329 */
2330 if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
2331 bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
2332 goto reset_computation;
2333
2334 /*
2335 * If a new request completion has occurred after last
2336 * dispatch, then, to approximate the rate at which requests
2337 * have been served by the device, it is more precise to
2338 * extend the observation interval to the last completion.
2339 */
2340 bfqd->delta_from_first =
2341 max_t(u64, bfqd->delta_from_first,
2342 bfqd->last_completion - bfqd->first_dispatch);
2343
2344 /*
2345 * Rate computed in sects/usec, and not sects/nsec, for
2346 * precision issues.
2347 */
2348 rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
2349 div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
2350
2351 /*
2352 * Peak rate not updated if:
2353 * - the percentage of sequential dispatches is below 3/4 of the
2354 * total, and rate is below the current estimated peak rate
2355 * - rate is unreasonably high (> 20M sectors/sec)
2356 */
2357 if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
2358 rate <= bfqd->peak_rate) ||
2359 rate > 20<<BFQ_RATE_SHIFT)
2360 goto reset_computation;
2361
2362 /*
2363 * We have to update the peak rate, at last! To this purpose,
2364 * we use a low-pass filter. We compute the smoothing constant
2365 * of the filter as a function of the 'weight' of the new
2366 * measured rate.
2367 *
2368 * As can be seen in next formulas, we define this weight as a
2369 * quantity proportional to how sequential the workload is,
2370 * and to how long the observation time interval is.
2371 *
2372 * The weight runs from 0 to 8. The maximum value of the
2373 * weight, 8, yields the minimum value for the smoothing
2374 * constant. At this minimum value for the smoothing constant,
2375 * the measured rate contributes for half of the next value of
2376 * the estimated peak rate.
2377 *
2378 * So, the first step is to compute the weight as a function
2379 * of how sequential the workload is. Note that the weight
2380 * cannot reach 9, because bfqd->sequential_samples cannot
2381 * become equal to bfqd->peak_rate_samples, which, in its
2382 * turn, holds true because bfqd->sequential_samples is not
2383 * incremented for the first sample.
2384 */
2385 weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
2386
2387 /*
2388 * Second step: further refine the weight as a function of the
2389 * duration of the observation interval.
2390 */
2391 weight = min_t(u32, 8,
2392 div_u64(weight * bfqd->delta_from_first,
2393 BFQ_RATE_REF_INTERVAL));
2394
2395 /*
2396 * Divisor ranging from 10, for minimum weight, to 2, for
2397 * maximum weight.
2398 */
2399 divisor = 10 - weight;
2400
2401 /*
2402 * Finally, update peak rate:
2403 *
2404 * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
2405 */
2406 bfqd->peak_rate *= divisor-1;
2407 bfqd->peak_rate /= divisor;
2408 rate /= divisor; /* smoothing constant alpha = 1/divisor */
2409
2410 bfqd->peak_rate += rate;
44e44a1b 2411 update_thr_responsiveness_params(bfqd);
ab0e43e9
PV
2412
2413reset_computation:
2414 bfq_reset_rate_computation(bfqd, rq);
2415}
2416
2417/*
2418 * Update the read/write peak rate (the main quantity used for
2419 * auto-tuning, see update_thr_responsiveness_params()).
2420 *
2421 * It is not trivial to estimate the peak rate (correctly): because of
2422 * the presence of sw and hw queues between the scheduler and the
2423 * device components that finally serve I/O requests, it is hard to
2424 * say exactly when a given dispatched request is served inside the
2425 * device, and for how long. As a consequence, it is hard to know
2426 * precisely at what rate a given set of requests is actually served
2427 * by the device.
2428 *
2429 * On the opposite end, the dispatch time of any request is trivially
2430 * available, and, from this piece of information, the "dispatch rate"
2431 * of requests can be immediately computed. So, the idea in the next
2432 * function is to use what is known, namely request dispatch times
2433 * (plus, when useful, request completion times), to estimate what is
2434 * unknown, namely in-device request service rate.
2435 *
2436 * The main issue is that, because of the above facts, the rate at
2437 * which a certain set of requests is dispatched over a certain time
2438 * interval can vary greatly with respect to the rate at which the
2439 * same requests are then served. But, since the size of any
2440 * intermediate queue is limited, and the service scheme is lossless
2441 * (no request is silently dropped), the following obvious convergence
2442 * property holds: the number of requests dispatched MUST become
2443 * closer and closer to the number of requests completed as the
2444 * observation interval grows. This is the key property used in
2445 * the next function to estimate the peak service rate as a function
2446 * of the observed dispatch rate. The function assumes to be invoked
2447 * on every request dispatch.
2448 */
2449static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
2450{
2451 u64 now_ns = ktime_get_ns();
2452
2453 if (bfqd->peak_rate_samples == 0) { /* first dispatch */
2454 bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
2455 bfqd->peak_rate_samples);
2456 bfq_reset_rate_computation(bfqd, rq);
2457 goto update_last_values; /* will add one sample */
2458 }
2459
2460 /*
2461 * Device idle for very long: the observation interval lasting
2462 * up to this dispatch cannot be a valid observation interval
2463 * for computing a new peak rate (similarly to the late-
2464 * completion event in bfq_completed_request()). Go to
2465 * update_rate_and_reset to have the following three steps
2466 * taken:
2467 * - close the observation interval at the last (previous)
2468 * request dispatch or completion
2469 * - compute rate, if possible, for that observation interval
2470 * - start a new observation interval with this dispatch
2471 */
2472 if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
2473 bfqd->rq_in_driver == 0)
2474 goto update_rate_and_reset;
2475
2476 /* Update sampling information */
2477 bfqd->peak_rate_samples++;
2478
2479 if ((bfqd->rq_in_driver > 0 ||
2480 now_ns - bfqd->last_completion < BFQ_MIN_TT)
2481 && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
2482 bfqd->sequential_samples++;
2483
2484 bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
2485
2486 /* Reset max observed rq size every 32 dispatches */
2487 if (likely(bfqd->peak_rate_samples % 32))
2488 bfqd->last_rq_max_size =
2489 max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
2490 else
2491 bfqd->last_rq_max_size = blk_rq_sectors(rq);
2492
2493 bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
2494
2495 /* Target observation interval not yet reached, go on sampling */
2496 if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
2497 goto update_last_values;
2498
2499update_rate_and_reset:
2500 bfq_update_rate_reset(bfqd, rq);
2501update_last_values:
2502 bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2503 bfqd->last_dispatch = now_ns;
2504}
2505
aee69d78
PV
2506/*
2507 * Remove request from internal lists.
2508 */
2509static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
2510{
2511 struct bfq_queue *bfqq = RQ_BFQQ(rq);
2512
2513 /*
2514 * For consistency, the next instruction should have been
2515 * executed after removing the request from the queue and
2516 * dispatching it. We execute instead this instruction before
2517 * bfq_remove_request() (and hence introduce a temporary
2518 * inconsistency), for efficiency. In fact, should this
2519 * dispatch occur for a non in-service bfqq, this anticipated
2520 * increment prevents two counters related to bfqq->dispatched
2521 * from risking to be, first, uselessly decremented, and then
2522 * incremented again when the (new) value of bfqq->dispatched
2523 * happens to be taken into account.
2524 */
2525 bfqq->dispatched++;
ab0e43e9 2526 bfq_update_peak_rate(q->elevator->elevator_data, rq);
aee69d78
PV
2527
2528 bfq_remove_request(q, rq);
2529}
2530
2531static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2532{
36eca894
AA
2533 /*
2534 * If this bfqq is shared between multiple processes, check
2535 * to make sure that those processes are still issuing I/Os
2536 * within the mean seek distance. If not, it may be time to
2537 * break the queues apart again.
2538 */
2539 if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
2540 bfq_mark_bfqq_split_coop(bfqq);
2541
44e44a1b
PV
2542 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2543 if (bfqq->dispatched == 0)
2544 /*
2545 * Overloading budget_timeout field to store
2546 * the time at which the queue remains with no
2547 * backlog and no outstanding request; used by
2548 * the weight-raising mechanism.
2549 */
2550 bfqq->budget_timeout = jiffies;
2551
e21b7a0b 2552 bfq_del_bfqq_busy(bfqd, bfqq, true);
36eca894 2553 } else {
e21b7a0b 2554 bfq_requeue_bfqq(bfqd, bfqq);
36eca894
AA
2555 /*
2556 * Resort priority tree of potential close cooperators.
2557 */
2558 bfq_pos_tree_add_move(bfqd, bfqq);
2559 }
e21b7a0b
AA
2560
2561 /*
2562 * All in-service entities must have been properly deactivated
2563 * or requeued before executing the next function, which
2564 * resets all in-service entites as no more in service.
2565 */
2566 __bfq_bfqd_reset_in_service(bfqd);
aee69d78
PV
2567}
2568
2569/**
2570 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
2571 * @bfqd: device data.
2572 * @bfqq: queue to update.
2573 * @reason: reason for expiration.
2574 *
2575 * Handle the feedback on @bfqq budget at queue expiration.
2576 * See the body for detailed comments.
2577 */
2578static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
2579 struct bfq_queue *bfqq,
2580 enum bfqq_expiration reason)
2581{
2582 struct request *next_rq;
2583 int budget, min_budget;
2584
aee69d78
PV
2585 min_budget = bfq_min_budget(bfqd);
2586
44e44a1b
PV
2587 if (bfqq->wr_coeff == 1)
2588 budget = bfqq->max_budget;
2589 else /*
2590 * Use a constant, low budget for weight-raised queues,
2591 * to help achieve a low latency. Keep it slightly higher
2592 * than the minimum possible budget, to cause a little
2593 * bit fewer expirations.
2594 */
2595 budget = 2 * min_budget;
2596
aee69d78
PV
2597 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
2598 bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
2599 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
2600 budget, bfq_min_budget(bfqd));
2601 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
2602 bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
2603
44e44a1b 2604 if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
aee69d78
PV
2605 switch (reason) {
2606 /*
2607 * Caveat: in all the following cases we trade latency
2608 * for throughput.
2609 */
2610 case BFQQE_TOO_IDLE:
54b60456
PV
2611 /*
2612 * This is the only case where we may reduce
2613 * the budget: if there is no request of the
2614 * process still waiting for completion, then
2615 * we assume (tentatively) that the timer has
2616 * expired because the batch of requests of
2617 * the process could have been served with a
2618 * smaller budget. Hence, betting that
2619 * process will behave in the same way when it
2620 * becomes backlogged again, we reduce its
2621 * next budget. As long as we guess right,
2622 * this budget cut reduces the latency
2623 * experienced by the process.
2624 *
2625 * However, if there are still outstanding
2626 * requests, then the process may have not yet
2627 * issued its next request just because it is
2628 * still waiting for the completion of some of
2629 * the still outstanding ones. So in this
2630 * subcase we do not reduce its budget, on the
2631 * contrary we increase it to possibly boost
2632 * the throughput, as discussed in the
2633 * comments to the BUDGET_TIMEOUT case.
2634 */
2635 if (bfqq->dispatched > 0) /* still outstanding reqs */
2636 budget = min(budget * 2, bfqd->bfq_max_budget);
2637 else {
2638 if (budget > 5 * min_budget)
2639 budget -= 4 * min_budget;
2640 else
2641 budget = min_budget;
2642 }
aee69d78
PV
2643 break;
2644 case BFQQE_BUDGET_TIMEOUT:
54b60456
PV
2645 /*
2646 * We double the budget here because it gives
2647 * the chance to boost the throughput if this
2648 * is not a seeky process (and has bumped into
2649 * this timeout because of, e.g., ZBR).
2650 */
2651 budget = min(budget * 2, bfqd->bfq_max_budget);
aee69d78
PV
2652 break;
2653 case BFQQE_BUDGET_EXHAUSTED:
2654 /*
2655 * The process still has backlog, and did not
2656 * let either the budget timeout or the disk
2657 * idling timeout expire. Hence it is not
2658 * seeky, has a short thinktime and may be
2659 * happy with a higher budget too. So
2660 * definitely increase the budget of this good
2661 * candidate to boost the disk throughput.
2662 */
54b60456 2663 budget = min(budget * 4, bfqd->bfq_max_budget);
aee69d78
PV
2664 break;
2665 case BFQQE_NO_MORE_REQUESTS:
2666 /*
2667 * For queues that expire for this reason, it
2668 * is particularly important to keep the
2669 * budget close to the actual service they
2670 * need. Doing so reduces the timestamp
2671 * misalignment problem described in the
2672 * comments in the body of
2673 * __bfq_activate_entity. In fact, suppose
2674 * that a queue systematically expires for
2675 * BFQQE_NO_MORE_REQUESTS and presents a
2676 * new request in time to enjoy timestamp
2677 * back-shifting. The larger the budget of the
2678 * queue is with respect to the service the
2679 * queue actually requests in each service
2680 * slot, the more times the queue can be
2681 * reactivated with the same virtual finish
2682 * time. It follows that, even if this finish
2683 * time is pushed to the system virtual time
2684 * to reduce the consequent timestamp
2685 * misalignment, the queue unjustly enjoys for
2686 * many re-activations a lower finish time
2687 * than all newly activated queues.
