]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-core.c
block: get rid of likely/unlikely predictions in merge logic
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
ff856bad
JA
29#include <linux/interrupt.h>
30#include <linux/cpu.h>
2056a782 31#include <linux/blktrace_api.h>
c17bb495 32#include <linux/fault-inject.h>
1da177e4 33
8324aa91
JA
34#include "blk.h"
35
165125e1 36static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
37
38/*
39 * For the allocated request tables
40 */
5ece6c52 41static struct kmem_cache *request_cachep;
1da177e4
LT
42
43/*
44 * For queue allocation
45 */
6728cb0e 46struct kmem_cache *blk_requestq_cachep;
1da177e4 47
1da177e4
LT
48/*
49 * Controlling structure to kblockd
50 */
ff856bad 51static struct workqueue_struct *kblockd_workqueue;
1da177e4 52
ff856bad
JA
53static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
54
26b8256e
JA
55static void drive_stat_acct(struct request *rq, int new_io)
56{
57 int rw = rq_data_dir(rq);
58
59 if (!blk_fs_request(rq) || !rq->rq_disk)
60 return;
61
62 if (!new_io) {
6f2576af 63 __all_stat_inc(rq->rq_disk, merges[rw], rq->sector);
26b8256e 64 } else {
6f2576af 65 struct hd_struct *part = get_part(rq->rq_disk, rq->sector);
26b8256e
JA
66 disk_round_stats(rq->rq_disk);
67 rq->rq_disk->in_flight++;
6f2576af
JM
68 if (part) {
69 part_round_stats(part);
70 part->in_flight++;
71 }
26b8256e
JA
72 }
73}
74
8324aa91 75void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
76{
77 int nr;
78
79 nr = q->nr_requests - (q->nr_requests / 8) + 1;
80 if (nr > q->nr_requests)
81 nr = q->nr_requests;
82 q->nr_congestion_on = nr;
83
84 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
85 if (nr < 1)
86 nr = 1;
87 q->nr_congestion_off = nr;
88}
89
1da177e4
LT
90/**
91 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
92 * @bdev: device
93 *
94 * Locates the passed device's request queue and returns the address of its
95 * backing_dev_info
96 *
97 * Will return NULL if the request queue cannot be located.
98 */
99struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
100{
101 struct backing_dev_info *ret = NULL;
165125e1 102 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
103
104 if (q)
105 ret = &q->backing_dev_info;
106 return ret;
107}
1da177e4
LT
108EXPORT_SYMBOL(blk_get_backing_dev_info);
109
2a4aa30c 110void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 111{
1afb20f3
FT
112 memset(rq, 0, sizeof(*rq));
113
1da177e4 114 INIT_LIST_HEAD(&rq->queuelist);
ff856bad 115 INIT_LIST_HEAD(&rq->donelist);
63a71386
JA
116 rq->q = q;
117 rq->sector = rq->hard_sector = (sector_t) -1;
2e662b65
JA
118 INIT_HLIST_NODE(&rq->hash);
119 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 120 rq->cmd = rq->__cmd;
63a71386 121 rq->tag = -1;
1da177e4 122 rq->ref_count = 1;
1da177e4 123}
2a4aa30c 124EXPORT_SYMBOL(blk_rq_init);
1da177e4 125
5bb23a68
N
126static void req_bio_endio(struct request *rq, struct bio *bio,
127 unsigned int nbytes, int error)
1da177e4 128{
165125e1 129 struct request_queue *q = rq->q;
797e7dbb 130
5bb23a68
N
131 if (&q->bar_rq != rq) {
132 if (error)
133 clear_bit(BIO_UPTODATE, &bio->bi_flags);
134 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
135 error = -EIO;
797e7dbb 136
5bb23a68 137 if (unlikely(nbytes > bio->bi_size)) {
6728cb0e 138 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
24c03d47 139 __func__, nbytes, bio->bi_size);
5bb23a68
N
140 nbytes = bio->bi_size;
141 }
797e7dbb 142
5bb23a68
N
143 bio->bi_size -= nbytes;
144 bio->bi_sector += (nbytes >> 9);
145 if (bio->bi_size == 0)
6712ecf8 146 bio_endio(bio, error);
5bb23a68
N
147 } else {
148
149 /*
150 * Okay, this is the barrier request in progress, just
151 * record the error;
152 */
153 if (error && !q->orderr)
154 q->orderr = error;
155 }
1da177e4 156}
1da177e4 157
1da177e4
LT
158void blk_dump_rq_flags(struct request *rq, char *msg)
159{
160 int bit;
161
6728cb0e 162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
164 rq->cmd_flags);
1da177e4 165
6728cb0e
JA
166 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
167 (unsigned long long)rq->sector,
168 rq->nr_sectors,
169 rq->current_nr_sectors);
170 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
171 rq->bio, rq->biotail,
172 rq->buffer, rq->data,
173 rq->data_len);
1da177e4 174
4aff5e23 175 if (blk_pc_request(rq)) {
6728cb0e 176 printk(KERN_INFO " cdb: ");
d34c87e4 177 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
178 printk("%02x ", rq->cmd[bit]);
179 printk("\n");
180 }
181}
1da177e4
LT
182EXPORT_SYMBOL(blk_dump_rq_flags);
183
1da177e4
LT
184/*
185 * "plug" the device if there are no outstanding requests: this will
186 * force the transfer to start only after we have put all the requests
187 * on the list.
188 *
189 * This is called with interrupts off and no requests on the queue and
190 * with the queue lock held.
191 */
165125e1 192void blk_plug_device(struct request_queue *q)
1da177e4
LT
193{
194 WARN_ON(!irqs_disabled());
195
196 /*
197 * don't plug a stopped queue, it must be paired with blk_start_queue()
198 * which will restart the queueing
199 */
7daac490 200 if (blk_queue_stopped(q))
1da177e4
LT
201 return;
202
75ad23bc
NP
203 if (!test_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
204 __set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags);
1da177e4 205 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
2056a782
JA
206 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
207 }
1da177e4 208}
1da177e4
LT
209EXPORT_SYMBOL(blk_plug_device);
210
211/*
212 * remove the queue from the plugged list, if present. called with
213 * queue lock held and interrupts disabled.
214 */
165125e1 215int blk_remove_plug(struct request_queue *q)
1da177e4
LT
216{
217 WARN_ON(!irqs_disabled());
218
75ad23bc 219 if (!test_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1da177e4
LT
220 return 0;
221
75ad23bc 222 queue_flag_clear(QUEUE_FLAG_PLUGGED, q);
1da177e4
LT
223 del_timer(&q->unplug_timer);
224 return 1;
225}
1da177e4
LT
226EXPORT_SYMBOL(blk_remove_plug);
227
228/*
229 * remove the plug and let it rip..
230 */
165125e1 231void __generic_unplug_device(struct request_queue *q)
1da177e4 232{
7daac490 233 if (unlikely(blk_queue_stopped(q)))
1da177e4
LT
234 return;
235
236 if (!blk_remove_plug(q))
237 return;
238
22e2c507 239 q->request_fn(q);
1da177e4
LT
240}
241EXPORT_SYMBOL(__generic_unplug_device);
242
243/**
244 * generic_unplug_device - fire a request queue
165125e1 245 * @q: The &struct request_queue in question
1da177e4
LT
246 *
247 * Description:
248 * Linux uses plugging to build bigger requests queues before letting
249 * the device have at them. If a queue is plugged, the I/O scheduler
250 * is still adding and merging requests on the queue. Once the queue
251 * gets unplugged, the request_fn defined for the queue is invoked and
252 * transfers started.
253 **/
165125e1 254void generic_unplug_device(struct request_queue *q)
1da177e4
LT
255{
256 spin_lock_irq(q->queue_lock);
257 __generic_unplug_device(q);
258 spin_unlock_irq(q->queue_lock);
259}
260EXPORT_SYMBOL(generic_unplug_device);
261
262static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
263 struct page *page)
264{
165125e1 265 struct request_queue *q = bdi->unplug_io_data;
1da177e4 266
2ad8b1ef 267 blk_unplug(q);
1da177e4
LT
268}
269
86db1e29 270void blk_unplug_work(struct work_struct *work)
1da177e4 271{
165125e1
JA
272 struct request_queue *q =
273 container_of(work, struct request_queue, unplug_work);
1da177e4 274
2056a782
JA
275 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
276 q->rq.count[READ] + q->rq.count[WRITE]);
277
1da177e4
LT
278 q->unplug_fn(q);
279}
280
86db1e29 281void blk_unplug_timeout(unsigned long data)
1da177e4 282{
165125e1 283 struct request_queue *q = (struct request_queue *)data;
1da177e4 284
2056a782
JA
285 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
286 q->rq.count[READ] + q->rq.count[WRITE]);
287
1da177e4
LT
288 kblockd_schedule_work(&q->unplug_work);
289}
290
2ad8b1ef
AB
291void blk_unplug(struct request_queue *q)
292{
293 /*
294 * devices don't necessarily have an ->unplug_fn defined
295 */
296 if (q->unplug_fn) {
297 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
298 q->rq.count[READ] + q->rq.count[WRITE]);
299
300 q->unplug_fn(q);
301 }
302}
303EXPORT_SYMBOL(blk_unplug);
304
1da177e4
LT
305/**
306 * blk_start_queue - restart a previously stopped queue
165125e1 307 * @q: The &struct request_queue in question
1da177e4
LT
308 *
309 * Description:
310 * blk_start_queue() will clear the stop flag on the queue, and call
311 * the request_fn for the queue if it was in a stopped state when
312 * entered. Also see blk_stop_queue(). Queue lock must be held.
