]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-mq.c
blk-mq: remove blk_mq_alloc_request_pinned
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
CommitLineData
320ae51f
JA
1#include <linux/kernel.h>
2#include <linux/module.h>
3#include <linux/backing-dev.h>
4#include <linux/bio.h>
5#include <linux/blkdev.h>
6#include <linux/mm.h>
7#include <linux/init.h>
8#include <linux/slab.h>
9#include <linux/workqueue.h>
10#include <linux/smp.h>
11#include <linux/llist.h>
12#include <linux/list_sort.h>
13#include <linux/cpu.h>
14#include <linux/cache.h>
15#include <linux/sched/sysctl.h>
16#include <linux/delay.h>
17
18#include <trace/events/block.h>
19
20#include <linux/blk-mq.h>
21#include "blk.h"
22#include "blk-mq.h"
23#include "blk-mq-tag.h"
24
25static DEFINE_MUTEX(all_q_mutex);
26static LIST_HEAD(all_q_list);
27
28static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
29
320ae51f
JA
30static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
31 unsigned int cpu)
32{
33 return per_cpu_ptr(q->queue_ctx, cpu);
34}
35
36/*
37 * This assumes per-cpu software queueing queues. They could be per-node
38 * as well, for instance. For now this is hardcoded as-is. Note that we don't
39 * care about preemption, since we know the ctx's are persistent. This does
40 * mean that we can't rely on ctx always matching the currently running CPU.
41 */
42static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
43{
44 return __blk_mq_get_ctx(q, get_cpu());
45}
46
47static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
48{
49 put_cpu();
50}
51
52/*
53 * Check if any of the ctx's have pending work in this hardware queue
54 */
55static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
56{
57 unsigned int i;
58
1429d7c9
JA
59 for (i = 0; i < hctx->ctx_map.map_size; i++)
60 if (hctx->ctx_map.map[i].word)
320ae51f
JA
61 return true;
62
63 return false;
64}
65
1429d7c9
JA
66static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
67 struct blk_mq_ctx *ctx)
68{
69 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
70}
71
72#define CTX_TO_BIT(hctx, ctx) \
73 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
74
320ae51f
JA
75/*
76 * Mark this ctx as having pending work in this hardware queue
77 */
78static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
79 struct blk_mq_ctx *ctx)
80{
1429d7c9
JA
81 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
82
83 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
84 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
85}
86
87static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
88 struct blk_mq_ctx *ctx)
89{
90 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
91
92 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
320ae51f
JA
93}
94
320ae51f
JA
95static int blk_mq_queue_enter(struct request_queue *q)
96{
97 int ret;
98
99 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
100 smp_wmb();
101 /* we have problems to freeze the queue if it's initializing */
102 if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
103 return 0;
104
105 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
106
107 spin_lock_irq(q->queue_lock);
108 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
43a5e4e2
ML
109 !blk_queue_bypass(q) || blk_queue_dying(q),
110 *q->queue_lock);
320ae51f 111 /* inc usage with lock hold to avoid freeze_queue runs here */
43a5e4e2 112 if (!ret && !blk_queue_dying(q))
320ae51f 113 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
43a5e4e2
ML
114 else if (blk_queue_dying(q))
115 ret = -ENODEV;
320ae51f
JA
116 spin_unlock_irq(q->queue_lock);
117
118 return ret;
119}
120
121static void blk_mq_queue_exit(struct request_queue *q)
122{
123 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
124}
125
43a5e4e2
ML
126static void __blk_mq_drain_queue(struct request_queue *q)
127{
128 while (true) {
129 s64 count;
130
131 spin_lock_irq(q->queue_lock);
132 count = percpu_counter_sum(&q->mq_usage_counter);
133 spin_unlock_irq(q->queue_lock);
134
135 if (count == 0)
136 break;
137 blk_mq_run_queues(q, false);
138 msleep(10);
139 }
140}
141
320ae51f
JA
142/*
143 * Guarantee no request is in use, so we can change any data structure of
144 * the queue afterward.
145 */
146static void blk_mq_freeze_queue(struct request_queue *q)
147{
148 bool drain;
149
150 spin_lock_irq(q->queue_lock);
151 drain = !q->bypass_depth++;
152 queue_flag_set(QUEUE_FLAG_BYPASS, q);
153 spin_unlock_irq(q->queue_lock);
154
43a5e4e2
ML
155 if (drain)
156 __blk_mq_drain_queue(q);
157}
320ae51f 158
43a5e4e2
ML
159void blk_mq_drain_queue(struct request_queue *q)
160{
161 __blk_mq_drain_queue(q);
320ae51f
JA
162}
163
164static void blk_mq_unfreeze_queue(struct request_queue *q)
165{
166 bool wake = false;
167
168 spin_lock_irq(q->queue_lock);
169 if (!--q->bypass_depth) {
170 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
171 wake = true;
172 }
173 WARN_ON_ONCE(q->bypass_depth < 0);
174 spin_unlock_irq(q->queue_lock);
175 if (wake)
176 wake_up_all(&q->mq_freeze_wq);
177}
178
179bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
180{
181 return blk_mq_has_free_tags(hctx->tags);
182}
183EXPORT_SYMBOL(blk_mq_can_queue);
184
94eddfbe
JA
185static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
186 struct request *rq, unsigned int rw_flags)
320ae51f 187{
94eddfbe
JA
188 if (blk_queue_io_stat(q))
189 rw_flags |= REQ_IO_STAT;
190
af76e555
CH
191 INIT_LIST_HEAD(&rq->queuelist);
192 /* csd/requeue_work/fifo_time is initialized before use */
193 rq->q = q;
320ae51f 194 rq->mq_ctx = ctx;
0d2602ca 195 rq->cmd_flags |= rw_flags;
af76e555
CH
196 rq->cmd_type = 0;
197 /* do not touch atomic flags, it needs atomic ops against the timer */
198 rq->cpu = -1;
199 rq->__data_len = 0;
200 rq->__sector = (sector_t) -1;
201 rq->bio = NULL;
202 rq->biotail = NULL;
203 INIT_HLIST_NODE(&rq->hash);
204 RB_CLEAR_NODE(&rq->rb_node);
205 memset(&rq->flush, 0, max(sizeof(rq->flush), sizeof(rq->elv)));
206 rq->rq_disk = NULL;
207 rq->part = NULL;
0fec08b4 208 rq->start_time = jiffies;
af76e555
CH
209#ifdef CONFIG_BLK_CGROUP
210 rq->rl = NULL;
0fec08b4 211 set_start_time_ns(rq);
af76e555
CH
212 rq->io_start_time_ns = 0;
213#endif
214 rq->nr_phys_segments = 0;
215#if defined(CONFIG_BLK_DEV_INTEGRITY)
216 rq->nr_integrity_segments = 0;
217#endif
218 rq->ioprio = 0;
219 rq->special = NULL;
220 /* tag was already set */
221 rq->errors = 0;
222 memset(rq->__cmd, 0, sizeof(rq->__cmd));
223 rq->cmd = rq->__cmd;
224 rq->cmd_len = BLK_MAX_CDB;
225
226 rq->extra_len = 0;
227 rq->sense_len = 0;
228 rq->resid_len = 0;
229 rq->sense = NULL;
230
231 rq->deadline = 0;
232 INIT_LIST_HEAD(&rq->timeout_list);
233 rq->timeout = 0;
234 rq->retries = 0;
235 rq->end_io = NULL;
236 rq->end_io_data = NULL;
237 rq->next_rq = NULL;
238
320ae51f
JA
239 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
240}
241
5dee8577
CH
242static struct request *
243__blk_mq_alloc_request(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
244 struct blk_mq_ctx *ctx, int rw, gfp_t gfp, bool reserved)
245{
246 struct request *rq;
247 unsigned int tag;
248
249 tag = blk_mq_get_tag(hctx, &ctx->last_tag, gfp, reserved);
250 if (tag != BLK_MQ_TAG_FAIL) {
251 rq = hctx->tags->rqs[tag];
252
253 rq->cmd_flags = 0;
254 if (blk_mq_tag_busy(hctx)) {
255 rq->cmd_flags = REQ_MQ_INFLIGHT;
256 atomic_inc(&hctx->nr_active);
257 }
258
259 rq->tag = tag;
260 blk_mq_rq_ctx_init(q, ctx, rq, rw);
261 return rq;
262 }
263
264 return NULL;
265}
266
4ce01dd1
CH
267struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
268 bool reserved)
320ae51f 269{
d852564f
CH
270 struct blk_mq_ctx *ctx;
271 struct blk_mq_hw_ctx *hctx;
320ae51f
JA
272 struct request *rq;
273
274 if (blk_mq_queue_enter(q))
275 return NULL;
276
d852564f
CH
277 ctx = blk_mq_get_ctx(q);
278 hctx = q->mq_ops->map_queue(q, ctx->cpu);
279
280 rq = __blk_mq_alloc_request(q, hctx, ctx, rw, gfp & ~__GFP_WAIT,
281 reserved);
282 if (!rq && (gfp & __GFP_WAIT)) {
283 __blk_mq_run_hw_queue(hctx);
284 blk_mq_put_ctx(ctx);
285
286 ctx = blk_mq_get_ctx(q);
287 hctx = q->mq_ops->map_queue(q, ctx->cpu);
288 rq = __blk_mq_alloc_request(q, hctx, ctx, rw, gfp, reserved);
289 }
290 blk_mq_put_ctx(ctx);
320ae51f
JA
291 return rq;
292}
4bb659b1 293EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 294
320ae51f
JA
295static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
296 struct blk_mq_ctx *ctx, struct request *rq)
297{
298 const int tag = rq->tag;
299 struct request_queue *q = rq->q;
300
0d2602ca
JA
301 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
302 atomic_dec(&hctx->nr_active);
303
af76e555 304 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
0d2602ca 305 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
320ae51f
JA
306 blk_mq_queue_exit(q);
307}
308
309void blk_mq_free_request(struct request *rq)
310{
311 struct blk_mq_ctx *ctx = rq->mq_ctx;
312 struct blk_mq_hw_ctx *hctx;
313 struct request_queue *q = rq->q;
314
315 ctx->rq_completed[rq_is_sync(rq)]++;
316
317 hctx = q->mq_ops->map_queue(q, ctx->cpu);
318 __blk_mq_free_request(hctx, ctx, rq);
319}
320
8727af4b
CH
321/*
322 * Clone all relevant state from a request that has been put on hold in
323 * the flush state machine into the preallocated flush request that hangs
324 * off the request queue.