2688 *
2689 * The service needed by bfqq is measured
2690 * quite precisely by bfqq->entity.service.
2691 * Since bfqq does not enjoy device idling,
2692 * bfqq->entity.service is equal to the number
2693 * of sectors that the process associated with
2694 * bfqq requested to read/write before waiting
2695 * for request completions, or blocking for
2696 * other reasons.
2697 */
2698 budget = max_t(int, bfqq->entity.service, min_budget);
2699 break;
2700 default:
2701 return;
2702 }
44e44a1b 2703 } else if (!bfq_bfqq_sync(bfqq)) {
aee69d78
PV
2704 /*
2705 * Async queues get always the maximum possible
2706 * budget, as for them we do not care about latency
2707 * (in addition, their ability to dispatch is limited
2708 * by the charging factor).
2709 */
2710 budget = bfqd->bfq_max_budget;
2711 }
2712
2713 bfqq->max_budget = budget;
2714
2715 if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
2716 !bfqd->bfq_user_max_budget)
2717 bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
2718
2719 /*
2720 * If there is still backlog, then assign a new budget, making
2721 * sure that it is large enough for the next request. Since
2722 * the finish time of bfqq must be kept in sync with the
2723 * budget, be sure to call __bfq_bfqq_expire() *after* this
2724 * update.
2725 *
2726 * If there is no backlog, then no need to update the budget;
2727 * it will be updated on the arrival of a new request.
2728 */
2729 next_rq = bfqq->next_rq;
2730 if (next_rq)
2731 bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
2732 bfq_serv_to_charge(next_rq, bfqq));
2733
2734 bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
2735 next_rq ? blk_rq_sectors(next_rq) : 0,
2736 bfqq->entity.budget);
2737}
2738
aee69d78 2739/*
ab0e43e9
PV
2740 * Return true if the process associated with bfqq is "slow". The slow
2741 * flag is used, in addition to the budget timeout, to reduce the
2742 * amount of service provided to seeky processes, and thus reduce
2743 * their chances to lower the throughput. More details in the comments
2744 * on the function bfq_bfqq_expire().
2745 *
2746 * An important observation is in order: as discussed in the comments
2747 * on the function bfq_update_peak_rate(), with devices with internal
2748 * queues, it is hard if ever possible to know when and for how long
2749 * an I/O request is processed by the device (apart from the trivial
2750 * I/O pattern where a new request is dispatched only after the
2751 * previous one has been completed). This makes it hard to evaluate
2752 * the real rate at which the I/O requests of each bfq_queue are
2753 * served. In fact, for an I/O scheduler like BFQ, serving a
2754 * bfq_queue means just dispatching its requests during its service
2755 * slot (i.e., until the budget of the queue is exhausted, or the
2756 * queue remains idle, or, finally, a timeout fires). But, during the
2757 * service slot of a bfq_queue, around 100 ms at most, the device may
2758 * be even still processing requests of bfq_queues served in previous
2759 * service slots. On the opposite end, the requests of the in-service
2760 * bfq_queue may be completed after the service slot of the queue
2761 * finishes.
2762 *
2763 * Anyway, unless more sophisticated solutions are used
2764 * (where possible), the sum of the sizes of the requests dispatched
2765 * during the service slot of a bfq_queue is probably the only
2766 * approximation available for the service received by the bfq_queue
2767 * during its service slot. And this sum is the quantity used in this
2768 * function to evaluate the I/O speed of a process.
aee69d78 2769 */
ab0e43e9
PV
2770static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2771 bool compensate, enum bfqq_expiration reason,
2772 unsigned long *delta_ms)
aee69d78 2773{
ab0e43e9
PV
2774 ktime_t delta_ktime;
2775 u32 delta_usecs;
2776 bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
aee69d78 2777
ab0e43e9 2778 if (!bfq_bfqq_sync(bfqq))
aee69d78
PV
2779 return false;
2780
2781 if (compensate)
ab0e43e9 2782 delta_ktime = bfqd->last_idling_start;
aee69d78 2783 else
ab0e43e9
PV
2784 delta_ktime = ktime_get();
2785 delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
2786 delta_usecs = ktime_to_us(delta_ktime);
aee69d78
PV
2787
2788 /* don't use too short time intervals */
ab0e43e9
PV
2789 if (delta_usecs < 1000) {
2790 if (blk_queue_nonrot(bfqd->queue))
2791 /*
2792 * give same worst-case guarantees as idling
2793 * for seeky
2794 */
2795 *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
2796 else /* charge at least one seek */
2797 *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
2798
2799 return slow;
2800 }
aee69d78 2801
ab0e43e9 2802 *delta_ms = delta_usecs / USEC_PER_MSEC;
aee69d78
PV
2803
2804 /*
ab0e43e9
PV
2805 * Use only long (> 20ms) intervals to filter out excessive
2806 * spikes in service rate estimation.
aee69d78 2807 */
ab0e43e9
PV
2808 if (delta_usecs > 20000) {
2809 /*
2810 * Caveat for rotational devices: processes doing I/O
2811 * in the slower disk zones tend to be slow(er) even
2812 * if not seeky. In this respect, the estimated peak
2813 * rate is likely to be an average over the disk
2814 * surface. Accordingly, to not be too harsh with
2815 * unlucky processes, a process is deemed slow only if
2816 * its rate has been lower than half of the estimated
2817 * peak rate.
2818 */
2819 slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
aee69d78
PV
2820 }
2821
ab0e43e9 2822 bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
aee69d78 2823
ab0e43e9 2824 return slow;
aee69d78
PV
2825}
2826
77b7dcea
PV
2827/*
2828 * To be deemed as soft real-time, an application must meet two
2829 * requirements. First, the application must not require an average
2830 * bandwidth higher than the approximate bandwidth required to playback or
2831 * record a compressed high-definition video.
2832 * The next function is invoked on the completion of the last request of a
2833 * batch, to compute the next-start time instant, soft_rt_next_start, such
2834 * that, if the next request of the application does not arrive before
2835 * soft_rt_next_start, then the above requirement on the bandwidth is met.
2836 *
2837 * The second requirement is that the request pattern of the application is
2838 * isochronous, i.e., that, after issuing a request or a batch of requests,
2839 * the application stops issuing new requests until all its pending requests
2840 * have been completed. After that, the application may issue a new batch,
2841 * and so on.
2842 * For this reason the next function is invoked to compute
2843 * soft_rt_next_start only for applications that meet this requirement,
2844 * whereas soft_rt_next_start is set to infinity for applications that do
2845 * not.
2846 *
2847 * Unfortunately, even a greedy application may happen to behave in an
2848 * isochronous way if the CPU load is high. In fact, the application may
2849 * stop issuing requests while the CPUs are busy serving other processes,
2850 * then restart, then stop again for a while, and so on. In addition, if
2851 * the disk achieves a low enough throughput with the request pattern
2852 * issued by the application (e.g., because the request pattern is random
2853 * and/or the device is slow), then the application may meet the above
2854 * bandwidth requirement too. To prevent such a greedy application to be
2855 * deemed as soft real-time, a further rule is used in the computation of
2856 * soft_rt_next_start: soft_rt_next_start must be higher than the current
2857 * time plus the maximum time for which the arrival of a request is waited
2858 * for when a sync queue becomes idle, namely bfqd->bfq_slice_idle.
2859 * This filters out greedy applications, as the latter issue instead their
2860 * next request as soon as possible after the last one has been completed
2861 * (in contrast, when a batch of requests is completed, a soft real-time
2862 * application spends some time processing data).
2863 *
2864 * Unfortunately, the last filter may easily generate false positives if
2865 * only bfqd->bfq_slice_idle is used as a reference time interval and one
2866 * or both the following cases occur:
2867 * 1) HZ is so low that the duration of a jiffy is comparable to or higher
2868 * than bfqd->bfq_slice_idle. This happens, e.g., on slow devices with
2869 * HZ=100.
2870 * 2) jiffies, instead of increasing at a constant rate, may stop increasing
2871 * for a while, then suddenly 'jump' by several units to recover the lost
2872 * increments. This seems to happen, e.g., inside virtual machines.
2873 * To address this issue, we do not use as a reference time interval just
2874 * bfqd->bfq_slice_idle, but bfqd->bfq_slice_idle plus a few jiffies. In
2875 * particular we add the minimum number of jiffies for which the filter
2876 * seems to be quite precise also in embedded systems and KVM/QEMU virtual
2877 * machines.
2878 */
2879static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
2880 struct bfq_queue *bfqq)
2881{
2882 return max(bfqq->last_idle_bklogged +
2883 HZ * bfqq->service_from_backlogged /
2884 bfqd->bfq_wr_max_softrt_rate,
2885 jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
2886}
2887
2888/*
2889 * Return the farthest future time instant according to jiffies
2890 * macros.
2891 */
2892static unsigned long bfq_greatest_from_now(void)
2893{
2894 return jiffies + MAX_JIFFY_OFFSET;
2895}
2896
aee69d78
PV
2897/*
2898 * Return the farthest past time instant according to jiffies
2899 * macros.
2900 */
2901static unsigned long bfq_smallest_from_now(void)
2902{
2903 return jiffies - MAX_JIFFY_OFFSET;
2904}
2905
2906/**
2907 * bfq_bfqq_expire - expire a queue.
2908 * @bfqd: device owning the queue.
2909 * @bfqq: the queue to expire.
2910 * @compensate: if true, compensate for the time spent idling.
2911 * @reason: the reason causing the expiration.
2912 *
c074170e
PV
2913 * If the process associated with bfqq does slow I/O (e.g., because it
2914 * issues random requests), we charge bfqq with the time it has been
2915 * in service instead of the service it has received (see
2916 * bfq_bfqq_charge_time for details on how this goal is achieved). As
2917 * a consequence, bfqq will typically get higher timestamps upon
2918 * reactivation, and hence it will be rescheduled as if it had
2919 * received more service than what it has actually received. In the
2920 * end, bfqq receives less service in proportion to how slowly its
2921 * associated process consumes its budgets (and hence how seriously it
2922 * tends to lower the throughput). In addition, this time-charging
2923 * strategy guarantees time fairness among slow processes. In
2924 * contrast, if the process associated with bfqq is not slow, we
2925 * charge bfqq exactly with the service it has received.
aee69d78 2926 *
c074170e
PV
2927 * Charging time to the first type of queues and the exact service to
2928 * the other has the effect of using the WF2Q+ policy to schedule the
2929 * former on a timeslice basis, without violating service domain
2930 * guarantees among the latter.
aee69d78 2931 */
ea25da48
PV
2932void bfq_bfqq_expire(struct bfq_data *bfqd,
2933 struct bfq_queue *bfqq,
2934 bool compensate,
2935 enum bfqq_expiration reason)
aee69d78
PV
2936{
2937 bool slow;
ab0e43e9
PV
2938 unsigned long delta = 0;
2939 struct bfq_entity *entity = &bfqq->entity;
aee69d78
PV
2940 int ref;
2941
2942 /*
ab0e43e9 2943 * Check whether the process is slow (see bfq_bfqq_is_slow).
aee69d78 2944 */
ab0e43e9 2945 slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
aee69d78 2946
77b7dcea
PV
2947 /*
2948 * Increase service_from_backlogged before next statement,
2949 * because the possible next invocation of
2950 * bfq_bfqq_charge_time would likely inflate
2951 * entity->service. In contrast, service_from_backlogged must
2952 * contain real service, to enable the soft real-time
2953 * heuristic to correctly compute the bandwidth consumed by
2954 * bfqq.
2955 */
2956 bfqq->service_from_backlogged += entity->service;
2957
aee69d78 2958 /*
c074170e
PV
2959 * As above explained, charge slow (typically seeky) and
2960 * timed-out queues with the time and not the service
2961 * received, to favor sequential workloads.
