]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-throttle.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / block / blk-throttle.c
CommitLineData
e43473b7
VG
1/*
2 * Interface for controlling IO bandwidth on a request queue
3 *
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
6
7#include <linux/module.h>
8#include <linux/slab.h>
9#include <linux/blkdev.h>
10#include <linux/bio.h>
11#include <linux/blktrace_api.h>
eea8f41c 12#include <linux/blk-cgroup.h>
bc9fcbf9 13#include "blk.h"
e43473b7
VG
14
15/* Max dispatch from a group in 1 round */
16static int throtl_grp_quantum = 8;
17
18/* Total max dispatch from all groups in one round */
19static int throtl_quantum = 32;
20
d61fcfa4
SL
21/* Throttling is performed over a slice and after that slice is renewed */
22#define DFL_THROTL_SLICE_HD (HZ / 10)
23#define DFL_THROTL_SLICE_SSD (HZ / 50)
297e3d85 24#define MAX_THROTL_SLICE (HZ)
9e234eea 25#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
9bb67aeb
SL
26#define MIN_THROTL_BPS (320 * 1024)
27#define MIN_THROTL_IOPS (10)
b4f428ef
SL
28#define DFL_LATENCY_TARGET (-1L)
29#define DFL_IDLE_THRESHOLD (0)
6679a90c
SL
30#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
31#define LATENCY_FILTERED_SSD (0)
32/*
33 * For HD, very small latency comes from sequential IO. Such IO is helpless to
34 * help determine if its IO is impacted by others, hence we ignore the IO
35 */
36#define LATENCY_FILTERED_HD (1000L) /* 1ms */
e43473b7 37
b9147dd1
SL
38#define SKIP_LATENCY (((u64)1) << BLK_STAT_RES_SHIFT)
39
3c798398 40static struct blkcg_policy blkcg_policy_throtl;
0381411e 41
450adcbe
VG
42/* A workqueue to queue throttle related work */
43static struct workqueue_struct *kthrotld_workqueue;
450adcbe 44
c5cc2070
TH
45/*
46 * To implement hierarchical throttling, throtl_grps form a tree and bios
47 * are dispatched upwards level by level until they reach the top and get
48 * issued. When dispatching bios from the children and local group at each
49 * level, if the bios are dispatched into a single bio_list, there's a risk
50 * of a local or child group which can queue many bios at once filling up
51 * the list starving others.
52 *
53 * To avoid such starvation, dispatched bios are queued separately
54 * according to where they came from. When they are again dispatched to
55 * the parent, they're popped in round-robin order so that no single source
56 * hogs the dispatch window.
57 *
58 * throtl_qnode is used to keep the queued bios separated by their sources.
59 * Bios are queued to throtl_qnode which in turn is queued to
60 * throtl_service_queue and then dispatched in round-robin order.
61 *
62 * It's also used to track the reference counts on blkg's. A qnode always
63 * belongs to a throtl_grp and gets queued on itself or the parent, so
64 * incrementing the reference of the associated throtl_grp when a qnode is
65 * queued and decrementing when dequeued is enough to keep the whole blkg
66 * tree pinned while bios are in flight.
67 */
68struct throtl_qnode {
69 struct list_head node; /* service_queue->queued[] */
70 struct bio_list bios; /* queued bios */
71 struct throtl_grp *tg; /* tg this qnode belongs to */
72};
73
c9e0332e 74struct throtl_service_queue {
77216b04
TH
75 struct throtl_service_queue *parent_sq; /* the parent service_queue */
76
73f0d49a
TH
77 /*
78 * Bios queued directly to this service_queue or dispatched from
79 * children throtl_grp's.
80 */
c5cc2070 81 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
73f0d49a
TH
82 unsigned int nr_queued[2]; /* number of queued bios */
83
84 /*
85 * RB tree of active children throtl_grp's, which are sorted by
86 * their ->disptime.
87 */
c9e0332e
TH
88 struct rb_root pending_tree; /* RB tree of active tgs */
89 struct rb_node *first_pending; /* first node in the tree */
90 unsigned int nr_pending; /* # queued in the tree */
91 unsigned long first_pending_disptime; /* disptime of the first tg */
69df0ab0 92 struct timer_list pending_timer; /* fires on first_pending_disptime */
e43473b7
VG
93};
94
5b2c16aa
TH
95enum tg_state_flags {
96 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
0e9f4164 97 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
5b2c16aa
TH
98};
99
e43473b7
VG
100#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
101
9f626e37 102enum {
cd5ab1b0 103 LIMIT_LOW,
9f626e37
SL
104 LIMIT_MAX,
105 LIMIT_CNT,
106};
107
e43473b7 108struct throtl_grp {
f95a04af
TH
109 /* must be the first member */
110 struct blkg_policy_data pd;
111
c9e0332e 112 /* active throtl group service_queue member */
e43473b7
VG
113 struct rb_node rb_node;
114
0f3457f6
TH
115 /* throtl_data this group belongs to */
116 struct throtl_data *td;
117
49a2f1e3
TH
118 /* this group's service queue */
119 struct throtl_service_queue service_queue;
120
c5cc2070
TH
121 /*
122 * qnode_on_self is used when bios are directly queued to this
123 * throtl_grp so that local bios compete fairly with bios
124 * dispatched from children. qnode_on_parent is used when bios are
125 * dispatched from this throtl_grp into its parent and will compete
126 * with the sibling qnode_on_parents and the parent's
127 * qnode_on_self.