325 *
326 * For a driver the flush request should be invisible, that's why we are
327 * impersonating the original request here.
328 */
329void blk_mq_clone_flush_request(struct request *flush_rq,
330 struct request *orig_rq)
331{
332 struct blk_mq_hw_ctx *hctx =
333 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
334
335 flush_rq->mq_ctx = orig_rq->mq_ctx;
336 flush_rq->tag = orig_rq->tag;
337 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
338 hctx->cmd_size);
339}
340
63151a44 341inline void __blk_mq_end_io(struct request *rq, int error)
320ae51f 342{
0d11e6ac
ML
343 blk_account_io_done(rq);
344
91b63639 345 if (rq->end_io) {
320ae51f 346 rq->end_io(rq, error);
91b63639
CH
347 } else {
348 if (unlikely(blk_bidi_rq(rq)))
349 blk_mq_free_request(rq->next_rq);
320ae51f 350 blk_mq_free_request(rq);
91b63639 351 }
320ae51f 352}
63151a44
CH
353EXPORT_SYMBOL(__blk_mq_end_io);
354
355void blk_mq_end_io(struct request *rq, int error)
356{
357 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
358 BUG();
359 __blk_mq_end_io(rq, error);
360}
361EXPORT_SYMBOL(blk_mq_end_io);
320ae51f 362
30a91cb4 363static void __blk_mq_complete_request_remote(void *data)
320ae51f 364{
3d6efbf6 365 struct request *rq = data;
320ae51f 366
30a91cb4 367 rq->q->softirq_done_fn(rq);
320ae51f 368}
320ae51f 369
30a91cb4 370void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
371{
372 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 373 bool shared = false;
320ae51f
JA
374 int cpu;
375
38535201 376 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
377 rq->q->softirq_done_fn(rq);
378 return;
379 }
320ae51f
JA
380
381 cpu = get_cpu();
38535201
CH
382 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
383 shared = cpus_share_cache(cpu, ctx->cpu);
384
385 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 386 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
387 rq->csd.info = rq;
388 rq->csd.flags = 0;
c46fff2a 389 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 390 } else {
30a91cb4 391 rq->q->softirq_done_fn(rq);
3d6efbf6 392 }
320ae51f
JA
393 put_cpu();
394}
30a91cb4
CH
395
396/**
397 * blk_mq_complete_request - end I/O on a request
398 * @rq: the request being processed
399 *
400 * Description:
401 * Ends all I/O on a request. It does not handle partial completions.
402 * The actual completion happens out-of-order, through a IPI handler.
403 **/
404void blk_mq_complete_request(struct request *rq)
405{
95f09684
JA
406 struct request_queue *q = rq->q;
407
408 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 409 return;
95f09684
JA
410 if (!blk_mark_rq_complete(rq)) {
411 if (q->softirq_done_fn)
412 __blk_mq_complete_request(rq);
413 else
414 blk_mq_end_io(rq, rq->errors);
415 }
30a91cb4
CH
416}
417EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 418
49f5baa5 419static void blk_mq_start_request(struct request *rq, bool last)
320ae51f
JA
420{
421 struct request_queue *q = rq->q;
422
423 trace_block_rq_issue(q, rq);
424
742ee69b 425 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
426 if (unlikely(blk_bidi_rq(rq)))
427 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 428
320ae51f
JA
429 /*
430 * Just mark start time and set the started bit. Due to memory
431 * ordering, we know we'll see the correct deadline as long as
c22d9d8a
JA
432 * REQ_ATOMIC_STARTED is seen. Use the default queue timeout,
433 * unless one has been set in the request.
320ae51f 434 */
c22d9d8a
JA
435 if (!rq->timeout)
436 rq->deadline = jiffies + q->rq_timeout;
437 else
438 rq->deadline = jiffies + rq->timeout;
87ee7b11
JA
439
440 /*
441 * Mark us as started and clear complete. Complete might have been
442 * set if requeue raced with timeout, which then marked it as
443 * complete. So be sure to clear complete again when we start
444 * the request, otherwise we'll ignore the completion event.
445 */
320ae51f 446 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
87ee7b11 447 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
448
449 if (q->dma_drain_size && blk_rq_bytes(rq)) {
450 /*
451 * Make sure space for the drain appears. We know we can do
452 * this because max_hw_segments has been adjusted to be one
453 * fewer than the device can handle.
454 */
455 rq->nr_phys_segments++;
456 }
457
458 /*
459 * Flag the last request in the series so that drivers know when IO
460 * should be kicked off, if they don't do it on a per-request basis.
461 *
462 * Note: the flag isn't the only condition drivers should do kick off.
463 * If drive is busy, the last request might not have the bit set.
464 */
465 if (last)
466 rq->cmd_flags |= REQ_END;
320ae51f
JA
467}
468
ed0791b2 469static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
470{
471 struct request_queue *q = rq->q;
472
473 trace_block_rq_requeue(q, rq);
474 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
49f5baa5
CH
475
476 rq->cmd_flags &= ~REQ_END;
477
478 if (q->dma_drain_size && blk_rq_bytes(rq))
479 rq->nr_phys_segments--;
320ae51f
JA
480}
481
ed0791b2
CH
482void blk_mq_requeue_request(struct request *rq)
483{
ed0791b2
CH
484 __blk_mq_requeue_request(rq);
485 blk_clear_rq_complete(rq);
486
ed0791b2 487 BUG_ON(blk_queued_rq(rq));
6fca6a61 488 blk_mq_add_to_requeue_list(rq, true);
ed0791b2
CH
489}
490EXPORT_SYMBOL(blk_mq_requeue_request);
491
6fca6a61
CH
492static void blk_mq_requeue_work(struct work_struct *work)
493{
494 struct request_queue *q =
495 container_of(work, struct request_queue, requeue_work);
496 LIST_HEAD(rq_list);
497 struct request *rq, *next;
498 unsigned long flags;
499
500 spin_lock_irqsave(&q->requeue_lock, flags);
501 list_splice_init(&q->requeue_list, &rq_list);
502 spin_unlock_irqrestore(&q->requeue_lock, flags);
503
504 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
505 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
506 continue;
507
508 rq->cmd_flags &= ~REQ_SOFTBARRIER;
509 list_del_init(&rq->queuelist);
510 blk_mq_insert_request(rq, true, false, false);
511 }
512
513 while (!list_empty(&rq_list)) {
514 rq = list_entry(rq_list.next, struct request, queuelist);
515 list_del_init(&rq->queuelist);
516 blk_mq_insert_request(rq, false, false, false);
517 }
518
519 blk_mq_run_queues(q, false);
520}
521
522void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
523{
524 struct request_queue *q = rq->q;
525 unsigned long flags;
526
527 /*
528 * We abuse this flag that is otherwise used by the I/O scheduler to
529 * request head insertation from the workqueue.