2962 *
2963 * Processes doing I/O in the slower disk zones will tend to
2964 * be slow(er) even if not seeky. Therefore, since the
2965 * estimated peak rate is actually an average over the disk
2966 * surface, these processes may timeout just for bad luck. To
2967 * avoid punishing them, do not charge time to processes that
2968 * succeeded in consuming at least 2/3 of their budget. This
2969 * allows BFQ to preserve enough elasticity to still perform
2970 * bandwidth, and not time, distribution with little unlucky
2971 * or quasi-sequential processes.
aee69d78 2972 */
44e44a1b
PV
2973 if (bfqq->wr_coeff == 1 &&
2974 (slow ||
2975 (reason == BFQQE_BUDGET_TIMEOUT &&
2976 bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
c074170e 2977 bfq_bfqq_charge_time(bfqd, bfqq, delta);
aee69d78
PV
2978
2979 if (reason == BFQQE_TOO_IDLE &&
ab0e43e9 2980 entity->service <= 2 * entity->budget / 10)
aee69d78
PV
2981 bfq_clear_bfqq_IO_bound(bfqq);
2982
44e44a1b
PV
2983 if (bfqd->low_latency && bfqq->wr_coeff == 1)
2984 bfqq->last_wr_start_finish = jiffies;
2985
77b7dcea
PV
2986 if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
2987 RB_EMPTY_ROOT(&bfqq->sort_list)) {
2988 /*
2989 * If we get here, and there are no outstanding
2990 * requests, then the request pattern is isochronous
2991 * (see the comments on the function
2992 * bfq_bfqq_softrt_next_start()). Thus we can compute
2993 * soft_rt_next_start. If, instead, the queue still
2994 * has outstanding requests, then we have to wait for
2995 * the completion of all the outstanding requests to
2996 * discover whether the request pattern is actually
2997 * isochronous.
2998 */
2999 if (bfqq->dispatched == 0)
3000 bfqq->soft_rt_next_start =
3001 bfq_bfqq_softrt_next_start(bfqd, bfqq);
3002 else {
3003 /*
3004 * The application is still waiting for the
3005 * completion of one or more requests:
3006 * prevent it from possibly being incorrectly
3007 * deemed as soft real-time by setting its
3008 * soft_rt_next_start to infinity. In fact,
3009 * without this assignment, the application
3010 * would be incorrectly deemed as soft
3011 * real-time if:
3012 * 1) it issued a new request before the
3013 * completion of all its in-flight
3014 * requests, and
3015 * 2) at that time, its soft_rt_next_start
3016 * happened to be in the past.
3017 */
3018 bfqq->soft_rt_next_start =
3019 bfq_greatest_from_now();
3020 /*
3021 * Schedule an update of soft_rt_next_start to when
3022 * the task may be discovered to be isochronous.
3023 */
3024 bfq_mark_bfqq_softrt_update(bfqq);
3025 }
3026 }
3027
aee69d78
PV
3028 bfq_log_bfqq(bfqd, bfqq,
3029 "expire (%d, slow %d, num_disp %d, idle_win %d)", reason,
3030 slow, bfqq->dispatched, bfq_bfqq_idle_window(bfqq));
3031
3032 /*
3033 * Increase, decrease or leave budget unchanged according to
3034 * reason.
3035 */
3036 __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
3037 ref = bfqq->ref;
3038 __bfq_bfqq_expire(bfqd, bfqq);
3039
3040 /* mark bfqq as waiting a request only if a bic still points to it */
3041 if (ref > 1 && !bfq_bfqq_busy(bfqq) &&
3042 reason != BFQQE_BUDGET_TIMEOUT &&
3043 reason != BFQQE_BUDGET_EXHAUSTED)
3044 bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
3045}
3046
3047/*
3048 * Budget timeout is not implemented through a dedicated timer, but
3049 * just checked on request arrivals and completions, as well as on
3050 * idle timer expirations.
3051 */
3052static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
3053{
44e44a1b 3054 return time_is_before_eq_jiffies(bfqq->budget_timeout);
aee69d78
PV
3055}
3056
3057/*
3058 * If we expire a queue that is actively waiting (i.e., with the
3059 * device idled) for the arrival of a new request, then we may incur
3060 * the timestamp misalignment problem described in the body of the
3061 * function __bfq_activate_entity. Hence we return true only if this
3062 * condition does not hold, or if the queue is slow enough to deserve
3063 * only to be kicked off for preserving a high throughput.
3064 */
3065static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
3066{
3067 bfq_log_bfqq(bfqq->bfqd, bfqq,
3068 "may_budget_timeout: wait_request %d left %d timeout %d",
3069 bfq_bfqq_wait_request(bfqq),
3070 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
3071 bfq_bfqq_budget_timeout(bfqq));
3072
3073 return (!bfq_bfqq_wait_request(bfqq) ||
3074 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
3075 &&
3076 bfq_bfqq_budget_timeout(bfqq);
3077}
3078
3079/*
3080 * For a queue that becomes empty, device idling is allowed only if
44e44a1b
PV
3081 * this function returns true for the queue. As a consequence, since
3082 * device idling plays a critical role in both throughput boosting and
3083 * service guarantees, the return value of this function plays a
3084 * critical role in both these aspects as well.
3085 *
3086 * In a nutshell, this function returns true only if idling is
3087 * beneficial for throughput or, even if detrimental for throughput,
3088 * idling is however necessary to preserve service guarantees (low
3089 * latency, desired throughput distribution, ...). In particular, on
3090 * NCQ-capable devices, this function tries to return false, so as to
3091 * help keep the drives' internal queues full, whenever this helps the
3092 * device boost the throughput without causing any service-guarantee
3093 * issue.
3094 *
3095 * In more detail, the return value of this function is obtained by,
3096 * first, computing a number of boolean variables that take into
3097 * account throughput and service-guarantee issues, and, then,
3098 * combining these variables in a logical expression. Most of the
3099 * issues taken into account are not trivial. We discuss these issues
3100 * individually while introducing the variables.
aee69d78
PV
3101 */
3102static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
3103{
3104 struct bfq_data *bfqd = bfqq->bfqd;
cfd69712 3105 bool idling_boosts_thr, idling_boosts_thr_without_issues,
e1b2324d 3106 idling_needed_for_service_guarantees,
cfd69712 3107 asymmetric_scenario;
aee69d78
PV
3108
3109 if (bfqd->strict_guarantees)
3110 return true;
3111
3112 /*
44e44a1b
PV
3113 * The next variable takes into account the cases where idling
3114 * boosts the throughput.
3115 *
e01eff01
PV
3116 * The value of the variable is computed considering, first, that
3117 * idling is virtually always beneficial for the throughput if:
aee69d78 3118 * (a) the device is not NCQ-capable, or
bf2b79e7 3119 * (b) regardless of the presence of NCQ, the device is rotational
e01eff01 3120 * and the request pattern for bfqq is I/O-bound and sequential.
bf2b79e7
PV
3121 *
3122 * Secondly, and in contrast to the above item (b), idling an
3123 * NCQ-capable flash-based device would not boost the
e01eff01 3124 * throughput even with sequential I/O; rather it would lower
bf2b79e7
PV
3125 * the throughput in proportion to how fast the device
3126 * is. Accordingly, the next variable is true if any of the
3127 * above conditions (a) and (b) is true, and, in particular,
3128 * happens to be false if bfqd is an NCQ-capable flash-based
3129 * device.
aee69d78 3130 */
bf2b79e7 3131 idling_boosts_thr = !bfqd->hw_tag ||
e01eff01
PV
3132 (!blk_queue_nonrot(bfqd->queue) && bfq_bfqq_IO_bound(bfqq) &&
3133 bfq_bfqq_idle_window(bfqq));
aee69d78 3134
cfd69712
PV
3135 /*
3136 * The value of the next variable,
3137 * idling_boosts_thr_without_issues, is equal to that of
3138 * idling_boosts_thr, unless a special case holds. In this
3139 * special case, described below, idling may cause problems to
3140 * weight-raised queues.
3141 *
3142 * When the request pool is saturated (e.g., in the presence
3143 * of write hogs), if the processes associated with
3144 * non-weight-raised queues ask for requests at a lower rate,
3145 * then processes associated with weight-raised queues have a
3146 * higher probability to get a request from the pool
3147 * immediately (or at least soon) when they need one. Thus
3148 * they have a higher probability to actually get a fraction
3149 * of the device throughput proportional to their high
3150 * weight. This is especially true with NCQ-capable drives,
3151 * which enqueue several requests in advance, and further
3152 * reorder internally-queued requests.
3153 *
3154 * For this reason, we force to false the value of
3155 * idling_boosts_thr_without_issues if there are weight-raised
3156 * busy queues. In this case, and if bfqq is not weight-raised,
3157 * this guarantees that the device is not idled for bfqq (if,
3158 * instead, bfqq is weight-raised, then idling will be
3159 * guaranteed by another variable, see below). Combined with
3160 * the timestamping rules of BFQ (see [1] for details), this
3161 * behavior causes bfqq, and hence any sync non-weight-raised
3162 * queue, to get a lower number of requests served, and thus
3163 * to ask for a lower number of requests from the request
3164 * pool, before the busy weight-raised queues get served
3165 * again. This often mitigates starvation problems in the
3166 * presence of heavy write workloads and NCQ, thereby
3167 * guaranteeing a higher application and system responsiveness
3168 * in these hostile scenarios.
3169 */
3170 idling_boosts_thr_without_issues = idling_boosts_thr &&
3171 bfqd->wr_busy_queues == 0;
3172
aee69d78 3173 /*
bf2b79e7
PV
3174 * There is then a case where idling must be performed not
3175 * for throughput concerns, but to preserve service
3176 * guarantees.
3177 *
3178 * To introduce this case, we can note that allowing the drive
3179 * to enqueue more than one request at a time, and hence
44e44a1b 3180 * delegating de facto final scheduling decisions to the
bf2b79e7 3181 * drive's internal scheduler, entails loss of control on the
44e44a1b 3182 * actual request service order. In particular, the critical
bf2b79e7 3183 * situation is when requests from different processes happen
44e44a1b
PV
3184 * to be present, at the same time, in the internal queue(s)
3185 * of the drive. In such a situation, the drive, by deciding
3186 * the service order of the internally-queued requests, does
3187 * determine also the actual throughput distribution among
3188 * these processes. But the drive typically has no notion or
3189 * concern about per-process throughput distribution, and
3190 * makes its decisions only on a per-request basis. Therefore,
3191 * the service distribution enforced by the drive's internal
3192 * scheduler is likely to coincide with the desired
3193 * device-throughput distribution only in a completely
bf2b79e7
PV
3194 * symmetric scenario where:
3195 * (i) each of these processes must get the same throughput as
3196 * the others;
3197 * (ii) all these processes have the same I/O pattern
3198 (either sequential or random).
3199 * In fact, in such a scenario, the drive will tend to treat
3200 * the requests of each of these processes in about the same
3201 * way as the requests of the others, and thus to provide
3202 * each of these processes with about the same throughput
3203 * (which is exactly the desired throughput distribution). In
3204 * contrast, in any asymmetric scenario, device idling is
3205 * certainly needed to guarantee that bfqq receives its
3206 * assigned fraction of the device throughput (see [1] for
3207 * details).
3208 *
3209 * We address this issue by controlling, actually, only the
3210 * symmetry sub-condition (i), i.e., provided that
3211 * sub-condition (i) holds, idling is not performed,
3212 * regardless of whether sub-condition (ii) holds. In other
3213 * words, only if sub-condition (i) holds, then idling is
3214 * allowed, and the device tends to be prevented from queueing
3215 * many requests, possibly of several processes. The reason
3216 * for not controlling also sub-condition (ii) is that we
3217 * exploit preemption to preserve guarantees in case of
3218 * symmetric scenarios, even if (ii) does not hold, as
3219 * explained in the next two paragraphs.
3220 *
3221 * Even if a queue, say Q, is expired when it remains idle, Q
3222 * can still preempt the new in-service queue if the next
3223 * request of Q arrives soon (see the comments on
3224 * bfq_bfqq_update_budg_for_activation). If all queues and
3225 * groups have the same weight, this form of preemption,
3226 * combined with the hole-recovery heuristic described in the
3227 * comments on function bfq_bfqq_update_budg_for_activation,
3228 * are enough to preserve a correct bandwidth distribution in
3229 * the mid term, even without idling. In fact, even if not
3230 * idling allows the internal queues of the device to contain
3231 * many requests, and thus to reorder requests, we can rather
3232 * safely assume that the internal scheduler still preserves a
3233 * minimum of mid-term fairness. The motivation for using
3234 * preemption instead of idling is that, by not idling,
3235 * service guarantees are preserved without minimally
3236 * sacrificing throughput. In other words, both a high
3237 * throughput and its desired distribution are obtained.
3238 *
3239 * More precisely, this preemption-based, idleless approach
3240 * provides fairness in terms of IOPS, and not sectors per
3241 * second. This can be seen with a simple example. Suppose
3242 * that there are two queues with the same weight, but that
3243 * the first queue receives requests of 8 sectors, while the
3244 * second queue receives requests of 1024 sectors. In
3245 * addition, suppose that each of the two queues contains at
3246 * most one request at a time, which implies that each queue
3247 * always remains idle after it is served. Finally, after
3248 * remaining idle, each queue receives very quickly a new
3249 * request. It follows that the two queues are served
3250 * alternatively, preempting each other if needed. This
3251 * implies that, although both queues have the same weight,
3252 * the queue with large requests receives a service that is
3253 * 1024/8 times as high as the service received by the other
3254 * queue.