128 */
129 struct throtl_qnode qnode_on_self[2];
130 struct throtl_qnode qnode_on_parent[2];
131
e43473b7
VG
132 /*
133 * Dispatch time in jiffies. This is the estimated time when group
134 * will unthrottle and is ready to dispatch more bio. It is used as
135 * key to sort active groups in service tree.
136 */
137 unsigned long disptime;
138
e43473b7
VG
139 unsigned int flags;
140
693e751e
TH
141 /* are there any throtl rules between this group and td? */
142 bool has_rules[2];
143
cd5ab1b0 144 /* internally used bytes per second rate limits */
9f626e37 145 uint64_t bps[2][LIMIT_CNT];
cd5ab1b0
SL
146 /* user configured bps limits */
147 uint64_t bps_conf[2][LIMIT_CNT];
e43473b7 148
cd5ab1b0 149 /* internally used IOPS limits */
9f626e37 150 unsigned int iops[2][LIMIT_CNT];
cd5ab1b0
SL
151 /* user configured IOPS limits */
152 unsigned int iops_conf[2][LIMIT_CNT];
8e89d13f 153
e43473b7
VG
154 /* Number of bytes disptached in current slice */
155 uint64_t bytes_disp[2];
8e89d13f
VG
156 /* Number of bio's dispatched in current slice */
157 unsigned int io_disp[2];
e43473b7 158
3f0abd80
SL
159 unsigned long last_low_overflow_time[2];
160
161 uint64_t last_bytes_disp[2];
162 unsigned int last_io_disp[2];
163
164 unsigned long last_check_time;
165
ec80991d 166 unsigned long latency_target; /* us */
5b81fc3c 167 unsigned long latency_target_conf; /* us */
e43473b7
VG
168 /* When did we start a new slice */
169 unsigned long slice_start[2];
170 unsigned long slice_end[2];
9e234eea
SL
171
172 unsigned long last_finish_time; /* ns / 1024 */
173 unsigned long checked_last_finish_time; /* ns / 1024 */
174 unsigned long avg_idletime; /* ns / 1024 */
175 unsigned long idletime_threshold; /* us */
5b81fc3c 176 unsigned long idletime_threshold_conf; /* us */
53696b8d
SL
177
178 unsigned int bio_cnt; /* total bios */
179 unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
180 unsigned long bio_cnt_reset_time;
e43473b7
VG
181};
182
b9147dd1
SL
183/* We measure latency for request size from <= 4k to >= 1M */
184#define LATENCY_BUCKET_SIZE 9
185
186struct latency_bucket {
187 unsigned long total_latency; /* ns / 1024 */
188 int samples;
189};
190
191struct avg_latency_bucket {
192 unsigned long latency; /* ns / 1024 */
193 bool valid;
194};
195
e43473b7
VG
196struct throtl_data
197{
e43473b7 198 /* service tree for active throtl groups */
c9e0332e 199 struct throtl_service_queue service_queue;
e43473b7 200
e43473b7
VG
201 struct request_queue *queue;
202
203 /* Total Number of queued bios on READ and WRITE lists */
204 unsigned int nr_queued[2];
205
297e3d85
SL
206 unsigned int throtl_slice;
207
e43473b7 208 /* Work for dispatching throttled bios */
69df0ab0 209 struct work_struct dispatch_work;
9f626e37
SL
210 unsigned int limit_index;
211 bool limit_valid[LIMIT_CNT];
3f0abd80
SL
212
213 unsigned long low_upgrade_time;
214 unsigned long low_downgrade_time;
7394e31f
SL
215
216 unsigned int scale;
b9147dd1
SL
217
218 struct latency_bucket tmp_buckets[LATENCY_BUCKET_SIZE];
219 struct avg_latency_bucket avg_buckets[LATENCY_BUCKET_SIZE];
220 struct latency_bucket __percpu *latency_buckets;
221 unsigned long last_calculate_time;
6679a90c 222 unsigned long filtered_latency;
b9147dd1
SL
223
224 bool track_bio_latency;
e43473b7
VG
225};
226
69df0ab0
TH
227static void throtl_pending_timer_fn(unsigned long arg);
228
f95a04af
TH
229static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
230{
231 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
232}
233
3c798398 234static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
0381411e 235{
f95a04af 236 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
0381411e
TH
237}
238
3c798398 239static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
0381411e 240{
f95a04af 241 return pd_to_blkg(&tg->pd);
0381411e
TH
242}
243
fda6f272
TH
244/**
245 * sq_to_tg - return the throl_grp the specified service queue belongs to
246 * @sq: the throtl_service_queue of interest
247 *
248 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
249 * embedded in throtl_data, %NULL is returned.