530 */
531 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
532
533 spin_lock_irqsave(&q->requeue_lock, flags);
534 if (at_head) {
535 rq->cmd_flags |= REQ_SOFTBARRIER;
536 list_add(&rq->queuelist, &q->requeue_list);
537 } else {
538 list_add_tail(&rq->queuelist, &q->requeue_list);
539 }
540 spin_unlock_irqrestore(&q->requeue_lock, flags);
541}
542EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
543
544void blk_mq_kick_requeue_list(struct request_queue *q)
545{
546 kblockd_schedule_work(&q->requeue_work);
547}
548EXPORT_SYMBOL(blk_mq_kick_requeue_list);
549
24d2f903
CH
550struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
551{
552 return tags->rqs[tag];
553}
554EXPORT_SYMBOL(blk_mq_tag_to_rq);
555
320ae51f
JA
556struct blk_mq_timeout_data {
557 struct blk_mq_hw_ctx *hctx;
558 unsigned long *next;
559 unsigned int *next_set;
560};
561
562static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
563{
564 struct blk_mq_timeout_data *data = __data;
565 struct blk_mq_hw_ctx *hctx = data->hctx;
566 unsigned int tag;
567
568 /* It may not be in flight yet (this is where
569 * the REQ_ATOMIC_STARTED flag comes in). The requests are
570 * statically allocated, so we know it's always safe to access the
571 * memory associated with a bit offset into ->rqs[].
572 */
573 tag = 0;
574 do {
575 struct request *rq;
576
24d2f903
CH
577 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
578 if (tag >= hctx->tags->nr_tags)
320ae51f
JA
579 break;
580
24d2f903
CH
581 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
582 if (rq->q != hctx->queue)
583 continue;
320ae51f
JA
584 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
585 continue;
586
587 blk_rq_check_expired(rq, data->next, data->next_set);
588 } while (1);
589}
590
591static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
592 unsigned long *next,
593 unsigned int *next_set)
594{
595 struct blk_mq_timeout_data data = {
596 .hctx = hctx,
597 .next = next,
598 .next_set = next_set,
599 };
600
601 /*
602 * Ask the tagging code to iterate busy requests, so we can
603 * check them for timeout.
604 */
605 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
606}
607
87ee7b11
JA
608static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
609{
610 struct request_queue *q = rq->q;
611
612 /*
613 * We know that complete is set at this point. If STARTED isn't set
614 * anymore, then the request isn't active and the "timeout" should
615 * just be ignored. This can happen due to the bitflag ordering.
616 * Timeout first checks if STARTED is set, and if it is, assumes
617 * the request is active. But if we race with completion, then
618 * we both flags will get cleared. So check here again, and ignore
619 * a timeout event with a request that isn't active.
620 */
621 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
622 return BLK_EH_NOT_HANDLED;
623
624 if (!q->mq_ops->timeout)
625 return BLK_EH_RESET_TIMER;
626
627 return q->mq_ops->timeout(rq);
628}
629
320ae51f
JA
630static void blk_mq_rq_timer(unsigned long data)
631{
632 struct request_queue *q = (struct request_queue *) data;
633 struct blk_mq_hw_ctx *hctx;
634 unsigned long next = 0;
635 int i, next_set = 0;
636
484b4061
JA
637 queue_for_each_hw_ctx(q, hctx, i) {
638 /*
639 * If not software queues are currently mapped to this
640 * hardware queue, there's nothing to check
641 */
642 if (!hctx->nr_ctx || !hctx->tags)
643 continue;
644
320ae51f 645 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
484b4061 646 }
320ae51f 647
0d2602ca
JA
648 if (next_set) {
649 next = blk_rq_timeout(round_jiffies_up(next));
650 mod_timer(&q->timeout, next);
651 } else {
652 queue_for_each_hw_ctx(q, hctx, i)
653 blk_mq_tag_idle(hctx);
654 }
320ae51f
JA
655}
656
657/*
658 * Reverse check our software queue for entries that we could potentially
659 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
660 * too much time checking for merges.
661 */
662static bool blk_mq_attempt_merge(struct request_queue *q,
663 struct blk_mq_ctx *ctx, struct bio *bio)
664{
665 struct request *rq;
666 int checked = 8;
667
668 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
669 int el_ret;
670
671 if (!checked--)
672 break;
673
674 if (!blk_rq_merge_ok(rq, bio))
675 continue;
676
677 el_ret = blk_try_merge(rq, bio);
678 if (el_ret == ELEVATOR_BACK_MERGE) {
679 if (bio_attempt_back_merge(q, rq, bio)) {
680 ctx->rq_merged++;
681 return true;
682 }
683 break;
684 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
685 if (bio_attempt_front_merge(q, rq, bio)) {
686 ctx->rq_merged++;
687 return true;
688 }
689 break;
690 }
691 }
692
693 return false;
694}
695
1429d7c9
JA
696/*
697 * Process software queues that have been marked busy, splicing them
698 * to the for-dispatch
699 */
700static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
701{
702 struct blk_mq_ctx *ctx;
703 int i;
704
705 for (i = 0; i < hctx->ctx_map.map_size; i++) {
706 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
707 unsigned int off, bit;
708
709 if (!bm->word)
710 continue;
711
712 bit = 0;
713 off = i * hctx->ctx_map.bits_per_word;
714 do {
715 bit = find_next_bit(&bm->word, bm->depth, bit);
716 if (bit >= bm->depth)
717 break;
718
719 ctx = hctx->ctxs[bit + off];
720 clear_bit(bit, &bm->word);
721 spin_lock(&ctx->lock);
722 list_splice_tail_init(&ctx->rq_list, list);
723 spin_unlock(&ctx->lock);
724
725 bit++;
726 } while (1);
727 }
728}
729
320ae51f
JA
730/*
731 * Run this hardware queue, pulling any software queues mapped to it in.
732 * Note that this function currently has various problems around ordering
733 * of IO. In particular, we'd like FIFO behaviour on handling existing
734 * items on the hctx->dispatch list. Ignore that for now.
735 */
736static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
737{
738 struct request_queue *q = hctx->queue;
320ae51f
JA
739 struct request *rq;
740 LIST_HEAD(rq_list);
1429d7c9 741 int queued;
320ae51f 742
fd1270d5 743 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
e4043dcf 744
5d12f905 745 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
746 return;
747
748 hctx->run++;
749
750 /*
751 * Touch any software queue that has pending entries.
752 */
1429d7c9 753 flush_busy_ctxs(hctx, &rq_list);
320ae51f
JA
754
755 /*
756 * If we have previous entries on our dispatch list, grab them
757 * and stuff them at the front for more fair dispatch.
758 */
759 if (!list_empty_careful(&hctx->dispatch)) {
760 spin_lock(&hctx->lock);
761 if (!list_empty(&hctx->dispatch))
762 list_splice_init(&hctx->dispatch, &rq_list);
763 spin_unlock(&hctx->lock);
764 }
765
320ae51f
JA
766 /*
767 * Now process all the entries, sending them to the driver.
768 */
1429d7c9 769 queued = 0;
320ae51f
JA
770 while (!list_empty(&rq_list)) {
771 int ret;
772
773 rq = list_first_entry(&rq_list, struct request, queuelist);
774 list_del_init(&rq->queuelist);
320ae51f 775
49f5baa5 776 blk_mq_start_request(rq, list_empty(&rq_list));
320ae51f
JA
777
778 ret = q->mq_ops->queue_rq(hctx, rq);
779 switch (ret) {
780 case BLK_MQ_RQ_QUEUE_OK:
781 queued++;
782 continue;
783 case BLK_MQ_RQ_QUEUE_BUSY:
320ae51f 784 list_add(&rq->queuelist, &rq_list);
ed0791b2 785 __blk_mq_requeue_request(rq);
320ae51f
JA
786 break;
787 default:
788 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 789 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 790 rq->errors = -EIO;
320ae51f
JA
791 blk_mq_end_io(rq, rq->errors);
792 break;
793 }
794
795 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
796 break;
797 }
798
799 if (!queued)
800 hctx->dispatched[0]++;
801 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
802 hctx->dispatched[ilog2(queued) + 1]++;
803
804 /*
805 * Any items that need requeuing? Stuff them into hctx->dispatch,
806 * that is where we will continue on next queue run.