44e44a1b 3255 *
bf2b79e7
PV
3256 * On the other hand, device idling is performed, and thus
3257 * pure sector-domain guarantees are provided, for the
3258 * following queues, which are likely to need stronger
3259 * throughput guarantees: weight-raised queues, and queues
3260 * with a higher weight than other queues. When such queues
3261 * are active, sub-condition (i) is false, which triggers
3262 * device idling.
44e44a1b 3263 *
bf2b79e7
PV
3264 * According to the above considerations, the next variable is
3265 * true (only) if sub-condition (i) holds. To compute the
3266 * value of this variable, we not only use the return value of
3267 * the function bfq_symmetric_scenario(), but also check
3268 * whether bfqq is being weight-raised, because
3269 * bfq_symmetric_scenario() does not take into account also
3270 * weight-raised queues (see comments on
3271 * bfq_weights_tree_add()).
44e44a1b
PV
3272 *
3273 * As a side note, it is worth considering that the above
3274 * device-idling countermeasures may however fail in the
3275 * following unlucky scenario: if idling is (correctly)
bf2b79e7
PV
3276 * disabled in a time period during which all symmetry
3277 * sub-conditions hold, and hence the device is allowed to
44e44a1b
PV
3278 * enqueue many requests, but at some later point in time some
3279 * sub-condition stops to hold, then it may become impossible
3280 * to let requests be served in the desired order until all
3281 * the requests already queued in the device have been served.
3282 */
bf2b79e7
PV
3283 asymmetric_scenario = bfqq->wr_coeff > 1 ||
3284 !bfq_symmetric_scenario(bfqd);
44e44a1b 3285
e1b2324d
AA
3286 /*
3287 * Finally, there is a case where maximizing throughput is the
3288 * best choice even if it may cause unfairness toward
3289 * bfqq. Such a case is when bfqq became active in a burst of
3290 * queue activations. Queues that became active during a large
3291 * burst benefit only from throughput, as discussed in the
3292 * comments on bfq_handle_burst. Thus, if bfqq became active
3293 * in a burst and not idling the device maximizes throughput,
3294 * then the device must no be idled, because not idling the
3295 * device provides bfqq and all other queues in the burst with
3296 * maximum benefit. Combining this and the above case, we can
3297 * now establish when idling is actually needed to preserve
3298 * service guarantees.
3299 */
3300 idling_needed_for_service_guarantees =
3301 asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq);
3302
44e44a1b
PV
3303 /*
3304 * We have now all the components we need to compute the return
3305 * value of the function, which is true only if both the following
3306 * conditions hold:
aee69d78 3307 * 1) bfqq is sync, because idling make sense only for sync queues;
44e44a1b
PV
3308 * 2) idling either boosts the throughput (without issues), or
3309 * is necessary to preserve service guarantees.
aee69d78 3310 */
44e44a1b 3311 return bfq_bfqq_sync(bfqq) &&
e1b2324d
AA
3312 (idling_boosts_thr_without_issues ||
3313 idling_needed_for_service_guarantees);
aee69d78
PV
3314}
3315
3316/*
3317 * If the in-service queue is empty but the function bfq_bfqq_may_idle
3318 * returns true, then:
3319 * 1) the queue must remain in service and cannot be expired, and
3320 * 2) the device must be idled to wait for the possible arrival of a new
3321 * request for the queue.
3322 * See the comments on the function bfq_bfqq_may_idle for the reasons
3323 * why performing device idling is the best choice to boost the throughput
3324 * and preserve service guarantees when bfq_bfqq_may_idle itself
3325 * returns true.
3326 */
3327static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
3328{
3329 struct bfq_data *bfqd = bfqq->bfqd;
3330
3331 return RB_EMPTY_ROOT(&bfqq->sort_list) && bfqd->bfq_slice_idle != 0 &&
3332 bfq_bfqq_may_idle(bfqq);
3333}
3334
3335/*
3336 * Select a queue for service. If we have a current queue in service,
3337 * check whether to continue servicing it, or retrieve and set a new one.
3338 */
3339static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
3340{
3341 struct bfq_queue *bfqq;
3342 struct request *next_rq;
3343 enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
3344
3345 bfqq = bfqd->in_service_queue;
3346 if (!bfqq)
3347 goto new_queue;
3348
3349 bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
3350
3351 if (bfq_may_expire_for_budg_timeout(bfqq) &&
3352 !bfq_bfqq_wait_request(bfqq) &&
3353 !bfq_bfqq_must_idle(bfqq))
3354 goto expire;
3355
3356check_queue:
3357 /*
3358 * This loop is rarely executed more than once. Even when it
3359 * happens, it is much more convenient to re-execute this loop
3360 * than to return NULL and trigger a new dispatch to get a
3361 * request served.
3362 */
3363 next_rq = bfqq->next_rq;
3364 /*
3365 * If bfqq has requests queued and it has enough budget left to
3366 * serve them, keep the queue, otherwise expire it.
3367 */
3368 if (next_rq) {
3369 if (bfq_serv_to_charge(next_rq, bfqq) >
3370 bfq_bfqq_budget_left(bfqq)) {
3371 /*
3372 * Expire the queue for budget exhaustion,
3373 * which makes sure that the next budget is
3374 * enough to serve the next request, even if
3375 * it comes from the fifo expired path.
3376 */
3377 reason = BFQQE_BUDGET_EXHAUSTED;
3378 goto expire;
3379 } else {
3380 /*
3381 * The idle timer may be pending because we may
3382 * not disable disk idling even when a new request
3383 * arrives.
3384 */
3385 if (bfq_bfqq_wait_request(bfqq)) {
3386 /*
3387 * If we get here: 1) at least a new request
3388 * has arrived but we have not disabled the
3389 * timer because the request was too small,
3390 * 2) then the block layer has unplugged
3391 * the device, causing the dispatch to be
3392 * invoked.
3393 *
3394 * Since the device is unplugged, now the
3395 * requests are probably large enough to
3396 * provide a reasonable throughput.
3397 * So we disable idling.
3398 */
3399 bfq_clear_bfqq_wait_request(bfqq);
3400 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
e21b7a0b 3401 bfqg_stats_update_idle_time(bfqq_group(bfqq));
aee69d78
PV
3402 }
3403 goto keep_queue;
3404 }
3405 }
3406
3407 /*
3408 * No requests pending. However, if the in-service queue is idling
3409 * for a new request, or has requests waiting for a completion and
3410 * may idle after their completion, then keep it anyway.
3411 */
3412 if (bfq_bfqq_wait_request(bfqq) ||
3413 (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) {
3414 bfqq = NULL;
3415 goto keep_queue;
3416 }
3417
3418 reason = BFQQE_NO_MORE_REQUESTS;
3419expire:
3420 bfq_bfqq_expire(bfqd, bfqq, false, reason);
3421new_queue:
3422 bfqq = bfq_set_in_service_queue(bfqd);
3423 if (bfqq) {
3424 bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
3425 goto check_queue;
3426 }
3427keep_queue:
3428 if (bfqq)
3429 bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
3430 else
3431 bfq_log(bfqd, "select_queue: no queue returned");
3432
3433 return bfqq;
3434}
3435
44e44a1b
PV
3436static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3437{
3438 struct bfq_entity *entity = &bfqq->entity;
3439
3440 if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
3441 bfq_log_bfqq(bfqd, bfqq,
3442 "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
3443 jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
3444 jiffies_to_msecs(bfqq->wr_cur_max_time),
3445 bfqq->wr_coeff,
3446 bfqq->entity.weight, bfqq->entity.orig_weight);
3447
3448 if (entity->prio_changed)
3449 bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
3450
3451 /*
e1b2324d
AA
3452 * If the queue was activated in a burst, or too much
3453 * time has elapsed from the beginning of this
3454 * weight-raising period, then end weight raising.
44e44a1b 3455 */
e1b2324d
AA
3456 if (bfq_bfqq_in_large_burst(bfqq))
3457 bfq_bfqq_end_wr(bfqq);
3458 else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
3459 bfqq->wr_cur_max_time)) {
77b7dcea
PV
3460 if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
3461 time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
e1b2324d 3462 bfq_wr_duration(bfqd)))
77b7dcea
PV
3463 bfq_bfqq_end_wr(bfqq);
3464 else {
3465 /* switch back to interactive wr */
3466 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
3467 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
3468 bfqq->last_wr_start_finish =
3469 bfqq->wr_start_at_switch_to_srt;
3470 bfqq->entity.prio_changed = 1;
3471 }
44e44a1b
PV
3472 }
3473 }
3474 /* Update weight both if it must be raised and if it must be lowered */
3475 if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
3476 __bfq_entity_update_weight_prio(
3477 bfq_entity_service_tree(entity),
3478 entity);
3479}
3480
aee69d78
PV
3481/*
3482 * Dispatch next request from bfqq.
3483 */
3484static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
3485 struct bfq_queue *bfqq)
3486{
3487 struct request *rq = bfqq->next_rq;
3488 unsigned long service_to_charge;
3489
3490 service_to_charge = bfq_serv_to_charge(rq, bfqq);
3491
3492 bfq_bfqq_served(bfqq, service_to_charge);
3493
3494 bfq_dispatch_remove(bfqd->queue, rq);
3495
44e44a1b
PV
3496 /*
3497 * If weight raising has to terminate for bfqq, then next
3498 * function causes an immediate update of bfqq's weight,
3499 * without waiting for next activation. As a consequence, on
3500 * expiration, bfqq will be timestamped as if has never been
3501 * weight-raised during this service slot, even if it has
3502 * received part or even most of the service as a
3503 * weight-raised queue. This inflates bfqq's timestamps, which
3504 * is beneficial, as bfqq is then more willing to leave the
3505 * device immediately to possible other weight-raised queues.
3506 */
3507 bfq_update_wr_data(bfqd, bfqq);
3508
aee69d78
PV
3509 /*
3510 * Expire bfqq, pretending that its budget expired, if bfqq
3511 * belongs to CLASS_IDLE and other queues are waiting for
3512 * service.
3513 */
3514 if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq))
3515 goto expire;
3516
3517 return rq;
3518
3519expire:
3520 bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
3521 return rq;
3522}
3523
3524static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
3525{
3526 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3527
3528 /*
3529 * Avoiding lock: a race on bfqd->busy_queues should cause at
3530 * most a call to dispatch for nothing
3531 */
3532 return !list_empty_careful(&bfqd->dispatch) ||
3533 bfqd->busy_queues > 0;
3534}
3535
3536static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3537{
3538 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3539 struct request *rq = NULL;
3540 struct bfq_queue *bfqq = NULL;
3541
3542 if (!list_empty(&bfqd->dispatch)) {
3543 rq = list_first_entry(&bfqd->dispatch, struct request,
3544 queuelist);
3545 list_del_init(&rq->queuelist);
3546
3547 bfqq = RQ_BFQQ(rq);
3548
3549 if (bfqq) {
3550 /*
3551 * Increment counters here, because this
3552 * dispatch does not follow the standard
3553 * dispatch flow (where counters are
3554 * incremented)
3555 */
3556 bfqq->dispatched++;
3557
3558 goto inc_in_driver_start_rq;
3559 }
3560
3561 /*
3562 * We exploit the put_rq_private hook to decrement
3563 * rq_in_driver, but put_rq_private will not be
3564 * invoked on this request. So, to avoid unbalance,
3565 * just start this request, without incrementing
3566 * rq_in_driver. As a negative consequence,
3567 * rq_in_driver is deceptively lower than it should be
3568 * while this request is in service. This may cause
3569 * bfq_schedule_dispatch to be invoked uselessly.
3570 *
3571 * As for implementing an exact solution, the
3572 * put_request hook, if defined, is probably invoked
3573 * also on this request. So, by exploiting this hook,
3574 * we could 1) increment rq_in_driver here, and 2)
3575 * decrement it in put_request. Such a solution would
3576 * let the value of the counter be always accurate,
3577 * but it would entail using an extra interface
3578 * function. This cost seems higher than the benefit,
3579 * being the frequency of non-elevator-private
3580 * requests very low.
3581 */
3582 goto start_rq;
3583 }
3584
3585 bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
3586
3587 if (bfqd->busy_queues == 0)
3588 goto exit;
3589
3590 /*
3591 * Force device to serve one request at a time if
3592 * strict_guarantees is true. Forcing this service scheme is
3593 * currently the ONLY way to guarantee that the request
3594 * service order enforced by the scheduler is respected by a
3595 * queueing device. Otherwise the device is free even to make
3596 * some unlucky request wait for as long as the device
3597 * wishes.