313 **/
165125e1 314void blk_start_queue(struct request_queue *q)
1da177e4 315{
a038e253
PBG
316 WARN_ON(!irqs_disabled());
317
75ad23bc 318 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
319
320 /*
321 * one level of recursion is ok and is much faster than kicking
322 * the unplug handling
323 */
75ad23bc
NP
324 if (!test_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
325 queue_flag_set(QUEUE_FLAG_REENTER, q);
1da177e4 326 q->request_fn(q);
75ad23bc 327 queue_flag_clear(QUEUE_FLAG_REENTER, q);
1da177e4
LT
328 } else {
329 blk_plug_device(q);
330 kblockd_schedule_work(&q->unplug_work);
331 }
332}
1da177e4
LT
333EXPORT_SYMBOL(blk_start_queue);
334
335/**
336 * blk_stop_queue - stop a queue
165125e1 337 * @q: The &struct request_queue in question
1da177e4
LT
338 *
339 * Description:
340 * The Linux block layer assumes that a block driver will consume all
341 * entries on the request queue when the request_fn strategy is called.
342 * Often this will not happen, because of hardware limitations (queue
343 * depth settings). If a device driver gets a 'queue full' response,
344 * or if it simply chooses not to queue more I/O at one point, it can
345 * call this function to prevent the request_fn from being called until
346 * the driver has signalled it's ready to go again. This happens by calling
347 * blk_start_queue() to restart queue operations. Queue lock must be held.
348 **/
165125e1 349void blk_stop_queue(struct request_queue *q)
1da177e4
LT
350{
351 blk_remove_plug(q);
75ad23bc 352 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
353}
354EXPORT_SYMBOL(blk_stop_queue);
355
356/**
357 * blk_sync_queue - cancel any pending callbacks on a queue
358 * @q: the queue
359 *
360 * Description:
361 * The block layer may perform asynchronous callback activity
362 * on a queue, such as calling the unplug function after a timeout.
363 * A block device may call blk_sync_queue to ensure that any
364 * such activity is cancelled, thus allowing it to release resources
59c51591 365 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
366 * that its ->make_request_fn will not re-add plugging prior to calling
367 * this function.
368 *
369 */
370void blk_sync_queue(struct request_queue *q)
371{
372 del_timer_sync(&q->unplug_timer);
abbeb88d 373 kblockd_flush_work(&q->unplug_work);
1da177e4
LT
374}
375EXPORT_SYMBOL(blk_sync_queue);
376
377/**
378 * blk_run_queue - run a single device queue
379 * @q: The queue to run
380 */
75ad23bc 381void __blk_run_queue(struct request_queue *q)
1da177e4 382{
1da177e4 383 blk_remove_plug(q);
dac07ec1
JA
384
385 /*
386 * Only recurse once to avoid overrunning the stack, let the unplug
387 * handling reinvoke the handler shortly if we already got there.
388 */
389 if (!elv_queue_empty(q)) {
75ad23bc
NP
390 if (!test_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
391 queue_flag_set(QUEUE_FLAG_REENTER, q);
dac07ec1 392 q->request_fn(q);
75ad23bc 393 queue_flag_clear(QUEUE_FLAG_REENTER, q);
dac07ec1
JA
394 } else {
395 blk_plug_device(q);
396 kblockd_schedule_work(&q->unplug_work);
397 }
398 }
75ad23bc
NP
399}
400EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 401
75ad23bc
NP
402/**
403 * blk_run_queue - run a single device queue
404 * @q: The queue to run
405 */
406void blk_run_queue(struct request_queue *q)
407{
408 unsigned long flags;
409
410 spin_lock_irqsave(q->queue_lock, flags);
411 __blk_run_queue(q);
1da177e4
LT
412 spin_unlock_irqrestore(q->queue_lock, flags);
413}
414EXPORT_SYMBOL(blk_run_queue);
415
165125e1 416void blk_put_queue(struct request_queue *q)
483f4afc
AV
417{
418 kobject_put(&q->kobj);
419}
483f4afc 420
6728cb0e 421void blk_cleanup_queue(struct request_queue *q)
483f4afc
AV
422{
423 mutex_lock(&q->sysfs_lock);
75ad23bc 424 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
425 mutex_unlock(&q->sysfs_lock);
426
427 if (q->elevator)
428 elevator_exit(q->elevator);
429
430 blk_put_queue(q);
431}
1da177e4
LT
432EXPORT_SYMBOL(blk_cleanup_queue);
433
165125e1 434static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
435{
436 struct request_list *rl = &q->rq;
437
438 rl->count[READ] = rl->count[WRITE] = 0;
439 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 440 rl->elvpriv = 0;
1da177e4
LT
441 init_waitqueue_head(&rl->wait[READ]);
442 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 443
1946089a
CL
444 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
445 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
446
447 if (!rl->rq_pool)
448 return -ENOMEM;
449
450 return 0;
451}
452
165125e1 453struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 454{
1946089a
CL
455 return blk_alloc_queue_node(gfp_mask, -1);
456}
457EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 458
165125e1 459struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 460{
165125e1 461 struct request_queue *q;
e0bf68dd 462 int err;
1946089a 463
8324aa91 464 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 465 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
466 if (!q)
467 return NULL;
468
e0bf68dd
PZ
469 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
470 q->backing_dev_info.unplug_io_data = q;
471 err = bdi_init(&q->backing_dev_info);
472 if (err) {
8324aa91 473 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
474 return NULL;
475 }
476
1da177e4 477 init_timer(&q->unplug_timer);
483f4afc 478
8324aa91 479 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 480
483f4afc
AV
481 mutex_init(&q->sysfs_lock);
482
1da177e4
LT
483 return q;
484}
1946089a 485EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
486
487/**
488 * blk_init_queue - prepare a request queue for use with a block device
489 * @rfn: The function to be called to process requests that have been
490 * placed on the queue.
491 * @lock: Request queue spin lock
492 *
493 * Description:
494 * If a block device wishes to use the standard request handling procedures,
495 * which sorts requests and coalesces adjacent requests, then it must
496 * call blk_init_queue(). The function @rfn will be called when there
497 * are requests on the queue that need to be processed. If the device
498 * supports plugging, then @rfn may not be called immediately when requests
499 * are available on the queue, but may be called at some time later instead.
500 * Plugged queues are generally unplugged when a buffer belonging to one
501 * of the requests on the queue is needed, or due to memory pressure.
502 *
503 * @rfn is not required, or even expected, to remove all requests off the
504 * queue, but only as many as it can handle at a time. If it does leave
505 * requests on the queue, it is responsible for arranging that the requests
506 * get dealt with eventually.
507 *
508 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
509 * request queue; this lock will be taken also from interrupt context, so irq
510 * disabling is needed for it.
1da177e4
LT
511 *
512 * Function returns a pointer to the initialized request queue, or NULL if
513 * it didn't succeed.
514 *
515 * Note:
516 * blk_init_queue() must be paired with a blk_cleanup_queue() call
517 * when the block device is deactivated (such as at module unload).