807 */
808 if (!list_empty(&rq_list)) {
809 spin_lock(&hctx->lock);
810 list_splice(&rq_list, &hctx->dispatch);
811 spin_unlock(&hctx->lock);
812 }
813}
814
506e931f
JA
815/*
816 * It'd be great if the workqueue API had a way to pass
817 * in a mask and had some smarts for more clever placement.
818 * For now we just round-robin here, switching for every
819 * BLK_MQ_CPU_WORK_BATCH queued items.
820 */
821static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
822{
823 int cpu = hctx->next_cpu;
824
825 if (--hctx->next_cpu_batch <= 0) {
826 int next_cpu;
827
828 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
829 if (next_cpu >= nr_cpu_ids)
830 next_cpu = cpumask_first(hctx->cpumask);
831
832 hctx->next_cpu = next_cpu;
833 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
834 }
835
836 return cpu;
837}
838
320ae51f
JA
839void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
840{
5d12f905 841 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
842 return;
843
e4043dcf 844 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
320ae51f 845 __blk_mq_run_hw_queue(hctx);
e4043dcf 846 else if (hctx->queue->nr_hw_queues == 1)
70f4db63 847 kblockd_schedule_delayed_work(&hctx->run_work, 0);
e4043dcf
JA
848 else {
849 unsigned int cpu;
850
506e931f 851 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63 852 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
e4043dcf 853 }
320ae51f
JA
854}
855
856void blk_mq_run_queues(struct request_queue *q, bool async)
857{
858 struct blk_mq_hw_ctx *hctx;
859 int i;
860
861 queue_for_each_hw_ctx(q, hctx, i) {
862 if ((!blk_mq_hctx_has_pending(hctx) &&
863 list_empty_careful(&hctx->dispatch)) ||
5d12f905 864 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
320ae51f
JA
865 continue;
866
e4043dcf 867 preempt_disable();
320ae51f 868 blk_mq_run_hw_queue(hctx, async);
e4043dcf 869 preempt_enable();
320ae51f
JA
870 }
871}
872EXPORT_SYMBOL(blk_mq_run_queues);
873
874void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
875{
70f4db63
CH
876 cancel_delayed_work(&hctx->run_work);
877 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
878 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
879}
880EXPORT_SYMBOL(blk_mq_stop_hw_queue);
881
280d45f6
CH
882void blk_mq_stop_hw_queues(struct request_queue *q)
883{
884 struct blk_mq_hw_ctx *hctx;
885 int i;
886
887 queue_for_each_hw_ctx(q, hctx, i)
888 blk_mq_stop_hw_queue(hctx);
889}
890EXPORT_SYMBOL(blk_mq_stop_hw_queues);
891
320ae51f
JA
892void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
893{
894 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf
JA
895
896 preempt_disable();
320ae51f 897 __blk_mq_run_hw_queue(hctx);
e4043dcf 898 preempt_enable();
320ae51f
JA
899}
900EXPORT_SYMBOL(blk_mq_start_hw_queue);
901
2f268556
CH
902void blk_mq_start_hw_queues(struct request_queue *q)
903{
904 struct blk_mq_hw_ctx *hctx;
905 int i;
906
907 queue_for_each_hw_ctx(q, hctx, i)
908 blk_mq_start_hw_queue(hctx);
909}
910EXPORT_SYMBOL(blk_mq_start_hw_queues);
911
912
1b4a3258 913void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
914{
915 struct blk_mq_hw_ctx *hctx;
916 int i;
917
918 queue_for_each_hw_ctx(q, hctx, i) {
919 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
920 continue;
921
922 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 923 preempt_disable();
1b4a3258 924 blk_mq_run_hw_queue(hctx, async);
e4043dcf 925 preempt_enable();
320ae51f
JA
926 }
927}
928EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
929
70f4db63 930static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
931{
932 struct blk_mq_hw_ctx *hctx;
933
70f4db63 934 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
e4043dcf 935
320ae51f
JA
936 __blk_mq_run_hw_queue(hctx);
937}
938
70f4db63
CH
939static void blk_mq_delay_work_fn(struct work_struct *work)
940{
941 struct blk_mq_hw_ctx *hctx;
942
943 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
944
945 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
946 __blk_mq_run_hw_queue(hctx);
947}
948
949void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
950{
951 unsigned long tmo = msecs_to_jiffies(msecs);
952
953 if (hctx->queue->nr_hw_queues == 1)
954 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
955 else {
956 unsigned int cpu;
957
506e931f 958 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63
CH
959 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
960 }
961}
962EXPORT_SYMBOL(blk_mq_delay_queue);
963
320ae51f 964static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
72a0a36e 965 struct request *rq, bool at_head)
320ae51f
JA
966{
967 struct blk_mq_ctx *ctx = rq->mq_ctx;
968
01b983c9
JA
969 trace_block_rq_insert(hctx->queue, rq);
970
72a0a36e
CH
971 if (at_head)
972 list_add(&rq->queuelist, &ctx->rq_list);
973 else
974 list_add_tail(&rq->queuelist, &ctx->rq_list);
4bb659b1 975
320ae51f
JA
976 blk_mq_hctx_mark_pending(hctx, ctx);
977
978 /*
979 * We do this early, to ensure we are on the right CPU.
980 */
87ee7b11 981 blk_add_timer(rq);
320ae51f
JA
982}
983
eeabc850
CH
984void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
985 bool async)
320ae51f 986{
eeabc850 987 struct request_queue *q = rq->q;
320ae51f 988 struct blk_mq_hw_ctx *hctx;
eeabc850
CH
989 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
990
991 current_ctx = blk_mq_get_ctx(q);
992 if (!cpu_online(ctx->cpu))
993 rq->mq_ctx = ctx = current_ctx;
320ae51f 994
320ae51f
JA
995 hctx = q->mq_ops->map_queue(q, ctx->cpu);
996
eeabc850
CH
997 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
998 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
320ae51f
JA
999 blk_insert_flush(rq);
1000 } else {
320ae51f 1001 spin_lock(&ctx->lock);
72a0a36e 1002 __blk_mq_insert_request(hctx, rq, at_head);
320ae51f 1003 spin_unlock(&ctx->lock);
320ae51f
JA
1004 }
1005
320ae51f
JA
1006 if (run_queue)
1007 blk_mq_run_hw_queue(hctx, async);
e4043dcf
JA
1008
1009 blk_mq_put_ctx(current_ctx);
320ae51f
JA
1010}
1011
1012static void blk_mq_insert_requests(struct request_queue *q,
1013 struct blk_mq_ctx *ctx,
1014 struct list_head *list,
1015 int depth,
1016 bool from_schedule)
1017
1018{
1019 struct blk_mq_hw_ctx *hctx;
1020 struct blk_mq_ctx *current_ctx;
1021
1022 trace_block_unplug(q, depth, !from_schedule);
1023
1024 current_ctx = blk_mq_get_ctx(q);
1025
1026 if (!cpu_online(ctx->cpu))
1027 ctx = current_ctx;
1028 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1029
1030 /*
1031 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1032 * offline now
1033 */
1034 spin_lock(&ctx->lock);
1035 while (!list_empty(list)) {
1036 struct request *rq;
1037
1038 rq = list_first_entry(list, struct request, queuelist);
1039 list_del_init(&rq->queuelist);
1040 rq->mq_ctx = ctx;
72a0a36e 1041 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
1042 }
1043 spin_unlock(&ctx->lock);
1044
320ae51f 1045 blk_mq_run_hw_queue(hctx, from_schedule);
e4043dcf 1046 blk_mq_put_ctx(current_ctx);
320ae51f
JA
1047}
1048
1049static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1050{
1051 struct request *rqa = container_of(a, struct request, queuelist);
1052 struct request *rqb = container_of(b, struct request, queuelist);
1053
1054 return !(rqa->mq_ctx < rqb->mq_ctx ||
1055 (rqa->mq_ctx == rqb->mq_ctx &&
1056 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1057}
1058
1059void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1060{
1061 struct blk_mq_ctx *this_ctx;
1062 struct request_queue *this_q;
1063 struct request *rq;
1064 LIST_HEAD(list);
1065 LIST_HEAD(ctx_list);
1066 unsigned int depth;
1067
1068 list_splice_init(&plug->mq_list, &list);
1069
1070 list_sort(NULL, &list, plug_ctx_cmp);
1071
1072 this_q = NULL;
1073 this_ctx = NULL;
1074 depth = 0;
1075
1076 while (!list_empty(&list)) {
1077 rq = list_entry_rq(list.next);
1078 list_del_init(&rq->queuelist);
1079 BUG_ON(!rq->q);
1080 if (rq->mq_ctx != this_ctx) {
1081 if (this_ctx) {
1082 blk_mq_insert_requests(this_q, this_ctx,
1083 &ctx_list, depth,
1084 from_schedule);
1085 }
1086
1087 this_ctx = rq->mq_ctx;
1088 this_q = rq->q;
1089 depth = 0;
1090 }
1091
1092 depth++;
1093 list_add_tail(&rq->queuelist, &ctx_list);
1094 }
1095
1096 /*
1097 * If 'this_ctx' is set, we know we have entries to complete
1098 * on 'ctx_list'. Do those.