250 */
251static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
252{
253 if (sq && sq->parent_sq)
254 return container_of(sq, struct throtl_grp, service_queue);
255 else
256 return NULL;
257}
258
259/**
260 * sq_to_td - return throtl_data the specified service queue belongs to
261 * @sq: the throtl_service_queue of interest
262 *
b43daedc 263 * A service_queue can be embedded in either a throtl_grp or throtl_data.
fda6f272
TH
264 * Determine the associated throtl_data accordingly and return it.
265 */
266static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
267{
268 struct throtl_grp *tg = sq_to_tg(sq);
269
270 if (tg)
271 return tg->td;
272 else
273 return container_of(sq, struct throtl_data, service_queue);
274}
275
7394e31f
SL
276/*
277 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
278 * make the IO dispatch more smooth.
279 * Scale up: linearly scale up according to lapsed time since upgrade. For
280 * every throtl_slice, the limit scales up 1/2 .low limit till the
281 * limit hits .max limit
282 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
283 */
284static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
285{
286 /* arbitrary value to avoid too big scale */
287 if (td->scale < 4096 && time_after_eq(jiffies,
288 td->low_upgrade_time + td->scale * td->throtl_slice))
289 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
290
291 return low + (low >> 1) * td->scale;
292}
293
9f626e37
SL
294static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
295{
b22c417c 296 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 297 struct throtl_data *td;
b22c417c
SL
298 uint64_t ret;
299
300 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
301 return U64_MAX;
7394e31f
SL
302
303 td = tg->td;
304 ret = tg->bps[rw][td->limit_index];
9bb67aeb
SL
305 if (ret == 0 && td->limit_index == LIMIT_LOW) {
306 /* intermediate node or iops isn't 0 */
307 if (!list_empty(&blkg->blkcg->css.children) ||
308 tg->iops[rw][td->limit_index])
309 return U64_MAX;
310 else
311 return MIN_THROTL_BPS;
312 }
7394e31f
SL
313
314 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
315 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
316 uint64_t adjusted;
317
318 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
319 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
320 }
b22c417c 321 return ret;
9f626e37
SL
322}
323
324static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
325{
b22c417c 326 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 327 struct throtl_data *td;
b22c417c
SL
328 unsigned int ret;
329
330 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
331 return UINT_MAX;
9bb67aeb 332
7394e31f
SL
333 td = tg->td;
334 ret = tg->iops[rw][td->limit_index];
9bb67aeb
SL
335 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
336 /* intermediate node or bps isn't 0 */
337 if (!list_empty(&blkg->blkcg->css.children) ||
338 tg->bps[rw][td->limit_index])
339 return UINT_MAX;
340 else
341 return MIN_THROTL_IOPS;
342 }
7394e31f
SL
343
344 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
345 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
346 uint64_t adjusted;
347
348 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
349 if (adjusted > UINT_MAX)
350 adjusted = UINT_MAX;
351 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
352 }
b22c417c 353 return ret;
9f626e37
SL
354}
355
b9147dd1
SL
356#define request_bucket_index(sectors) \
357 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
358
fda6f272
TH
359/**
360 * throtl_log - log debug message via blktrace
361 * @sq: the service_queue being reported
362 * @fmt: printf format string
363 * @args: printf args
364 *
365 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
366 * throtl_grp; otherwise, just "throtl".
fda6f272
TH
367 */
368#define throtl_log(sq, fmt, args...) do { \
369 struct throtl_grp *__tg = sq_to_tg((sq)); \
370 struct throtl_data *__td = sq_to_td((sq)); \
371 \
372 (void)__td; \
59fa0224
SL
373 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
374 break; \
fda6f272
TH
375 if ((__tg)) { \
376 char __pbuf[128]; \
54e7ed12 377 \
fda6f272
TH
378 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \
379 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
380 } else { \
381 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
382 } \
54e7ed12 383} while (0)
e43473b7 384
ea0ea2bc
SL
385static inline unsigned int throtl_bio_data_size(struct bio *bio)
386{
387 /* assume it's one sector */
388 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
389 return 512;
390 return bio->bi_iter.bi_size;
391}
392
c5cc2070
TH
393static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
394{
395 INIT_LIST_HEAD(&qn->node);
396 bio_list_init(&qn->bios);
397 qn->tg = tg;
398}
399
400/**
401 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
402 * @bio: bio being added
403 * @qn: qnode to add bio to
404 * @queued: the service_queue->queued[] list @qn belongs to
405 *
406 * Add @bio to @qn and put @qn on @queued if it's not already on.
407 * @qn->tg's reference count is bumped when @qn is activated. See the
408 * comment on top of throtl_qnode definition for details.