3598 *
3599 * Of course, serving one request at at time may cause loss of
3600 * throughput.
3601 */
3602 if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
3603 goto exit;
3604
3605 bfqq = bfq_select_queue(bfqd);
3606 if (!bfqq)
3607 goto exit;
3608
3609 rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
3610
3611 if (rq) {
3612inc_in_driver_start_rq:
3613 bfqd->rq_in_driver++;
3614start_rq:
3615 rq->rq_flags |= RQF_STARTED;
3616 }
3617exit:
3618 return rq;
3619}
3620
3621static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3622{
3623 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3624 struct request *rq;
3625
3626 spin_lock_irq(&bfqd->lock);
36eca894 3627
aee69d78 3628 rq = __bfq_dispatch_request(hctx);
6fa3e8d3 3629 spin_unlock_irq(&bfqd->lock);
aee69d78
PV
3630
3631 return rq;
3632}
3633
3634/*
3635 * Task holds one reference to the queue, dropped when task exits. Each rq
3636 * in-flight on this queue also holds a reference, dropped when rq is freed.
3637 *
3638 * Scheduler lock must be held here. Recall not to use bfqq after calling
3639 * this function on it.
3640 */
ea25da48 3641void bfq_put_queue(struct bfq_queue *bfqq)
aee69d78 3642{
e21b7a0b
AA
3643#ifdef CONFIG_BFQ_GROUP_IOSCHED
3644 struct bfq_group *bfqg = bfqq_group(bfqq);
3645#endif
3646
aee69d78
PV
3647 if (bfqq->bfqd)
3648 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
3649 bfqq, bfqq->ref);
3650
3651 bfqq->ref--;
3652 if (bfqq->ref)
3653 return;
3654
e1b2324d
AA
3655 if (bfq_bfqq_sync(bfqq))
3656 /*
3657 * The fact that this queue is being destroyed does not
3658 * invalidate the fact that this queue may have been
3659 * activated during the current burst. As a consequence,
3660 * although the queue does not exist anymore, and hence
3661 * needs to be removed from the burst list if there,
3662 * the burst size has not to be decremented.
3663 */
3664 hlist_del_init(&bfqq->burst_list_node);
e21b7a0b 3665
aee69d78 3666 kmem_cache_free(bfq_pool, bfqq);
e21b7a0b
AA
3667#ifdef CONFIG_BFQ_GROUP_IOSCHED
3668 bfqg_put(bfqg);
3669#endif
aee69d78
PV
3670}
3671
36eca894
AA
3672static void bfq_put_cooperator(struct bfq_queue *bfqq)
3673{
3674 struct bfq_queue *__bfqq, *next;
3675
3676 /*
3677 * If this queue was scheduled to merge with another queue, be
3678 * sure to drop the reference taken on that queue (and others in
3679 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
3680 */
3681 __bfqq = bfqq->new_bfqq;
3682 while (__bfqq) {
3683 if (__bfqq == bfqq)
3684 break;
3685 next = __bfqq->new_bfqq;
3686 bfq_put_queue(__bfqq);
3687 __bfqq = next;
3688 }
3689}
3690
aee69d78
PV
3691static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3692{
3693 if (bfqq == bfqd->in_service_queue) {
3694 __bfq_bfqq_expire(bfqd, bfqq);
3695 bfq_schedule_dispatch(bfqd);
3696 }
3697
3698 bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
3699
36eca894
AA
3700 bfq_put_cooperator(bfqq);
3701
aee69d78
PV
3702 bfq_put_queue(bfqq); /* release process reference */
3703}
3704
3705static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
3706{
3707 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
3708 struct bfq_data *bfqd;
3709
3710 if (bfqq)
3711 bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
3712
3713 if (bfqq && bfqd) {
3714 unsigned long flags;
3715
3716 spin_lock_irqsave(&bfqd->lock, flags);
3717 bfq_exit_bfqq(bfqd, bfqq);
3718 bic_set_bfqq(bic, NULL, is_sync);
6fa3e8d3 3719 spin_unlock_irqrestore(&bfqd->lock, flags);
aee69d78
PV
3720 }
3721}
3722
3723static void bfq_exit_icq(struct io_cq *icq)
3724{
3725 struct bfq_io_cq *bic = icq_to_bic(icq);
3726
3727 bfq_exit_icq_bfqq(bic, true);
3728 bfq_exit_icq_bfqq(bic, false);
3729}
3730
3731/*
3732 * Update the entity prio values; note that the new values will not
3733 * be used until the next (re)activation.
3734 */
3735static void
3736bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
3737{
3738 struct task_struct *tsk = current;
3739 int ioprio_class;
3740 struct bfq_data *bfqd = bfqq->bfqd;
3741
3742 if (!bfqd)
3743 return;
3744
3745 ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
3746 switch (ioprio_class) {
3747 default:
3748 dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
3749 "bfq: bad prio class %d\n", ioprio_class);
3750 case IOPRIO_CLASS_NONE:
3751 /*
3752 * No prio set, inherit CPU scheduling settings.
3753 */
3754 bfqq->new_ioprio = task_nice_ioprio(tsk);
3755 bfqq->new_ioprio_class = task_nice_ioclass(tsk);
3756 break;
3757 case IOPRIO_CLASS_RT:
3758 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
3759 bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
3760 break;
3761 case IOPRIO_CLASS_BE:
3762 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
3763 bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
3764 break;
3765 case IOPRIO_CLASS_IDLE:
3766 bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
3767 bfqq->new_ioprio = 7;
3768 bfq_clear_bfqq_idle_window(bfqq);
3769 break;
3770 }
3771
3772 if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
3773 pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
3774 bfqq->new_ioprio);
3775 bfqq->new_ioprio = IOPRIO_BE_NR;
3776 }
3777
3778 bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
3779 bfqq->entity.prio_changed = 1;
3780}
3781
ea25da48
PV
3782static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
3783 struct bio *bio, bool is_sync,
3784 struct bfq_io_cq *bic);
3785
aee69d78
PV
3786static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
3787{
3788 struct bfq_data *bfqd = bic_to_bfqd(bic);
3789 struct bfq_queue *bfqq;
3790 int ioprio = bic->icq.ioc->ioprio;
3791
3792 /*
3793 * This condition may trigger on a newly created bic, be sure to
3794 * drop the lock before returning.
3795 */
3796 if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
3797 return;
3798
3799 bic->ioprio = ioprio;
3800
3801 bfqq = bic_to_bfqq(bic, false);
3802 if (bfqq) {
3803 /* release process reference on this queue */
3804 bfq_put_queue(bfqq);
3805 bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
3806 bic_set_bfqq(bic, bfqq, false);
3807 }
3808
3809 bfqq = bic_to_bfqq(bic, true);
3810 if (bfqq)
3811 bfq_set_next_ioprio_data(bfqq, bic);
3812}
3813
3814static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3815 struct bfq_io_cq *bic, pid_t pid, int is_sync)
3816{
3817 RB_CLEAR_NODE(&bfqq->entity.rb_node);
3818 INIT_LIST_HEAD(&bfqq->fifo);
e1b2324d 3819 INIT_HLIST_NODE(&bfqq->burst_list_node);
aee69d78
PV
3820
3821 bfqq->ref = 0;
3822 bfqq->bfqd = bfqd;
3823
3824 if (bic)
3825 bfq_set_next_ioprio_data(bfqq, bic);
3826
3827 if (is_sync) {
3828 if (!bfq_class_idle(bfqq))
3829 bfq_mark_bfqq_idle_window(bfqq);
3830 bfq_mark_bfqq_sync(bfqq);
e1b2324d 3831 bfq_mark_bfqq_just_created(bfqq);
aee69d78
PV
3832 } else
3833 bfq_clear_bfqq_sync(bfqq);
3834
3835 /* set end request to minus infinity from now */
3836 bfqq->ttime.last_end_request = ktime_get_ns() + 1;
3837
3838 bfq_mark_bfqq_IO_bound(bfqq);
3839
3840 bfqq->pid = pid;
3841
3842 /* Tentative initial value to trade off between thr and lat */
54b60456 3843 bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
aee69d78 3844 bfqq->budget_timeout = bfq_smallest_from_now();
aee69d78 3845
44e44a1b 3846 bfqq->wr_coeff = 1;
36eca894 3847 bfqq->last_wr_start_finish = jiffies;
77b7dcea 3848 bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
36eca894 3849 bfqq->split_time = bfq_smallest_from_now();
77b7dcea
PV
3850
3851 /*
3852 * Set to the value for which bfqq will not be deemed as
3853 * soft rt when it becomes backlogged.
3854 */
3855 bfqq->soft_rt_next_start = bfq_greatest_from_now();
44e44a1b 3856
aee69d78
PV
3857 /* first request is almost certainly seeky */
3858 bfqq->seek_history = 1;
3859}
3860
3861static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
e21b7a0b 3862 struct bfq_group *bfqg,
aee69d78
PV
3863 int ioprio_class, int ioprio)
3864{
3865 switch (ioprio_class) {
3866 case IOPRIO_CLASS_RT:
e21b7a0b 3867 return &bfqg->async_bfqq[0][ioprio];
aee69d78
PV
3868 case IOPRIO_CLASS_NONE:
3869 ioprio = IOPRIO_NORM;
3870 /* fall through */
3871 case IOPRIO_CLASS_BE:
e21b7a0b 3872 return &bfqg->async_bfqq[1][ioprio];
aee69d78 3873 case IOPRIO_CLASS_IDLE:
e21b7a0b 3874 return &bfqg->async_idle_bfqq;
aee69d78
PV
3875 default:
3876 return NULL;
3877 }
3878}
3879
3880static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
3881 struct bio *bio, bool is_sync,
3882 struct bfq_io_cq *bic)
3883{
3884 const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
3885 const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
3886 struct bfq_queue **async_bfqq = NULL;
3887 struct bfq_queue *bfqq;
e21b7a0b 3888 struct bfq_group *bfqg;
aee69d78
PV
3889
3890 rcu_read_lock();
3891
e21b7a0b
AA
3892 bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
3893 if (!bfqg) {
3894 bfqq = &bfqd->oom_bfqq;
3895 goto out;
3896 }
3897
aee69d78 3898 if (!is_sync) {
e21b7a0b 3899 async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
aee69d78
PV
3900 ioprio);
3901 bfqq = *async_bfqq;
3902 if (bfqq)
3903 goto out;
3904 }
3905
3906 bfqq = kmem_cache_alloc_node(bfq_pool,
3907 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
3908 bfqd->queue->node);
3909
3910 if (bfqq) {
3911 bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
3912 is_sync);
e21b7a0b 3913 bfq_init_entity(&bfqq->entity, bfqg);
aee69d78
PV
3914 bfq_log_bfqq(bfqd, bfqq, "allocated");
3915 } else {
3916 bfqq = &bfqd->oom_bfqq;
3917 bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
3918 goto out;
3919 }
3920
3921 /*
3922 * Pin the queue now that it's allocated, scheduler exit will
3923 * prune it.
3924 */
3925 if (async_bfqq) {
e21b7a0b
AA
3926 bfqq->ref++; /*
3927 * Extra group reference, w.r.t. sync
3928 * queue. This extra reference is removed
3929 * only if bfqq->bfqg disappears, to
3930 * guarantee that this queue is not freed
3931 * until its group goes away.
3932 */
3933 bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
aee69d78
PV
3934 bfqq, bfqq->ref);
3935 *async_bfqq = bfqq;
3936 }
3937
3938out:
3939 bfqq->ref++; /* get a process reference to this queue */
3940 bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
3941 rcu_read_unlock();
3942 return bfqq;
3943}
3944
3945static void bfq_update_io_thinktime(struct bfq_data *bfqd,
3946 struct bfq_queue *bfqq)
3947{
3948 struct bfq_ttime *ttime = &bfqq->ttime;
3949 u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
3950
3951 elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
3952
3953 ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
3954 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
3955 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
3956 ttime->ttime_samples);
3957}
3958
3959static void
3960bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3961 struct request *rq)
3962{
aee69d78 3963 bfqq->seek_history <<= 1;
ab0e43e9
PV
3964 bfqq->seek_history |=
3965 get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
aee69d78
PV
3966 (!blk_queue_nonrot(bfqd->queue) ||
3967 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
3968}
3969
3970/*
3971 * Disable idle window if the process thinks too long or seeks so much that
3972 * it doesn't matter.
