]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-core.c
block: Clean up special command handling logic
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
e3c78ca5 31#include <linux/delay.h>
aaf7c680 32#include <linux/ratelimit.h>
55782138
LZ
33
34#define CREATE_TRACE_POINTS
35#include <trace/events/block.h>
1da177e4 36
8324aa91 37#include "blk.h"
5efd6113 38#include "blk-cgroup.h"
8324aa91 39
d07335e5 40EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 41EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 42EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 43
a73f730d
TH
44DEFINE_IDA(blk_queue_ida);
45
1da177e4
LT
46/*
47 * For the allocated request tables
48 */
5ece6c52 49static struct kmem_cache *request_cachep;
1da177e4
LT
50
51/*
52 * For queue allocation
53 */
6728cb0e 54struct kmem_cache *blk_requestq_cachep;
1da177e4 55
1da177e4
LT
56/*
57 * Controlling structure to kblockd
58 */
ff856bad 59static struct workqueue_struct *kblockd_workqueue;
1da177e4 60
26b8256e
JA
61static void drive_stat_acct(struct request *rq, int new_io)
62{
28f13702 63 struct hd_struct *part;
26b8256e 64 int rw = rq_data_dir(rq);
c9959059 65 int cpu;
26b8256e 66
c2553b58 67 if (!blk_do_io_stat(rq))
26b8256e
JA
68 return;
69
074a7aca 70 cpu = part_stat_lock();
c9959059 71
09e099d4
JM
72 if (!new_io) {
73 part = rq->part;
074a7aca 74 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
75 } else {
76 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 77 if (!hd_struct_try_get(part)) {
09e099d4
JM
78 /*
79 * The partition is already being removed,
80 * the request will be accounted on the disk only
81 *
82 * We take a reference on disk->part0 although that
83 * partition will never be deleted, so we can treat
84 * it as any other partition.
85 */
86 part = &rq->rq_disk->part0;
6c23a968 87 hd_struct_get(part);
09e099d4 88 }
074a7aca 89 part_round_stats(cpu, part);
316d315b 90 part_inc_in_flight(part, rw);
09e099d4 91 rq->part = part;
26b8256e 92 }
e71bf0d0 93
074a7aca 94 part_stat_unlock();
26b8256e
JA
95}
96
8324aa91 97void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
98{
99 int nr;
100
101 nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 if (nr > q->nr_requests)
103 nr = q->nr_requests;
104 q->nr_congestion_on = nr;
105
106 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107 if (nr < 1)
108 nr = 1;
109 q->nr_congestion_off = nr;
110}
111
1da177e4
LT
112/**
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114 * @bdev: device
115 *
116 * Locates the passed device's request queue and returns the address of its
117 * backing_dev_info
118 *
119 * Will return NULL if the request queue cannot be located.
120 */
121struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
122{
123 struct backing_dev_info *ret = NULL;
165125e1 124 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
125
126 if (q)
127 ret = &q->backing_dev_info;
128 return ret;
129}
1da177e4
LT
130EXPORT_SYMBOL(blk_get_backing_dev_info);
131
2a4aa30c 132void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 133{
1afb20f3
FT
134 memset(rq, 0, sizeof(*rq));
135
1da177e4 136 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 137 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 138 rq->cpu = -1;
63a71386 139 rq->q = q;
a2dec7b3 140 rq->__sector = (sector_t) -1;
2e662b65
JA
141 INIT_HLIST_NODE(&rq->hash);
142 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 143 rq->cmd = rq->__cmd;
e2494e1b 144 rq->cmd_len = BLK_MAX_CDB;
63a71386 145 rq->tag = -1;
1da177e4 146 rq->ref_count = 1;
b243ddcb 147 rq->start_time = jiffies;
9195291e 148 set_start_time_ns(rq);
09e099d4 149 rq->part = NULL;
1da177e4 150}
2a4aa30c 151EXPORT_SYMBOL(blk_rq_init);
1da177e4 152
5bb23a68
N
153static void req_bio_endio(struct request *rq, struct bio *bio,
154 unsigned int nbytes, int error)
1da177e4 155{
143a87f4
TH
156 if (error)
157 clear_bit(BIO_UPTODATE, &bio->bi_flags);
158 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
159 error = -EIO;
797e7dbb 160
143a87f4
TH
161 if (unlikely(nbytes > bio->bi_size)) {
162 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
163 __func__, nbytes, bio->bi_size);
164 nbytes = bio->bi_size;
5bb23a68 165 }
797e7dbb 166
143a87f4
TH
167 if (unlikely(rq->cmd_flags & REQ_QUIET))
168 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 169
143a87f4
TH
170 bio->bi_size -= nbytes;
171 bio->bi_sector += (nbytes >> 9);
7ba1ba12 172
143a87f4
TH
173 if (bio_integrity(bio))
174 bio_integrity_advance(bio, nbytes);
7ba1ba12 175
143a87f4
TH
176 /* don't actually finish bio if it's part of flush sequence */
177 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
178 bio_endio(bio, error);
1da177e4 179}
1da177e4 180
1da177e4
LT
181void blk_dump_rq_flags(struct request *rq, char *msg)
182{
183 int bit;
184
6728cb0e 185 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
186 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
187 rq->cmd_flags);
1da177e4 188
83096ebf
TH
189 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
190 (unsigned long long)blk_rq_pos(rq),
191 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 192 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 193 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 194
33659ebb 195 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 196 printk(KERN_INFO " cdb: ");
d34c87e4 197 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
198 printk("%02x ", rq->cmd[bit]);
199 printk("\n");
200 }
201}
1da177e4
LT
202EXPORT_SYMBOL(blk_dump_rq_flags);
203
3cca6dc1 204static void blk_delay_work(struct work_struct *work)
1da177e4 205{
3cca6dc1 206 struct request_queue *q;
1da177e4 207
3cca6dc1
JA
208 q = container_of(work, struct request_queue, delay_work.work);
209 spin_lock_irq(q->queue_lock);
24ecfbe2 210 __blk_run_queue(q);
3cca6dc1 211 spin_unlock_irq(q->queue_lock);
1da177e4 212}
1da177e4
LT
213
214/**
3cca6dc1
JA
215 * blk_delay_queue - restart queueing after defined interval
216 * @q: The &struct request_queue in question
217 * @msecs: Delay in msecs
1da177e4
LT
218 *
219 * Description:
3cca6dc1
JA
220 * Sometimes queueing needs to be postponed for a little while, to allow
221 * resources to come back. This function will make sure that queueing is
222 * restarted around the specified time.
223 */
224void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 225{
4521cc4e
JA
226 queue_delayed_work(kblockd_workqueue, &q->delay_work,
227 msecs_to_jiffies(msecs));
2ad8b1ef 228}
3cca6dc1 229EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 230
1da177e4
LT
231/**
232 * blk_start_queue - restart a previously stopped queue
165125e1 233 * @q: The &struct request_queue in question
1da177e4
LT
234 *
235 * Description:
236 * blk_start_queue() will clear the stop flag on the queue, and call
237 * the request_fn for the queue if it was in a stopped state when
238 * entered. Also see blk_stop_queue(). Queue lock must be held.
239 **/
165125e1 240void blk_start_queue(struct request_queue *q)
1da177e4 241{
a038e253
PBG
242 WARN_ON(!irqs_disabled());
243
75ad23bc 244 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 245 __blk_run_queue(q);
1da177e4 246}
1da177e4
LT
247EXPORT_SYMBOL(blk_start_queue);
248
249/**
250 * blk_stop_queue - stop a queue
165125e1 251 * @q: The &struct request_queue in question
1da177e4
LT
252 *
253 * Description:
254 * The Linux block layer assumes that a block driver will consume all
255 * entries on the request queue when the request_fn strategy is called.
256 * Often this will not happen, because of hardware limitations (queue
257 * depth settings). If a device driver gets a 'queue full' response,
258 * or if it simply chooses not to queue more I/O at one point, it can
259 * call this function to prevent the request_fn from being called until
260 * the driver has signalled it's ready to go again. This happens by calling
261 * blk_start_queue() to restart queue operations. Queue lock must be held.
262 **/
165125e1 263void blk_stop_queue(struct request_queue *q)
1da177e4 264{
ad3d9d7e 265 __cancel_delayed_work(&q->delay_work);
75ad23bc 266 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
267}
268EXPORT_SYMBOL(blk_stop_queue);
269
270/**
271 * blk_sync_queue - cancel any pending callbacks on a queue
272 * @q: the queue
273 *
274 * Description:
275 * The block layer may perform asynchronous callback activity
276 * on a queue, such as calling the unplug function after a timeout.
277 * A block device may call blk_sync_queue to ensure that any
278 * such activity is cancelled, thus allowing it to release resources
59c51591 279 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
280 * that its ->make_request_fn will not re-add plugging prior to calling
281 * this function.
282 *
da527770
VG
283 * This function does not cancel any asynchronous activity arising
284 * out of elevator or throttling code. That would require elevaotor_exit()
5efd6113 285 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 286 *
1da177e4
LT
287 */
288void blk_sync_queue(struct request_queue *q)
289{
70ed28b9 290 del_timer_sync(&q->timeout);
3cca6dc1 291 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
292}
293EXPORT_SYMBOL(blk_sync_queue);
294
295/**
80a4b58e 296 * __blk_run_queue - run a single device queue
1da177e4 297 * @q: The queue to run
80a4b58e
JA
298 *
299 * Description:
300 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 301 * held and interrupts disabled.
1da177e4 302 */
24ecfbe2 303void __blk_run_queue(struct request_queue *q)
1da177e4 304{
a538cd03
TH
305 if (unlikely(blk_queue_stopped(q)))
306 return;
307
c21e6beb 308 q->request_fn(q);
75ad23bc
NP
309}
310EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 311
24ecfbe2
CH
312/**
313 * blk_run_queue_async - run a single device queue in workqueue context
314 * @q: The queue to run
315 *
316 * Description:
317 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
318 * of us.
319 */
320void blk_run_queue_async(struct request_queue *q)
321{
3ec717b7
SL
322 if (likely(!blk_queue_stopped(q))) {
323 __cancel_delayed_work(&q->delay_work);
24ecfbe2 324 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
3ec717b7 325 }
24ecfbe2 326}
c21e6beb 327EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 328
75ad23bc
NP
329/**
330 * blk_run_queue - run a single device queue
331 * @q: The queue to run
80a4b58e
JA
332 *
333 * Description:
334 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 335 * May be used to restart queueing when a request has completed.
75ad23bc
NP
336 */
337void blk_run_queue(struct request_queue *q)
338{
339 unsigned long flags;
340
341 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 342 __blk_run_queue(q);
1da177e4
LT
343 spin_unlock_irqrestore(q->queue_lock, flags);
344}
345EXPORT_SYMBOL(blk_run_queue);
346
165125e1 347void blk_put_queue(struct request_queue *q)
483f4afc
AV
348{
349 kobject_put(&q->kobj);
350}
d86e0e83 351EXPORT_SYMBOL(blk_put_queue);
483f4afc 352
e3c78ca5
TH
353/**
354 * blk_drain_queue - drain requests from request_queue
355 * @q: queue to drain
c9a929dd 356 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 357 *
c9a929dd
TH
358 * Drain requests from @q. If @drain_all is set, all requests are drained.
359 * If not, only ELVPRIV requests are drained. The caller is responsible
360 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 361 */
c9a929dd 362void blk_drain_queue(struct request_queue *q, bool drain_all)
e3c78ca5 363{
458f27a9
AH
364 int i;
365
e3c78ca5 366 while (true) {
481a7d64 367 bool drain = false;
e3c78ca5
TH
368
369 spin_lock_irq(q->queue_lock);
370
b855b04a
TH
371 /*
372 * The caller might be trying to drain @q before its
373 * elevator is initialized.
374 */
375 if (q->elevator)
376 elv_drain_elevator(q);
377
5efd6113 378 blkcg_drain_queue(q);
e3c78ca5 379
4eabc941
TH
380 /*
381 * This function might be called on a queue which failed
b855b04a
TH
382 * driver init after queue creation or is not yet fully
383 * active yet. Some drivers (e.g. fd and loop) get unhappy
384 * in such cases. Kick queue iff dispatch queue has
385 * something on it and @q has request_fn set.
4eabc941 386 */
b855b04a 387 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 388 __blk_run_queue(q);
c9a929dd 389
8a5ecdd4 390 drain |= q->nr_rqs_elvpriv;
481a7d64
TH
391
392 /*
393 * Unfortunately, requests are queued at and tracked from
394 * multiple places and there's no single counter which can
395 * be drained. Check all the queues and counters.