409 */
410static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
411 struct list_head *queued)
412{
413 bio_list_add(&qn->bios, bio);
414 if (list_empty(&qn->node)) {
415 list_add_tail(&qn->node, queued);
416 blkg_get(tg_to_blkg(qn->tg));
417 }
418}
419
420/**
421 * throtl_peek_queued - peek the first bio on a qnode list
422 * @queued: the qnode list to peek
423 */
424static struct bio *throtl_peek_queued(struct list_head *queued)
425{
426 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
427 struct bio *bio;
428
429 if (list_empty(queued))
430 return NULL;
431
432 bio = bio_list_peek(&qn->bios);
433 WARN_ON_ONCE(!bio);
434 return bio;
435}
436
437/**
438 * throtl_pop_queued - pop the first bio form a qnode list
439 * @queued: the qnode list to pop a bio from
440 * @tg_to_put: optional out argument for throtl_grp to put
441 *
442 * Pop the first bio from the qnode list @queued. After popping, the first
443 * qnode is removed from @queued if empty or moved to the end of @queued so
444 * that the popping order is round-robin.
445 *
446 * When the first qnode is removed, its associated throtl_grp should be put
447 * too. If @tg_to_put is NULL, this function automatically puts it;
448 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
449 * responsible for putting it.
450 */
451static struct bio *throtl_pop_queued(struct list_head *queued,
452 struct throtl_grp **tg_to_put)
453{
454 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
455 struct bio *bio;
456
457 if (list_empty(queued))
458 return NULL;
459
460 bio = bio_list_pop(&qn->bios);
461 WARN_ON_ONCE(!bio);
462
463 if (bio_list_empty(&qn->bios)) {
464 list_del_init(&qn->node);
465 if (tg_to_put)
466 *tg_to_put = qn->tg;
467 else
468 blkg_put(tg_to_blkg(qn->tg));
469 } else {
470 list_move_tail(&qn->node, queued);
471 }
472
473 return bio;
474}
475
49a2f1e3 476/* init a service_queue, assumes the caller zeroed it */
b2ce2643 477static void throtl_service_queue_init(struct throtl_service_queue *sq)
49a2f1e3 478{
c5cc2070
TH
479 INIT_LIST_HEAD(&sq->queued[0]);
480 INIT_LIST_HEAD(&sq->queued[1]);
49a2f1e3 481 sq->pending_tree = RB_ROOT;
69df0ab0
TH
482 setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
483 (unsigned long)sq);
484}
485
001bea73
TH
486static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
487{
4fb72036 488 struct throtl_grp *tg;
24bdb8ef 489 int rw;
4fb72036
TH
490
491 tg = kzalloc_node(sizeof(*tg), gfp, node);
492 if (!tg)
77ea7338 493 return NULL;
4fb72036 494
b2ce2643
TH
495 throtl_service_queue_init(&tg->service_queue);
496
497 for (rw = READ; rw <= WRITE; rw++) {
498 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
499 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
500 }
501
502 RB_CLEAR_NODE(&tg->rb_node);
9f626e37
SL
503 tg->bps[READ][LIMIT_MAX] = U64_MAX;
504 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
505 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
506 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
cd5ab1b0
SL
507 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
508 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
509 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
510 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
511 /* LIMIT_LOW will have default value 0 */
b2ce2643 512
ec80991d 513 tg->latency_target = DFL_LATENCY_TARGET;
5b81fc3c 514 tg->latency_target_conf = DFL_LATENCY_TARGET;
b4f428ef
SL
515 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
516 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
ec80991d 517
4fb72036 518 return &tg->pd;
001bea73
TH
519}
520
a9520cd6 521static void throtl_pd_init(struct blkg_policy_data *pd)
a29a171e 522{
a9520cd6
TH
523 struct throtl_grp *tg = pd_to_tg(pd);
524 struct blkcg_gq *blkg = tg_to_blkg(tg);
77216b04 525 struct throtl_data *td = blkg->q->td;
b2ce2643 526 struct throtl_service_queue *sq = &tg->service_queue;
cd1604fa 527
9138125b 528 /*
aa6ec29b 529 * If on the default hierarchy, we switch to properly hierarchical
9138125b
TH
530 * behavior where limits on a given throtl_grp are applied to the
531 * whole subtree rather than just the group itself. e.g. If 16M
532 * read_bps limit is set on the root group, the whole system can't
533 * exceed 16M for the device.
534 *
aa6ec29b 535 * If not on the default hierarchy, the broken flat hierarchy
9138125b
TH
536 * behavior is retained where all throtl_grps are treated as if
537 * they're all separate root groups right below throtl_data.
538 * Limits of a group don't interact with limits of other groups
539 * regardless of the position of the group in the hierarchy.
540 */
b2ce2643 541 sq->parent_sq = &td->service_queue;
9e10a130 542 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
b2ce2643 543 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
77216b04 544 tg->td = td;
8a3d2615
TH
545}
546
693e751e
TH
547/*
548 * Set has_rules[] if @tg or any of its parents have limits configured.
549 * This doesn't require walking up to the top of the hierarchy as the
550 * parent's has_rules[] is guaranteed to be correct.
551 */
552static void tg_update_has_rules(struct throtl_grp *tg)
553{
554 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
9f626e37 555 struct throtl_data *td = tg->td;
693e751e
TH
556 int rw;
557
558 for (rw = READ; rw <= WRITE; rw++)
559 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
9f626e37
SL
560 (td->limit_valid[td->limit_index] &&
561 (tg_bps_limit(tg, rw) != U64_MAX ||
562 tg_iops_limit(tg, rw) != UINT_MAX));
693e751e
TH
563}
564
a9520cd6 565static void throtl_pd_online(struct blkg_policy_data *pd)
693e751e 566{
aec24246 567 struct throtl_grp *tg = pd_to_tg(pd);
693e751e
TH
568 /*
569 * We don't want new groups to escape the limits of its ancestors.