3973 */
3974static void bfq_update_idle_window(struct bfq_data *bfqd,
3975 struct bfq_queue *bfqq,
3976 struct bfq_io_cq *bic)
3977{
3978 int enable_idle;
3979
3980 /* Don't idle for async or idle io prio class. */
3981 if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq))
3982 return;
3983
36eca894
AA
3984 /* Idle window just restored, statistics are meaningless. */
3985 if (time_is_after_eq_jiffies(bfqq->split_time +
3986 bfqd->bfq_wr_min_idle_time))
3987 return;
3988
aee69d78
PV
3989 enable_idle = bfq_bfqq_idle_window(bfqq);
3990
3991 if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
3992 bfqd->bfq_slice_idle == 0 ||
bcd56426
PV
3993 (bfqd->hw_tag && BFQQ_SEEKY(bfqq) &&
3994 bfqq->wr_coeff == 1))
aee69d78
PV
3995 enable_idle = 0;
3996 else if (bfq_sample_valid(bfqq->ttime.ttime_samples)) {
44e44a1b
PV
3997 if (bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle &&
3998 bfqq->wr_coeff == 1)
aee69d78
PV
3999 enable_idle = 0;
4000 else
4001 enable_idle = 1;
4002 }
4003 bfq_log_bfqq(bfqd, bfqq, "update_idle_window: enable_idle %d",
4004 enable_idle);
4005
4006 if (enable_idle)
4007 bfq_mark_bfqq_idle_window(bfqq);
4008 else
4009 bfq_clear_bfqq_idle_window(bfqq);
4010}
4011
4012/*
4013 * Called when a new fs request (rq) is added to bfqq. Check if there's
4014 * something we should do about it.
4015 */
4016static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4017 struct request *rq)
4018{
4019 struct bfq_io_cq *bic = RQ_BIC(rq);
4020
4021 if (rq->cmd_flags & REQ_META)
4022 bfqq->meta_pending++;
4023
4024 bfq_update_io_thinktime(bfqd, bfqq);
4025 bfq_update_io_seektime(bfqd, bfqq, rq);
4026 if (bfqq->entity.service > bfq_max_budget(bfqd) / 8 ||
4027 !BFQQ_SEEKY(bfqq))
4028 bfq_update_idle_window(bfqd, bfqq, bic);
4029
4030 bfq_log_bfqq(bfqd, bfqq,
4031 "rq_enqueued: idle_window=%d (seeky %d)",
4032 bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq));
4033
4034 bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4035
4036 if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
4037 bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
4038 blk_rq_sectors(rq) < 32;
4039 bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
4040
4041 /*
4042 * There is just this request queued: if the request
4043 * is small and the queue is not to be expired, then
4044 * just exit.
4045 *
4046 * In this way, if the device is being idled to wait
4047 * for a new request from the in-service queue, we
4048 * avoid unplugging the device and committing the
4049 * device to serve just a small request. On the
4050 * contrary, we wait for the block layer to decide
4051 * when to unplug the device: hopefully, new requests
4052 * will be merged to this one quickly, then the device
4053 * will be unplugged and larger requests will be
4054 * dispatched.
4055 */
4056 if (small_req && !budget_timeout)
4057 return;
4058
4059 /*
4060 * A large enough request arrived, or the queue is to
4061 * be expired: in both cases disk idling is to be
4062 * stopped, so clear wait_request flag and reset
4063 * timer.
4064 */
4065 bfq_clear_bfqq_wait_request(bfqq);
4066 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
e21b7a0b 4067 bfqg_stats_update_idle_time(bfqq_group(bfqq));
aee69d78
PV
4068
4069 /*
4070 * The queue is not empty, because a new request just
4071 * arrived. Hence we can safely expire the queue, in
4072 * case of budget timeout, without risking that the
4073 * timestamps of the queue are not updated correctly.
4074 * See [1] for more details.
4075 */
4076 if (budget_timeout)
4077 bfq_bfqq_expire(bfqd, bfqq, false,
4078 BFQQE_BUDGET_TIMEOUT);
4079 }
4080}
4081
4082static void __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
4083{
36eca894
AA
4084 struct bfq_queue *bfqq = RQ_BFQQ(rq),
4085 *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
4086
4087 if (new_bfqq) {
4088 if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
4089 new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
4090 /*
4091 * Release the request's reference to the old bfqq
4092 * and make sure one is taken to the shared queue.
4093 */
4094 new_bfqq->allocated++;
4095 bfqq->allocated--;
4096 new_bfqq->ref++;
e1b2324d 4097 bfq_clear_bfqq_just_created(bfqq);
36eca894
AA
4098 /*
4099 * If the bic associated with the process
4100 * issuing this request still points to bfqq
4101 * (and thus has not been already redirected
4102 * to new_bfqq or even some other bfq_queue),
4103 * then complete the merge and redirect it to
4104 * new_bfqq.
4105 */
4106 if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
4107 bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
4108 bfqq, new_bfqq);
4109 /*
4110 * rq is about to be enqueued into new_bfqq,
4111 * release rq reference on bfqq
4112 */
4113 bfq_put_queue(bfqq);
4114 rq->elv.priv[1] = new_bfqq;
4115 bfqq = new_bfqq;
4116 }
aee69d78
PV
4117
4118 bfq_add_request(rq);
4119
4120 rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
4121 list_add_tail(&rq->queuelist, &bfqq->fifo);
4122
4123 bfq_rq_enqueued(bfqd, bfqq, rq);
4124}
4125
4126static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
4127 bool at_head)
4128{
4129 struct request_queue *q = hctx->queue;
4130 struct bfq_data *bfqd = q->elevator->elevator_data;
4131
4132 spin_lock_irq(&bfqd->lock);
4133 if (blk_mq_sched_try_insert_merge(q, rq)) {
4134 spin_unlock_irq(&bfqd->lock);
4135 return;
4136 }
4137
4138 spin_unlock_irq(&bfqd->lock);
4139
4140 blk_mq_sched_request_inserted(rq);
4141
4142 spin_lock_irq(&bfqd->lock);
4143 if (at_head || blk_rq_is_passthrough(rq)) {
4144 if (at_head)
4145 list_add(&rq->queuelist, &bfqd->dispatch);
4146 else
4147 list_add_tail(&rq->queuelist, &bfqd->dispatch);
4148 } else {
4149 __bfq_insert_request(bfqd, rq);
4150
4151 if (rq_mergeable(rq)) {
4152 elv_rqhash_add(q, rq);
4153 if (!q->last_merge)
4154 q->last_merge = rq;
4155 }
4156 }
4157
6fa3e8d3 4158 spin_unlock_irq(&bfqd->lock);
aee69d78
PV
4159}
4160
4161static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
4162 struct list_head *list, bool at_head)
4163{
4164 while (!list_empty(list)) {
4165 struct request *rq;
4166
4167 rq = list_first_entry(list, struct request, queuelist);
4168 list_del_init(&rq->queuelist);
4169 bfq_insert_request(hctx, rq, at_head);
4170 }
4171}
4172
4173static void bfq_update_hw_tag(struct bfq_data *bfqd)
4174{
4175 bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
4176 bfqd->rq_in_driver);
4177
4178 if (bfqd->hw_tag == 1)
4179 return;
4180
4181 /*
4182 * This sample is valid if the number of outstanding requests
4183 * is large enough to allow a queueing behavior. Note that the
4184 * sum is not exact, as it's not taking into account deactivated
4185 * requests.
4186 */
4187 if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
4188 return;
4189
4190 if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
4191 return;
4192
4193 bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
4194 bfqd->max_rq_in_driver = 0;
4195 bfqd->hw_tag_samples = 0;
4196}
4197
4198static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
4199{
ab0e43e9
PV
4200 u64 now_ns;
4201 u32 delta_us;
4202
aee69d78
PV
4203 bfq_update_hw_tag(bfqd);
4204
4205 bfqd->rq_in_driver--;
4206 bfqq->dispatched--;
4207
44e44a1b
PV
4208 if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
4209 /*
4210 * Set budget_timeout (which we overload to store the
4211 * time at which the queue remains with no backlog and
4212 * no outstanding request; used by the weight-raising
4213 * mechanism).
4214 */
4215 bfqq->budget_timeout = jiffies;
1de0c4cd
AA
4216
4217 bfq_weights_tree_remove(bfqd, &bfqq->entity,
4218 &bfqd->queue_weights_tree);
44e44a1b
PV
4219 }
4220
ab0e43e9
PV
4221 now_ns = ktime_get_ns();
4222
4223 bfqq->ttime.last_end_request = now_ns;
4224
4225 /*
4226 * Using us instead of ns, to get a reasonable precision in
4227 * computing rate in next check.
4228 */
4229 delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
4230
4231 /*
4232 * If the request took rather long to complete, and, according
4233 * to the maximum request size recorded, this completion latency
4234 * implies that the request was certainly served at a very low
4235 * rate (less than 1M sectors/sec), then the whole observation
4236 * interval that lasts up to this time instant cannot be a
4237 * valid time interval for computing a new peak rate. Invoke
4238 * bfq_update_rate_reset to have the following three steps
4239 * taken:
4240 * - close the observation interval at the last (previous)
4241 * request dispatch or completion
4242 * - compute rate, if possible, for that observation interval
4243 * - reset to zero samples, which will trigger a proper
4244 * re-initialization of the observation interval on next
4245 * dispatch
4246 */
4247 if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
4248 (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
4249 1UL<<(BFQ_RATE_SHIFT - 10))
4250 bfq_update_rate_reset(bfqd, NULL);
4251 bfqd->last_completion = now_ns;
aee69d78 4252
77b7dcea
PV
4253 /*
4254 * If we are waiting to discover whether the request pattern
4255 * of the task associated with the queue is actually
4256 * isochronous, and both requisites for this condition to hold
4257 * are now satisfied, then compute soft_rt_next_start (see the
4258 * comments on the function bfq_bfqq_softrt_next_start()). We
4259 * schedule this delayed check when bfqq expires, if it still
4260 * has in-flight requests.
4261 */
4262 if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
4263 RB_EMPTY_ROOT(&bfqq->sort_list))
4264 bfqq->soft_rt_next_start =
4265 bfq_bfqq_softrt_next_start(bfqd, bfqq);
4266
aee69d78
PV
4267 /*
4268 * If this is the in-service queue, check if it needs to be expired,
4269 * or if we want to idle in case it has no pending requests.
4270 */
4271 if (bfqd->in_service_queue == bfqq) {
44e44a1b 4272 if (bfqq->dispatched == 0 && bfq_bfqq_must_idle(bfqq)) {
aee69d78
PV
4273 bfq_arm_slice_timer(bfqd);
4274 return;
4275 } else if (bfq_may_expire_for_budg_timeout(bfqq))
4276 bfq_bfqq_expire(bfqd, bfqq, false,
4277 BFQQE_BUDGET_TIMEOUT);
4278 else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
4279 (bfqq->dispatched == 0 ||
4280 !bfq_bfqq_may_idle(bfqq)))
4281 bfq_bfqq_expire(bfqd, bfqq, false,
4282 BFQQE_NO_MORE_REQUESTS);
4283 }
4284}
4285
4286static void bfq_put_rq_priv_body(struct bfq_queue *bfqq)
4287{
4288 bfqq->allocated--;
4289
4290 bfq_put_queue(bfqq);
4291}
4292
4293static void bfq_put_rq_private(struct request_queue *q, struct request *rq)
4294{
4295 struct bfq_queue *bfqq = RQ_BFQQ(rq);
4296 struct bfq_data *bfqd = bfqq->bfqd;
4297
e21b7a0b
AA
4298 if (rq->rq_flags & RQF_STARTED)
4299 bfqg_stats_update_completion(bfqq_group(bfqq),
4300 rq_start_time_ns(rq),
4301 rq_io_start_time_ns(rq),
4302 rq->cmd_flags);
aee69d78
PV
4303
4304 if (likely(rq->rq_flags & RQF_STARTED)) {
4305 unsigned long flags;
4306
4307 spin_lock_irqsave(&bfqd->lock, flags);
4308
4309 bfq_completed_request(bfqq, bfqd);
4310 bfq_put_rq_priv_body(bfqq);
4311
6fa3e8d3 4312 spin_unlock_irqrestore(&bfqd->lock, flags);
aee69d78
PV
4313 } else {
4314 /*
4315 * Request rq may be still/already in the scheduler,
4316 * in which case we need to remove it. And we cannot
4317 * defer such a check and removal, to avoid
4318 * inconsistencies in the time interval from the end
4319 * of this function to the start of the deferred work.
4320 * This situation seems to occur only in process
4321 * context, as a consequence of a merge. In the
4322 * current version of the code, this implies that the
4323 * lock is held.
4324 */
4325
4326 if (!RB_EMPTY_NODE(&rq->rb_node))
4327 bfq_remove_request(q, rq);
4328 bfq_put_rq_priv_body(bfqq);
4329 }
4330
4331 rq->elv.priv[0] = NULL;
4332 rq->elv.priv[1] = NULL;
4333}
4334
36eca894
AA
4335/*
4336 * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
4337 * was the last process referring to that bfqq.