396 */
397 if (drain_all) {
398 drain |= !list_empty(&q->queue_head);
399 for (i = 0; i < 2; i++) {
8a5ecdd4 400 drain |= q->nr_rqs[i];
481a7d64
TH
401 drain |= q->in_flight[i];
402 drain |= !list_empty(&q->flush_queue[i]);
403 }
404 }
e3c78ca5
TH
405
406 spin_unlock_irq(q->queue_lock);
407
481a7d64 408 if (!drain)
e3c78ca5
TH
409 break;
410 msleep(10);
411 }
458f27a9
AH
412
413 /*
414 * With queue marked dead, any woken up waiter will fail the
415 * allocation path, so the wakeup chaining is lost and we're
416 * left with hung waiters. We need to wake up those waiters.
417 */
418 if (q->request_fn) {
a051661c
TH
419 struct request_list *rl;
420
458f27a9 421 spin_lock_irq(q->queue_lock);
a051661c
TH
422
423 blk_queue_for_each_rl(rl, q)
424 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
425 wake_up_all(&rl->wait[i]);
426
458f27a9
AH
427 spin_unlock_irq(q->queue_lock);
428 }
e3c78ca5
TH
429}
430
d732580b
TH
431/**
432 * blk_queue_bypass_start - enter queue bypass mode
433 * @q: queue of interest
434 *
435 * In bypass mode, only the dispatch FIFO queue of @q is used. This
436 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 437 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
438 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
439 * inside queue or RCU read lock.
d732580b
TH
440 */
441void blk_queue_bypass_start(struct request_queue *q)
442{
b82d4b19
TH
443 bool drain;
444
d732580b 445 spin_lock_irq(q->queue_lock);
b82d4b19 446 drain = !q->bypass_depth++;
d732580b
TH
447 queue_flag_set(QUEUE_FLAG_BYPASS, q);
448 spin_unlock_irq(q->queue_lock);
449
b82d4b19
TH
450 if (drain) {
451 blk_drain_queue(q, false);
452 /* ensure blk_queue_bypass() is %true inside RCU read lock */
453 synchronize_rcu();
454 }
d732580b
TH
455}
456EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
457
458/**
459 * blk_queue_bypass_end - leave queue bypass mode
460 * @q: queue of interest
461 *
462 * Leave bypass mode and restore the normal queueing behavior.
463 */
464void blk_queue_bypass_end(struct request_queue *q)
465{
466 spin_lock_irq(q->queue_lock);
467 if (!--q->bypass_depth)
468 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
469 WARN_ON_ONCE(q->bypass_depth < 0);
470 spin_unlock_irq(q->queue_lock);
471}
472EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
473
c9a929dd
TH
474/**
475 * blk_cleanup_queue - shutdown a request queue
476 * @q: request queue to shutdown
477 *
478 * Mark @q DEAD, drain all pending requests, destroy and put it. All
479 * future requests will be failed immediately with -ENODEV.
c94a96ac 480 */
6728cb0e 481void blk_cleanup_queue(struct request_queue *q)
483f4afc 482{
c9a929dd 483 spinlock_t *lock = q->queue_lock;
e3335de9 484
c9a929dd 485 /* mark @q DEAD, no new request or merges will be allowed afterwards */
483f4afc 486 mutex_lock(&q->sysfs_lock);
75ad23bc 487 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
c9a929dd 488 spin_lock_irq(lock);
6ecf23af 489
80fd9979
TH
490 /*
491 * Dead queue is permanently in bypass mode till released. Note
492 * that, unlike blk_queue_bypass_start(), we aren't performing
493 * synchronize_rcu() after entering bypass mode to avoid the delay
494 * as some drivers create and destroy a lot of queues while
495 * probing. This is still safe because blk_release_queue() will be
496 * called only after the queue refcnt drops to zero and nothing,
497 * RCU or not, would be traversing the queue by then.
498 */
6ecf23af
TH
499 q->bypass_depth++;
500 queue_flag_set(QUEUE_FLAG_BYPASS, q);
501
c9a929dd
TH
502 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
503 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
504 queue_flag_set(QUEUE_FLAG_DEAD, q);
c9a929dd
TH
505 spin_unlock_irq(lock);
506 mutex_unlock(&q->sysfs_lock);
507
b855b04a
TH
508 /* drain all requests queued before DEAD marking */
509 blk_drain_queue(q, true);
c9a929dd
TH
510
511 /* @q won't process any more request, flush async actions */
512 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
513 blk_sync_queue(q);
514
5e5cfac0
AH
515 spin_lock_irq(lock);
516 if (q->queue_lock != &q->__queue_lock)
517 q->queue_lock = &q->__queue_lock;
518 spin_unlock_irq(lock);
519
c9a929dd 520 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
521 blk_put_queue(q);
522}
1da177e4
LT
523EXPORT_SYMBOL(blk_cleanup_queue);
524
5b788ce3
TH
525int blk_init_rl(struct request_list *rl, struct request_queue *q,
526 gfp_t gfp_mask)
1da177e4 527{
1abec4fd
MS
528 if (unlikely(rl->rq_pool))
529 return 0;
530
5b788ce3 531 rl->q = q;
1faa16d2
JA
532 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
533 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
534 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
535 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 536
1946089a 537 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
a91a5ac6 538 mempool_free_slab, request_cachep,
5b788ce3 539 gfp_mask, q->node);
1da177e4
LT
540 if (!rl->rq_pool)
541 return -ENOMEM;
542
543 return 0;
544}
545
5b788ce3
TH
546void blk_exit_rl(struct request_list *rl)
547{
548 if (rl->rq_pool)
549 mempool_destroy(rl->rq_pool);
550}
551
165125e1 552struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 553{
1946089a
CL
554 return blk_alloc_queue_node(gfp_mask, -1);
555}
556EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 557
165125e1 558struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 559{
165125e1 560 struct request_queue *q;
e0bf68dd 561 int err;
1946089a 562
8324aa91 563 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 564 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
565 if (!q)
566 return NULL;
567
00380a40 568 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d
TH
569 if (q->id < 0)
570 goto fail_q;
571
0989a025
JA
572 q->backing_dev_info.ra_pages =
573 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
574 q->backing_dev_info.state = 0;
575 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 576 q->backing_dev_info.name = "block";
5151412d 577 q->node = node_id;
0989a025 578
e0bf68dd 579 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
580 if (err)
581 goto fail_id;
e0bf68dd 582
31373d09
MG
583 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
584 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 585 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 586 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 587 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 588 INIT_LIST_HEAD(&q->icq_list);
4eef3049 589#ifdef CONFIG_BLK_CGROUP
e8989fae 590 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 591#endif
ae1b1539
TH
592 INIT_LIST_HEAD(&q->flush_queue[0]);
593 INIT_LIST_HEAD(&q->flush_queue[1]);
594 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 595 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 596
8324aa91 597 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 598
483f4afc 599 mutex_init(&q->sysfs_lock);
e7e72bf6 600 spin_lock_init(&q->__queue_lock);
483f4afc 601
c94a96ac
VG
602 /*
603 * By default initialize queue_lock to internal lock and driver can
604 * override it later if need be.
605 */
606 q->queue_lock = &q->__queue_lock;
607
b82d4b19
TH
608 /*
609 * A queue starts its life with bypass turned on to avoid
610 * unnecessary bypass on/off overhead and nasty surprises during
611 * init. The initial bypass will be finished at the end of
612 * blk_init_allocated_queue().
613 */
614 q->bypass_depth = 1;
615 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
616
5efd6113 617 if (blkcg_init_queue(q))
f51b802c
TH
618 goto fail_id;
619
1da177e4 620 return q;
a73f730d
TH
621
622fail_id:
623 ida_simple_remove(&blk_queue_ida, q->id);
624fail_q:
625 kmem_cache_free(blk_requestq_cachep, q);
626 return NULL;
1da177e4 627}
1946089a 628EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
629
630/**
631 * blk_init_queue - prepare a request queue for use with a block device
632 * @rfn: The function to be called to process requests that have been
633 * placed on the queue.
634 * @lock: Request queue spin lock
635 *
636 * Description:
637 * If a block device wishes to use the standard request handling procedures,
638 * which sorts requests and coalesces adjacent requests, then it must
639 * call blk_init_queue(). The function @rfn will be called when there
640 * are requests on the queue that need to be processed. If the device
641 * supports plugging, then @rfn may not be called immediately when requests
642 * are available on the queue, but may be called at some time later instead.
643 * Plugged queues are generally unplugged when a buffer belonging to one
644 * of the requests on the queue is needed, or due to memory pressure.
645 *
646 * @rfn is not required, or even expected, to remove all requests off the
647 * queue, but only as many as it can handle at a time. If it does leave
648 * requests on the queue, it is responsible for arranging that the requests
649 * get dealt with eventually.
650 *
651 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
652 * request queue; this lock will be taken also from interrupt context, so irq
653 * disabling is needed for it.
1da177e4 654 *
710027a4 655 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
656 * it didn't succeed.
657 *
658 * Note:
659 * blk_init_queue() must be paired with a blk_cleanup_queue() call
660 * when the block device is deactivated (such as at module unload).
661 **/
1946089a 662
165125e1 663struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 664{
1946089a
CL
665 return blk_init_queue_node(rfn, lock, -1);
666}
667EXPORT_SYMBOL(blk_init_queue);
668
165125e1 669struct request_queue *
1946089a
CL
670blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
671{
c86d1b8a 672 struct request_queue *uninit_q, *q;
1da177e4 673
c86d1b8a
MS
674 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
675 if (!uninit_q)
676 return NULL;
677
5151412d 678 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a
MS
679 if (!q)
680 blk_cleanup_queue(uninit_q);
681
682 return q;
01effb0d
MS
683}
684EXPORT_SYMBOL(blk_init_queue_node);
685
686struct request_queue *
687blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
688 spinlock_t *lock)
01effb0d 689{
1da177e4
LT
690 if (!q)
691 return NULL;
692
a051661c 693 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
8669aafd 694 return NULL;
1da177e4
LT
695
696 q->request_fn = rfn;
1da177e4 697 q->prep_rq_fn = NULL;
28018c24 698 q->unprep_rq_fn = NULL;
bc58ba94 699 q->queue_flags = QUEUE_FLAG_DEFAULT;
c94a96ac
VG
700
701 /* Override internal queue lock with supplied lock pointer */
702 if (lock)
703 q->queue_lock = lock;
1da177e4 704
f3b144aa
JA
705 /*
706 * This also sets hw/phys segments, boundary and size
707 */
c20e8de2 708 blk_queue_make_request(q, blk_queue_bio);
1da177e4 709
44ec9542
AS
710 q->sg_reserved_size = INT_MAX;
711
b82d4b19
TH
712 /* init elevator */
713 if (elevator_init(q, NULL))
714 return NULL;
1da177e4 715
b82d4b19
TH
716 /* all done, end the initial bypass */
717 blk_queue_bypass_end(q);
718 return q;
1da177e4 719}
5151412d 720EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 721
09ac46c4 722bool blk_get_queue(struct request_queue *q)
1da177e4 723{
34f6055c 724 if (likely(!blk_queue_dead(q))) {
09ac46c4
TH
725 __blk_get_queue(q);
726 return true;
1da177e4
LT
727 }
728
09ac46c4 729 return false;
1da177e4 730}
d86e0e83 731EXPORT_SYMBOL(blk_get_queue);
1da177e4 732
5b788ce3 733static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 734{
f1f8cc94 735 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 736 elv_put_request(rl->q, rq);
f1f8cc94 737 if (rq->elv.icq)
11a3122f 738 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
739 }
740
5b788ce3 741 mempool_free(rq, rl->rq_pool);
1da177e4
LT
742}
743
1da177e4
LT
744/*
745 * ioc_batching returns true if the ioc is a valid batching request and
746 * should be given priority access to a request.
747 */
165125e1 748static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
749{
750 if (!ioc)
751 return 0;
752
753 /*
754 * Make sure the process is able to allocate at least 1 request
755 * even if the batch times out, otherwise we could theoretically
756 * lose wakeups.
757 */
758 return ioc->nr_batch_requests == q->nr_batching ||
759 (ioc->nr_batch_requests > 0
760 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
761}
762
763/*
764 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
765 * will cause the process to be a "batcher" on all queues in the system. This
766 * is the behaviour we want though - once it gets a wakeup it should be given
767 * a nice run.
768 */
165125e1 769static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
770{
771 if (!ioc || ioc_batching(q, ioc))
772 return;
773
774 ioc->nr_batch_requests = q->nr_batching;
775 ioc->last_waited = jiffies;
776}
777
5b788ce3 778static void __freed_request(struct request_list *rl, int sync)
1da177e4 779{
5b788ce3 780 struct request_queue *q = rl->q;
1da177e4 781
a051661c
TH
782 /*
783 * bdi isn't aware of blkcg yet. As all async IOs end up root
784 * blkcg anyway, just use root blkcg state.