518 **/
1946089a 519
165125e1 520struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 521{
1946089a
CL
522 return blk_init_queue_node(rfn, lock, -1);
523}
524EXPORT_SYMBOL(blk_init_queue);
525
165125e1 526struct request_queue *
1946089a
CL
527blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
528{
165125e1 529 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
530
531 if (!q)
532 return NULL;
533
1946089a 534 q->node = node_id;
8669aafd 535 if (blk_init_free_list(q)) {
8324aa91 536 kmem_cache_free(blk_requestq_cachep, q);
8669aafd
AV
537 return NULL;
538 }
1da177e4 539
152587de
JA
540 /*
541 * if caller didn't supply a lock, they get per-queue locking with
542 * our embedded lock
543 */
544 if (!lock) {
545 spin_lock_init(&q->__queue_lock);
546 lock = &q->__queue_lock;
547 }
548
1da177e4 549 q->request_fn = rfn;
1da177e4
LT
550 q->prep_rq_fn = NULL;
551 q->unplug_fn = generic_unplug_device;
552 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
553 q->queue_lock = lock;
554
555 blk_queue_segment_boundary(q, 0xffffffff);
556
557 blk_queue_make_request(q, __make_request);
558 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
559
560 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
561 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
562
44ec9542
AS
563 q->sg_reserved_size = INT_MAX;
564
1da177e4
LT
565 /*
566 * all done
567 */
568 if (!elevator_init(q, NULL)) {
569 blk_queue_congestion_threshold(q);
570 return q;
571 }
572
8669aafd 573 blk_put_queue(q);
1da177e4
LT
574 return NULL;
575}
1946089a 576EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 577
165125e1 578int blk_get_queue(struct request_queue *q)
1da177e4 579{
fde6ad22 580 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 581 kobject_get(&q->kobj);
1da177e4
LT
582 return 0;
583 }
584
585 return 1;
586}
1da177e4 587
165125e1 588static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 589{
4aff5e23 590 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 591 elv_put_request(q, rq);
1da177e4
LT
592 mempool_free(rq, q->rq.rq_pool);
593}
594
1ea25ecb 595static struct request *
165125e1 596blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1da177e4
LT
597{
598 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
599
600 if (!rq)
601 return NULL;
602
2a4aa30c 603 blk_rq_init(q, rq);
1afb20f3 604
1da177e4 605 /*
4aff5e23 606 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1da177e4
LT
607 * see bio.h and blkdev.h
608 */
49171e5c 609 rq->cmd_flags = rw | REQ_ALLOCED;
1da177e4 610
cb98fc8b 611 if (priv) {
cb78b285 612 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
613 mempool_free(rq, q->rq.rq_pool);
614 return NULL;
615 }
4aff5e23 616 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 617 }
1da177e4 618
cb98fc8b 619 return rq;
1da177e4
LT
620}
621
622/*
623 * ioc_batching returns true if the ioc is a valid batching request and
624 * should be given priority access to a request.
625 */
165125e1 626static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
627{
628 if (!ioc)
629 return 0;
630
631 /*
632 * Make sure the process is able to allocate at least 1 request
633 * even if the batch times out, otherwise we could theoretically
634 * lose wakeups.
635 */
636 return ioc->nr_batch_requests == q->nr_batching ||
637 (ioc->nr_batch_requests > 0
638 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
639}
640
641/*
642 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
643 * will cause the process to be a "batcher" on all queues in the system. This
644 * is the behaviour we want though - once it gets a wakeup it should be given
645 * a nice run.
646 */
165125e1 647static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
648{
649 if (!ioc || ioc_batching(q, ioc))
650 return;
651
652 ioc->nr_batch_requests = q->nr_batching;
653 ioc->last_waited = jiffies;
654}
655
165125e1 656static void __freed_request(struct request_queue *q, int rw)
1da177e4
LT
657{
658 struct request_list *rl = &q->rq;
659
660 if (rl->count[rw] < queue_congestion_off_threshold(q))
79e2de4b 661 blk_clear_queue_congested(q, rw);
1da177e4
LT
662
663 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
664 if (waitqueue_active(&rl->wait[rw]))
665 wake_up(&rl->wait[rw]);
666
667 blk_clear_queue_full(q, rw);
668 }
669}
670
671/*
672 * A request has just been released. Account for it, update the full and
673 * congestion status, wake up any waiters. Called under q->queue_lock.
674 */
165125e1 675static void freed_request(struct request_queue *q, int rw, int priv)
1da177e4
LT
676{
677 struct request_list *rl = &q->rq;
678
679 rl->count[rw]--;
cb98fc8b
TH
680 if (priv)
681 rl->elvpriv--;
1da177e4
LT
682
683 __freed_request(q, rw);
684
685 if (unlikely(rl->starved[rw ^ 1]))
686 __freed_request(q, rw ^ 1);
1da177e4
LT
687}
688
689#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
690/*
d6344532
NP
691 * Get a free request, queue_lock must be held.
692 * Returns NULL on failure, with queue_lock held.
693 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 694 */
165125e1 695static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 696 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
697{
698 struct request *rq = NULL;
699 struct request_list *rl = &q->rq;
88ee5ef1 700 struct io_context *ioc = NULL;
7749a8d4 701 const int rw = rw_flags & 0x01;
88ee5ef1
JA
702 int may_queue, priv;
703
7749a8d4 704 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
705 if (may_queue == ELV_MQUEUE_NO)
706 goto rq_starved;
707
708 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
709 if (rl->count[rw]+1 >= q->nr_requests) {
b5deef90 710 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
711 /*
712 * The queue will fill after this allocation, so set
713 * it as full, and mark this process as "batching".
714 * This process will be allowed to complete a batch of
715 * requests, others will be blocked.
716 */
717 if (!blk_queue_full(q, rw)) {
718 ioc_set_batching(q, ioc);
719 blk_set_queue_full(q, rw);
720 } else {
721 if (may_queue != ELV_MQUEUE_MUST
722 && !ioc_batching(q, ioc)) {
723 /*
724 * The queue is full and the allocating
725 * process is not a "batcher", and not
726 * exempted by the IO scheduler
727 */
728 goto out;
729 }
730 }
1da177e4 731 }
79e2de4b 732 blk_set_queue_congested(q, rw);
1da177e4
LT
733 }
734
082cf69e
JA
735 /*
736 * Only allow batching queuers to allocate up to 50% over the defined
737 * limit of requests, otherwise we could have thousands of requests
738 * allocated with any setting of ->nr_requests
739 */
fd782a4a 740 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 741 goto out;
fd782a4a 742
1da177e4
LT
743 rl->count[rw]++;
744 rl->starved[rw] = 0;
cb98fc8b 745
64521d1a 746 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
747 if (priv)
748 rl->elvpriv++;
749
1da177e4
LT
750 spin_unlock_irq(q->queue_lock);
751
7749a8d4 752 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 753 if (unlikely(!rq)) {
1da177e4
LT
754 /*
755 * Allocation failed presumably due to memory. Undo anything
756 * we might have messed up.
757 *
758 * Allocating task should really be put onto the front of the
759 * wait queue, but this is pretty rare.
760 */
761 spin_lock_irq(q->queue_lock);
cb98fc8b 762 freed_request(q, rw, priv);
1da177e4
LT
763
764 /*
765 * in the very unlikely event that allocation failed and no
766 * requests for this direction was pending, mark us starved
767 * so that freeing of a request in the other direction will
768 * notice us. another possible fix would be to split the
769 * rq mempool into READ and WRITE
770 */
771rq_starved:
772 if (unlikely(rl->count[rw] == 0))
773 rl->starved[rw] = 1;
774
1da177e4
LT
775 goto out;
776 }
777
88ee5ef1
JA
778 /*
779 * ioc may be NULL here, and ioc_batching will be false. That's
780 * OK, if the queue is under the request limit then requests need
781 * not count toward the nr_batch_requests limit. There will always
782 * be some limit enforced by BLK_BATCH_TIME.
783 */
1da177e4
LT
784 if (ioc_batching(q, ioc))
785 ioc->nr_batch_requests--;
6728cb0e 786
2056a782 787 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
1da177e4 788out:
1da177e4
LT
789 return rq;
790}
791
792/*
793 * No available requests for this queue, unplug the device and wait for some
794 * requests to become available.
d6344532
NP
795 *
796 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 797 */
165125e1 798static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 799 struct bio *bio)
1da177e4 800{
7749a8d4 801 const int rw = rw_flags & 0x01;
1da177e4
LT
802 struct request *rq;
803
7749a8d4 804 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
805 while (!rq) {
806 DEFINE_WAIT(wait);
1da177e4
LT
807 struct request_list *rl = &q->rq;
808
809 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
810 TASK_UNINTERRUPTIBLE);
811
7749a8d4 812 rq = get_request(q, rw_flags, bio, GFP_NOIO);
1da177e4
LT
813
814 if (!rq) {
815 struct io_context *ioc;
816
2056a782
JA
817 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
818
d6344532
NP
819 __generic_unplug_device(q);
820 spin_unlock_irq(q->queue_lock);
1da177e4
LT
821 io_schedule();
822
823 /*
824 * After sleeping, we become a "batching" process and
825 * will be able to allocate at least one request, and
826 * up to a big batch of them for a small period time.
827 * See ioc_batching, ioc_set_batching
828 */
b5deef90 829 ioc = current_io_context(GFP_NOIO, q->node);
1da177e4 830 ioc_set_batching(q, ioc);
d6344532
NP
831
832 spin_lock_irq(q->queue_lock);
1da177e4
LT
833 }
834 finish_wait(&rl->wait[rw], &wait);
450991bc 835 }
1da177e4
LT
836
837 return rq;
838}
839
165125e1 840struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
841{
842 struct request *rq;
843
844 BUG_ON(rw != READ && rw != WRITE);
845
d6344532
NP
846 spin_lock_irq(q->queue_lock);
847 if (gfp_mask & __GFP_WAIT) {
22e2c507 848 rq = get_request_wait(q, rw, NULL);
d6344532 849 } else {
22e2c507 850 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
851 if (!rq)
852 spin_unlock_irq(q->queue_lock);
853 }
854 /* q->queue_lock is unlocked at this point */
1da177e4
LT
855
856 return rq;
857}
1da177e4
LT
858EXPORT_SYMBOL(blk_get_request);
859
dc72ef4a
JA
860/**
861 * blk_start_queueing - initiate dispatch of requests to device
862 * @q: request queue to kick into gear
863 *
864 * This is basically a helper to remove the need to know whether a queue
865 * is plugged or not if someone just wants to initiate dispatch of requests
866 * for this queue.