570 * Update has_rules[] after a new group is brought online.
571 */
aec24246 572 tg_update_has_rules(tg);
693e751e
TH
573}
574
cd5ab1b0
SL
575static void blk_throtl_update_limit_valid(struct throtl_data *td)
576{
577 struct cgroup_subsys_state *pos_css;
578 struct blkcg_gq *blkg;
579 bool low_valid = false;
580
581 rcu_read_lock();
582 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
583 struct throtl_grp *tg = blkg_to_tg(blkg);
584
585 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
586 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
587 low_valid = true;
588 }
589 rcu_read_unlock();
590
591 td->limit_valid[LIMIT_LOW] = low_valid;
592}
593
c79892c5 594static void throtl_upgrade_state(struct throtl_data *td);
cd5ab1b0
SL
595static void throtl_pd_offline(struct blkg_policy_data *pd)
596{
597 struct throtl_grp *tg = pd_to_tg(pd);
598
599 tg->bps[READ][LIMIT_LOW] = 0;
600 tg->bps[WRITE][LIMIT_LOW] = 0;
601 tg->iops[READ][LIMIT_LOW] = 0;
602 tg->iops[WRITE][LIMIT_LOW] = 0;
603
604 blk_throtl_update_limit_valid(tg->td);
605
c79892c5
SL
606 if (!tg->td->limit_valid[tg->td->limit_index])
607 throtl_upgrade_state(tg->td);
cd5ab1b0
SL
608}
609
001bea73
TH
610static void throtl_pd_free(struct blkg_policy_data *pd)
611{
4fb72036
TH
612 struct throtl_grp *tg = pd_to_tg(pd);
613
b2ce2643 614 del_timer_sync(&tg->service_queue.pending_timer);
4fb72036 615 kfree(tg);
001bea73
TH
616}
617
0049af73
TH
618static struct throtl_grp *
619throtl_rb_first(struct throtl_service_queue *parent_sq)
e43473b7
VG
620{
621 /* Service tree is empty */
0049af73 622 if (!parent_sq->nr_pending)
e43473b7
VG
623 return NULL;
624
0049af73
TH
625 if (!parent_sq->first_pending)
626 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
e43473b7 627
0049af73
TH
628 if (parent_sq->first_pending)
629 return rb_entry_tg(parent_sq->first_pending);
e43473b7
VG
630
631 return NULL;
632}
633
634static void rb_erase_init(struct rb_node *n, struct rb_root *root)
635{
636 rb_erase(n, root);
637 RB_CLEAR_NODE(n);
638}
639
0049af73
TH
640static void throtl_rb_erase(struct rb_node *n,
641 struct throtl_service_queue *parent_sq)
e43473b7 642{
0049af73
TH
643 if (parent_sq->first_pending == n)
644 parent_sq->first_pending = NULL;
645 rb_erase_init(n, &parent_sq->pending_tree);
646 --parent_sq->nr_pending;
e43473b7
VG
647}
648
0049af73 649static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
e43473b7
VG
650{
651 struct throtl_grp *tg;
652
0049af73 653 tg = throtl_rb_first(parent_sq);
e43473b7
VG
654 if (!tg)
655 return;
656
0049af73 657 parent_sq->first_pending_disptime = tg->disptime;
e43473b7
VG
658}
659
77216b04 660static void tg_service_queue_add(struct throtl_grp *tg)
e43473b7 661{
77216b04 662 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
0049af73 663 struct rb_node **node = &parent_sq->pending_tree.rb_node;
e43473b7
VG
664 struct rb_node *parent = NULL;
665 struct throtl_grp *__tg;
666 unsigned long key = tg->disptime;
667 int left = 1;
668
669 while (*node != NULL) {
670 parent = *node;
671 __tg = rb_entry_tg(parent);
672
673 if (time_before(key, __tg->disptime))
674 node = &parent->rb_left;
675 else {
676 node = &parent->rb_right;
677 left = 0;
678 }
679 }
680
681 if (left)
0049af73 682 parent_sq->first_pending = &tg->rb_node;
e43473b7
VG
683
684 rb_link_node(&tg->rb_node, parent, node);
0049af73 685 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
e43473b7
VG
686}
687
77216b04 688static void __throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 689{
77216b04 690 tg_service_queue_add(tg);
5b2c16aa 691 tg->flags |= THROTL_TG_PENDING;
77216b04 692 tg->service_queue.parent_sq->nr_pending++;
e43473b7
VG
693}
694
77216b04 695static void throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 696{
5b2c16aa 697 if (!(tg->flags & THROTL_TG_PENDING))
77216b04 698 __throtl_enqueue_tg(tg);
e43473b7
VG
699}
700
77216b04 701static void __throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 702{
77216b04 703 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
5b2c16aa 704 tg->flags &= ~THROTL_TG_PENDING;
e43473b7
VG
705}
706
77216b04 707static void throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 708{
5b2c16aa 709 if (tg->flags & THROTL_TG_PENDING)
77216b04 710 __throtl_dequeue_tg(tg);
e43473b7
VG
711}
712
a9131a27 713/* Call with queue lock held */
69df0ab0
TH
714static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
715 unsigned long expires)
a9131a27 716{
a41b816c 717 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
06cceedc
SL
718
719 /*
720 * Since we are adjusting the throttle limit dynamically, the sleep
721 * time calculated according to previous limit might be invalid. It's
722 * possible the cgroup sleep time is very long and no other cgroups
723 * have IO running so notify the limit changes. Make sure the cgroup
724 * doesn't sleep too long to avoid the missed notification.