785 */
786 if (rl == &q->root_rl &&
787 rl->count[sync] < queue_congestion_off_threshold(q))
1faa16d2 788 blk_clear_queue_congested(q, sync);
1da177e4 789
1faa16d2
JA
790 if (rl->count[sync] + 1 <= q->nr_requests) {
791 if (waitqueue_active(&rl->wait[sync]))
792 wake_up(&rl->wait[sync]);
1da177e4 793
5b788ce3 794 blk_clear_rl_full(rl, sync);
1da177e4
LT
795 }
796}
797
798/*
799 * A request has just been released. Account for it, update the full and
800 * congestion status, wake up any waiters. Called under q->queue_lock.
801 */
5b788ce3 802static void freed_request(struct request_list *rl, unsigned int flags)
1da177e4 803{
5b788ce3 804 struct request_queue *q = rl->q;
75eb6c37 805 int sync = rw_is_sync(flags);
1da177e4 806
8a5ecdd4 807 q->nr_rqs[sync]--;
1faa16d2 808 rl->count[sync]--;
75eb6c37 809 if (flags & REQ_ELVPRIV)
8a5ecdd4 810 q->nr_rqs_elvpriv--;
1da177e4 811
5b788ce3 812 __freed_request(rl, sync);
1da177e4 813
1faa16d2 814 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 815 __freed_request(rl, sync ^ 1);
1da177e4
LT
816}
817
9d5a4e94
MS
818/*
819 * Determine if elevator data should be initialized when allocating the
820 * request associated with @bio.
821 */
822static bool blk_rq_should_init_elevator(struct bio *bio)
823{
824 if (!bio)
825 return true;
826
827 /*
828 * Flush requests do not use the elevator so skip initialization.
829 * This allows a request to share the flush and elevator data.
830 */
831 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
832 return false;
833
834 return true;
835}
836
852c788f
TH
837/**
838 * rq_ioc - determine io_context for request allocation
839 * @bio: request being allocated is for this bio (can be %NULL)
840 *
841 * Determine io_context to use for request allocation for @bio. May return
842 * %NULL if %current->io_context doesn't exist.
843 */
844static struct io_context *rq_ioc(struct bio *bio)
845{
846#ifdef CONFIG_BLK_CGROUP
847 if (bio && bio->bi_ioc)
848 return bio->bi_ioc;
849#endif
850 return current->io_context;
851}
852
da8303c6 853/**
a06e05e6 854 * __get_request - get a free request
5b788ce3 855 * @rl: request list to allocate from
da8303c6
TH
856 * @rw_flags: RW and SYNC flags
857 * @bio: bio to allocate request for (can be %NULL)
858 * @gfp_mask: allocation mask
859 *
860 * Get a free request from @q. This function may fail under memory
861 * pressure or if @q is dead.
862 *
863 * Must be callled with @q->queue_lock held and,
864 * Returns %NULL on failure, with @q->queue_lock held.
865 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 866 */
5b788ce3 867static struct request *__get_request(struct request_list *rl, int rw_flags,
a06e05e6 868 struct bio *bio, gfp_t gfp_mask)
1da177e4 869{
5b788ce3 870 struct request_queue *q = rl->q;
b679281a 871 struct request *rq;
7f4b35d1
TH
872 struct elevator_type *et = q->elevator->type;
873 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 874 struct io_cq *icq = NULL;
1faa16d2 875 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 876 int may_queue;
88ee5ef1 877
34f6055c 878 if (unlikely(blk_queue_dead(q)))
da8303c6
TH
879 return NULL;
880
7749a8d4 881 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
882 if (may_queue == ELV_MQUEUE_NO)
883 goto rq_starved;
884
1faa16d2
JA
885 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
886 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
887 /*
888 * The queue will fill after this allocation, so set
889 * it as full, and mark this process as "batching".
890 * This process will be allowed to complete a batch of
891 * requests, others will be blocked.
892 */
5b788ce3 893 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 894 ioc_set_batching(q, ioc);
5b788ce3 895 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
896 } else {
897 if (may_queue != ELV_MQUEUE_MUST
898 && !ioc_batching(q, ioc)) {
899 /*
900 * The queue is full and the allocating
901 * process is not a "batcher", and not
902 * exempted by the IO scheduler
903 */
b679281a 904 return NULL;
88ee5ef1
JA
905 }
906 }
1da177e4 907 }
a051661c
TH
908 /*
909 * bdi isn't aware of blkcg yet. As all async IOs end up
910 * root blkcg anyway, just use root blkcg state.
911 */
912 if (rl == &q->root_rl)
913 blk_set_queue_congested(q, is_sync);
1da177e4
LT
914 }
915
082cf69e
JA
916 /*
917 * Only allow batching queuers to allocate up to 50% over the defined
918 * limit of requests, otherwise we could have thousands of requests
919 * allocated with any setting of ->nr_requests
920 */
1faa16d2 921 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
b679281a 922 return NULL;
fd782a4a 923
8a5ecdd4 924 q->nr_rqs[is_sync]++;
1faa16d2
JA
925 rl->count[is_sync]++;
926 rl->starved[is_sync] = 0;
cb98fc8b 927
f1f8cc94
TH
928 /*
929 * Decide whether the new request will be managed by elevator. If
930 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
931 * prevent the current elevator from being destroyed until the new
932 * request is freed. This guarantees icq's won't be destroyed and
933 * makes creating new ones safe.
934 *
935 * Also, lookup icq while holding queue_lock. If it doesn't exist,
936 * it will be created after releasing queue_lock.
937 */
d732580b 938 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37 939 rw_flags |= REQ_ELVPRIV;
8a5ecdd4 940 q->nr_rqs_elvpriv++;
f1f8cc94
TH
941 if (et->icq_cache && ioc)
942 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 943 }
cb98fc8b 944
f253b86b
JA
945 if (blk_queue_io_stat(q))
946 rw_flags |= REQ_IO_STAT;
1da177e4
LT
947 spin_unlock_irq(q->queue_lock);
948
29e2b09a 949 /* allocate and init request */
5b788ce3 950 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 951 if (!rq)
b679281a 952 goto fail_alloc;
1da177e4 953
29e2b09a 954 blk_rq_init(q, rq);
a051661c 955 blk_rq_set_rl(rq, rl);
29e2b09a
TH
956 rq->cmd_flags = rw_flags | REQ_ALLOCED;
957
aaf7c680 958 /* init elvpriv */
29e2b09a 959 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 960 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
961 if (ioc)
962 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
963 if (!icq)
964 goto fail_elvpriv;
29e2b09a 965 }
aaf7c680
TH
966
967 rq->elv.icq = icq;
968 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
969 goto fail_elvpriv;
970
971 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
972 if (icq)
973 get_io_context(icq->ioc);
974 }
aaf7c680 975out:
88ee5ef1
JA
976 /*
977 * ioc may be NULL here, and ioc_batching will be false. That's
978 * OK, if the queue is under the request limit then requests need
979 * not count toward the nr_batch_requests limit. There will always
980 * be some limit enforced by BLK_BATCH_TIME.
981 */
1da177e4
LT
982 if (ioc_batching(q, ioc))
983 ioc->nr_batch_requests--;
6728cb0e 984
1faa16d2 985 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 986 return rq;
b679281a 987
aaf7c680
TH
988fail_elvpriv:
989 /*
990 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
991 * and may fail indefinitely under memory pressure and thus
992 * shouldn't stall IO. Treat this request as !elvpriv. This will
993 * disturb iosched and blkcg but weird is bettern than dead.
994 */
995 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
996 dev_name(q->backing_dev_info.dev));
997
998 rq->cmd_flags &= ~REQ_ELVPRIV;
999 rq->elv.icq = NULL;
1000
1001 spin_lock_irq(q->queue_lock);
8a5ecdd4 1002 q->nr_rqs_elvpriv--;
aaf7c680
TH
1003 spin_unlock_irq(q->queue_lock);
1004 goto out;
1005
b679281a
TH
1006fail_alloc:
1007 /*
1008 * Allocation failed presumably due to memory. Undo anything we
1009 * might have messed up.
1010 *
1011 * Allocating task should really be put onto the front of the wait
1012 * queue, but this is pretty rare.
1013 */
1014 spin_lock_irq(q->queue_lock);
5b788ce3 1015 freed_request(rl, rw_flags);
b679281a
TH
1016
1017 /*
1018 * in the very unlikely event that allocation failed and no
1019 * requests for this direction was pending, mark us starved so that
1020 * freeing of a request in the other direction will notice
1021 * us. another possible fix would be to split the rq mempool into
1022 * READ and WRITE
1023 */
1024rq_starved:
1025 if (unlikely(rl->count[is_sync] == 0))
1026 rl->starved[is_sync] = 1;
1027 return NULL;
1da177e4
LT
1028}
1029
da8303c6 1030/**
a06e05e6 1031 * get_request - get a free request
da8303c6
TH
1032 * @q: request_queue to allocate request from
1033 * @rw_flags: RW and SYNC flags
1034 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1035 * @gfp_mask: allocation mask
da8303c6 1036 *
a06e05e6
TH
1037 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1038 * function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1039 *
da8303c6
TH
1040 * Must be callled with @q->queue_lock held and,
1041 * Returns %NULL on failure, with @q->queue_lock held.
1042 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 1043 */
a06e05e6
TH
1044static struct request *get_request(struct request_queue *q, int rw_flags,
1045 struct bio *bio, gfp_t gfp_mask)
1da177e4 1046{
1faa16d2 1047 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6 1048 DEFINE_WAIT(wait);
a051661c 1049 struct request_list *rl;
1da177e4 1050 struct request *rq;
a051661c
TH
1051
1052 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1053retry:
a051661c 1054 rq = __get_request(rl, rw_flags, bio, gfp_mask);
a06e05e6
TH
1055 if (rq)
1056 return rq;
1da177e4 1057
a051661c
TH
1058 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dead(q))) {
1059 blk_put_rl(rl);
a06e05e6 1060 return NULL;
a051661c 1061 }
1da177e4 1062
a06e05e6
TH
1063 /* wait on @rl and retry */
1064 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1065 TASK_UNINTERRUPTIBLE);
1da177e4 1066
a06e05e6 1067 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1068
a06e05e6
TH
1069 spin_unlock_irq(q->queue_lock);
1070 io_schedule();
d6344532 1071
a06e05e6
TH
1072 /*
1073 * After sleeping, we become a "batching" process and will be able
1074 * to allocate at least one request, and up to a big batch of them
1075 * for a small period time. See ioc_batching, ioc_set_batching
1076 */
a06e05e6 1077 ioc_set_batching(q, current->io_context);
05caf8db 1078
a06e05e6
TH
1079 spin_lock_irq(q->queue_lock);
1080 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1081
a06e05e6 1082 goto retry;
1da177e4
LT
1083}
1084
165125e1 1085struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
1086{
1087 struct request *rq;
1088
1089 BUG_ON(rw != READ && rw != WRITE);
1090
7f4b35d1
TH
1091 /* create ioc upfront */
1092 create_io_context(gfp_mask, q->node);
1093
d6344532 1094 spin_lock_irq(q->queue_lock);
a06e05e6 1095 rq = get_request(q, rw, NULL, gfp_mask);
da8303c6
TH
1096 if (!rq)
1097 spin_unlock_irq(q->queue_lock);
d6344532 1098 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1099
1100 return rq;
1101}
1da177e4
LT
1102EXPORT_SYMBOL(blk_get_request);
1103
dc72ef4a 1104/**
79eb63e9 1105 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1106 * @q: target request queue
79eb63e9
BH
1107 * @bio: The bio describing the memory mappings that will be submitted for IO.
1108 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1109 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1110 *
79eb63e9
BH
1111 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1112 * type commands. Where the struct request needs to be farther initialized by
1113 * the caller. It is passed a &struct bio, which describes the memory info of
1114 * the I/O transfer.
dc72ef4a 1115 *
79eb63e9
BH
1116 * The caller of blk_make_request must make sure that bi_io_vec
1117 * are set to describe the memory buffers. That bio_data_dir() will return
1118 * the needed direction of the request. (And all bio's in the passed bio-chain
1119 * are properly set accordingly)
1120 *
1121 * If called under none-sleepable conditions, mapped bio buffers must not
1122 * need bouncing, by calling the appropriate masked or flagged allocator,
1123 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1124 * BUG.
53674ac5
JA
1125 *
1126 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1127 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1128 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1129 * completion of a bio that hasn't been submitted yet, thus resulting in a
1130 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1131 * of bio_alloc(), as that avoids the mempool deadlock.