867 *
868 * The queue lock must be held with interrupts disabled.
869 */
165125e1 870void blk_start_queueing(struct request_queue *q)
dc72ef4a
JA
871{
872 if (!blk_queue_plugged(q))
873 q->request_fn(q);
874 else
875 __generic_unplug_device(q);
876}
877EXPORT_SYMBOL(blk_start_queueing);
878
1da177e4
LT
879/**
880 * blk_requeue_request - put a request back on queue
881 * @q: request queue where request should be inserted
882 * @rq: request to be inserted
883 *
884 * Description:
885 * Drivers often keep queueing requests until the hardware cannot accept
886 * more, when that condition happens we need to put the request back
887 * on the queue. Must be called with queue lock held.
888 */
165125e1 889void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 890{
2056a782
JA
891 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
892
1da177e4
LT
893 if (blk_rq_tagged(rq))
894 blk_queue_end_tag(q, rq);
895
896 elv_requeue_request(q, rq);
897}
1da177e4
LT
898EXPORT_SYMBOL(blk_requeue_request);
899
900/**
901 * blk_insert_request - insert a special request in to a request queue
902 * @q: request queue where request should be inserted
903 * @rq: request to be inserted
904 * @at_head: insert request at head or tail of queue
905 * @data: private data
1da177e4
LT
906 *
907 * Description:
908 * Many block devices need to execute commands asynchronously, so they don't
909 * block the whole kernel from preemption during request execution. This is
910 * accomplished normally by inserting aritficial requests tagged as
911 * REQ_SPECIAL in to the corresponding request queue, and letting them be
912 * scheduled for actual execution by the request queue.
913 *
914 * We have the option of inserting the head or the tail of the queue.
915 * Typically we use the tail for new ioctls and so forth. We use the head
916 * of the queue for things like a QUEUE_FULL message from a device, or a
917 * host that is unable to accept a particular command.
918 */
165125e1 919void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 920 int at_head, void *data)
1da177e4 921{
867d1191 922 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
923 unsigned long flags;
924
925 /*
926 * tell I/O scheduler that this isn't a regular read/write (ie it
927 * must not attempt merges on this) and that it acts as a soft
928 * barrier
929 */
4aff5e23
JA
930 rq->cmd_type = REQ_TYPE_SPECIAL;
931 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
932
933 rq->special = data;
934
935 spin_lock_irqsave(q->queue_lock, flags);
936
937 /*
938 * If command is tagged, release the tag
939 */
867d1191
TH
940 if (blk_rq_tagged(rq))
941 blk_queue_end_tag(q, rq);
1da177e4 942
b238b3d4 943 drive_stat_acct(rq, 1);
867d1191 944 __elv_add_request(q, rq, where, 0);
dc72ef4a 945 blk_start_queueing(q);
1da177e4
LT
946 spin_unlock_irqrestore(q->queue_lock, flags);
947}
1da177e4
LT
948EXPORT_SYMBOL(blk_insert_request);
949
1da177e4
LT
950/*
951 * add-request adds a request to the linked list.
952 * queue lock is held and interrupts disabled, as we muck with the
953 * request queue list.
954 */
6728cb0e 955static inline void add_request(struct request_queue *q, struct request *req)
1da177e4 956{
b238b3d4 957 drive_stat_acct(req, 1);
1da177e4 958
1da177e4
LT
959 /*
960 * elevator indicated where it wants this request to be
961 * inserted at elevator_merge time
962 */
963 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
964}
6728cb0e 965
1da177e4
LT
966/*
967 * disk_round_stats() - Round off the performance stats on a struct
968 * disk_stats.
969 *
970 * The average IO queue length and utilisation statistics are maintained
971 * by observing the current state of the queue length and the amount of
972 * time it has been in this state for.
973 *
974 * Normally, that accounting is done on IO completion, but that can result
975 * in more than a second's worth of IO being accounted for within any one
976 * second, leading to >100% utilisation. To deal with that, we call this
977 * function to do a round-off before returning the results when reading
978 * /proc/diskstats. This accounts immediately for all queue usage up to
979 * the current jiffies and restarts the counters again.
980 */
981void disk_round_stats(struct gendisk *disk)
982{
983 unsigned long now = jiffies;
984
b2982649
KC
985 if (now == disk->stamp)
986 return;
1da177e4 987
20e5c81f
KC
988 if (disk->in_flight) {
989 __disk_stat_add(disk, time_in_queue,
990 disk->in_flight * (now - disk->stamp));
991 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
992 }
1da177e4 993 disk->stamp = now;
1da177e4 994}
3eaf840e
JNN
995EXPORT_SYMBOL_GPL(disk_round_stats);
996
6f2576af
JM
997void part_round_stats(struct hd_struct *part)
998{
999 unsigned long now = jiffies;
1000
1001 if (now == part->stamp)
1002 return;
1003
1004 if (part->in_flight) {
1005 __part_stat_add(part, time_in_queue,
1006 part->in_flight * (now - part->stamp));
1007 __part_stat_add(part, io_ticks, (now - part->stamp));
1008 }
1009 part->stamp = now;
1010}
1011
1da177e4
LT
1012/*
1013 * queue lock must be held
1014 */
165125e1 1015void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1016{
1da177e4
LT
1017 if (unlikely(!q))
1018 return;
1019 if (unlikely(--req->ref_count))
1020 return;
1021
8922e16c
TH
1022 elv_completed_request(q, req);
1023
1da177e4
LT
1024 /*
1025 * Request may not have originated from ll_rw_blk. if not,
1026 * it didn't come out of our reserved rq pools
1027 */
49171e5c 1028 if (req->cmd_flags & REQ_ALLOCED) {
1da177e4 1029 int rw = rq_data_dir(req);
4aff5e23 1030 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1031
1da177e4 1032 BUG_ON(!list_empty(&req->queuelist));
9817064b 1033 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1034
1035 blk_free_request(q, req);
cb98fc8b 1036 freed_request(q, rw, priv);
1da177e4
LT
1037 }
1038}
6e39b69e
MC
1039EXPORT_SYMBOL_GPL(__blk_put_request);
1040
1da177e4
LT
1041void blk_put_request(struct request *req)
1042{
8922e16c 1043 unsigned long flags;
165125e1 1044 struct request_queue *q = req->q;
8922e16c 1045
1da177e4 1046 /*
8922e16c
TH
1047 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
1048 * following if (q) test.