1099 */
1100 if (this_ctx) {
1101 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1102 from_schedule);
1103 }
1104}
1105
1106static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1107{
1108 init_request_from_bio(rq, bio);
1109 blk_account_io_start(rq, 1);
1110}
1111
07068d5b
JA
1112static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1113 struct blk_mq_ctx *ctx,
1114 struct request *rq, struct bio *bio)
320ae51f 1115{
07068d5b 1116 struct request_queue *q = hctx->queue;
320ae51f 1117
07068d5b
JA
1118 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
1119 blk_mq_bio_to_request(rq, bio);
1120 spin_lock(&ctx->lock);
1121insert_rq:
1122 __blk_mq_insert_request(hctx, rq, false);
1123 spin_unlock(&ctx->lock);
1124 return false;
1125 } else {
1126 spin_lock(&ctx->lock);
1127 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1128 blk_mq_bio_to_request(rq, bio);
1129 goto insert_rq;
1130 }
320ae51f 1131
07068d5b
JA
1132 spin_unlock(&ctx->lock);
1133 __blk_mq_free_request(hctx, ctx, rq);
1134 return true;
14ec77f3 1135 }
07068d5b 1136}
14ec77f3 1137
07068d5b
JA
1138struct blk_map_ctx {
1139 struct blk_mq_hw_ctx *hctx;
1140 struct blk_mq_ctx *ctx;
1141};
1142
1143static struct request *blk_mq_map_request(struct request_queue *q,
1144 struct bio *bio,
1145 struct blk_map_ctx *data)
1146{
1147 struct blk_mq_hw_ctx *hctx;
1148 struct blk_mq_ctx *ctx;
1149 struct request *rq;
1150 int rw = bio_data_dir(bio);
320ae51f 1151
07068d5b 1152 if (unlikely(blk_mq_queue_enter(q))) {
320ae51f 1153 bio_endio(bio, -EIO);
07068d5b 1154 return NULL;
320ae51f
JA
1155 }
1156
1157 ctx = blk_mq_get_ctx(q);
1158 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1159
07068d5b 1160 if (rw_is_sync(bio->bi_rw))
27fbf4e8 1161 rw |= REQ_SYNC;
07068d5b 1162
320ae51f 1163 trace_block_getrq(q, bio, rw);
5dee8577
CH
1164 rq = __blk_mq_alloc_request(q, hctx, ctx, rw, GFP_ATOMIC, false);
1165 if (unlikely(!rq)) {
793597a6 1166 __blk_mq_run_hw_queue(hctx);
320ae51f
JA
1167 blk_mq_put_ctx(ctx);
1168 trace_block_sleeprq(q, bio, rw);
793597a6
CH
1169
1170 ctx = blk_mq_get_ctx(q);
320ae51f 1171 hctx = q->mq_ops->map_queue(q, ctx->cpu);
793597a6
CH
1172 rq = __blk_mq_alloc_request(q, hctx, ctx, rw,
1173 __GFP_WAIT|GFP_ATOMIC, false);
320ae51f
JA
1174 }
1175
1176 hctx->queued++;
07068d5b
JA
1177 data->hctx = hctx;
1178 data->ctx = ctx;
1179 return rq;
1180}
1181
1182/*
1183 * Multiple hardware queue variant. This will not use per-process plugs,
1184 * but will attempt to bypass the hctx queueing if we can go straight to
1185 * hardware for SYNC IO.
1186 */
1187static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1188{
1189 const int is_sync = rw_is_sync(bio->bi_rw);
1190 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1191 struct blk_map_ctx data;
1192 struct request *rq;
1193
1194 blk_queue_bounce(q, &bio);
1195
1196 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1197 bio_endio(bio, -EIO);
1198 return;
1199 }
1200
1201 rq = blk_mq_map_request(q, bio, &data);
1202 if (unlikely(!rq))
1203 return;
1204
1205 if (unlikely(is_flush_fua)) {
1206 blk_mq_bio_to_request(rq, bio);
1207 blk_insert_flush(rq);
1208 goto run_queue;
1209 }
1210
1211 if (is_sync) {
1212 int ret;
1213
1214 blk_mq_bio_to_request(rq, bio);
1215 blk_mq_start_request(rq, true);
1216
1217 /*
1218 * For OK queue, we are done. For error, kill it. Any other
1219 * error (busy), just add it to our list as we previously
1220 * would have done
1221 */
1222 ret = q->mq_ops->queue_rq(data.hctx, rq);
1223 if (ret == BLK_MQ_RQ_QUEUE_OK)
1224 goto done;
1225 else {
1226 __blk_mq_requeue_request(rq);
1227
1228 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1229 rq->errors = -EIO;
1230 blk_mq_end_io(rq, rq->errors);
1231 goto done;
1232 }
1233 }
1234 }
1235
1236 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1237 /*
1238 * For a SYNC request, send it to the hardware immediately. For
1239 * an ASYNC request, just ensure that we run it later on. The
1240 * latter allows for merging opportunities and more efficient
1241 * dispatching.
1242 */
1243run_queue:
1244 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1245 }
1246done:
1247 blk_mq_put_ctx(data.ctx);
1248}
1249
1250/*
1251 * Single hardware queue variant. This will attempt to use any per-process
1252 * plug for merging and IO deferral.
1253 */
1254static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1255{
1256 const int is_sync = rw_is_sync(bio->bi_rw);
1257 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1258 unsigned int use_plug, request_count = 0;
1259 struct blk_map_ctx data;
1260 struct request *rq;
1261
1262 /*
1263 * If we have multiple hardware queues, just go directly to
1264 * one of those for sync IO.
1265 */
1266 use_plug = !is_flush_fua && !is_sync;
1267
1268 blk_queue_bounce(q, &bio);
1269
1270 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1271 bio_endio(bio, -EIO);
1272 return;
1273 }
1274
1275 if (use_plug && !blk_queue_nomerges(q) &&
1276 blk_attempt_plug_merge(q, bio, &request_count))
1277 return;
1278
1279 rq = blk_mq_map_request(q, bio, &data);
320ae51f
JA
1280
1281 if (unlikely(is_flush_fua)) {
1282 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
1283 blk_insert_flush(rq);
1284 goto run_queue;
1285 }
1286
1287 /*
1288 * A task plug currently exists. Since this is completely lockless,
1289 * utilize that to temporarily store requests until the task is
1290 * either done or scheduled away.
1291 */
1292 if (use_plug) {
1293 struct blk_plug *plug = current->plug;
1294
1295 if (plug) {
1296 blk_mq_bio_to_request(rq, bio);
92f399c7 1297 if (list_empty(&plug->mq_list))
320ae51f
JA
1298 trace_block_plug(q);
1299 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1300 blk_flush_plug_list(plug, false);
1301 trace_block_plug(q);
1302 }
1303 list_add_tail(&rq->queuelist, &plug->mq_list);
07068d5b 1304 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1305 return;
1306 }
1307 }
1308
07068d5b
JA
1309 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1310 /*
1311 * For a SYNC request, send it to the hardware immediately. For
1312 * an ASYNC request, just ensure that we run it later on. The
1313 * latter allows for merging opportunities and more efficient
1314 * dispatching.