1132 * If possible a big IO should be split into smaller parts when allocation
1133 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1134 */
79eb63e9
BH
1135struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1136 gfp_t gfp_mask)
dc72ef4a 1137{
79eb63e9
BH
1138 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1139
1140 if (unlikely(!rq))
1141 return ERR_PTR(-ENOMEM);
1142
1143 for_each_bio(bio) {
1144 struct bio *bounce_bio = bio;
1145 int ret;
1146
1147 blk_queue_bounce(q, &bounce_bio);
1148 ret = blk_rq_append_bio(q, rq, bounce_bio);
1149 if (unlikely(ret)) {
1150 blk_put_request(rq);
1151 return ERR_PTR(ret);
1152 }
1153 }
1154
1155 return rq;
dc72ef4a 1156}
79eb63e9 1157EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1158
1da177e4
LT
1159/**
1160 * blk_requeue_request - put a request back on queue
1161 * @q: request queue where request should be inserted
1162 * @rq: request to be inserted
1163 *
1164 * Description:
1165 * Drivers often keep queueing requests until the hardware cannot accept
1166 * more, when that condition happens we need to put the request back
1167 * on the queue. Must be called with queue lock held.
1168 */
165125e1 1169void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1170{
242f9dcb
JA
1171 blk_delete_timer(rq);
1172 blk_clear_rq_complete(rq);
5f3ea37c 1173 trace_block_rq_requeue(q, rq);
2056a782 1174
1da177e4
LT
1175 if (blk_rq_tagged(rq))
1176 blk_queue_end_tag(q, rq);
1177
ba396a6c
JB
1178 BUG_ON(blk_queued_rq(rq));
1179
1da177e4
LT
1180 elv_requeue_request(q, rq);
1181}
1da177e4
LT
1182EXPORT_SYMBOL(blk_requeue_request);
1183
73c10101
JA
1184static void add_acct_request(struct request_queue *q, struct request *rq,
1185 int where)
1186{
1187 drive_stat_acct(rq, 1);
7eaceacc 1188 __elv_add_request(q, rq, where);
73c10101
JA
1189}
1190
074a7aca
TH
1191static void part_round_stats_single(int cpu, struct hd_struct *part,
1192 unsigned long now)
1193{
1194 if (now == part->stamp)
1195 return;
1196
316d315b 1197 if (part_in_flight(part)) {
074a7aca 1198 __part_stat_add(cpu, part, time_in_queue,
316d315b 1199 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1200 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1201 }
1202 part->stamp = now;
1203}
1204
1205/**
496aa8a9
RD
1206 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1207 * @cpu: cpu number for stats access
1208 * @part: target partition
1da177e4
LT
1209 *
1210 * The average IO queue length and utilisation statistics are maintained
1211 * by observing the current state of the queue length and the amount of
1212 * time it has been in this state for.
1213 *
1214 * Normally, that accounting is done on IO completion, but that can result
1215 * in more than a second's worth of IO being accounted for within any one
1216 * second, leading to >100% utilisation. To deal with that, we call this
1217 * function to do a round-off before returning the results when reading
1218 * /proc/diskstats. This accounts immediately for all queue usage up to
1219 * the current jiffies and restarts the counters again.
1220 */
c9959059 1221void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1222{
1223 unsigned long now = jiffies;
1224
074a7aca
TH
1225 if (part->partno)
1226 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1227 part_round_stats_single(cpu, part, now);
6f2576af 1228}
074a7aca 1229EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1230
1da177e4
LT
1231/*
1232 * queue lock must be held
1233 */
165125e1 1234void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1235{
1da177e4
LT
1236 if (unlikely(!q))
1237 return;
1238 if (unlikely(--req->ref_count))
1239 return;
1240
8922e16c
TH
1241 elv_completed_request(q, req);
1242
1cd96c24
BH
1243 /* this is a bio leak */
1244 WARN_ON(req->bio != NULL);
1245
1da177e4
LT
1246 /*
1247 * Request may not have originated from ll_rw_blk. if not,
1248 * it didn't come out of our reserved rq pools
1249 */
49171e5c 1250 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1251 unsigned int flags = req->cmd_flags;
a051661c 1252 struct request_list *rl = blk_rq_rl(req);
1da177e4 1253
1da177e4 1254 BUG_ON(!list_empty(&req->queuelist));
9817064b 1255 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4 1256
a051661c
TH
1257 blk_free_request(rl, req);
1258 freed_request(rl, flags);
1259 blk_put_rl(rl);
1da177e4
LT
1260 }
1261}
6e39b69e
MC
1262EXPORT_SYMBOL_GPL(__blk_put_request);
1263
1da177e4
LT
1264void blk_put_request(struct request *req)
1265{
8922e16c 1266 unsigned long flags;
165125e1 1267 struct request_queue *q = req->q;
8922e16c 1268
52a93ba8
FT
1269 spin_lock_irqsave(q->queue_lock, flags);
1270 __blk_put_request(q, req);
1271 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1272}
1da177e4
LT
1273EXPORT_SYMBOL(blk_put_request);
1274
66ac0280
CH
1275/**
1276 * blk_add_request_payload - add a payload to a request
1277 * @rq: request to update
1278 * @page: page backing the payload
1279 * @len: length of the payload.
1280 *
1281 * This allows to later add a payload to an already submitted request by
1282 * a block driver. The driver needs to take care of freeing the payload
1283 * itself.
1284 *
1285 * Note that this is a quite horrible hack and nothing but handling of
1286 * discard requests should ever use it.
1287 */
1288void blk_add_request_payload(struct request *rq, struct page *page,
1289 unsigned int len)
1290{
1291 struct bio *bio = rq->bio;
1292
1293 bio->bi_io_vec->bv_page = page;
1294 bio->bi_io_vec->bv_offset = 0;
1295 bio->bi_io_vec->bv_len = len;
1296
1297 bio->bi_size = len;
1298 bio->bi_vcnt = 1;
1299 bio->bi_phys_segments = 1;
1300
1301 rq->__data_len = rq->resid_len = len;
1302 rq->nr_phys_segments = 1;
1303 rq->buffer = bio_data(bio);
1304}
1305EXPORT_SYMBOL_GPL(blk_add_request_payload);
1306
73c10101
JA
1307static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1308 struct bio *bio)
1309{
1310 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1311
73c10101
JA
1312 if (!ll_back_merge_fn(q, req, bio))
1313 return false;
1314
1315 trace_block_bio_backmerge(q, bio);
1316
1317 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1318 blk_rq_set_mixed_merge(req);
1319
1320 req->biotail->bi_next = bio;
1321 req->biotail = bio;
1322 req->__data_len += bio->bi_size;
1323 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1324
1325 drive_stat_acct(req, 0);
1326 return true;
1327}
1328
1329static bool bio_attempt_front_merge(struct request_queue *q,
1330 struct request *req, struct bio *bio)
1331{
1332 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1333
73c10101
JA
1334 if (!ll_front_merge_fn(q, req, bio))
1335 return false;
1336
1337 trace_block_bio_frontmerge(q, bio);
1338
1339 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1340 blk_rq_set_mixed_merge(req);
1341
73c10101
JA
1342 bio->bi_next = req->bio;
1343 req->bio = bio;
1344
1345 /*
1346 * may not be valid. if the low level driver said
1347 * it didn't need a bounce buffer then it better
1348 * not touch req->buffer either...
1349 */
1350 req->buffer = bio_data(bio);
1351 req->__sector = bio->bi_sector;
1352 req->__data_len += bio->bi_size;
1353 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1354
1355 drive_stat_acct(req, 0);
1356 return true;
1357}
1358
bd87b589
TH
1359/**
1360 * attempt_plug_merge - try to merge with %current's plugged list
1361 * @q: request_queue new bio is being queued at
1362 * @bio: new bio being queued
1363 * @request_count: out parameter for number of traversed plugged requests
1364 *
1365 * Determine whether @bio being queued on @q can be merged with a request
1366 * on %current's plugged list. Returns %true if merge was successful,
1367 * otherwise %false.
1368 *
07c2bd37
TH
1369 * Plugging coalesces IOs from the same issuer for the same purpose without
1370 * going through @q->queue_lock. As such it's more of an issuing mechanism
1371 * than scheduling, and the request, while may have elvpriv data, is not
1372 * added on the elevator at this point. In addition, we don't have
1373 * reliable access to the elevator outside queue lock. Only check basic
1374 * merging parameters without querying the elevator.
73c10101 1375 */
bd87b589
TH
1376static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1377 unsigned int *request_count)
73c10101
JA
1378{
1379 struct blk_plug *plug;
1380 struct request *rq;
1381 bool ret = false;
1382
bd87b589 1383 plug = current->plug;
73c10101
JA
1384 if (!plug)
1385 goto out;
56ebdaf2 1386 *request_count = 0;
73c10101
JA
1387
1388 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1389 int el_ret;
1390
1b2e19f1
SL
1391 if (rq->q == q)
1392 (*request_count)++;
56ebdaf2 1393
07c2bd37 1394 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1395 continue;
1396
050c8ea8 1397 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1398 if (el_ret == ELEVATOR_BACK_MERGE) {
1399 ret = bio_attempt_back_merge(q, rq, bio);
1400 if (ret)
1401 break;
1402 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1403 ret = bio_attempt_front_merge(q, rq, bio);
1404 if (ret)
1405 break;
1406 }
1407 }
1408out:
1409 return ret;
1410}
1411
86db1e29 1412void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1413{
4aff5e23 1414 req->cmd_type = REQ_TYPE_FS;
52d9e675 1415
7b6d91da
CH
1416 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1417 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1418 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1419
52d9e675 1420 req->errors = 0;
a2dec7b3 1421 req->__sector = bio->bi_sector;
52d9e675 1422 req->ioprio = bio_prio(bio);
bc1c56fd 1423 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1424}
1425
5a7bbad2 1426void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1427{
5e00d1b5 1428 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1429 struct blk_plug *plug;
1430 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1431 struct request *req;
56ebdaf2 1432 unsigned int request_count = 0;
1da177e4 1433
1da177e4
LT
1434 /*
1435 * low level driver can indicate that it wants pages above a
1436 * certain limit bounced to low memory (ie for highmem, or even
1437 * ISA dma in theory)
1438 */
1439 blk_queue_bounce(q, &bio);
1440
4fed947c 1441 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1442 spin_lock_irq(q->queue_lock);
ae1b1539 1443 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1444 goto get_rq;
1445 }
1446
73c10101
JA
1447 /*
1448 * Check if we can merge with the plugged list before grabbing
1449 * any locks.
1450 */
bd87b589 1451 if (attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1452 return;
1da177e4 1453
73c10101 1454 spin_lock_irq(q->queue_lock);
2056a782 1455
73c10101
JA
1456 el_ret = elv_merge(q, &req, bio);
1457 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1458 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1459 elv_bio_merged(q, req, bio);
73c10101
JA
1460 if (!attempt_back_merge(q, req))
1461 elv_merged_request(q, req, el_ret);
1462 goto out_unlock;
1463 }
1464 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1465 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1466 elv_bio_merged(q, req, bio);
73c10101
JA
1467 if (!attempt_front_merge(q, req))
1468 elv_merged_request(q, req, el_ret);
1469 goto out_unlock;
80a761fd 1470 }
1da177e4
LT
1471 }
1472
450991bc 1473get_rq:
7749a8d4
JA
1474 /*
1475 * This sync check and mask will be re-done in init_request_from_bio(),
1476 * but we need to set it earlier to expose the sync flag to the
1477 * rq allocator and io schedulers.
1478 */
1479 rw_flags = bio_data_dir(bio);
1480 if (sync)
7b6d91da 1481 rw_flags |= REQ_SYNC;
7749a8d4 1482
1da177e4 1483 /*
450991bc 1484 * Grab a free request. This is might sleep but can not fail.
d6344532 1485 * Returns with the queue unlocked.
450991bc 1486 */
a06e05e6 1487 req = get_request(q, rw_flags, bio, GFP_NOIO);
da8303c6
TH
1488 if (unlikely(!req)) {
1489 bio_endio(bio, -ENODEV); /* @q is dead */
1490 goto out_unlock;
1491 }
d6344532 1492
450991bc
NP
1493 /*
1494 * After dropping the lock and possibly sleeping here, our request
1495 * may now be mergeable after it had proven unmergeable (above).
1496 * We don't worry about that case for efficiency. It won't happen
1497 * often, and the elevators are able to handle it.