4338 */
4339static struct bfq_queue *
4340bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
4341{
4342 bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
4343
4344 if (bfqq_process_refs(bfqq) == 1) {
4345 bfqq->pid = current->pid;
4346 bfq_clear_bfqq_coop(bfqq);
4347 bfq_clear_bfqq_split_coop(bfqq);
4348 return bfqq;
4349 }
4350
4351 bic_set_bfqq(bic, NULL, 1);
4352
4353 bfq_put_cooperator(bfqq);
4354
4355 bfq_put_queue(bfqq);
4356 return NULL;
4357}
4358
4359static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
4360 struct bfq_io_cq *bic,
4361 struct bio *bio,
4362 bool split, bool is_sync,
4363 bool *new_queue)
4364{
4365 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4366
4367 if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
4368 return bfqq;
4369
4370 if (new_queue)
4371 *new_queue = true;
4372
4373 if (bfqq)
4374 bfq_put_queue(bfqq);
4375 bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
4376
4377 bic_set_bfqq(bic, bfqq, is_sync);
e1b2324d
AA
4378 if (split && is_sync) {
4379 if ((bic->was_in_burst_list && bfqd->large_burst) ||
4380 bic->saved_in_large_burst)
4381 bfq_mark_bfqq_in_large_burst(bfqq);
4382 else {
4383 bfq_clear_bfqq_in_large_burst(bfqq);
4384 if (bic->was_in_burst_list)
4385 hlist_add_head(&bfqq->burst_list_node,
4386 &bfqd->burst_list);
4387 }
36eca894 4388 bfqq->split_time = jiffies;
e1b2324d 4389 }
36eca894
AA
4390
4391 return bfqq;
4392}
4393
aee69d78
PV
4394/*
4395 * Allocate bfq data structures associated with this request.
4396 */
4397static int bfq_get_rq_private(struct request_queue *q, struct request *rq,
4398 struct bio *bio)
4399{
4400 struct bfq_data *bfqd = q->elevator->elevator_data;
4401 struct bfq_io_cq *bic = icq_to_bic(rq->elv.icq);
4402 const int is_sync = rq_is_sync(rq);
4403 struct bfq_queue *bfqq;
36eca894 4404 bool new_queue = false;
6fa3e8d3 4405 bool split = false;
aee69d78
PV
4406
4407 spin_lock_irq(&bfqd->lock);
4408
aee69d78
PV
4409 if (!bic)
4410 goto queue_fail;
4411
8c9ff1ad
CIK
4412 bfq_check_ioprio_change(bic, bio);
4413
e21b7a0b
AA
4414 bfq_bic_update_cgroup(bic, bio);
4415
36eca894
AA
4416 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
4417 &new_queue);
4418
4419 if (likely(!new_queue)) {
4420 /* If the queue was seeky for too long, break it apart. */
4421 if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
4422 bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
e1b2324d
AA
4423
4424 /* Update bic before losing reference to bfqq */
4425 if (bfq_bfqq_in_large_burst(bfqq))
4426 bic->saved_in_large_burst = true;
4427
36eca894 4428 bfqq = bfq_split_bfqq(bic, bfqq);
6fa3e8d3 4429 split = true;
36eca894
AA
4430
4431 if (!bfqq)
4432 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
4433 true, is_sync,
4434 NULL);
4435 }
aee69d78
PV
4436 }
4437
4438 bfqq->allocated++;
4439 bfqq->ref++;
4440 bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
4441 rq, bfqq, bfqq->ref);
4442
4443 rq->elv.priv[0] = bic;
4444 rq->elv.priv[1] = bfqq;
4445
36eca894
AA
4446 /*
4447 * If a bfq_queue has only one process reference, it is owned
4448 * by only this bic: we can then set bfqq->bic = bic. in
4449 * addition, if the queue has also just been split, we have to
4450 * resume its state.
4451 */
4452 if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
4453 bfqq->bic = bic;
6fa3e8d3 4454 if (split) {
36eca894
AA
4455 /*
4456 * The queue has just been split from a shared
4457 * queue: restore the idle window and the
4458 * possible weight raising period.
4459 */
4460 bfq_bfqq_resume_state(bfqq, bic);
4461 }
4462 }
4463
e1b2324d
AA
4464 if (unlikely(bfq_bfqq_just_created(bfqq)))
4465 bfq_handle_burst(bfqd, bfqq);
4466
6fa3e8d3 4467 spin_unlock_irq(&bfqd->lock);
aee69d78
PV
4468
4469 return 0;
4470
4471queue_fail:
4472 spin_unlock_irq(&bfqd->lock);
4473
4474 return 1;
4475}
4476
4477static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
4478{
4479 struct bfq_data *bfqd = bfqq->bfqd;
4480 enum bfqq_expiration reason;
4481 unsigned long flags;
4482
4483 spin_lock_irqsave(&bfqd->lock, flags);
4484 bfq_clear_bfqq_wait_request(bfqq);
4485
4486 if (bfqq != bfqd->in_service_queue) {
4487 spin_unlock_irqrestore(&bfqd->lock, flags);
4488 return;
4489 }
4490
4491 if (bfq_bfqq_budget_timeout(bfqq))
4492 /*
4493 * Also here the queue can be safely expired
4494 * for budget timeout without wasting
4495 * guarantees
4496 */
4497 reason = BFQQE_BUDGET_TIMEOUT;
4498 else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
4499 /*
4500 * The queue may not be empty upon timer expiration,
4501 * because we may not disable the timer when the
4502 * first request of the in-service queue arrives
4503 * during disk idling.
4504 */
4505 reason = BFQQE_TOO_IDLE;
4506 else
4507 goto schedule_dispatch;
4508
4509 bfq_bfqq_expire(bfqd, bfqq, true, reason);
4510
4511schedule_dispatch:
6fa3e8d3 4512 spin_unlock_irqrestore(&bfqd->lock, flags);
aee69d78
PV
4513 bfq_schedule_dispatch(bfqd);
4514}
4515
4516/*
4517 * Handler of the expiration of the timer running if the in-service queue
4518 * is idling inside its time slice.
4519 */
4520static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
4521{
4522 struct bfq_data *bfqd = container_of(timer, struct bfq_data,
4523 idle_slice_timer);
4524 struct bfq_queue *bfqq = bfqd->in_service_queue;
4525
4526 /*
4527 * Theoretical race here: the in-service queue can be NULL or
4528 * different from the queue that was idling if a new request
4529 * arrives for the current queue and there is a full dispatch
4530 * cycle that changes the in-service queue. This can hardly
4531 * happen, but in the worst case we just expire a queue too
4532 * early.
4533 */
4534 if (bfqq)
4535 bfq_idle_slice_timer_body(bfqq);
4536
4537 return HRTIMER_NORESTART;
4538}
4539
4540static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
4541 struct bfq_queue **bfqq_ptr)
4542{
4543 struct bfq_queue *bfqq = *bfqq_ptr;
4544
4545 bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
4546 if (bfqq) {
e21b7a0b
AA
4547 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
4548
aee69d78
PV
4549 bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
4550 bfqq, bfqq->ref);
4551 bfq_put_queue(bfqq);
4552 *bfqq_ptr = NULL;
4553 }
4554}
4555
4556/*
e21b7a0b
AA
4557 * Release all the bfqg references to its async queues. If we are
4558 * deallocating the group these queues may still contain requests, so
4559 * we reparent them to the root cgroup (i.e., the only one that will
4560 * exist for sure until all the requests on a device are gone).
aee69d78 4561 */
ea25da48 4562void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
aee69d78
PV
4563{
4564 int i, j;
4565
4566 for (i = 0; i < 2; i++)
4567 for (j = 0; j < IOPRIO_BE_NR; j++)
e21b7a0b 4568 __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
aee69d78 4569
e21b7a0b 4570 __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
aee69d78
PV
4571}
4572
4573static void bfq_exit_queue(struct elevator_queue *e)
4574{
4575 struct bfq_data *bfqd = e->elevator_data;
4576 struct bfq_queue *bfqq, *n;
4577
4578 hrtimer_cancel(&bfqd->idle_slice_timer);
4579
4580 spin_lock_irq(&bfqd->lock);
4581 list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
e21b7a0b 4582 bfq_deactivate_bfqq(bfqd, bfqq, false, false);
aee69d78
PV
4583 spin_unlock_irq(&bfqd->lock);
4584
4585 hrtimer_cancel(&bfqd->idle_slice_timer);
4586
e21b7a0b
AA
4587#ifdef CONFIG_BFQ_GROUP_IOSCHED
4588 blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
4589#else
4590 spin_lock_irq(&bfqd->lock);
4591 bfq_put_async_queues(bfqd, bfqd->root_group);
4592 kfree(bfqd->root_group);
4593 spin_unlock_irq(&bfqd->lock);
4594#endif
4595
aee69d78
PV
4596 kfree(bfqd);
4597}
4598
e21b7a0b
AA
4599static void bfq_init_root_group(struct bfq_group *root_group,
4600 struct bfq_data *bfqd)
4601{
4602 int i;
4603
4604#ifdef CONFIG_BFQ_GROUP_IOSCHED
4605 root_group->entity.parent = NULL;
4606 root_group->my_entity = NULL;
4607 root_group->bfqd = bfqd;
4608#endif
36eca894 4609 root_group->rq_pos_tree = RB_ROOT;
e21b7a0b
AA
4610 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
4611 root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
4612 root_group->sched_data.bfq_class_idle_last_service = jiffies;
4613}
4614
aee69d78
PV
4615static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
4616{
4617 struct bfq_data *bfqd;
4618 struct elevator_queue *eq;
aee69d78
PV
4619
4620 eq = elevator_alloc(q, e);
4621 if (!eq)
4622 return -ENOMEM;
4623
4624 bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
4625 if (!bfqd) {
4626 kobject_put(&eq->kobj);
4627 return -ENOMEM;
4628 }
4629 eq->elevator_data = bfqd;
4630
e21b7a0b
AA
4631 spin_lock_irq(q->queue_lock);
4632 q->elevator = eq;
4633 spin_unlock_irq(q->queue_lock);
4634
aee69d78
PV
4635 /*
4636 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
4637 * Grab a permanent reference to it, so that the normal code flow
4638 * will not attempt to free it.
4639 */
4640 bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
4641 bfqd->oom_bfqq.ref++;
4642 bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
4643 bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
4644 bfqd->oom_bfqq.entity.new_weight =
4645 bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
e1b2324d
AA
4646
4647 /* oom_bfqq does not participate to bursts */
4648 bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
4649
aee69d78
PV
4650 /*
4651 * Trigger weight initialization, according to ioprio, at the
4652 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
4653 * class won't be changed any more.
4654 */
4655 bfqd->oom_bfqq.entity.prio_changed = 1;
4656
4657 bfqd->queue = q;
4658
e21b7a0b 4659 INIT_LIST_HEAD(&bfqd->dispatch);
aee69d78
PV
4660
4661 hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
4662 HRTIMER_MODE_REL);
4663 bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
4664
1de0c4cd
AA
4665 bfqd->queue_weights_tree = RB_ROOT;
4666 bfqd->group_weights_tree = RB_ROOT;
4667
aee69d78
PV
4668 INIT_LIST_HEAD(&bfqd->active_list);
4669 INIT_LIST_HEAD(&bfqd->idle_list);
e1b2324d 4670 INIT_HLIST_HEAD(&bfqd->burst_list);
aee69d78
PV
4671
4672 bfqd->hw_tag = -1;
4673
4674 bfqd->bfq_max_budget = bfq_default_max_budget;
4675
4676 bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
4677 bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
4678 bfqd->bfq_back_max = bfq_back_max;
4679 bfqd->bfq_back_penalty = bfq_back_penalty;
4680 bfqd->bfq_slice_idle = bfq_slice_idle;
aee69d78
PV
4681 bfqd->bfq_timeout = bfq_timeout;
4682
4683 bfqd->bfq_requests_within_timer = 120;
4684
e1b2324d
AA
4685 bfqd->bfq_large_burst_thresh = 8;
4686 bfqd->bfq_burst_interval = msecs_to_jiffies(180);
4687
44e44a1b
PV
4688 bfqd->low_latency = true;
4689
4690 /*
4691 * Trade-off between responsiveness and fairness.
4692 */
4693 bfqd->bfq_wr_coeff = 30;
77b7dcea 4694 bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
44e44a1b
PV
4695 bfqd->bfq_wr_max_time = 0;
4696 bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
4697 bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
77b7dcea
PV
4698 bfqd->bfq_wr_max_softrt_rate = 7000; /*
4699 * Approximate rate required
4700 * to playback or record a
4701 * high-definition compressed
4702 * video.