1da177e4 1049 */
8922e16c 1050 if (q) {
1da177e4
LT
1051 spin_lock_irqsave(q->queue_lock, flags);
1052 __blk_put_request(q, req);
1053 spin_unlock_irqrestore(q->queue_lock, flags);
1054 }
1055}
1da177e4
LT
1056EXPORT_SYMBOL(blk_put_request);
1057
86db1e29 1058void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1059{
4aff5e23 1060 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
1061
1062 /*
1063 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1064 */
1065 if (bio_rw_ahead(bio) || bio_failfast(bio))
4aff5e23 1066 req->cmd_flags |= REQ_FAILFAST;
52d9e675
TH
1067
1068 /*
1069 * REQ_BARRIER implies no merging, but lets make it explicit
1070 */
1071 if (unlikely(bio_barrier(bio)))
4aff5e23 1072 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 1073
b31dc66a 1074 if (bio_sync(bio))
4aff5e23 1075 req->cmd_flags |= REQ_RW_SYNC;
5404bc7a
JA
1076 if (bio_rw_meta(bio))
1077 req->cmd_flags |= REQ_RW_META;
b31dc66a 1078
52d9e675
TH
1079 req->errors = 0;
1080 req->hard_sector = req->sector = bio->bi_sector;
52d9e675 1081 req->ioprio = bio_prio(bio);
52d9e675 1082 req->start_time = jiffies;
bc1c56fd 1083 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1084}
1085
165125e1 1086static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1087{
450991bc 1088 struct request *req;
51da90fc
JA
1089 int el_ret, nr_sectors, barrier, err;
1090 const unsigned short prio = bio_prio(bio);
1091 const int sync = bio_sync(bio);
7749a8d4 1092 int rw_flags;
1da177e4 1093
1da177e4 1094 nr_sectors = bio_sectors(bio);
1da177e4
LT
1095
1096 /*
1097 * low level driver can indicate that it wants pages above a
1098 * certain limit bounced to low memory (ie for highmem, or even
1099 * ISA dma in theory)
1100 */
1101 blk_queue_bounce(q, &bio);
1102
1da177e4 1103 barrier = bio_barrier(bio);
797e7dbb 1104 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1da177e4
LT
1105 err = -EOPNOTSUPP;
1106 goto end_io;
1107 }
1108
1da177e4
LT
1109 spin_lock_irq(q->queue_lock);
1110
450991bc 1111 if (unlikely(barrier) || elv_queue_empty(q))
1da177e4
LT
1112 goto get_rq;
1113
1114 el_ret = elv_merge(q, &req, bio);
1115 switch (el_ret) {
6728cb0e
JA
1116 case ELEVATOR_BACK_MERGE:
1117 BUG_ON(!rq_mergeable(req));
1da177e4 1118
6728cb0e
JA
1119 if (!ll_back_merge_fn(q, req, bio))
1120 break;
1da177e4 1121
6728cb0e 1122 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2056a782 1123
6728cb0e
JA
1124 req->biotail->bi_next = bio;
1125 req->biotail = bio;
1126 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1127 req->ioprio = ioprio_best(req->ioprio, prio);
1128 drive_stat_acct(req, 0);
1129 if (!attempt_back_merge(q, req))
1130 elv_merged_request(q, req, el_ret);
1131 goto out;
1da177e4 1132
6728cb0e
JA
1133 case ELEVATOR_FRONT_MERGE:
1134 BUG_ON(!rq_mergeable(req));
1da177e4 1135
6728cb0e
JA
1136 if (!ll_front_merge_fn(q, req, bio))
1137 break;
1da177e4 1138
6728cb0e 1139 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2056a782 1140
6728cb0e
JA
1141 bio->bi_next = req->bio;
1142 req->bio = bio;
1da177e4 1143
6728cb0e
JA
1144 /*
1145 * may not be valid. if the low level driver said
1146 * it didn't need a bounce buffer then it better
1147 * not touch req->buffer either...
1148 */
1149 req->buffer = bio_data(bio);
1150 req->current_nr_sectors = bio_cur_sectors(bio);
1151 req->hard_cur_sectors = req->current_nr_sectors;
1152 req->sector = req->hard_sector = bio->bi_sector;
1153 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1154 req->ioprio = ioprio_best(req->ioprio, prio);
1155 drive_stat_acct(req, 0);
1156 if (!attempt_front_merge(q, req))
1157 elv_merged_request(q, req, el_ret);
1158 goto out;
1159
1160 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1161 default:
1162 ;
1da177e4
LT
1163 }
1164
450991bc 1165get_rq:
7749a8d4
JA
1166 /*
1167 * This sync check and mask will be re-done in init_request_from_bio(),
1168 * but we need to set it earlier to expose the sync flag to the
1169 * rq allocator and io schedulers.
1170 */
1171 rw_flags = bio_data_dir(bio);
1172 if (sync)
1173 rw_flags |= REQ_RW_SYNC;
1174
1da177e4 1175 /*
450991bc 1176 * Grab a free request. This is might sleep but can not fail.
d6344532 1177 * Returns with the queue unlocked.
450991bc 1178 */
7749a8d4 1179 req = get_request_wait(q, rw_flags, bio);
d6344532 1180
450991bc
NP
1181 /*
1182 * After dropping the lock and possibly sleeping here, our request
1183 * may now be mergeable after it had proven unmergeable (above).
1184 * We don't worry about that case for efficiency. It won't happen
1185 * often, and the elevators are able to handle it.
1da177e4 1186 */
52d9e675 1187 init_request_from_bio(req, bio);
1da177e4 1188
450991bc
NP
1189 spin_lock_irq(q->queue_lock);
1190 if (elv_queue_empty(q))
1191 blk_plug_device(q);
1da177e4
LT
1192 add_request(q, req);
1193out:
4a534f93 1194 if (sync)
1da177e4
LT
1195 __generic_unplug_device(q);
1196
1197 spin_unlock_irq(q->queue_lock);
1198 return 0;
1199
1200end_io:
6712ecf8 1201 bio_endio(bio, err);
1da177e4
LT
1202 return 0;
1203}
1204
1205/*
1206 * If bio->bi_dev is a partition, remap the location
1207 */
1208static inline void blk_partition_remap(struct bio *bio)
1209{
1210 struct block_device *bdev = bio->bi_bdev;
1211
bf2de6f5 1212 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1213 struct hd_struct *p = bdev->bd_part;
1214
1da177e4
LT
1215 bio->bi_sector += p->start_sect;
1216 bio->bi_bdev = bdev->bd_contains;
c7149d6b
AB
1217
1218 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
1219 bdev->bd_dev, bio->bi_sector,
1220 bio->bi_sector - p->start_sect);
1da177e4
LT
1221 }
1222}
1223
1da177e4
LT
1224static void handle_bad_sector(struct bio *bio)
1225{
1226 char b[BDEVNAME_SIZE];
1227
1228 printk(KERN_INFO "attempt to access beyond end of device\n");
1229 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1230 bdevname(bio->bi_bdev, b),
1231 bio->bi_rw,
1232 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1233 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1234
1235 set_bit(BIO_EOF, &bio->bi_flags);
1236}
1237
c17bb495
AM
1238#ifdef CONFIG_FAIL_MAKE_REQUEST
1239
1240static DECLARE_FAULT_ATTR(fail_make_request);
1241
1242static int __init setup_fail_make_request(char *str)
1243{
1244 return setup_fault_attr(&fail_make_request, str);
1245}
1246__setup("fail_make_request=", setup_fail_make_request);
1247
1248static int should_fail_request(struct bio *bio)
1249{
1250 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
1251 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
1252 return should_fail(&fail_make_request, bio->bi_size);
1253
1254 return 0;
1255}
1256
1257static int __init fail_make_request_debugfs(void)
1258{
1259 return init_fault_attr_dentries(&fail_make_request,
1260 "fail_make_request");
1261}
1262
1263late_initcall(fail_make_request_debugfs);
1264
1265#else /* CONFIG_FAIL_MAKE_REQUEST */
1266
1267static inline int should_fail_request(struct bio *bio)
1268{
1269 return 0;
1270}
1271
1272#endif /* CONFIG_FAIL_MAKE_REQUEST */
1273
c07e2b41
JA
1274/*
1275 * Check whether this bio extends beyond the end of the device.
1276 */
1277static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1278{
1279 sector_t maxsector;
1280
1281 if (!nr_sectors)
1282 return 0;
1283
1284 /* Test device or partition size, when known. */
1285 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1286 if (maxsector) {
1287 sector_t sector = bio->bi_sector;
1288
1289 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1290 /*
1291 * This may well happen - the kernel calls bread()
1292 * without checking the size of the device, e.g., when
1293 * mounting a device.
1294 */
1295 handle_bad_sector(bio);
1296 return 1;
1297 }
1298 }
1299
1300 return 0;
1301}
1302
1da177e4
LT
1303/**
1304 * generic_make_request: hand a buffer to its device driver for I/O
1305 * @bio: The bio describing the location in memory and on the device.
1306 *
1307 * generic_make_request() is used to make I/O requests of block
1308 * devices. It is passed a &struct bio, which describes the I/O that needs
1309 * to be done.
1310 *
1311 * generic_make_request() does not return any status. The
1312 * success/failure status of the request, along with notification of
1313 * completion, is delivered asynchronously through the bio->bi_end_io
1314 * function described (one day) else where.
1315 *
1316 * The caller of generic_make_request must make sure that bi_io_vec
1317 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1318 * set to describe the device address, and the
1319 * bi_end_io and optionally bi_private are set to describe how
1320 * completion notification should be signaled.
1321 *
1322 * generic_make_request and the drivers it calls may use bi_next if this
1323 * bio happens to be merged with someone else, and may change bi_dev and
1324 * bi_sector for remaps as it sees fit. So the values of these fields
1325 * should NOT be depended on after the call to generic_make_request.
1326 */
d89d8796 1327static inline void __generic_make_request(struct bio *bio)
1da177e4 1328{
165125e1 1329 struct request_queue *q;
5ddfe969 1330 sector_t old_sector;
1da177e4 1331 int ret, nr_sectors = bio_sectors(bio);
2056a782 1332 dev_t old_dev;
51fd77bd 1333 int err = -EIO;
1da177e4
LT
1334
1335 might_sleep();
1da177e4 1336
c07e2b41
JA
1337 if (bio_check_eod(bio, nr_sectors))
1338 goto end_io;
1da177e4
LT
1339
1340 /*
1341 * Resolve the mapping until finished. (drivers are
1342 * still free to implement/resolve their own stacking
1343 * by explicitly returning 0)
1344 *
1345 * NOTE: we don't repeat the blk_size check for each new device.
1346 * Stacking drivers are expected to know what they are doing.