1da177e4 1498 */
52d9e675 1499 init_request_from_bio(req, bio);
1da177e4 1500
9562ad9a 1501 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1502 req->cpu = raw_smp_processor_id();
73c10101
JA
1503
1504 plug = current->plug;
721a9602 1505 if (plug) {
dc6d36c9
JA
1506 /*
1507 * If this is the first request added after a plug, fire
1508 * of a plug trace. If others have been added before, check
1509 * if we have multiple devices in this plug. If so, make a
1510 * note to sort the list before dispatch.
1511 */
1512 if (list_empty(&plug->list))
1513 trace_block_plug(q);
3540d5e8
SL
1514 else {
1515 if (!plug->should_sort) {
1516 struct request *__rq;
73c10101 1517
3540d5e8
SL
1518 __rq = list_entry_rq(plug->list.prev);
1519 if (__rq->q != q)
1520 plug->should_sort = 1;
1521 }
019ceb7d 1522 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1523 blk_flush_plug_list(plug, false);
019ceb7d
SL
1524 trace_block_plug(q);
1525 }
73c10101 1526 }
73c10101
JA
1527 list_add_tail(&req->queuelist, &plug->list);
1528 drive_stat_acct(req, 1);
1529 } else {
1530 spin_lock_irq(q->queue_lock);
1531 add_acct_request(q, req, where);
24ecfbe2 1532 __blk_run_queue(q);
73c10101
JA
1533out_unlock:
1534 spin_unlock_irq(q->queue_lock);
1535 }
1da177e4 1536}
c20e8de2 1537EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1538
1539/*
1540 * If bio->bi_dev is a partition, remap the location
1541 */
1542static inline void blk_partition_remap(struct bio *bio)
1543{
1544 struct block_device *bdev = bio->bi_bdev;
1545
bf2de6f5 1546 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1547 struct hd_struct *p = bdev->bd_part;
1548
1da177e4
LT
1549 bio->bi_sector += p->start_sect;
1550 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1551
d07335e5
MS
1552 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1553 bdev->bd_dev,
1554 bio->bi_sector - p->start_sect);
1da177e4
LT
1555 }
1556}
1557
1da177e4
LT
1558static void handle_bad_sector(struct bio *bio)
1559{
1560 char b[BDEVNAME_SIZE];
1561
1562 printk(KERN_INFO "attempt to access beyond end of device\n");
1563 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1564 bdevname(bio->bi_bdev, b),
1565 bio->bi_rw,
1566 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1567 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1568
1569 set_bit(BIO_EOF, &bio->bi_flags);
1570}
1571
c17bb495
AM
1572#ifdef CONFIG_FAIL_MAKE_REQUEST
1573
1574static DECLARE_FAULT_ATTR(fail_make_request);
1575
1576static int __init setup_fail_make_request(char *str)
1577{
1578 return setup_fault_attr(&fail_make_request, str);
1579}
1580__setup("fail_make_request=", setup_fail_make_request);
1581
b2c9cd37 1582static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1583{
b2c9cd37 1584 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1585}
1586
1587static int __init fail_make_request_debugfs(void)
1588{
dd48c085
AM
1589 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1590 NULL, &fail_make_request);
1591
1592 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
c17bb495
AM
1593}
1594
1595late_initcall(fail_make_request_debugfs);
1596
1597#else /* CONFIG_FAIL_MAKE_REQUEST */
1598
b2c9cd37
AM
1599static inline bool should_fail_request(struct hd_struct *part,
1600 unsigned int bytes)
c17bb495 1601{
b2c9cd37 1602 return false;
c17bb495
AM
1603}
1604
1605#endif /* CONFIG_FAIL_MAKE_REQUEST */
1606
c07e2b41
JA
1607/*
1608 * Check whether this bio extends beyond the end of the device.
1609 */
1610static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1611{
1612 sector_t maxsector;
1613
1614 if (!nr_sectors)
1615 return 0;
1616
1617 /* Test device or partition size, when known. */
77304d2a 1618 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1619 if (maxsector) {
1620 sector_t sector = bio->bi_sector;
1621
1622 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1623 /*
1624 * This may well happen - the kernel calls bread()
1625 * without checking the size of the device, e.g., when
1626 * mounting a device.
1627 */
1628 handle_bad_sector(bio);
1629 return 1;
1630 }
1631 }
1632
1633 return 0;
1634}
1635
27a84d54
CH
1636static noinline_for_stack bool
1637generic_make_request_checks(struct bio *bio)
1da177e4 1638{
165125e1 1639 struct request_queue *q;
5a7bbad2 1640 int nr_sectors = bio_sectors(bio);
51fd77bd 1641 int err = -EIO;
5a7bbad2
CH
1642 char b[BDEVNAME_SIZE];
1643 struct hd_struct *part;
1da177e4
LT
1644
1645 might_sleep();
1da177e4 1646
c07e2b41
JA
1647 if (bio_check_eod(bio, nr_sectors))
1648 goto end_io;
1da177e4 1649
5a7bbad2
CH
1650 q = bdev_get_queue(bio->bi_bdev);
1651 if (unlikely(!q)) {
1652 printk(KERN_ERR
1653 "generic_make_request: Trying to access "
1654 "nonexistent block-device %s (%Lu)\n",
1655 bdevname(bio->bi_bdev, b),
1656 (long long) bio->bi_sector);
1657 goto end_io;
1658 }
c17bb495 1659
e2a60da7
MP
1660 if (likely(bio_is_rw(bio) &&
1661 nr_sectors > queue_max_hw_sectors(q))) {
5a7bbad2
CH
1662 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1663 bdevname(bio->bi_bdev, b),
1664 bio_sectors(bio),
1665 queue_max_hw_sectors(q));
1666 goto end_io;
1667 }
1da177e4 1668
5a7bbad2
CH
1669 part = bio->bi_bdev->bd_part;
1670 if (should_fail_request(part, bio->bi_size) ||
1671 should_fail_request(&part_to_disk(part)->part0,
1672 bio->bi_size))
1673 goto end_io;
2056a782 1674
5a7bbad2
CH
1675 /*
1676 * If this device has partitions, remap block n
1677 * of partition p to block n+start(p) of the disk.
1678 */
1679 blk_partition_remap(bio);
2056a782 1680
5a7bbad2
CH
1681 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1682 goto end_io;
a7384677 1683
5a7bbad2
CH
1684 if (bio_check_eod(bio, nr_sectors))
1685 goto end_io;
1e87901e 1686
5a7bbad2
CH
1687 /*
1688 * Filter flush bio's early so that make_request based
1689 * drivers without flush support don't have to worry
1690 * about them.
1691 */
1692 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1693 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1694 if (!nr_sectors) {
1695 err = 0;
51fd77bd
JA
1696 goto end_io;
1697 }
5a7bbad2 1698 }
5ddfe969 1699
5a7bbad2
CH
1700 if ((bio->bi_rw & REQ_DISCARD) &&
1701 (!blk_queue_discard(q) ||
e2a60da7 1702 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1703 err = -EOPNOTSUPP;
1704 goto end_io;
1705 }
01edede4 1706
7f4b35d1
TH
1707 /*
1708 * Various block parts want %current->io_context and lazy ioc
1709 * allocation ends up trading a lot of pain for a small amount of
1710 * memory. Just allocate it upfront. This may fail and block
1711 * layer knows how to live with it.
1712 */
1713 create_io_context(GFP_ATOMIC, q->node);
1714
bc16a4f9
TH
1715 if (blk_throtl_bio(q, bio))
1716 return false; /* throttled, will be resubmitted later */
27a84d54 1717
5a7bbad2 1718 trace_block_bio_queue(q, bio);
27a84d54 1719 return true;
a7384677
TH
1720
1721end_io:
1722 bio_endio(bio, err);
27a84d54 1723 return false;
1da177e4
LT
1724}
1725
27a84d54
CH
1726/**
1727 * generic_make_request - hand a buffer to its device driver for I/O
1728 * @bio: The bio describing the location in memory and on the device.
1729 *
1730 * generic_make_request() is used to make I/O requests of block
1731 * devices. It is passed a &struct bio, which describes the I/O that needs
1732 * to be done.
1733 *
1734 * generic_make_request() does not return any status. The
1735 * success/failure status of the request, along with notification of
1736 * completion, is delivered asynchronously through the bio->bi_end_io
1737 * function described (one day) else where.
1738 *
1739 * The caller of generic_make_request must make sure that bi_io_vec
1740 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1741 * set to describe the device address, and the
1742 * bi_end_io and optionally bi_private are set to describe how
1743 * completion notification should be signaled.
1744 *
1745 * generic_make_request and the drivers it calls may use bi_next if this
1746 * bio happens to be merged with someone else, and may resubmit the bio to
1747 * a lower device by calling into generic_make_request recursively, which
1748 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1749 */
1750void generic_make_request(struct bio *bio)
1751{
bddd87c7
AM
1752 struct bio_list bio_list_on_stack;
1753
27a84d54
CH
1754 if (!generic_make_request_checks(bio))
1755 return;
1756
1757 /*
1758 * We only want one ->make_request_fn to be active at a time, else
1759 * stack usage with stacked devices could be a problem. So use
1760 * current->bio_list to keep a list of requests submited by a
1761 * make_request_fn function. current->bio_list is also used as a
1762 * flag to say if generic_make_request is currently active in this
1763 * task or not. If it is NULL, then no make_request is active. If
1764 * it is non-NULL, then a make_request is active, and new requests
1765 * should be added at the tail
1766 */
bddd87c7 1767 if (current->bio_list) {
bddd87c7 1768 bio_list_add(current->bio_list, bio);
d89d8796
NB
1769 return;
1770 }
27a84d54 1771
d89d8796
NB
1772 /* following loop may be a bit non-obvious, and so deserves some
1773 * explanation.
1774 * Before entering the loop, bio->bi_next is NULL (as all callers
1775 * ensure that) so we have a list with a single bio.
1776 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1777 * we assign bio_list to a pointer to the bio_list_on_stack,
1778 * thus initialising the bio_list of new bios to be
27a84d54 1779 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1780 * through a recursive call to generic_make_request. If it
1781 * did, we find a non-NULL value in bio_list and re-enter the loop
1782 * from the top. In this case we really did just take the bio
bddd87c7 1783 * of the top of the list (no pretending) and so remove it from
27a84d54 1784 * bio_list, and call into ->make_request() again.
d89d8796
NB
1785 */
1786 BUG_ON(bio->bi_next);
bddd87c7
AM
1787 bio_list_init(&bio_list_on_stack);
1788 current->bio_list = &bio_list_on_stack;
d89d8796 1789 do {
27a84d54
CH
1790 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1791
1792 q->make_request_fn(q, bio);
1793
bddd87c7 1794 bio = bio_list_pop(current->bio_list);
d89d8796 1795 } while (bio);
bddd87c7 1796 current->bio_list = NULL; /* deactivate */
d89d8796 1797}
1da177e4
LT
1798EXPORT_SYMBOL(generic_make_request);
1799
1800/**
710027a4 1801 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1802 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1803 * @bio: The &struct bio which describes the I/O
1804 *
1805 * submit_bio() is very similar in purpose to generic_make_request(), and
1806 * uses that function to do most of the work. Both are fairly rough
710027a4 1807 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1808 *
1809 */
1810void submit_bio(int rw, struct bio *bio)
1811{
1812 int count = bio_sectors(bio);
1813
22e2c507 1814 bio->bi_rw |= rw;
1da177e4 1815
bf2de6f5
JA
1816 /*
1817 * If it's a regular read/write or a barrier with data attached,
1818 * go through the normal accounting stuff before submission.
1819 */
e2a60da7 1820 if (bio_has_data(bio)) {
bf2de6f5
JA
1821 if (rw & WRITE) {
1822 count_vm_events(PGPGOUT, count);
1823 } else {
1824 task_io_account_read(bio->bi_size);
1825 count_vm_events(PGPGIN, count);
1826 }
1827
1828 if (unlikely(block_dump)) {
1829 char b[BDEVNAME_SIZE];
8dcbdc74 1830 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1831 current->comm, task_pid_nr(current),
bf2de6f5
JA
1832 (rw & WRITE) ? "WRITE" : "READ",
1833 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1834 bdevname(bio->bi_bdev, b),
1835 count);
bf2de6f5 1836 }
1da177e4
LT
1837 }
1838
1839 generic_make_request(bio);
1840}
1da177e4
LT
1841EXPORT_SYMBOL(submit_bio);
1842
82124d60
KU
1843/**
1844 * blk_rq_check_limits - Helper function to check a request for the queue limit
1845 * @q: the queue
1846 * @rq: the request being checked
1847 *
1848 * Description:
1849 * @rq may have been made based on weaker limitations of upper-level queues
1850 * in request stacking drivers, and it may violate the limitation of @q.
1851 * Since the block layer and the underlying device driver trust @rq
1852 * after it is inserted to @q, it should be checked against @q before
1853 * the insertion using this generic function.