1315 */
1316run_queue:
1317 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1318 }
1319
07068d5b 1320 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1321}
1322
1323/*
1324 * Default mapping to a software queue, since we use one per CPU.
1325 */
1326struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1327{
1328 return q->queue_hw_ctx[q->mq_map[cpu]];
1329}
1330EXPORT_SYMBOL(blk_mq_map_queue);
1331
24d2f903 1332struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_tag_set *set,
f14bbe77
JA
1333 unsigned int hctx_index,
1334 int node)
320ae51f 1335{
f14bbe77 1336 return kzalloc_node(sizeof(struct blk_mq_hw_ctx), GFP_KERNEL, node);
320ae51f
JA
1337}
1338EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
1339
1340void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
1341 unsigned int hctx_index)
1342{
1343 kfree(hctx);
1344}
1345EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
1346
24d2f903
CH
1347static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1348 struct blk_mq_tags *tags, unsigned int hctx_idx)
95363efd 1349{
e9b267d9 1350 struct page *page;
320ae51f 1351
24d2f903 1352 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1353 int i;
320ae51f 1354
24d2f903
CH
1355 for (i = 0; i < tags->nr_tags; i++) {
1356 if (!tags->rqs[i])
e9b267d9 1357 continue;
24d2f903
CH
1358 set->ops->exit_request(set->driver_data, tags->rqs[i],
1359 hctx_idx, i);
e9b267d9 1360 }
320ae51f 1361 }
320ae51f 1362
24d2f903
CH
1363 while (!list_empty(&tags->page_list)) {
1364 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1365 list_del_init(&page->lru);
320ae51f
JA
1366 __free_pages(page, page->private);
1367 }
1368
24d2f903 1369 kfree(tags->rqs);
320ae51f 1370
24d2f903 1371 blk_mq_free_tags(tags);
320ae51f
JA
1372}
1373
1374static size_t order_to_size(unsigned int order)
1375{
4ca08500 1376 return (size_t)PAGE_SIZE << order;
320ae51f
JA
1377}
1378
24d2f903
CH
1379static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1380 unsigned int hctx_idx)
320ae51f 1381{
24d2f903 1382 struct blk_mq_tags *tags;
320ae51f
JA
1383 unsigned int i, j, entries_per_page, max_order = 4;
1384 size_t rq_size, left;
1385
24d2f903
CH
1386 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1387 set->numa_node);
1388 if (!tags)
1389 return NULL;
320ae51f 1390
24d2f903
CH
1391 INIT_LIST_HEAD(&tags->page_list);
1392
1393 tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1394 GFP_KERNEL, set->numa_node);
1395 if (!tags->rqs) {
1396 blk_mq_free_tags(tags);
1397 return NULL;
1398 }
320ae51f
JA
1399
1400 /*
1401 * rq_size is the size of the request plus driver payload, rounded
1402 * to the cacheline size
1403 */
24d2f903 1404 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1405 cache_line_size());
24d2f903 1406 left = rq_size * set->queue_depth;
320ae51f 1407
24d2f903 1408 for (i = 0; i < set->queue_depth; ) {
320ae51f
JA
1409 int this_order = max_order;
1410 struct page *page;
1411 int to_do;
1412 void *p;
1413
1414 while (left < order_to_size(this_order - 1) && this_order)
1415 this_order--;
1416
1417 do {
24d2f903
CH
1418 page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1419 this_order);
320ae51f
JA
1420 if (page)
1421 break;
1422 if (!this_order--)
1423 break;
1424 if (order_to_size(this_order) < rq_size)
1425 break;
1426 } while (1);
1427
1428 if (!page)
24d2f903 1429 goto fail;
320ae51f
JA
1430
1431 page->private = this_order;
24d2f903 1432 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1433
1434 p = page_address(page);
1435 entries_per_page = order_to_size(this_order) / rq_size;
24d2f903 1436 to_do = min(entries_per_page, set->queue_depth - i);
320ae51f
JA
1437 left -= to_do * rq_size;
1438 for (j = 0; j < to_do; j++) {
24d2f903
CH
1439 tags->rqs[i] = p;
1440 if (set->ops->init_request) {
1441 if (set->ops->init_request(set->driver_data,
1442 tags->rqs[i], hctx_idx, i,
1443 set->numa_node))
1444 goto fail;
e9b267d9
CH
1445 }
1446
320ae51f
JA
1447 p += rq_size;
1448 i++;
1449 }
1450 }
1451
24d2f903 1452 return tags;
320ae51f 1453
24d2f903
CH
1454fail:
1455 pr_warn("%s: failed to allocate requests\n", __func__);
1456 blk_mq_free_rq_map(set, tags, hctx_idx);
1457 return NULL;
320ae51f
JA
1458}
1459
1429d7c9
JA
1460static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1461{
1462 kfree(bitmap->map);
1463}
1464
1465static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1466{
1467 unsigned int bpw = 8, total, num_maps, i;
1468
1469 bitmap->bits_per_word = bpw;
1470
1471 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1472 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1473 GFP_KERNEL, node);
1474 if (!bitmap->map)
1475 return -ENOMEM;
1476
1477 bitmap->map_size = num_maps;
1478
1479 total = nr_cpu_ids;
1480 for (i = 0; i < num_maps; i++) {
1481 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1482 total -= bitmap->map[i].depth;
1483 }
1484
1485 return 0;
1486}
1487
484b4061
JA
1488static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1489{
1490 struct request_queue *q = hctx->queue;
1491 struct blk_mq_ctx *ctx;
1492 LIST_HEAD(tmp);
1493
1494 /*
1495 * Move ctx entries to new CPU, if this one is going away.