4703 */
cfd69712 4704 bfqd->wr_busy_queues = 0;
44e44a1b
PV
4705
4706 /*
4707 * Begin by assuming, optimistically, that the device is a
4708 * high-speed one, and that its peak rate is equal to 2/3 of
4709 * the highest reference rate.
4710 */
4711 bfqd->RT_prod = R_fast[blk_queue_nonrot(bfqd->queue)] *
4712 T_fast[blk_queue_nonrot(bfqd->queue)];
4713 bfqd->peak_rate = R_fast[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
4714 bfqd->device_speed = BFQ_BFQD_FAST;
4715
aee69d78 4716 spin_lock_init(&bfqd->lock);
aee69d78 4717
e21b7a0b
AA
4718 /*
4719 * The invocation of the next bfq_create_group_hierarchy
4720 * function is the head of a chain of function calls
4721 * (bfq_create_group_hierarchy->blkcg_activate_policy->
4722 * blk_mq_freeze_queue) that may lead to the invocation of the
4723 * has_work hook function. For this reason,
4724 * bfq_create_group_hierarchy is invoked only after all
4725 * scheduler data has been initialized, apart from the fields
4726 * that can be initialized only after invoking
4727 * bfq_create_group_hierarchy. This, in particular, enables
4728 * has_work to correctly return false. Of course, to avoid
4729 * other inconsistencies, the blk-mq stack must then refrain
4730 * from invoking further scheduler hooks before this init
4731 * function is finished.
4732 */
4733 bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
4734 if (!bfqd->root_group)
4735 goto out_free;
4736 bfq_init_root_group(bfqd->root_group, bfqd);
4737 bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
4738
aee69d78
PV
4739
4740 return 0;
e21b7a0b
AA
4741
4742out_free:
4743 kfree(bfqd);
4744 kobject_put(&eq->kobj);
4745 return -ENOMEM;
aee69d78
PV
4746}
4747
4748static void bfq_slab_kill(void)
4749{
4750 kmem_cache_destroy(bfq_pool);
4751}
4752
4753static int __init bfq_slab_setup(void)
4754{
4755 bfq_pool = KMEM_CACHE(bfq_queue, 0);
4756 if (!bfq_pool)
4757 return -ENOMEM;
4758 return 0;
4759}
4760
4761static ssize_t bfq_var_show(unsigned int var, char *page)
4762{
4763 return sprintf(page, "%u\n", var);
4764}
4765
4766static ssize_t bfq_var_store(unsigned long *var, const char *page,
4767 size_t count)
4768{
4769 unsigned long new_val;
4770 int ret = kstrtoul(page, 10, &new_val);
4771
4772 if (ret == 0)
4773 *var = new_val;
4774
4775 return count;
4776}
4777
4778#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4779static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4780{ \
4781 struct bfq_data *bfqd = e->elevator_data; \
4782 u64 __data = __VAR; \
4783 if (__CONV == 1) \
4784 __data = jiffies_to_msecs(__data); \
4785 else if (__CONV == 2) \
4786 __data = div_u64(__data, NSEC_PER_MSEC); \
4787 return bfq_var_show(__data, (page)); \
4788}
4789SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
4790SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
4791SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
4792SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
4793SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
4794SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
4795SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
4796SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
44e44a1b 4797SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
aee69d78
PV
4798#undef SHOW_FUNCTION
4799
4800#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
4801static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4802{ \
4803 struct bfq_data *bfqd = e->elevator_data; \
4804 u64 __data = __VAR; \
4805 __data = div_u64(__data, NSEC_PER_USEC); \
4806 return bfq_var_show(__data, (page)); \
4807}
4808USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
4809#undef USEC_SHOW_FUNCTION
4810
4811#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4812static ssize_t \
4813__FUNC(struct elevator_queue *e, const char *page, size_t count) \
4814{ \
4815 struct bfq_data *bfqd = e->elevator_data; \
4816 unsigned long uninitialized_var(__data); \
4817 int ret = bfq_var_store(&__data, (page), count); \
4818 if (__data < (MIN)) \
4819 __data = (MIN); \
4820 else if (__data > (MAX)) \
4821 __data = (MAX); \
4822 if (__CONV == 1) \
4823 *(__PTR) = msecs_to_jiffies(__data); \
4824 else if (__CONV == 2) \
4825 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
4826 else \
4827 *(__PTR) = __data; \
4828 return ret; \
4829}
4830STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
4831 INT_MAX, 2);
4832STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
4833 INT_MAX, 2);
4834STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
4835STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
4836 INT_MAX, 0);
4837STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
4838#undef STORE_FUNCTION
4839
4840#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
4841static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
4842{ \
4843 struct bfq_data *bfqd = e->elevator_data; \
4844 unsigned long uninitialized_var(__data); \
4845 int ret = bfq_var_store(&__data, (page), count); \
4846 if (__data < (MIN)) \
4847 __data = (MIN); \
4848 else if (__data > (MAX)) \
4849 __data = (MAX); \
4850 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
4851 return ret; \
4852}
4853USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
4854 UINT_MAX);
4855#undef USEC_STORE_FUNCTION
4856
aee69d78
PV
4857static ssize_t bfq_max_budget_store(struct elevator_queue *e,
4858 const char *page, size_t count)
4859{
4860 struct bfq_data *bfqd = e->elevator_data;
4861 unsigned long uninitialized_var(__data);
4862 int ret = bfq_var_store(&__data, (page), count);
4863
4864 if (__data == 0)
ab0e43e9 4865 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
aee69d78
PV
4866 else {
4867 if (__data > INT_MAX)
4868 __data = INT_MAX;
4869 bfqd->bfq_max_budget = __data;
4870 }
4871
4872 bfqd->bfq_user_max_budget = __data;
4873
4874 return ret;
4875}
4876
4877/*
4878 * Leaving this name to preserve name compatibility with cfq
4879 * parameters, but this timeout is used for both sync and async.
4880 */
4881static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
4882 const char *page, size_t count)
4883{
4884 struct bfq_data *bfqd = e->elevator_data;
4885 unsigned long uninitialized_var(__data);
4886 int ret = bfq_var_store(&__data, (page), count);
4887
4888 if (__data < 1)
4889 __data = 1;
4890 else if (__data > INT_MAX)
4891 __data = INT_MAX;
4892
4893 bfqd->bfq_timeout = msecs_to_jiffies(__data);
4894 if (bfqd->bfq_user_max_budget == 0)
ab0e43e9 4895 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
aee69d78
PV
4896
4897 return ret;
4898}
4899
4900static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
4901 const char *page, size_t count)
4902{
4903 struct bfq_data *bfqd = e->elevator_data;
4904 unsigned long uninitialized_var(__data);
4905 int ret = bfq_var_store(&__data, (page), count);
4906
4907 if (__data > 1)
4908 __data = 1;
4909 if (!bfqd->strict_guarantees && __data == 1
4910 && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
4911 bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
4912
4913 bfqd->strict_guarantees = __data;
4914
4915 return ret;
4916}
4917
44e44a1b
PV
4918static ssize_t bfq_low_latency_store(struct elevator_queue *e,
4919 const char *page, size_t count)
4920{
4921 struct bfq_data *bfqd = e->elevator_data;
4922 unsigned long uninitialized_var(__data);
4923 int ret = bfq_var_store(&__data, (page), count);
4924
4925 if (__data > 1)
4926 __data = 1;
4927 if (__data == 0 && bfqd->low_latency != 0)
4928 bfq_end_wr(bfqd);
4929 bfqd->low_latency = __data;
4930
4931 return ret;
4932}
4933
aee69d78
PV
4934#define BFQ_ATTR(name) \
4935 __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
4936
4937static struct elv_fs_entry bfq_attrs[] = {
4938 BFQ_ATTR(fifo_expire_sync),
4939 BFQ_ATTR(fifo_expire_async),
4940 BFQ_ATTR(back_seek_max),
4941 BFQ_ATTR(back_seek_penalty),
4942 BFQ_ATTR(slice_idle),
4943 BFQ_ATTR(slice_idle_us),
4944 BFQ_ATTR(max_budget),
4945 BFQ_ATTR(timeout_sync),
4946 BFQ_ATTR(strict_guarantees),
44e44a1b 4947 BFQ_ATTR(low_latency),
aee69d78
PV
4948 __ATTR_NULL
4949};
4950
4951static struct elevator_type iosched_bfq_mq = {
4952 .ops.mq = {
4953 .get_rq_priv = bfq_get_rq_private,
4954 .put_rq_priv = bfq_put_rq_private,
4955 .exit_icq = bfq_exit_icq,
4956 .insert_requests = bfq_insert_requests,
4957 .dispatch_request = bfq_dispatch_request,
4958 .next_request = elv_rb_latter_request,
4959 .former_request = elv_rb_former_request,
4960 .allow_merge = bfq_allow_bio_merge,
4961 .bio_merge = bfq_bio_merge,
4962 .request_merge = bfq_request_merge,
4963 .requests_merged = bfq_requests_merged,
4964 .request_merged = bfq_request_merged,
4965 .has_work = bfq_has_work,
4966 .init_sched = bfq_init_queue,
4967 .exit_sched = bfq_exit_queue,
4968 },
4969
4970 .uses_mq = true,
4971 .icq_size = sizeof(struct bfq_io_cq),
4972 .icq_align = __alignof__(struct bfq_io_cq),
4973 .elevator_attrs = bfq_attrs,
4974 .elevator_name = "bfq",
4975 .elevator_owner = THIS_MODULE,
4976};
4977
4978static int __init bfq_init(void)
4979{
4980 int ret;
4981
e21b7a0b
AA
4982#ifdef CONFIG_BFQ_GROUP_IOSCHED
4983 ret = blkcg_policy_register(&blkcg_policy_bfq);
4984 if (ret)
4985 return ret;
4986#endif
4987
aee69d78
PV
4988 ret = -ENOMEM;
4989 if (bfq_slab_setup())
4990 goto err_pol_unreg;
4991
44e44a1b
PV
4992 /*
4993 * Times to load large popular applications for the typical
4994 * systems installed on the reference devices (see the
4995 * comments before the definitions of the next two
4996 * arrays). Actually, we use slightly slower values, as the
4997 * estimated peak rate tends to be smaller than the actual
4998 * peak rate. The reason for this last fact is that estimates
4999 * are computed over much shorter time intervals than the long
5000 * intervals typically used for benchmarking. Why? First, to
5001 * adapt more quickly to variations. Second, because an I/O
5002 * scheduler cannot rely on a peak-rate-evaluation workload to
5003 * be run for a long time.
5004 */
5005 T_slow[0] = msecs_to_jiffies(3500); /* actually 4 sec */
5006 T_slow[1] = msecs_to_jiffies(6000); /* actually 6.5 sec */
5007 T_fast[0] = msecs_to_jiffies(7000); /* actually 8 sec */
5008 T_fast[1] = msecs_to_jiffies(2500); /* actually 3 sec */
5009
5010 /*
5011 * Thresholds that determine the switch between speed classes
5012 * (see the comments before the definition of the array
5013 * device_speed_thresh). These thresholds are biased towards
5014 * transitions to the fast class. This is safer than the
5015 * opposite bias. In fact, a wrong transition to the slow
5016 * class results in short weight-raising periods, because the
5017 * speed of the device then tends to be higher that the
5018 * reference peak rate. On the opposite end, a wrong
5019 * transition to the fast class tends to increase
5020 * weight-raising periods, because of the opposite reason.
5021 */
5022 device_speed_thresh[0] = (4 * R_slow[0]) / 3;
5023 device_speed_thresh[1] = (4 * R_slow[1]) / 3;
5024
aee69d78
PV
5025 ret = elv_register(&iosched_bfq_mq);
5026 if (ret)
5027 goto err_pol_unreg;
5028
5029 return 0;
5030
5031err_pol_unreg:
e21b7a0b
AA
5032#ifdef CONFIG_BFQ_GROUP_IOSCHED
5033 blkcg_policy_unregister(&blkcg_policy_bfq);
5034#endif
aee69d78
PV
5035 return ret;
5036}
5037
5038static void __exit bfq_exit(void)
5039{
5040 elv_unregister(&iosched_bfq_mq);
e21b7a0b
AA
5041#ifdef CONFIG_BFQ_GROUP_IOSCHED
5042 blkcg_policy_unregister(&blkcg_policy_bfq);
5043#endif
aee69d78
PV
5044 bfq_slab_kill();
5045}
5046
5047module_init(bfq_init);
5048module_exit(bfq_exit);
5049
5050MODULE_AUTHOR("Paolo Valente");
5051MODULE_LICENSE("GPL");
5052MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");