1347 */
5ddfe969 1348 old_sector = -1;
2056a782 1349 old_dev = 0;
1da177e4
LT
1350 do {
1351 char b[BDEVNAME_SIZE];
1352
1353 q = bdev_get_queue(bio->bi_bdev);
1354 if (!q) {
1355 printk(KERN_ERR
1356 "generic_make_request: Trying to access "
1357 "nonexistent block-device %s (%Lu)\n",
1358 bdevname(bio->bi_bdev, b),
1359 (long long) bio->bi_sector);
1360end_io:
51fd77bd 1361 bio_endio(bio, err);
1da177e4
LT
1362 break;
1363 }
1364
4fa253f3 1365 if (unlikely(nr_sectors > q->max_hw_sectors)) {
6728cb0e 1366 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1da177e4
LT
1367 bdevname(bio->bi_bdev, b),
1368 bio_sectors(bio),
1369 q->max_hw_sectors);
1370 goto end_io;
1371 }
1372
fde6ad22 1373 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1374 goto end_io;
1375
c17bb495
AM
1376 if (should_fail_request(bio))
1377 goto end_io;
1378
1da177e4
LT
1379 /*
1380 * If this device has partitions, remap block n
1381 * of partition p to block n+start(p) of the disk.
1382 */
1383 blk_partition_remap(bio);
1384
5ddfe969 1385 if (old_sector != -1)
4fa253f3 1386 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
5ddfe969 1387 old_sector);
2056a782
JA
1388
1389 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
1390
5ddfe969 1391 old_sector = bio->bi_sector;
2056a782
JA
1392 old_dev = bio->bi_bdev->bd_dev;
1393
c07e2b41
JA
1394 if (bio_check_eod(bio, nr_sectors))
1395 goto end_io;
51fd77bd
JA
1396 if (bio_empty_barrier(bio) && !q->prepare_flush_fn) {
1397 err = -EOPNOTSUPP;
1398 goto end_io;
1399 }
5ddfe969 1400
1da177e4
LT
1401 ret = q->make_request_fn(q, bio);
1402 } while (ret);
1403}
1404
d89d8796
NB
1405/*
1406 * We only want one ->make_request_fn to be active at a time,
1407 * else stack usage with stacked devices could be a problem.
1408 * So use current->bio_{list,tail} to keep a list of requests
1409 * submited by a make_request_fn function.
1410 * current->bio_tail is also used as a flag to say if
1411 * generic_make_request is currently active in this task or not.
1412 * If it is NULL, then no make_request is active. If it is non-NULL,
1413 * then a make_request is active, and new requests should be added
1414 * at the tail
1415 */
1416void generic_make_request(struct bio *bio)
1417{
1418 if (current->bio_tail) {
1419 /* make_request is active */
1420 *(current->bio_tail) = bio;
1421 bio->bi_next = NULL;
1422 current->bio_tail = &bio->bi_next;
1423 return;
1424 }
1425 /* following loop may be a bit non-obvious, and so deserves some
1426 * explanation.
1427 * Before entering the loop, bio->bi_next is NULL (as all callers
1428 * ensure that) so we have a list with a single bio.
1429 * We pretend that we have just taken it off a longer list, so
1430 * we assign bio_list to the next (which is NULL) and bio_tail
1431 * to &bio_list, thus initialising the bio_list of new bios to be
1432 * added. __generic_make_request may indeed add some more bios
1433 * through a recursive call to generic_make_request. If it
1434 * did, we find a non-NULL value in bio_list and re-enter the loop
1435 * from the top. In this case we really did just take the bio
1436 * of the top of the list (no pretending) and so fixup bio_list and
1437 * bio_tail or bi_next, and call into __generic_make_request again.
1438 *
1439 * The loop was structured like this to make only one call to
1440 * __generic_make_request (which is important as it is large and
1441 * inlined) and to keep the structure simple.
1442 */
1443 BUG_ON(bio->bi_next);
1444 do {
1445 current->bio_list = bio->bi_next;
1446 if (bio->bi_next == NULL)
1447 current->bio_tail = &current->bio_list;
1448 else
1449 bio->bi_next = NULL;
1450 __generic_make_request(bio);
1451 bio = current->bio_list;
1452 } while (bio);
1453 current->bio_tail = NULL; /* deactivate */
1454}
1da177e4
LT
1455EXPORT_SYMBOL(generic_make_request);
1456
1457/**
1458 * submit_bio: submit a bio to the block device layer for I/O
1459 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1460 * @bio: The &struct bio which describes the I/O
1461 *
1462 * submit_bio() is very similar in purpose to generic_make_request(), and
1463 * uses that function to do most of the work. Both are fairly rough
1464 * interfaces, @bio must be presetup and ready for I/O.
1465 *
1466 */
1467void submit_bio(int rw, struct bio *bio)
1468{
1469 int count = bio_sectors(bio);
1470
22e2c507 1471 bio->bi_rw |= rw;
1da177e4 1472
bf2de6f5
JA
1473 /*
1474 * If it's a regular read/write or a barrier with data attached,
1475 * go through the normal accounting stuff before submission.
1476 */
1477 if (!bio_empty_barrier(bio)) {
1478
1479 BIO_BUG_ON(!bio->bi_size);
1480 BIO_BUG_ON(!bio->bi_io_vec);
1481
1482 if (rw & WRITE) {
1483 count_vm_events(PGPGOUT, count);
1484 } else {
1485 task_io_account_read(bio->bi_size);
1486 count_vm_events(PGPGIN, count);
1487 }
1488
1489 if (unlikely(block_dump)) {
1490 char b[BDEVNAME_SIZE];
1491 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 1492 current->comm, task_pid_nr(current),
bf2de6f5
JA
1493 (rw & WRITE) ? "WRITE" : "READ",
1494 (unsigned long long)bio->bi_sector,
6728cb0e 1495 bdevname(bio->bi_bdev, b));
bf2de6f5 1496 }
1da177e4
LT
1497 }
1498
1499 generic_make_request(bio);
1500}
1da177e4
LT
1501EXPORT_SYMBOL(submit_bio);
1502
3bcddeac
KU
1503/**
1504 * __end_that_request_first - end I/O on a request
1505 * @req: the request being processed
5450d3e1 1506 * @error: 0 for success, < 0 for error
3bcddeac
KU
1507 * @nr_bytes: number of bytes to complete
1508 *
1509 * Description:
1510 * Ends I/O on a number of bytes attached to @req, and sets it up
1511 * for the next range of segments (if any) in the cluster.
1512 *
1513 * Return:
1514 * 0 - we are done with this request, call end_that_request_last()
1515 * 1 - still buffers pending for this request
1516 **/
5450d3e1 1517static int __end_that_request_first(struct request *req, int error,
1da177e4
LT
1518 int nr_bytes)
1519{
5450d3e1 1520 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
1521 struct bio *bio;
1522
2056a782
JA
1523 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
1524
1da177e4
LT
1525 /*
1526 * for a REQ_BLOCK_PC request, we want to carry any eventual
1527 * sense key with us all the way through
1528 */
1529 if (!blk_pc_request(req))
1530 req->errors = 0;
1531
6728cb0e
JA
1532 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1533 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4
LT
1534 req->rq_disk ? req->rq_disk->disk_name : "?",
1535 (unsigned long long)req->sector);
1536 }
1537
d72d904a 1538 if (blk_fs_request(req) && req->rq_disk) {
a362357b
JA
1539 const int rw = rq_data_dir(req);
1540
6f2576af
JM
1541 all_stat_add(req->rq_disk, sectors[rw],
1542 nr_bytes >> 9, req->sector);
d72d904a
JA
1543 }
1544
1da177e4
LT
1545 total_bytes = bio_nbytes = 0;
1546 while ((bio = req->bio) != NULL) {
1547 int nbytes;
1548
bf2de6f5
JA
1549 /*
1550 * For an empty barrier request, the low level driver must
1551 * store a potential error location in ->sector. We pass
1552 * that back up in ->bi_sector.