1854 *
1855 * This function should also be useful for request stacking drivers
eef35c2d 1856 * in some cases below, so export this function.
82124d60
KU
1857 * Request stacking drivers like request-based dm may change the queue
1858 * limits while requests are in the queue (e.g. dm's table swapping).
1859 * Such request stacking drivers should check those requests agaist
1860 * the new queue limits again when they dispatch those requests,
1861 * although such checkings are also done against the old queue limits
1862 * when submitting requests.
1863 */
1864int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1865{
e2a60da7 1866 if (!rq_mergeable(rq))
3383977f
S
1867 return 0;
1868
ae03bf63
MP
1869 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1870 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1871 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1872 return -EIO;
1873 }
1874
1875 /*
1876 * queue's settings related to segment counting like q->bounce_pfn
1877 * may differ from that of other stacking queues.
1878 * Recalculate it to check the request correctly on this queue's
1879 * limitation.
1880 */
1881 blk_recalc_rq_segments(rq);
8a78362c 1882 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1883 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1884 return -EIO;
1885 }
1886
1887 return 0;
1888}
1889EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1890
1891/**
1892 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1893 * @q: the queue to submit the request
1894 * @rq: the request being queued
1895 */
1896int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1897{
1898 unsigned long flags;
4853abaa 1899 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
1900
1901 if (blk_rq_check_limits(q, rq))
1902 return -EIO;
1903
b2c9cd37
AM
1904 if (rq->rq_disk &&
1905 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1906 return -EIO;
82124d60
KU
1907
1908 spin_lock_irqsave(q->queue_lock, flags);
8ba61435
TH
1909 if (unlikely(blk_queue_dead(q))) {
1910 spin_unlock_irqrestore(q->queue_lock, flags);
1911 return -ENODEV;
1912 }
82124d60
KU
1913
1914 /*
1915 * Submitting request must be dequeued before calling this function
1916 * because it will be linked to another request_queue
1917 */
1918 BUG_ON(blk_queued_rq(rq));
1919
4853abaa
JM
1920 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1921 where = ELEVATOR_INSERT_FLUSH;
1922
1923 add_acct_request(q, rq, where);
e67b77c7
JM
1924 if (where == ELEVATOR_INSERT_FLUSH)
1925 __blk_run_queue(q);
82124d60
KU
1926 spin_unlock_irqrestore(q->queue_lock, flags);
1927
1928 return 0;
1929}
1930EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1931
80a761fd
TH
1932/**
1933 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1934 * @rq: request to examine
1935 *
1936 * Description:
1937 * A request could be merge of IOs which require different failure
1938 * handling. This function determines the number of bytes which
1939 * can be failed from the beginning of the request without
1940 * crossing into area which need to be retried further.
1941 *
1942 * Return:
1943 * The number of bytes to fail.
1944 *
1945 * Context:
1946 * queue_lock must be held.
1947 */
1948unsigned int blk_rq_err_bytes(const struct request *rq)
1949{
1950 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1951 unsigned int bytes = 0;
1952 struct bio *bio;
1953
1954 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1955 return blk_rq_bytes(rq);
1956
1957 /*
1958 * Currently the only 'mixing' which can happen is between
1959 * different fastfail types. We can safely fail portions
1960 * which have all the failfast bits that the first one has -
1961 * the ones which are at least as eager to fail as the first
1962 * one.
1963 */
1964 for (bio = rq->bio; bio; bio = bio->bi_next) {
1965 if ((bio->bi_rw & ff) != ff)
1966 break;
1967 bytes += bio->bi_size;
1968 }
1969
1970 /* this could lead to infinite loop */
1971 BUG_ON(blk_rq_bytes(rq) && !bytes);
1972 return bytes;
1973}
1974EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1975
bc58ba94
JA
1976static void blk_account_io_completion(struct request *req, unsigned int bytes)
1977{
c2553b58 1978 if (blk_do_io_stat(req)) {
bc58ba94
JA
1979 const int rw = rq_data_dir(req);
1980 struct hd_struct *part;
1981 int cpu;
1982
1983 cpu = part_stat_lock();
09e099d4 1984 part = req->part;
bc58ba94
JA
1985 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1986 part_stat_unlock();
1987 }
1988}
1989
1990static void blk_account_io_done(struct request *req)
1991{
bc58ba94 1992 /*
dd4c133f
TH
1993 * Account IO completion. flush_rq isn't accounted as a
1994 * normal IO on queueing nor completion. Accounting the
1995 * containing request is enough.
bc58ba94 1996 */
414b4ff5 1997 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
1998 unsigned long duration = jiffies - req->start_time;
1999 const int rw = rq_data_dir(req);
2000 struct hd_struct *part;
2001 int cpu;
2002
2003 cpu = part_stat_lock();
09e099d4 2004 part = req->part;
bc58ba94
JA
2005
2006 part_stat_inc(cpu, part, ios[rw]);
2007 part_stat_add(cpu, part, ticks[rw], duration);
2008 part_round_stats(cpu, part);
316d315b 2009 part_dec_in_flight(part, rw);
bc58ba94 2010
6c23a968 2011 hd_struct_put(part);
bc58ba94
JA
2012 part_stat_unlock();
2013 }
2014}
2015
3bcddeac 2016/**
9934c8c0
TH
2017 * blk_peek_request - peek at the top of a request queue
2018 * @q: request queue to peek at
2019 *
2020 * Description:
2021 * Return the request at the top of @q. The returned request
2022 * should be started using blk_start_request() before LLD starts
2023 * processing it.
2024 *
2025 * Return:
2026 * Pointer to the request at the top of @q if available. Null
2027 * otherwise.
2028 *
2029 * Context:
2030 * queue_lock must be held.
2031 */
2032struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2033{
2034 struct request *rq;
2035 int ret;
2036
2037 while ((rq = __elv_next_request(q)) != NULL) {
2038 if (!(rq->cmd_flags & REQ_STARTED)) {
2039 /*
2040 * This is the first time the device driver
2041 * sees this request (possibly after
2042 * requeueing). Notify IO scheduler.
2043 */
33659ebb 2044 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2045 elv_activate_rq(q, rq);
2046
2047 /*
2048 * just mark as started even if we don't start
2049 * it, a request that has been delayed should
2050 * not be passed by new incoming requests
2051 */
2052 rq->cmd_flags |= REQ_STARTED;
2053 trace_block_rq_issue(q, rq);
2054 }
2055
2056 if (!q->boundary_rq || q->boundary_rq == rq) {
2057 q->end_sector = rq_end_sector(rq);
2058 q->boundary_rq = NULL;
2059 }
2060
2061 if (rq->cmd_flags & REQ_DONTPREP)
2062 break;
2063
2e46e8b2 2064 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2065 /*
2066 * make sure space for the drain appears we
2067 * know we can do this because max_hw_segments
2068 * has been adjusted to be one fewer than the
2069 * device can handle
2070 */
2071 rq->nr_phys_segments++;
2072 }
2073
2074 if (!q->prep_rq_fn)
2075 break;
2076
2077 ret = q->prep_rq_fn(q, rq);
2078 if (ret == BLKPREP_OK) {
2079 break;
2080 } else if (ret == BLKPREP_DEFER) {
2081 /*
2082 * the request may have been (partially) prepped.
2083 * we need to keep this request in the front to
2084 * avoid resource deadlock. REQ_STARTED will
2085 * prevent other fs requests from passing this one.
2086 */
2e46e8b2 2087 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2088 !(rq->cmd_flags & REQ_DONTPREP)) {
2089 /*
2090 * remove the space for the drain we added
2091 * so that we don't add it again
2092 */
2093 --rq->nr_phys_segments;
2094 }
2095
2096 rq = NULL;
2097 break;
2098 } else if (ret == BLKPREP_KILL) {
2099 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2100 /*
2101 * Mark this request as started so we don't trigger
2102 * any debug logic in the end I/O path.
2103 */
2104 blk_start_request(rq);
40cbbb78 2105 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2106 } else {
2107 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2108 break;
2109 }
2110 }
2111
2112 return rq;
2113}
9934c8c0 2114EXPORT_SYMBOL(blk_peek_request);
158dbda0 2115
9934c8c0 2116void blk_dequeue_request(struct request *rq)
158dbda0 2117{
9934c8c0
TH
2118 struct request_queue *q = rq->q;
2119
158dbda0
TH
2120 BUG_ON(list_empty(&rq->queuelist));
2121 BUG_ON(ELV_ON_HASH(rq));
2122
2123 list_del_init(&rq->queuelist);
2124
2125 /*
2126 * the time frame between a request being removed from the lists
2127 * and to it is freed is accounted as io that is in progress at
2128 * the driver side.
2129 */
9195291e 2130 if (blk_account_rq(rq)) {
0a7ae2ff 2131 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2132 set_io_start_time_ns(rq);
2133 }
158dbda0
TH
2134}
2135
9934c8c0
TH
2136/**
2137 * blk_start_request - start request processing on the driver
2138 * @req: request to dequeue
2139 *
2140 * Description:
2141 * Dequeue @req and start timeout timer on it. This hands off the
2142 * request to the driver.
2143 *
2144 * Block internal functions which don't want to start timer should
2145 * call blk_dequeue_request().
2146 *
2147 * Context:
2148 * queue_lock must be held.
2149 */
2150void blk_start_request(struct request *req)
2151{
2152 blk_dequeue_request(req);
2153
2154 /*
5f49f631
TH
2155 * We are now handing the request to the hardware, initialize
2156 * resid_len to full count and add the timeout handler.
9934c8c0 2157 */
5f49f631 2158 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2159 if (unlikely(blk_bidi_rq(req)))
2160 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2161
9934c8c0
TH
2162 blk_add_timer(req);
2163}
2164EXPORT_SYMBOL(blk_start_request);
2165
2166/**
2167 * blk_fetch_request - fetch a request from a request queue
2168 * @q: request queue to fetch a request from
2169 *
2170 * Description:
2171 * Return the request at the top of @q. The request is started on
2172 * return and LLD can start processing it immediately.
2173 *
2174 * Return:
2175 * Pointer to the request at the top of @q if available. Null
2176 * otherwise.
2177 *
2178 * Context:
2179 * queue_lock must be held.
2180 */
2181struct request *blk_fetch_request(struct request_queue *q)
2182{
2183 struct request *rq;
2184
2185 rq = blk_peek_request(q);
2186 if (rq)
2187 blk_start_request(rq);
2188 return rq;
2189}
2190EXPORT_SYMBOL(blk_fetch_request);
2191
3bcddeac 2192/**
2e60e022 2193 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2194 * @req: the request being processed
710027a4 2195 * @error: %0 for success, < %0 for error
8ebf9756 2196 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2197 *
2198 * Description:
8ebf9756
RD
2199 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2200 * the request structure even if @req doesn't have leftover.
2201 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2202 *
2203 * This special helper function is only for request stacking drivers
2204 * (e.g. request-based dm) so that they can handle partial completion.
2205 * Actual device drivers should use blk_end_request instead.
2206 *
2207 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2208 * %false return from this function.
3bcddeac
KU
2209 *
2210 * Return:
2e60e022
TH
2211 * %false - this request doesn't have any more data
2212 * %true - this request has more data
3bcddeac 2213 **/
2e60e022 2214bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2215{
5450d3e1 2216 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2217 struct bio *bio;
2218
2e60e022
TH
2219 if (!req->bio)
2220 return false;
2221
5f3ea37c 2222 trace_block_rq_complete(req->q, req);
2056a782 2223
1da177e4 2224 /*
6f41469c
TH
2225 * For fs requests, rq is just carrier of independent bio's
2226 * and each partial completion should be handled separately.
2227 * Reset per-request error on each partial completion.
2228 *
2229 * TODO: tj: This is too subtle. It would be better to let
2230 * low level drivers do what they see fit.