725 */
726 if (time_after(expires, max_expire))
727 expires = max_expire;
69df0ab0
TH
728 mod_timer(&sq->pending_timer, expires);
729 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
730 expires - jiffies, jiffies);
a9131a27
TH
731}
732
7f52f98c
TH
733/**
734 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
735 * @sq: the service_queue to schedule dispatch for
736 * @force: force scheduling
737 *
738 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
739 * dispatch time of the first pending child. Returns %true if either timer
740 * is armed or there's no pending child left. %false if the current
741 * dispatch window is still open and the caller should continue
742 * dispatching.
743 *
744 * If @force is %true, the dispatch timer is always scheduled and this
745 * function is guaranteed to return %true. This is to be used when the
746 * caller can't dispatch itself and needs to invoke pending_timer
747 * unconditionally. Note that forced scheduling is likely to induce short
748 * delay before dispatch starts even if @sq->first_pending_disptime is not
749 * in the future and thus shouldn't be used in hot paths.
750 */
751static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
752 bool force)
e43473b7 753{
6a525600 754 /* any pending children left? */
c9e0332e 755 if (!sq->nr_pending)
7f52f98c 756 return true;
e43473b7 757
c9e0332e 758 update_min_dispatch_time(sq);
e43473b7 759
69df0ab0 760 /* is the next dispatch time in the future? */
7f52f98c 761 if (force || time_after(sq->first_pending_disptime, jiffies)) {
69df0ab0 762 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
7f52f98c 763 return true;
69df0ab0
TH
764 }
765
7f52f98c
TH
766 /* tell the caller to continue dispatching */
767 return false;
e43473b7
VG
768}
769
32ee5bc4
VG
770static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
771 bool rw, unsigned long start)
772{
773 tg->bytes_disp[rw] = 0;
774 tg->io_disp[rw] = 0;
775
776 /*
777 * Previous slice has expired. We must have trimmed it after last
778 * bio dispatch. That means since start of last slice, we never used
779 * that bandwidth. Do try to make use of that bandwidth while giving
780 * credit.
781 */
782 if (time_after_eq(start, tg->slice_start[rw]))
783 tg->slice_start[rw] = start;
784
297e3d85 785 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
32ee5bc4
VG
786 throtl_log(&tg->service_queue,
787 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
788 rw == READ ? 'R' : 'W', tg->slice_start[rw],
789 tg->slice_end[rw], jiffies);
790}
791
0f3457f6 792static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
e43473b7
VG
793{
794 tg->bytes_disp[rw] = 0;
8e89d13f 795 tg->io_disp[rw] = 0;
e43473b7 796 tg->slice_start[rw] = jiffies;
297e3d85 797 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
fda6f272
TH
798 throtl_log(&tg->service_queue,
799 "[%c] new slice start=%lu end=%lu jiffies=%lu",
800 rw == READ ? 'R' : 'W', tg->slice_start[rw],
801 tg->slice_end[rw], jiffies);
e43473b7
VG
802}
803
0f3457f6
TH
804static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
805 unsigned long jiffy_end)
d1ae8ffd 806{
297e3d85 807 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
d1ae8ffd
VG
808}
809
0f3457f6
TH
810static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
811 unsigned long jiffy_end)
e43473b7 812{
297e3d85 813 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
fda6f272
TH
814 throtl_log(&tg->service_queue,
815 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
816 rw == READ ? 'R' : 'W', tg->slice_start[rw],
817 tg->slice_end[rw], jiffies);
e43473b7
VG
818}
819
820/* Determine if previously allocated or extended slice is complete or not */
0f3457f6 821static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
e43473b7
VG
822{
823 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
5cf8c227 824 return false;
e43473b7
VG
825
826 return 1;
827}
828
829/* Trim the used slices and adjust slice start accordingly */
0f3457f6 830static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
e43473b7 831{
3aad5d3e
VG
832 unsigned long nr_slices, time_elapsed, io_trim;
833 u64 bytes_trim, tmp;
e43473b7
VG
834
835 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
836
837 /*
838 * If bps are unlimited (-1), then time slice don't get
839 * renewed. Don't try to trim the slice if slice is used. A new
840 * slice will start when appropriate.