1553 */
1554 if (blk_empty_barrier(req))
1555 bio->bi_sector = req->sector;
1556
1da177e4
LT
1557 if (nr_bytes >= bio->bi_size) {
1558 req->bio = bio->bi_next;
1559 nbytes = bio->bi_size;
5bb23a68 1560 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
1561 next_idx = 0;
1562 bio_nbytes = 0;
1563 } else {
1564 int idx = bio->bi_idx + next_idx;
1565
1566 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1567 blk_dump_rq_flags(req, "__end_that");
6728cb0e 1568 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
24c03d47 1569 __func__, bio->bi_idx, bio->bi_vcnt);
1da177e4
LT
1570 break;
1571 }
1572
1573 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1574 BIO_BUG_ON(nbytes > bio->bi_size);
1575
1576 /*
1577 * not a complete bvec done
1578 */
1579 if (unlikely(nbytes > nr_bytes)) {
1580 bio_nbytes += nr_bytes;
1581 total_bytes += nr_bytes;
1582 break;
1583 }
1584
1585 /*
1586 * advance to the next vector
1587 */
1588 next_idx++;
1589 bio_nbytes += nbytes;
1590 }
1591
1592 total_bytes += nbytes;
1593 nr_bytes -= nbytes;
1594
6728cb0e
JA
1595 bio = req->bio;
1596 if (bio) {
1da177e4
LT
1597 /*
1598 * end more in this run, or just return 'not-done'
1599 */
1600 if (unlikely(nr_bytes <= 0))
1601 break;
1602 }
1603 }
1604
1605 /*
1606 * completely done
1607 */
1608 if (!req->bio)
1609 return 0;
1610
1611 /*
1612 * if the request wasn't completed, update state
1613 */
1614 if (bio_nbytes) {
5bb23a68 1615 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
1616 bio->bi_idx += next_idx;
1617 bio_iovec(bio)->bv_offset += nr_bytes;
1618 bio_iovec(bio)->bv_len -= nr_bytes;
1619 }
1620
1621 blk_recalc_rq_sectors(req, total_bytes >> 9);
1622 blk_recalc_rq_segments(req);
1623 return 1;
1624}
1625
ff856bad
JA
1626/*
1627 * splice the completion data to a local structure and hand off to
1628 * process_completion_queue() to complete the requests
1629 */
1630static void blk_done_softirq(struct softirq_action *h)
1631{
626ab0e6 1632 struct list_head *cpu_list, local_list;
ff856bad
JA
1633
1634 local_irq_disable();
1635 cpu_list = &__get_cpu_var(blk_cpu_done);
626ab0e6 1636 list_replace_init(cpu_list, &local_list);
ff856bad
JA
1637 local_irq_enable();
1638
1639 while (!list_empty(&local_list)) {
6728cb0e 1640 struct request *rq;
ff856bad 1641
6728cb0e 1642 rq = list_entry(local_list.next, struct request, donelist);
ff856bad
JA
1643 list_del_init(&rq->donelist);
1644 rq->q->softirq_done_fn(rq);
1645 }
1646}
1647
6728cb0e
JA
1648static int __cpuinit blk_cpu_notify(struct notifier_block *self,
1649 unsigned long action, void *hcpu)
ff856bad
JA
1650{
1651 /*
1652 * If a CPU goes away, splice its entries to the current CPU
1653 * and trigger a run of the softirq
1654 */
8bb78442 1655 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
ff856bad
JA
1656 int cpu = (unsigned long) hcpu;
1657
1658 local_irq_disable();
1659 list_splice_init(&per_cpu(blk_cpu_done, cpu),
1660 &__get_cpu_var(blk_cpu_done));
1661 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1662 local_irq_enable();
1663 }
1664
1665 return NOTIFY_OK;
1666}
1667
1668
db47d475 1669static struct notifier_block blk_cpu_notifier __cpuinitdata = {
ff856bad
JA
1670 .notifier_call = blk_cpu_notify,
1671};
1672
ff856bad
JA
1673/**
1674 * blk_complete_request - end I/O on a request
1675 * @req: the request being processed
1676 *
1677 * Description:
1678 * Ends all I/O on a request. It does not handle partial completions,
d6e05edc 1679 * unless the driver actually implements this in its completion callback
4fa253f3 1680 * through requeueing. The actual completion happens out-of-order,
ff856bad
JA
1681 * through a softirq handler. The user must have registered a completion
1682 * callback through blk_queue_softirq_done().
1683 **/
1684
1685void blk_complete_request(struct request *req)
1686{
1687 struct list_head *cpu_list;
1688 unsigned long flags;
1689
1690 BUG_ON(!req->q->softirq_done_fn);
6728cb0e 1691
ff856bad
JA
1692 local_irq_save(flags);
1693
1694 cpu_list = &__get_cpu_var(blk_cpu_done);
1695 list_add_tail(&req->donelist, cpu_list);
1696 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1697
1698 local_irq_restore(flags);
1699}
ff856bad 1700EXPORT_SYMBOL(blk_complete_request);
6728cb0e 1701
1da177e4
LT
1702/*
1703 * queue lock must be held
1704 */
5450d3e1 1705static void end_that_request_last(struct request *req, int error)
1da177e4
LT
1706{
1707 struct gendisk *disk = req->rq_disk;
8ffdc655 1708
b8286239
KU
1709 if (blk_rq_tagged(req))
1710 blk_queue_end_tag(req->q, req);
1711
1712 if (blk_queued_rq(req))
1713 blkdev_dequeue_request(req);
1da177e4
LT
1714
1715 if (unlikely(laptop_mode) && blk_fs_request(req))
1716 laptop_io_completion();
1717
fd0ff8aa
JA
1718 /*
1719 * Account IO completion. bar_rq isn't accounted as a normal
1720 * IO on queueing nor completion. Accounting the containing
1721 * request is enough.
1722 */
1723 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1da177e4 1724 unsigned long duration = jiffies - req->start_time;
a362357b 1725 const int rw = rq_data_dir(req);
6f2576af 1726 struct hd_struct *part = get_part(disk, req->sector);
a362357b 1727
6f2576af
JM
1728 __all_stat_inc(disk, ios[rw], req->sector);
1729 __all_stat_add(disk, ticks[rw], duration, req->sector);
1da177e4
LT
1730 disk_round_stats(disk);
1731 disk->in_flight--;
6f2576af
JM
1732 if (part) {
1733 part_round_stats(part);
1734 part->in_flight--;
1735 }
1da177e4 1736 }
b8286239 1737
1da177e4 1738 if (req->end_io)
8ffdc655 1739 req->end_io(req, error);
b8286239
KU
1740 else {
1741 if (blk_bidi_rq(req))
1742 __blk_put_request(req->next_rq->q, req->next_rq);
1743
1da177e4 1744 __blk_put_request(req->q, req);
b8286239 1745 }
1da177e4
LT
1746}
1747
a0cd1285 1748static inline void __end_request(struct request *rq, int uptodate,
9e6e39f2 1749 unsigned int nr_bytes)
1da177e4 1750{
9e6e39f2
KU
1751 int error = 0;
1752
1753 if (uptodate <= 0)
1754 error = uptodate ? uptodate : -EIO;
1755
1756 __blk_end_request(rq, error, nr_bytes);
1da177e4
LT
1757}
1758
3b11313a
KU
1759/**
1760 * blk_rq_bytes - Returns bytes left to complete in the entire request
5d87a052 1761 * @rq: the request being processed
3b11313a
KU
1762 **/
1763unsigned int blk_rq_bytes(struct request *rq)
a0cd1285
JA
1764{
1765 if (blk_fs_request(rq))
1766 return rq->hard_nr_sectors << 9;
1767
1768 return rq->data_len;
1769}
3b11313a
KU
1770EXPORT_SYMBOL_GPL(blk_rq_bytes);
1771
1772/**
1773 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
5d87a052 1774 * @rq: the request being processed
3b11313a
KU
1775 **/
1776unsigned int blk_rq_cur_bytes(struct request *rq)
1777{
1778 if (blk_fs_request(rq))
1779 return rq->current_nr_sectors << 9;
1780
1781 if (rq->bio)
1782 return rq->bio->bi_size;
1783
1784 return rq->data_len;
1785}
1786EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
a0cd1285
JA
1787
1788/**
1789 * end_queued_request - end all I/O on a queued request
1790 * @rq: the request being processed
1791 * @uptodate: error value or 0/1 uptodate flag
1792 *
1793 * Description:
1794 * Ends all I/O on a request, and removes it from the block layer queues.
1795 * Not suitable for normal IO completion, unless the driver still has
1796 * the request attached to the block layer.
1797 *
1798 **/
1799void end_queued_request(struct request *rq, int uptodate)
1800{
9e6e39f2 1801 __end_request(rq, uptodate, blk_rq_bytes(rq));
a0cd1285
JA
1802}
1803EXPORT_SYMBOL(end_queued_request);
1804
1805/**
1806 * end_dequeued_request - end all I/O on a dequeued request
1807 * @rq: the request being processed
1808 * @uptodate: error value or 0/1 uptodate flag
1809 *
1810 * Description:
1811 * Ends all I/O on a request. The request must already have been
1812 * dequeued using blkdev_dequeue_request(), as is normally the case
1813 * for most drivers.
1814 *
1815 **/
1816void end_dequeued_request(struct request *rq, int uptodate)
1817{
9e6e39f2 1818 __end_request(rq, uptodate, blk_rq_bytes(rq));
a0cd1285
JA
1819}
1820EXPORT_SYMBOL(end_dequeued_request);
1821
1822
1823/**
1824 * end_request - end I/O on the current segment of the request
8f731f7d 1825 * @req: the request being processed
a0cd1285
JA
1826 * @uptodate: error value or 0/1 uptodate flag
1827 *
1828 * Description:
1829 * Ends I/O on the current segment of a request. If that is the only
1830 * remaining segment, the request is also completed and freed.