1496 */
1497 ctx = __blk_mq_get_ctx(q, cpu);
1498
1499 spin_lock(&ctx->lock);
1500 if (!list_empty(&ctx->rq_list)) {
1501 list_splice_init(&ctx->rq_list, &tmp);
1502 blk_mq_hctx_clear_pending(hctx, ctx);
1503 }
1504 spin_unlock(&ctx->lock);
1505
1506 if (list_empty(&tmp))
1507 return NOTIFY_OK;
1508
1509 ctx = blk_mq_get_ctx(q);
1510 spin_lock(&ctx->lock);
1511
1512 while (!list_empty(&tmp)) {
1513 struct request *rq;
1514
1515 rq = list_first_entry(&tmp, struct request, queuelist);
1516 rq->mq_ctx = ctx;
1517 list_move_tail(&rq->queuelist, &ctx->rq_list);
1518 }
1519
1520 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1521 blk_mq_hctx_mark_pending(hctx, ctx);
1522
1523 spin_unlock(&ctx->lock);
1524
1525 blk_mq_run_hw_queue(hctx, true);
1526 blk_mq_put_ctx(ctx);
1527 return NOTIFY_OK;
1528}
1529
1530static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1531{
1532 struct request_queue *q = hctx->queue;
1533 struct blk_mq_tag_set *set = q->tag_set;
1534
1535 if (set->tags[hctx->queue_num])
1536 return NOTIFY_OK;
1537
1538 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1539 if (!set->tags[hctx->queue_num])
1540 return NOTIFY_STOP;
1541
1542 hctx->tags = set->tags[hctx->queue_num];
1543 return NOTIFY_OK;
1544}
1545
1546static int blk_mq_hctx_notify(void *data, unsigned long action,
1547 unsigned int cpu)
1548{
1549 struct blk_mq_hw_ctx *hctx = data;
1550
1551 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1552 return blk_mq_hctx_cpu_offline(hctx, cpu);
1553 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1554 return blk_mq_hctx_cpu_online(hctx, cpu);
1555
1556 return NOTIFY_OK;
1557}
1558
624dbe47
ML
1559static void blk_mq_exit_hw_queues(struct request_queue *q,
1560 struct blk_mq_tag_set *set, int nr_queue)
1561{
1562 struct blk_mq_hw_ctx *hctx;
1563 unsigned int i;
1564
1565 queue_for_each_hw_ctx(q, hctx, i) {
1566 if (i == nr_queue)
1567 break;
1568
1569 if (set->ops->exit_hctx)
1570 set->ops->exit_hctx(hctx, i);
1571
1572 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1573 kfree(hctx->ctxs);
1574 blk_mq_free_bitmap(&hctx->ctx_map);
1575 }
1576
1577}
1578
1579static void blk_mq_free_hw_queues(struct request_queue *q,
1580 struct blk_mq_tag_set *set)
1581{
1582 struct blk_mq_hw_ctx *hctx;
1583 unsigned int i;
1584
1585 queue_for_each_hw_ctx(q, hctx, i) {
1586 free_cpumask_var(hctx->cpumask);
1587 set->ops->free_hctx(hctx, i);
1588 }
1589}
1590
320ae51f 1591static int blk_mq_init_hw_queues(struct request_queue *q,
24d2f903 1592 struct blk_mq_tag_set *set)
320ae51f
JA
1593{
1594 struct blk_mq_hw_ctx *hctx;
624dbe47 1595 unsigned int i;
320ae51f
JA
1596
1597 /*
1598 * Initialize hardware queues
1599 */
1600 queue_for_each_hw_ctx(q, hctx, i) {
320ae51f
JA
1601 int node;
1602
1603 node = hctx->numa_node;
1604 if (node == NUMA_NO_NODE)
24d2f903 1605 node = hctx->numa_node = set->numa_node;
320ae51f 1606
70f4db63
CH
1607 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1608 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
320ae51f
JA
1609 spin_lock_init(&hctx->lock);
1610 INIT_LIST_HEAD(&hctx->dispatch);
1611 hctx->queue = q;
1612 hctx->queue_num = i;
24d2f903
CH
1613 hctx->flags = set->flags;
1614 hctx->cmd_size = set->cmd_size;
320ae51f
JA
1615
1616 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1617 blk_mq_hctx_notify, hctx);
1618 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1619
24d2f903 1620 hctx->tags = set->tags[i];
320ae51f
JA
1621
1622 /*
1623 * Allocate space for all possible cpus to avoid allocation in
1624 * runtime
1625 */
1626 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1627 GFP_KERNEL, node);
1628 if (!hctx->ctxs)
1629 break;
1630
1429d7c9 1631 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
320ae51f
JA
1632 break;
1633
320ae51f
JA
1634 hctx->nr_ctx = 0;
1635
24d2f903
CH
1636 if (set->ops->init_hctx &&
1637 set->ops->init_hctx(hctx, set->driver_data, i))
320ae51f
JA
1638 break;
1639 }
1640
1641 if (i == q->nr_hw_queues)
1642 return 0;
1643
1644 /*
1645 * Init failed
1646 */
624dbe47 1647 blk_mq_exit_hw_queues(q, set, i);
320ae51f
JA
1648
1649 return 1;
1650}
1651
1652static void blk_mq_init_cpu_queues(struct request_queue *q,
1653 unsigned int nr_hw_queues)
1654{
1655 unsigned int i;
1656
1657 for_each_possible_cpu(i) {
1658 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1659 struct blk_mq_hw_ctx *hctx;
1660
1661 memset(__ctx, 0, sizeof(*__ctx));
1662 __ctx->cpu = i;
1663 spin_lock_init(&__ctx->lock);
1664 INIT_LIST_HEAD(&__ctx->rq_list);
1665 __ctx->queue = q;
1666
1667 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1668 if (!cpu_online(i))
1669 continue;
1670
e4043dcf
JA
1671 hctx = q->mq_ops->map_queue(q, i);
1672 cpumask_set_cpu(i, hctx->cpumask);
1673 hctx->nr_ctx++;
1674
320ae51f
JA
1675 /*
1676 * Set local node, IFF we have more than one hw queue. If
1677 * not, we remain on the home node of the device
1678 */
1679 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1680 hctx->numa_node = cpu_to_node(i);
1681 }
1682}
1683
1684static void blk_mq_map_swqueue(struct request_queue *q)
1685{
1686 unsigned int i;
1687 struct blk_mq_hw_ctx *hctx;
1688 struct blk_mq_ctx *ctx;
1689
1690 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1691 cpumask_clear(hctx->cpumask);
320ae51f
JA
1692 hctx->nr_ctx = 0;
1693 }
1694
1695 /*
1696 * Map software to hardware queues
1697 */
1698 queue_for_each_ctx(q, ctx, i) {
1699 /* If the cpu isn't online, the cpu is mapped to first hctx */
e4043dcf
JA
1700 if (!cpu_online(i))
1701 continue;
1702
320ae51f 1703 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1704 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1705 ctx->index_hw = hctx->nr_ctx;
1706 hctx->ctxs[hctx->nr_ctx++] = ctx;
1707 }
506e931f
JA
1708
1709 queue_for_each_hw_ctx(q, hctx, i) {
484b4061
JA
1710 /*
1711 * If not software queues are mapped to this hardware queue,
1712 * disable it and free the request entries
1713 */
1714 if (!hctx->nr_ctx) {
1715 struct blk_mq_tag_set *set = q->tag_set;
1716
1717 if (set->tags[i]) {
1718 blk_mq_free_rq_map(set, set->tags[i], i);
1719 set->tags[i] = NULL;
1720 hctx->tags = NULL;
1721 }
1722 continue;
1723 }
1724
1725 /*
1726 * Initialize batch roundrobin counts
1727 */
506e931f
JA
1728 hctx->next_cpu = cpumask_first(hctx->cpumask);
1729 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1730 }
320ae51f
JA
1731}
1732
0d2602ca
JA
1733static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1734{
1735 struct blk_mq_hw_ctx *hctx;
1736 struct request_queue *q;
1737 bool shared;
1738 int i;
1739
1740 if (set->tag_list.next == set->tag_list.prev)
1741 shared = false;
1742 else
1743 shared = true;
1744
1745 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1746 blk_mq_freeze_queue(q);
1747
1748 queue_for_each_hw_ctx(q, hctx, i) {
1749 if (shared)
1750 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1751 else
1752 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1753 }
1754 blk_mq_unfreeze_queue(q);
1755 }
1756}
1757
1758static void blk_mq_del_queue_tag_set(struct request_queue *q)
1759{
1760 struct blk_mq_tag_set *set = q->tag_set;
1761
1762 blk_mq_freeze_queue(q);
1763
1764 mutex_lock(&set->tag_list_lock);
1765 list_del_init(&q->tag_set_list);
1766 blk_mq_update_tag_set_depth(set);
1767 mutex_unlock(&set->tag_list_lock);
1768
1769 blk_mq_unfreeze_queue(q);
1770}
1771
1772static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1773 struct request_queue *q)
1774{
1775 q->tag_set = set;
1776
1777 mutex_lock(&set->tag_list_lock);
1778 list_add_tail(&q->tag_set_list, &set->tag_list);
1779 blk_mq_update_tag_set_depth(set);
1780 mutex_unlock(&set->tag_list_lock);
1781}
1782
24d2f903 1783struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
320ae51f
JA
1784{
1785 struct blk_mq_hw_ctx **hctxs;
1786 struct blk_mq_ctx *ctx;
1787 struct request_queue *q;
f14bbe77 1788 unsigned int *map;
320ae51f
JA
1789 int i;
1790
320ae51f
JA
1791 ctx = alloc_percpu(struct blk_mq_ctx);
1792 if (!ctx)
1793 return ERR_PTR(-ENOMEM);
1794
24d2f903
CH
1795 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1796 set->numa_node);
320ae51f
JA
1797
1798 if (!hctxs)
1799 goto err_percpu;
1800
f14bbe77
JA
1801 map = blk_mq_make_queue_map(set);
1802 if (!map)
1803 goto err_map;
1804
24d2f903 1805 for (i = 0; i < set->nr_hw_queues; i++) {
f14bbe77
JA
1806 int node = blk_mq_hw_queue_to_node(map, i);
1807
1808 hctxs[i] = set->ops->alloc_hctx(set, i, node);
320ae51f
JA
1809 if (!hctxs[i])
1810 goto err_hctxs;
1811
e4043dcf
JA
1812 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1813 goto err_hctxs;
1814
0d2602ca 1815 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 1816 hctxs[i]->numa_node = node;
320ae51f
JA
1817 hctxs[i]->queue_num = i;
1818 }
1819
24d2f903 1820 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
320ae51f
JA
1821 if (!q)
1822 goto err_hctxs;
1823
3d2936f4
ML
1824 if (percpu_counter_init(&q->mq_usage_counter, 0))
1825 goto err_map;
1826
320ae51f
JA
1827 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1828 blk_queue_rq_timeout(q, 30000);
1829
1830 q->nr_queues = nr_cpu_ids;
24d2f903 1831 q->nr_hw_queues = set->nr_hw_queues;
f14bbe77 1832 q->mq_map = map;
320ae51f
JA
1833
1834 q->queue_ctx = ctx;
1835 q->queue_hw_ctx = hctxs;
1836
24d2f903 1837 q->mq_ops = set->ops;
94eddfbe 1838 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 1839
1be036e9
CH
1840 q->sg_reserved_size = INT_MAX;
1841
6fca6a61
CH
1842 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1843 INIT_LIST_HEAD(&q->requeue_list);
1844 spin_lock_init(&q->requeue_lock);
1845
07068d5b
JA
1846 if (q->nr_hw_queues > 1)
1847 blk_queue_make_request(q, blk_mq_make_request);
1848 else
1849 blk_queue_make_request(q, blk_sq_make_request);
1850
87ee7b11 1851 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
24d2f903
CH
1852 if (set->timeout)
1853 blk_queue_rq_timeout(q, set->timeout);
320ae51f 1854
eba71768
JA
1855 /*
1856 * Do this after blk_queue_make_request() overrides it...