841 */
0f3457f6 842 if (throtl_slice_used(tg, rw))
e43473b7
VG
843 return;
844
d1ae8ffd
VG
845 /*
846 * A bio has been dispatched. Also adjust slice_end. It might happen
847 * that initially cgroup limit was very low resulting in high
848 * slice_end, but later limit was bumped up and bio was dispached
849 * sooner, then we need to reduce slice_end. A high bogus slice_end
850 * is bad because it does not allow new slice to start.
851 */
852
297e3d85 853 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
d1ae8ffd 854
e43473b7
VG
855 time_elapsed = jiffies - tg->slice_start[rw];
856
297e3d85 857 nr_slices = time_elapsed / tg->td->throtl_slice;
e43473b7
VG
858
859 if (!nr_slices)
860 return;
297e3d85 861 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
3aad5d3e
VG
862 do_div(tmp, HZ);
863 bytes_trim = tmp;
e43473b7 864
297e3d85
SL
865 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
866 HZ;
e43473b7 867
8e89d13f 868 if (!bytes_trim && !io_trim)
e43473b7
VG
869 return;
870
871 if (tg->bytes_disp[rw] >= bytes_trim)
872 tg->bytes_disp[rw] -= bytes_trim;
873 else
874 tg->bytes_disp[rw] = 0;
875
8e89d13f
VG
876 if (tg->io_disp[rw] >= io_trim)
877 tg->io_disp[rw] -= io_trim;
878 else
879 tg->io_disp[rw] = 0;
880
297e3d85 881 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
e43473b7 882
fda6f272
TH
883 throtl_log(&tg->service_queue,
884 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
885 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
886 tg->slice_start[rw], tg->slice_end[rw], jiffies);
e43473b7
VG
887}
888
0f3457f6
TH
889static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
890 unsigned long *wait)
e43473b7
VG
891{
892 bool rw = bio_data_dir(bio);
8e89d13f 893 unsigned int io_allowed;
e43473b7 894 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
c49c06e4 895 u64 tmp;
e43473b7 896
8e89d13f 897 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
e43473b7 898
8e89d13f
VG
899 /* Slice has just started. Consider one slice interval */
900 if (!jiffy_elapsed)
297e3d85 901 jiffy_elapsed_rnd = tg->td->throtl_slice;
8e89d13f 902
297e3d85 903 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
8e89d13f 904
c49c06e4
VG
905 /*
906 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
907 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
908 * will allow dispatch after 1 second and after that slice should
909 * have been trimmed.
910 */
911
9f626e37 912 tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
c49c06e4
VG
913 do_div(tmp, HZ);
914
915 if (tmp > UINT_MAX)
916 io_allowed = UINT_MAX;
917 else
918 io_allowed = tmp;
8e89d13f
VG
919
920 if (tg->io_disp[rw] + 1 <= io_allowed) {
e43473b7
VG
921 if (wait)
922 *wait = 0;
5cf8c227 923 return true;
e43473b7
VG
924 }
925
8e89d13f 926 /* Calc approx time to dispatch */
9f626e37 927 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
8e89d13f
VG
928
929 if (jiffy_wait > jiffy_elapsed)
930 jiffy_wait = jiffy_wait - jiffy_elapsed;
931 else
932 jiffy_wait = 1;
933
934 if (wait)
935 *wait = jiffy_wait;
936 return 0;
937}
938
0f3457f6
TH
939static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
940 unsigned long *wait)
8e89d13f
VG
941{
942 bool rw = bio_data_dir(bio);
3aad5d3e 943 u64 bytes_allowed, extra_bytes, tmp;
8e89d13f 944 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
ea0ea2bc 945 unsigned int bio_size = throtl_bio_data_size(bio);
e43473b7
VG
946
947 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
948
949 /* Slice has just started. Consider one slice interval */
950 if (!jiffy_elapsed)
297e3d85 951 jiffy_elapsed_rnd = tg->td->throtl_slice;
e43473b7 952
297e3d85 953 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
e43473b7 954
9f626e37 955 tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
5e901a2b 956 do_div(tmp, HZ);
3aad5d3e 957 bytes_allowed = tmp;
e43473b7 958
ea0ea2bc 959 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
e43473b7
VG
960 if (wait)
961 *wait = 0;
5cf8c227 962 return true;
e43473b7
VG
963 }
964
965 /* Calc approx time to dispatch */
ea0ea2bc 966 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
9f626e37 967 jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
e43473b7
VG
968
969 if (!jiffy_wait)
970 jiffy_wait = 1;
971
972 /*
973 * This wait time is without taking into consideration the rounding
974 * up we did. Add that time also.
975 */
976 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
e43473b7
VG
977 if (wait)
978 *wait = jiffy_wait;
8e89d13f
VG
979 return 0;
980}
981
982/*
983 * Returns whether one can dispatch a bio or not. Also returns approx number
984 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
985 */
0f3457f6
TH
986static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
987 unsigned long *wait)
8e89d13f
VG
988{
989 bool rw = bio_data_dir(bio);
990 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
991
992 /*
993 * Currently whole state machine of group depends on first bio
994 * queued in the group bio list. So one should not be calling
995 * this function with a different bio if there are other bios
996 * queued.