1831 *
1832 * This is a remnant of how older block drivers handled IO completions.
1833 * Modern drivers typically end IO on the full request in one go, unless
1834 * they have a residual value to account for. For that case this function
1835 * isn't really useful, unless the residual just happens to be the
1836 * full current segment. In other words, don't use this function in new
1837 * code. Either use end_request_completely(), or the
1838 * end_that_request_chunk() (along with end_that_request_last()) for
1839 * partial completions.
1840 *
1841 **/
1842void end_request(struct request *req, int uptodate)
1843{
9e6e39f2 1844 __end_request(req, uptodate, req->hard_cur_sectors << 9);
a0cd1285 1845}
1da177e4
LT
1846EXPORT_SYMBOL(end_request);
1847
336cdb40 1848/**
e19a3ab0
KU
1849 * blk_end_io - Generic end_io function to complete a request.
1850 * @rq: the request being processed
1851 * @error: 0 for success, < 0 for error
e3a04fe3
KU
1852 * @nr_bytes: number of bytes to complete @rq
1853 * @bidi_bytes: number of bytes to complete @rq->next_rq
e19a3ab0
KU
1854 * @drv_callback: function called between completion of bios in the request
1855 * and completion of the request.
1856 * If the callback returns non 0, this helper returns without
1857 * completion of the request.
336cdb40
KU
1858 *
1859 * Description:
e3a04fe3 1860 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
336cdb40
KU
1861 * If @rq has leftover, sets it up for the next range of segments.
1862 *
1863 * Return:
1864 * 0 - we are done with this request
e19a3ab0 1865 * 1 - this request is not freed yet, it still has pending buffers.
336cdb40 1866 **/
22b13210
JA
1867static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1868 unsigned int bidi_bytes,
1869 int (drv_callback)(struct request *))
336cdb40
KU
1870{
1871 struct request_queue *q = rq->q;
1872 unsigned long flags = 0UL;
336cdb40
KU
1873
1874 if (blk_fs_request(rq) || blk_pc_request(rq)) {
5450d3e1 1875 if (__end_that_request_first(rq, error, nr_bytes))
336cdb40 1876 return 1;
e3a04fe3
KU
1877
1878 /* Bidi request must be completed as a whole */
1879 if (blk_bidi_rq(rq) &&
5450d3e1 1880 __end_that_request_first(rq->next_rq, error, bidi_bytes))
e3a04fe3 1881 return 1;
336cdb40
KU
1882 }
1883
e19a3ab0
KU
1884 /* Special feature for tricky drivers */
1885 if (drv_callback && drv_callback(rq))
1886 return 1;
1887
336cdb40
KU
1888 add_disk_randomness(rq->rq_disk);
1889
1890 spin_lock_irqsave(q->queue_lock, flags);
b8286239 1891 end_that_request_last(rq, error);
336cdb40
KU
1892 spin_unlock_irqrestore(q->queue_lock, flags);
1893
1894 return 0;
1895}
e19a3ab0
KU
1896
1897/**
1898 * blk_end_request - Helper function for drivers to complete the request.
1899 * @rq: the request being processed
1900 * @error: 0 for success, < 0 for error
1901 * @nr_bytes: number of bytes to complete
1902 *
1903 * Description:
1904 * Ends I/O on a number of bytes attached to @rq.
1905 * If @rq has leftover, sets it up for the next range of segments.
1906 *
1907 * Return:
1908 * 0 - we are done with this request
1909 * 1 - still buffers pending for this request
1910 **/
22b13210 1911int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 1912{
e3a04fe3 1913 return blk_end_io(rq, error, nr_bytes, 0, NULL);
e19a3ab0 1914}
336cdb40
KU
1915EXPORT_SYMBOL_GPL(blk_end_request);
1916
1917/**
1918 * __blk_end_request - Helper function for drivers to complete the request.
1919 * @rq: the request being processed
1920 * @error: 0 for success, < 0 for error
1921 * @nr_bytes: number of bytes to complete
1922 *
1923 * Description:
1924 * Must be called with queue lock held unlike blk_end_request().
1925 *
1926 * Return:
1927 * 0 - we are done with this request
1928 * 1 - still buffers pending for this request
1929 **/
22b13210 1930int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
336cdb40 1931{
336cdb40 1932 if (blk_fs_request(rq) || blk_pc_request(rq)) {
5450d3e1 1933 if (__end_that_request_first(rq, error, nr_bytes))
336cdb40
KU
1934 return 1;
1935 }
1936
1937 add_disk_randomness(rq->rq_disk);
1938
b8286239 1939 end_that_request_last(rq, error);
336cdb40
KU
1940
1941 return 0;
1942}
1943EXPORT_SYMBOL_GPL(__blk_end_request);
1944
e3a04fe3
KU
1945/**
1946 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1947 * @rq: the bidi request being processed
1948 * @error: 0 for success, < 0 for error
1949 * @nr_bytes: number of bytes to complete @rq
1950 * @bidi_bytes: number of bytes to complete @rq->next_rq
1951 *
1952 * Description:
1953 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1954 *
1955 * Return:
1956 * 0 - we are done with this request
1957 * 1 - still buffers pending for this request
1958 **/
22b13210
JA
1959int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
1960 unsigned int bidi_bytes)
e3a04fe3
KU
1961{
1962 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
1963}
1964EXPORT_SYMBOL_GPL(blk_end_bidi_request);
1965
e19a3ab0
KU
1966/**
1967 * blk_end_request_callback - Special helper function for tricky drivers
1968 * @rq: the request being processed
1969 * @error: 0 for success, < 0 for error
1970 * @nr_bytes: number of bytes to complete
1971 * @drv_callback: function called between completion of bios in the request
1972 * and completion of the request.
1973 * If the callback returns non 0, this helper returns without
1974 * completion of the request.
1975 *
1976 * Description:
1977 * Ends I/O on a number of bytes attached to @rq.
1978 * If @rq has leftover, sets it up for the next range of segments.
1979 *
1980 * This special helper function is used only for existing tricky drivers.
1981 * (e.g. cdrom_newpc_intr() of ide-cd)
1982 * This interface will be removed when such drivers are rewritten.
1983 * Don't use this interface in other places anymore.
1984 *
1985 * Return:
1986 * 0 - we are done with this request
1987 * 1 - this request is not freed yet.
1988 * this request still has pending buffers or
1989 * the driver doesn't want to finish this request yet.
1990 **/
22b13210
JA
1991int blk_end_request_callback(struct request *rq, int error,
1992 unsigned int nr_bytes,
e19a3ab0
KU
1993 int (drv_callback)(struct request *))
1994{
e3a04fe3 1995 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
e19a3ab0
KU
1996}
1997EXPORT_SYMBOL_GPL(blk_end_request_callback);
1998
86db1e29
JA
1999void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2000 struct bio *bio)
1da177e4 2001{
4aff5e23
JA
2002 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
2003 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4
LT
2004
2005 rq->nr_phys_segments = bio_phys_segments(q, bio);
2006 rq->nr_hw_segments = bio_hw_segments(q, bio);
2007 rq->current_nr_sectors = bio_cur_sectors(bio);
2008 rq->hard_cur_sectors = rq->current_nr_sectors;
2009 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2010 rq->buffer = bio_data(bio);
0e75f906 2011 rq->data_len = bio->bi_size;
1da177e4
LT
2012
2013 rq->bio = rq->biotail = bio;
1da177e4 2014
66846572
N
2015 if (bio->bi_bdev)
2016 rq->rq_disk = bio->bi_bdev->bd_disk;
2017}
1da177e4
LT
2018
2019int kblockd_schedule_work(struct work_struct *work)
2020{
2021 return queue_work(kblockd_workqueue, work);
2022}
1da177e4
LT
2023EXPORT_SYMBOL(kblockd_schedule_work);
2024
19a75d83 2025void kblockd_flush_work(struct work_struct *work)
1da177e4 2026{
28e53bdd 2027 cancel_work_sync(work);
1da177e4 2028}
19a75d83 2029EXPORT_SYMBOL(kblockd_flush_work);
1da177e4
LT
2030
2031int __init blk_dev_init(void)
2032{
ff856bad
JA
2033 int i;
2034
1da177e4
LT
2035 kblockd_workqueue = create_workqueue("kblockd");
2036 if (!kblockd_workqueue)
2037 panic("Failed to create kblockd\n");
2038
2039 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2040 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2041
8324aa91 2042 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2043 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2044
0a945022 2045 for_each_possible_cpu(i)
ff856bad
JA
2046 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
2047
2048 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
5a67e4c5 2049 register_hotcpu_notifier(&blk_cpu_notifier);
ff856bad 2050
d38ecf93 2051 return 0;
1da177e4 2052}
1da177e4 2053