1da177e4 2231 */
33659ebb 2232 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2233 req->errors = 0;
2234
33659ebb
CH
2235 if (error && req->cmd_type == REQ_TYPE_FS &&
2236 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2237 char *error_type;
2238
2239 switch (error) {
2240 case -ENOLINK:
2241 error_type = "recoverable transport";
2242 break;
2243 case -EREMOTEIO:
2244 error_type = "critical target";
2245 break;
2246 case -EBADE:
2247 error_type = "critical nexus";
2248 break;
2249 case -EIO:
2250 default:
2251 error_type = "I/O";
2252 break;
2253 }
2254 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2255 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2256 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2257 }
2258
bc58ba94 2259 blk_account_io_completion(req, nr_bytes);
d72d904a 2260
1da177e4
LT
2261 total_bytes = bio_nbytes = 0;
2262 while ((bio = req->bio) != NULL) {
2263 int nbytes;
2264
2265 if (nr_bytes >= bio->bi_size) {
2266 req->bio = bio->bi_next;
2267 nbytes = bio->bi_size;
5bb23a68 2268 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2269 next_idx = 0;
2270 bio_nbytes = 0;
2271 } else {
2272 int idx = bio->bi_idx + next_idx;
2273
af498d7f 2274 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2275 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2276 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2277 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2278 break;
2279 }
2280
2281 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2282 BIO_BUG_ON(nbytes > bio->bi_size);
2283
2284 /*
2285 * not a complete bvec done
2286 */
2287 if (unlikely(nbytes > nr_bytes)) {
2288 bio_nbytes += nr_bytes;
2289 total_bytes += nr_bytes;
2290 break;
2291 }
2292
2293 /*
2294 * advance to the next vector
2295 */
2296 next_idx++;
2297 bio_nbytes += nbytes;
2298 }
2299
2300 total_bytes += nbytes;
2301 nr_bytes -= nbytes;
2302
6728cb0e
JA
2303 bio = req->bio;
2304 if (bio) {
1da177e4
LT
2305 /*
2306 * end more in this run, or just return 'not-done'
2307 */
2308 if (unlikely(nr_bytes <= 0))
2309 break;
2310 }
2311 }
2312
2313 /*
2314 * completely done
2315 */
2e60e022
TH
2316 if (!req->bio) {
2317 /*
2318 * Reset counters so that the request stacking driver
2319 * can find how many bytes remain in the request
2320 * later.
2321 */
a2dec7b3 2322 req->__data_len = 0;
2e60e022
TH
2323 return false;
2324 }
1da177e4
LT
2325
2326 /*
2327 * if the request wasn't completed, update state
2328 */
2329 if (bio_nbytes) {
5bb23a68 2330 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2331 bio->bi_idx += next_idx;
2332 bio_iovec(bio)->bv_offset += nr_bytes;
2333 bio_iovec(bio)->bv_len -= nr_bytes;
2334 }
2335
a2dec7b3 2336 req->__data_len -= total_bytes;
2e46e8b2
TH
2337 req->buffer = bio_data(req->bio);
2338
2339 /* update sector only for requests with clear definition of sector */
e2a60da7 2340 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2341 req->__sector += total_bytes >> 9;
2e46e8b2 2342
80a761fd
TH
2343 /* mixed attributes always follow the first bio */
2344 if (req->cmd_flags & REQ_MIXED_MERGE) {
2345 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2346 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2347 }
2348
2e46e8b2
TH
2349 /*
2350 * If total number of sectors is less than the first segment
2351 * size, something has gone terribly wrong.
2352 */
2353 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2354 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2355 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2356 }
2357
2358 /* recalculate the number of segments */
1da177e4 2359 blk_recalc_rq_segments(req);
2e46e8b2 2360
2e60e022 2361 return true;
1da177e4 2362}
2e60e022 2363EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2364
2e60e022
TH
2365static bool blk_update_bidi_request(struct request *rq, int error,
2366 unsigned int nr_bytes,
2367 unsigned int bidi_bytes)
5efccd17 2368{
2e60e022
TH
2369 if (blk_update_request(rq, error, nr_bytes))
2370 return true;
5efccd17 2371
2e60e022
TH
2372 /* Bidi request must be completed as a whole */
2373 if (unlikely(blk_bidi_rq(rq)) &&
2374 blk_update_request(rq->next_rq, error, bidi_bytes))
2375 return true;
5efccd17 2376
e2e1a148
JA
2377 if (blk_queue_add_random(rq->q))
2378 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2379
2380 return false;
1da177e4
LT
2381}
2382
28018c24
JB
2383/**
2384 * blk_unprep_request - unprepare a request
2385 * @req: the request
2386 *
2387 * This function makes a request ready for complete resubmission (or
2388 * completion). It happens only after all error handling is complete,
2389 * so represents the appropriate moment to deallocate any resources
2390 * that were allocated to the request in the prep_rq_fn. The queue
2391 * lock is held when calling this.
2392 */
2393void blk_unprep_request(struct request *req)
2394{
2395 struct request_queue *q = req->q;
2396
2397 req->cmd_flags &= ~REQ_DONTPREP;
2398 if (q->unprep_rq_fn)
2399 q->unprep_rq_fn(q, req);
2400}
2401EXPORT_SYMBOL_GPL(blk_unprep_request);
2402
1da177e4
LT
2403/*
2404 * queue lock must be held
2405 */
2e60e022 2406static void blk_finish_request(struct request *req, int error)
1da177e4 2407{
b8286239
KU
2408 if (blk_rq_tagged(req))
2409 blk_queue_end_tag(req->q, req);
2410
ba396a6c 2411 BUG_ON(blk_queued_rq(req));
1da177e4 2412
33659ebb 2413 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2414 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2415
e78042e5
MA
2416 blk_delete_timer(req);
2417
28018c24
JB
2418 if (req->cmd_flags & REQ_DONTPREP)
2419 blk_unprep_request(req);
2420
2421
bc58ba94 2422 blk_account_io_done(req);
b8286239 2423
1da177e4 2424 if (req->end_io)
8ffdc655 2425 req->end_io(req, error);
b8286239
KU
2426 else {
2427 if (blk_bidi_rq(req))
2428 __blk_put_request(req->next_rq->q, req->next_rq);
2429
1da177e4 2430 __blk_put_request(req->q, req);
b8286239 2431 }
1da177e4
LT
2432}
2433
3b11313a 2434/**
2e60e022
TH
2435 * blk_end_bidi_request - Complete a bidi request
2436 * @rq: the request to complete
2437 * @error: %0 for success, < %0 for error
2438 * @nr_bytes: number of bytes to complete @rq
2439 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2440 *
2441 * Description:
e3a04fe3 2442 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2443 * Drivers that supports bidi can safely call this member for any
2444 * type of request, bidi or uni. In the later case @bidi_bytes is
2445 * just ignored.
336cdb40
KU
2446 *
2447 * Return:
2e60e022
TH
2448 * %false - we are done with this request
2449 * %true - still buffers pending for this request
a0cd1285 2450 **/
b1f74493 2451static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2452 unsigned int nr_bytes, unsigned int bidi_bytes)
2453{
336cdb40 2454 struct request_queue *q = rq->q;
2e60e022 2455 unsigned long flags;
32fab448 2456
2e60e022
TH
2457 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2458 return true;
32fab448 2459
336cdb40 2460 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2461 blk_finish_request(rq, error);
336cdb40
KU
2462 spin_unlock_irqrestore(q->queue_lock, flags);
2463
2e60e022 2464 return false;
32fab448
KU
2465}
2466
336cdb40 2467/**
2e60e022
TH
2468 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2469 * @rq: the request to complete
710027a4 2470 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2471 * @nr_bytes: number of bytes to complete @rq
2472 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2473 *
2474 * Description:
2e60e022
TH
2475 * Identical to blk_end_bidi_request() except that queue lock is
2476 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2477 *
2478 * Return:
2e60e022
TH
2479 * %false - we are done with this request
2480 * %true - still buffers pending for this request
336cdb40 2481 **/
4853abaa 2482bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2483 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2484{
2e60e022
TH
2485 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2486 return true;
336cdb40 2487
2e60e022 2488 blk_finish_request(rq, error);
336cdb40 2489
2e60e022 2490 return false;
336cdb40 2491}
e19a3ab0
KU
2492
2493/**
2494 * blk_end_request - Helper function for drivers to complete the request.
2495 * @rq: the request being processed
710027a4 2496 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2497 * @nr_bytes: number of bytes to complete
2498 *
2499 * Description:
2500 * Ends I/O on a number of bytes attached to @rq.
2501 * If @rq has leftover, sets it up for the next range of segments.
2502 *
2503 * Return:
b1f74493
FT
2504 * %false - we are done with this request
2505 * %true - still buffers pending for this request
e19a3ab0 2506 **/
b1f74493 2507bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2508{
b1f74493 2509 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2510}
56ad1740 2511EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2512
2513/**
b1f74493
FT
2514 * blk_end_request_all - Helper function for drives to finish the request.
2515 * @rq: the request to finish
8ebf9756 2516 * @error: %0 for success, < %0 for error
336cdb40
KU
2517 *
2518 * Description:
b1f74493
FT
2519 * Completely finish @rq.
2520 */
2521void blk_end_request_all(struct request *rq, int error)
336cdb40 2522{
b1f74493
FT
2523 bool pending;
2524 unsigned int bidi_bytes = 0;
336cdb40 2525
b1f74493
FT
2526 if (unlikely(blk_bidi_rq(rq)))
2527 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2528
b1f74493
FT
2529 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2530 BUG_ON(pending);
2531}
56ad1740 2532EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2533
b1f74493
FT
2534/**
2535 * blk_end_request_cur - Helper function to finish the current request chunk.
2536 * @rq: the request to finish the current chunk for
8ebf9756 2537 * @error: %0 for success, < %0 for error
b1f74493
FT
2538 *
2539 * Description:
2540 * Complete the current consecutively mapped chunk from @rq.
2541 *
2542 * Return:
2543 * %false - we are done with this request
2544 * %true - still buffers pending for this request
2545 */
2546bool blk_end_request_cur(struct request *rq, int error)
2547{
2548 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2549}
56ad1740 2550EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2551
80a761fd
TH
2552/**
2553 * blk_end_request_err - Finish a request till the next failure boundary.
2554 * @rq: the request to finish till the next failure boundary for
2555 * @error: must be negative errno
2556 *
2557 * Description:
2558 * Complete @rq till the next failure boundary.
2559 *
2560 * Return:
2561 * %false - we are done with this request
2562 * %true - still buffers pending for this request
2563 */
2564bool blk_end_request_err(struct request *rq, int error)
2565{
2566 WARN_ON(error >= 0);
2567 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2568}
2569EXPORT_SYMBOL_GPL(blk_end_request_err);
2570
e3a04fe3 2571/**
b1f74493
FT
2572 * __blk_end_request - Helper function for drivers to complete the request.
2573 * @rq: the request being processed
2574 * @error: %0 for success, < %0 for error
2575 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2576 *
2577 * Description:
b1f74493 2578 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2579 *
2580 * Return:
b1f74493
FT
2581 * %false - we are done with this request
2582 * %true - still buffers pending for this request
e3a04fe3 2583 **/
b1f74493 2584bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2585{
b1f74493 2586 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2587}
56ad1740 2588EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2589
32fab448 2590/**
b1f74493
FT
2591 * __blk_end_request_all - Helper function for drives to finish the request.
2592 * @rq: the request to finish
8ebf9756 2593 * @error: %0 for success, < %0 for error
32fab448
KU
2594 *
2595 * Description:
b1f74493 2596 * Completely finish @rq. Must be called with queue lock held.
32fab448 2597 */
b1f74493 2598void __blk_end_request_all(struct request *rq, int error)
32fab448 2599{
b1f74493
FT
2600 bool pending;
2601 unsigned int bidi_bytes = 0;
2602
2603 if (unlikely(blk_bidi_rq(rq)))
2604 bidi_bytes = blk_rq_bytes(rq->next_rq);
2605
2606 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2607 BUG_ON(pending);
32fab448 2608}
56ad1740 2609EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2610
e19a3ab0 2611/**
b1f74493
FT
2612 * __blk_end_request_cur - Helper function to finish the current request chunk.
2613 * @rq: the request to finish the current chunk for
8ebf9756 2614 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2615 *
2616 * Description:
b1f74493
FT
2617 * Complete the current consecutively mapped chunk from @rq. Must
2618 * be called with queue lock held.
e19a3ab0
KU
2619 *
2620 * Return:
b1f74493
FT
2621 * %false - we are done with this request
2622 * %true - still buffers pending for this request
2623 */
2624bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2625{
b1f74493 2626 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2627}
56ad1740 2628EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2629
80a761fd
TH
2630/**
2631 * __blk_end_request_err - Finish a request till the next failure boundary.
2632 * @rq: the request to finish till the next failure boundary for
2633 * @error: must be negative errno
2634 *
2635 * Description:
2636 * Complete @rq till the next failure boundary. Must be called
2637 * with queue lock held.