1857 */
1858 q->nr_requests = set->queue_depth;
1859
24d2f903
CH
1860 if (set->ops->complete)
1861 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 1862
320ae51f 1863 blk_mq_init_flush(q);
24d2f903 1864 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 1865
24d2f903
CH
1866 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1867 set->cmd_size, cache_line_size()),
1868 GFP_KERNEL);
18741986 1869 if (!q->flush_rq)
320ae51f
JA
1870 goto err_hw;
1871
24d2f903 1872 if (blk_mq_init_hw_queues(q, set))
18741986
CH
1873 goto err_flush_rq;
1874
320ae51f
JA
1875 mutex_lock(&all_q_mutex);
1876 list_add_tail(&q->all_q_node, &all_q_list);
1877 mutex_unlock(&all_q_mutex);
1878
0d2602ca
JA
1879 blk_mq_add_queue_tag_set(set, q);
1880
484b4061
JA
1881 blk_mq_map_swqueue(q);
1882
320ae51f 1883 return q;
18741986
CH
1884
1885err_flush_rq:
1886 kfree(q->flush_rq);
320ae51f 1887err_hw:
320ae51f
JA
1888 blk_cleanup_queue(q);
1889err_hctxs:
f14bbe77 1890 kfree(map);
24d2f903 1891 for (i = 0; i < set->nr_hw_queues; i++) {
320ae51f
JA
1892 if (!hctxs[i])
1893 break;
e4043dcf 1894 free_cpumask_var(hctxs[i]->cpumask);
24d2f903 1895 set->ops->free_hctx(hctxs[i], i);
320ae51f 1896 }
f14bbe77 1897err_map:
320ae51f
JA
1898 kfree(hctxs);
1899err_percpu:
1900 free_percpu(ctx);
1901 return ERR_PTR(-ENOMEM);
1902}
1903EXPORT_SYMBOL(blk_mq_init_queue);
1904
1905void blk_mq_free_queue(struct request_queue *q)
1906{
624dbe47 1907 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 1908
0d2602ca
JA
1909 blk_mq_del_queue_tag_set(q);
1910
624dbe47
ML
1911 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1912 blk_mq_free_hw_queues(q, set);
320ae51f 1913
3d2936f4
ML
1914 percpu_counter_destroy(&q->mq_usage_counter);
1915
320ae51f
JA
1916 free_percpu(q->queue_ctx);
1917 kfree(q->queue_hw_ctx);
1918 kfree(q->mq_map);
1919
1920 q->queue_ctx = NULL;
1921 q->queue_hw_ctx = NULL;
1922 q->mq_map = NULL;
1923
1924 mutex_lock(&all_q_mutex);
1925 list_del_init(&q->all_q_node);
1926 mutex_unlock(&all_q_mutex);
1927}
320ae51f
JA
1928
1929/* Basically redo blk_mq_init_queue with queue frozen */
f618ef7c 1930static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f
JA
1931{
1932 blk_mq_freeze_queue(q);
1933
1934 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1935
1936 /*
1937 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1938 * we should change hctx numa_node according to new topology (this
1939 * involves free and re-allocate memory, worthy doing?)
1940 */
1941
1942 blk_mq_map_swqueue(q);
1943
1944 blk_mq_unfreeze_queue(q);
1945}
1946
f618ef7c
PG
1947static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1948 unsigned long action, void *hcpu)
320ae51f
JA
1949{
1950 struct request_queue *q;
1951
1952 /*
9fccfed8
JA
1953 * Before new mappings are established, hotadded cpu might already
1954 * start handling requests. This doesn't break anything as we map
1955 * offline CPUs to first hardware queue. We will re-init the queue
1956 * below to get optimal settings.
320ae51f
JA
1957 */
1958 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1959 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1960 return NOTIFY_OK;
1961
1962 mutex_lock(&all_q_mutex);
1963 list_for_each_entry(q, &all_q_list, all_q_node)
1964 blk_mq_queue_reinit(q);
1965 mutex_unlock(&all_q_mutex);
1966 return NOTIFY_OK;
1967}
1968
24d2f903
CH
1969int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1970{
1971 int i;
1972
1973 if (!set->nr_hw_queues)
1974 return -EINVAL;
1975 if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH)
1976 return -EINVAL;
1977 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1978 return -EINVAL;
1979
1980 if (!set->nr_hw_queues ||
1981 !set->ops->queue_rq || !set->ops->map_queue ||
1982 !set->ops->alloc_hctx || !set->ops->free_hctx)
1983 return -EINVAL;
1984
1985
48479005
ML
1986 set->tags = kmalloc_node(set->nr_hw_queues *
1987 sizeof(struct blk_mq_tags *),
24d2f903
CH
1988 GFP_KERNEL, set->numa_node);
1989 if (!set->tags)
1990 goto out;
1991
1992 for (i = 0; i < set->nr_hw_queues; i++) {
1993 set->tags[i] = blk_mq_init_rq_map(set, i);
1994 if (!set->tags[i])
1995 goto out_unwind;
1996 }
1997
0d2602ca
JA
1998 mutex_init(&set->tag_list_lock);
1999 INIT_LIST_HEAD(&set->tag_list);
2000
24d2f903
CH
2001 return 0;
2002
2003out_unwind:
2004 while (--i >= 0)
2005 blk_mq_free_rq_map(set, set->tags[i], i);
2006out:
2007 return -ENOMEM;
2008}
2009EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2010
2011void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2012{
2013 int i;
2014
484b4061
JA
2015 for (i = 0; i < set->nr_hw_queues; i++) {
2016 if (set->tags[i])
2017 blk_mq_free_rq_map(set, set->tags[i], i);
2018 }
2019
981bd189 2020 kfree(set->tags);
24d2f903
CH
2021}
2022EXPORT_SYMBOL(blk_mq_free_tag_set);
2023
e3a2b3f9
JA
2024int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2025{
2026 struct blk_mq_tag_set *set = q->tag_set;
2027 struct blk_mq_hw_ctx *hctx;
2028 int i, ret;
2029
2030 if (!set || nr > set->queue_depth)
2031 return -EINVAL;
2032
2033 ret = 0;
2034 queue_for_each_hw_ctx(q, hctx, i) {
2035 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2036 if (ret)
2037 break;
2038 }
2039
2040 if (!ret)
2041 q->nr_requests = nr;
2042
2043 return ret;
2044}
2045
676141e4
JA
2046void blk_mq_disable_hotplug(void)
2047{
2048 mutex_lock(&all_q_mutex);
2049}
2050
2051void blk_mq_enable_hotplug(void)
2052{
2053 mutex_unlock(&all_q_mutex);
2054}
2055
320ae51f
JA
2056static int __init blk_mq_init(void)
2057{
320ae51f
JA
2058 blk_mq_cpu_init();
2059
2060 /* Must be called after percpu_counter_hotcpu_callback() */
2061 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
2062
2063 return 0;
2064}
2065subsys_initcall(blk_mq_init);