2638 *
2639 * Return:
2640 * %false - we are done with this request
2641 * %true - still buffers pending for this request
2642 */
2643bool __blk_end_request_err(struct request *rq, int error)
2644{
2645 WARN_ON(error >= 0);
2646 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2647}
2648EXPORT_SYMBOL_GPL(__blk_end_request_err);
2649
86db1e29
JA
2650void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2651 struct bio *bio)
1da177e4 2652{
a82afdfc 2653 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2654 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2655
fb2dce86
DW
2656 if (bio_has_data(bio)) {
2657 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2658 rq->buffer = bio_data(bio);
2659 }
a2dec7b3 2660 rq->__data_len = bio->bi_size;
1da177e4 2661 rq->bio = rq->biotail = bio;
1da177e4 2662
66846572
N
2663 if (bio->bi_bdev)
2664 rq->rq_disk = bio->bi_bdev->bd_disk;
2665}
1da177e4 2666
2d4dc890
IL
2667#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2668/**
2669 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2670 * @rq: the request to be flushed
2671 *
2672 * Description:
2673 * Flush all pages in @rq.
2674 */
2675void rq_flush_dcache_pages(struct request *rq)
2676{
2677 struct req_iterator iter;
2678 struct bio_vec *bvec;
2679
2680 rq_for_each_segment(bvec, rq, iter)
2681 flush_dcache_page(bvec->bv_page);
2682}
2683EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2684#endif
2685
ef9e3fac
KU
2686/**
2687 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2688 * @q : the queue of the device being checked
2689 *
2690 * Description:
2691 * Check if underlying low-level drivers of a device are busy.
2692 * If the drivers want to export their busy state, they must set own
2693 * exporting function using blk_queue_lld_busy() first.
2694 *
2695 * Basically, this function is used only by request stacking drivers
2696 * to stop dispatching requests to underlying devices when underlying
2697 * devices are busy. This behavior helps more I/O merging on the queue
2698 * of the request stacking driver and prevents I/O throughput regression
2699 * on burst I/O load.
2700 *
2701 * Return:
2702 * 0 - Not busy (The request stacking driver should dispatch request)
2703 * 1 - Busy (The request stacking driver should stop dispatching request)
2704 */
2705int blk_lld_busy(struct request_queue *q)
2706{
2707 if (q->lld_busy_fn)
2708 return q->lld_busy_fn(q);
2709
2710 return 0;
2711}
2712EXPORT_SYMBOL_GPL(blk_lld_busy);
2713
b0fd271d
KU
2714/**
2715 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2716 * @rq: the clone request to be cleaned up
2717 *
2718 * Description:
2719 * Free all bios in @rq for a cloned request.
2720 */
2721void blk_rq_unprep_clone(struct request *rq)
2722{
2723 struct bio *bio;
2724
2725 while ((bio = rq->bio) != NULL) {
2726 rq->bio = bio->bi_next;
2727
2728 bio_put(bio);
2729 }
2730}
2731EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2732
2733/*
2734 * Copy attributes of the original request to the clone request.
2735 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2736 */
2737static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2738{
2739 dst->cpu = src->cpu;
3a2edd0d 2740 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2741 dst->cmd_type = src->cmd_type;
2742 dst->__sector = blk_rq_pos(src);
2743 dst->__data_len = blk_rq_bytes(src);
2744 dst->nr_phys_segments = src->nr_phys_segments;
2745 dst->ioprio = src->ioprio;
2746 dst->extra_len = src->extra_len;
2747}
2748
2749/**
2750 * blk_rq_prep_clone - Helper function to setup clone request
2751 * @rq: the request to be setup
2752 * @rq_src: original request to be cloned
2753 * @bs: bio_set that bios for clone are allocated from
2754 * @gfp_mask: memory allocation mask for bio
2755 * @bio_ctr: setup function to be called for each clone bio.
2756 * Returns %0 for success, non %0 for failure.
2757 * @data: private data to be passed to @bio_ctr
2758 *
2759 * Description:
2760 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2761 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2762 * are not copied, and copying such parts is the caller's responsibility.
2763 * Also, pages which the original bios are pointing to are not copied
2764 * and the cloned bios just point same pages.
2765 * So cloned bios must be completed before original bios, which means
2766 * the caller must complete @rq before @rq_src.
2767 */
2768int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2769 struct bio_set *bs, gfp_t gfp_mask,
2770 int (*bio_ctr)(struct bio *, struct bio *, void *),
2771 void *data)
2772{
2773 struct bio *bio, *bio_src;
2774
2775 if (!bs)
2776 bs = fs_bio_set;
2777
2778 blk_rq_init(NULL, rq);
2779
2780 __rq_for_each_bio(bio_src, rq_src) {
bf800ef1 2781 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
b0fd271d
KU
2782 if (!bio)
2783 goto free_and_out;
2784
b0fd271d
KU
2785 if (bio_ctr && bio_ctr(bio, bio_src, data))
2786 goto free_and_out;
2787
2788 if (rq->bio) {
2789 rq->biotail->bi_next = bio;
2790 rq->biotail = bio;
2791 } else
2792 rq->bio = rq->biotail = bio;
2793 }
2794
2795 __blk_rq_prep_clone(rq, rq_src);
2796
2797 return 0;
2798
2799free_and_out:
2800 if (bio)
4254bba1 2801 bio_put(bio);
b0fd271d
KU
2802 blk_rq_unprep_clone(rq);
2803
2804 return -ENOMEM;
2805}
2806EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2807
18887ad9 2808int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2809{
2810 return queue_work(kblockd_workqueue, work);
2811}
1da177e4
LT
2812EXPORT_SYMBOL(kblockd_schedule_work);
2813
e43473b7
VG
2814int kblockd_schedule_delayed_work(struct request_queue *q,
2815 struct delayed_work *dwork, unsigned long delay)
2816{
2817 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2818}
2819EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2820
73c10101
JA
2821#define PLUG_MAGIC 0x91827364
2822
75df7136
SJ
2823/**
2824 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2825 * @plug: The &struct blk_plug that needs to be initialized
2826 *
2827 * Description:
2828 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2829 * pending I/O should the task end up blocking between blk_start_plug() and
2830 * blk_finish_plug(). This is important from a performance perspective, but
2831 * also ensures that we don't deadlock. For instance, if the task is blocking
2832 * for a memory allocation, memory reclaim could end up wanting to free a
2833 * page belonging to that request that is currently residing in our private
2834 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2835 * this kind of deadlock.
2836 */
73c10101
JA
2837void blk_start_plug(struct blk_plug *plug)
2838{
2839 struct task_struct *tsk = current;
2840
2841 plug->magic = PLUG_MAGIC;
2842 INIT_LIST_HEAD(&plug->list);
048c9374 2843 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2844 plug->should_sort = 0;
2845
2846 /*
2847 * If this is a nested plug, don't actually assign it. It will be
2848 * flushed on its own.
2849 */
2850 if (!tsk->plug) {
2851 /*
2852 * Store ordering should not be needed here, since a potential
2853 * preempt will imply a full memory barrier
2854 */
2855 tsk->plug = plug;
2856 }
2857}
2858EXPORT_SYMBOL(blk_start_plug);
2859
2860static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2861{
2862 struct request *rqa = container_of(a, struct request, queuelist);
2863 struct request *rqb = container_of(b, struct request, queuelist);
2864
f83e8261 2865 return !(rqa->q <= rqb->q);
73c10101
JA
2866}
2867
49cac01e
JA
2868/*
2869 * If 'from_schedule' is true, then postpone the dispatch of requests
2870 * until a safe kblockd context. We due this to avoid accidental big
2871 * additional stack usage in driver dispatch, in places where the originally
2872 * plugger did not intend it.
2873 */
f6603783 2874static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2875 bool from_schedule)
99e22598 2876 __releases(q->queue_lock)
94b5eb28 2877{
49cac01e 2878 trace_block_unplug(q, depth, !from_schedule);
99e22598 2879
8ba61435
TH
2880 /*
2881 * Don't mess with dead queue.
2882 */
2883 if (unlikely(blk_queue_dead(q))) {
2884 spin_unlock(q->queue_lock);
2885 return;
2886 }
2887
99e22598
JA
2888 /*
2889 * If we are punting this to kblockd, then we can safely drop
2890 * the queue_lock before waking kblockd (which needs to take
2891 * this lock).
2892 */
2893 if (from_schedule) {
2894 spin_unlock(q->queue_lock);
24ecfbe2 2895 blk_run_queue_async(q);
99e22598 2896 } else {
24ecfbe2 2897 __blk_run_queue(q);
99e22598
JA
2898 spin_unlock(q->queue_lock);
2899 }
2900
94b5eb28
JA
2901}
2902
74018dc3 2903static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
2904{
2905 LIST_HEAD(callbacks);
2906
2a7d5559
SL
2907 while (!list_empty(&plug->cb_list)) {
2908 list_splice_init(&plug->cb_list, &callbacks);
048c9374 2909
2a7d5559
SL
2910 while (!list_empty(&callbacks)) {
2911 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
2912 struct blk_plug_cb,
2913 list);
2a7d5559 2914 list_del(&cb->list);
74018dc3 2915 cb->callback(cb, from_schedule);
2a7d5559 2916 }
048c9374
N
2917 }
2918}
2919
9cbb1750
N
2920struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2921 int size)
2922{
2923 struct blk_plug *plug = current->plug;
2924 struct blk_plug_cb *cb;
2925
2926 if (!plug)
2927 return NULL;
2928
2929 list_for_each_entry(cb, &plug->cb_list, list)
2930 if (cb->callback == unplug && cb->data == data)
2931 return cb;
2932
2933 /* Not currently on the callback list */
2934 BUG_ON(size < sizeof(*cb));
2935 cb = kzalloc(size, GFP_ATOMIC);
2936 if (cb) {
2937 cb->data = data;
2938 cb->callback = unplug;
2939 list_add(&cb->list, &plug->cb_list);
2940 }
2941 return cb;
2942}
2943EXPORT_SYMBOL(blk_check_plugged);
2944
49cac01e 2945void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2946{
2947 struct request_queue *q;
2948 unsigned long flags;
2949 struct request *rq;
109b8129 2950 LIST_HEAD(list);
94b5eb28 2951 unsigned int depth;
73c10101
JA
2952
2953 BUG_ON(plug->magic != PLUG_MAGIC);
2954
74018dc3 2955 flush_plug_callbacks(plug, from_schedule);
73c10101
JA
2956 if (list_empty(&plug->list))
2957 return;
2958
109b8129
N
2959 list_splice_init(&plug->list, &list);
2960
2961 if (plug->should_sort) {
2962 list_sort(NULL, &list, plug_rq_cmp);
2963 plug->should_sort = 0;
2964 }
73c10101
JA
2965
2966 q = NULL;
94b5eb28 2967 depth = 0;
18811272
JA
2968
2969 /*
2970 * Save and disable interrupts here, to avoid doing it for every
2971 * queue lock we have to take.
2972 */
73c10101 2973 local_irq_save(flags);
109b8129
N
2974 while (!list_empty(&list)) {
2975 rq = list_entry_rq(list.next);
73c10101 2976 list_del_init(&rq->queuelist);
73c10101
JA
2977 BUG_ON(!rq->q);
2978 if (rq->q != q) {
99e22598
JA
2979 /*
2980 * This drops the queue lock
2981 */
2982 if (q)
49cac01e 2983 queue_unplugged(q, depth, from_schedule);
73c10101 2984 q = rq->q;
94b5eb28 2985 depth = 0;
73c10101
JA
2986 spin_lock(q->queue_lock);
2987 }
8ba61435
TH
2988
2989 /*
2990 * Short-circuit if @q is dead
2991 */
2992 if (unlikely(blk_queue_dead(q))) {
2993 __blk_end_request_all(rq, -ENODEV);
2994 continue;
2995 }
2996
73c10101
JA
2997 /*
2998 * rq is already accounted, so use raw insert
2999 */
401a18e9
JA
3000 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3001 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3002 else
3003 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3004
3005 depth++;
73c10101
JA
3006 }
3007
99e22598
JA
3008 /*
3009 * This drops the queue lock
3010 */
3011 if (q)
49cac01e 3012 queue_unplugged(q, depth, from_schedule);
73c10101 3013
73c10101
JA
3014 local_irq_restore(flags);
3015}
73c10101
JA
3016
3017void blk_finish_plug(struct blk_plug *plug)
3018{
f6603783 3019 blk_flush_plug_list(plug, false);
73c10101 3020
88b996cd
CH
3021 if (plug == current->plug)
3022 current->plug = NULL;
73c10101 3023}
88b996cd 3024EXPORT_SYMBOL(blk_finish_plug);
73c10101 3025
1da177e4
LT
3026int __init blk_dev_init(void)
3027{
9eb55b03
NK
3028 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3029 sizeof(((struct request *)0)->cmd_flags));
3030
89b90be2
TH
3031 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3032 kblockd_workqueue = alloc_workqueue("kblockd",
3033 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3034 if (!kblockd_workqueue)
3035 panic("Failed to create kblockd\n");
3036
3037 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3038 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3039
8324aa91 3040 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3041 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3042
d38ecf93 3043 return 0;
1da177e4 3044}