997 */
73f0d49a 998 BUG_ON(tg->service_queue.nr_queued[rw] &&
c5cc2070 999 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
e43473b7 1000
8e89d13f 1001 /* If tg->bps = -1, then BW is unlimited */
9f626e37
SL
1002 if (tg_bps_limit(tg, rw) == U64_MAX &&
1003 tg_iops_limit(tg, rw) == UINT_MAX) {
8e89d13f
VG
1004 if (wait)
1005 *wait = 0;
5cf8c227 1006 return true;
8e89d13f
VG
1007 }
1008
1009 /*
1010 * If previous slice expired, start a new one otherwise renew/extend
1011 * existing slice to make sure it is at least throtl_slice interval
164c80ed
VG
1012 * long since now. New slice is started only for empty throttle group.
1013 * If there is queued bio, that means there should be an active
1014 * slice and it should be extended instead.
8e89d13f 1015 */
164c80ed 1016 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
0f3457f6 1017 throtl_start_new_slice(tg, rw);
8e89d13f 1018 else {
297e3d85
SL
1019 if (time_before(tg->slice_end[rw],
1020 jiffies + tg->td->throtl_slice))
1021 throtl_extend_slice(tg, rw,
1022 jiffies + tg->td->throtl_slice);
8e89d13f
VG
1023 }
1024
0f3457f6
TH
1025 if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
1026 tg_with_in_iops_limit(tg, bio, &iops_wait)) {
8e89d13f
VG
1027 if (wait)
1028 *wait = 0;
1029 return 1;
1030 }
1031
1032 max_wait = max(bps_wait, iops_wait);
1033
1034 if (wait)
1035 *wait = max_wait;
1036
1037 if (time_before(tg->slice_end[rw], jiffies + max_wait))
0f3457f6 1038 throtl_extend_slice(tg, rw, jiffies + max_wait);
e43473b7
VG
1039
1040 return 0;
1041}
1042
1043static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1044{
1045 bool rw = bio_data_dir(bio);
ea0ea2bc 1046 unsigned int bio_size = throtl_bio_data_size(bio);
e43473b7
VG
1047
1048 /* Charge the bio to the group */
ea0ea2bc 1049 tg->bytes_disp[rw] += bio_size;
8e89d13f 1050 tg->io_disp[rw]++;
ea0ea2bc 1051 tg->last_bytes_disp[rw] += bio_size;
3f0abd80 1052 tg->last_io_disp[rw]++;
e43473b7 1053
2a0f61e6 1054 /*
8d2bbd4c 1055 * BIO_THROTTLED is used to prevent the same bio to be throttled
2a0f61e6
TH
1056 * more than once as a throttled bio will go through blk-throtl the
1057 * second time when it eventually gets issued. Set it when a bio
1058 * is being charged to a tg.
2a0f61e6 1059 */
8d2bbd4c
CH
1060 if (!bio_flagged(bio, BIO_THROTTLED))
1061 bio_set_flag(bio, BIO_THROTTLED);
e43473b7
VG
1062}
1063
c5cc2070
TH
1064/**
1065 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1066 * @bio: bio to add
1067 * @qn: qnode to use
1068 * @tg: the target throtl_grp
1069 *
1070 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
1071 * tg->qnode_on_self[] is used.
1072 */
1073static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1074 struct throtl_grp *tg)
e43473b7 1075{
73f0d49a 1076 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1077 bool rw = bio_data_dir(bio);
1078
c5cc2070
TH
1079 if (!qn)
1080 qn = &tg->qnode_on_self[rw];
1081
0e9f4164
TH
1082 /*
1083 * If @tg doesn't currently have any bios queued in the same
1084 * direction, queueing @bio can change when @tg should be
1085 * dispatched. Mark that @tg was empty. This is automatically
1086 * cleaered on the next tg_update_disptime().
1087 */
1088 if (!sq->nr_queued[rw])
1089 tg->flags |= THROTL_TG_WAS_EMPTY;
1090
c5cc2070
TH
1091 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1092
73f0d49a 1093 sq->nr_queued[rw]++;
77216b04 1094 throtl_enqueue_tg(tg);
e43473b7
VG
1095}
1096
77216b04 1097static void tg_update_disptime(struct throtl_grp *tg)
e43473b7 1098{
73f0d49a 1099 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1100 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1101 struct bio *bio;
1102
d609af3a
ME
1103 bio = throtl_peek_queued(&sq->queued[READ]);
1104 if (bio)
0f3457f6 1105 tg_may_dispatch(tg, bio, &read_wait);
e43473b7 1106
d609af3a
ME
1107 bio = throtl_peek_queued(&sq->queued[WRITE]);
1108 if (bio)
0f3457f6 1109 tg_may_dispatch(tg, bio, &write_wait);
e43473b7
VG
1110
1111 min_wait = min(read_wait, write_wait);
1112 disptime = jiffies + min_wait;
1113
e43473b7 1114 /* Update dispatch time */
77216b04 1115 throtl_dequeue_tg(tg);
e43473b7 1116 tg->disptime = disptime;
77216b04 1117 throtl_enqueue_tg(tg);
0e9f4164
TH
1118
1119 /* see throtl_add_bio_tg() */
1120 tg->flags &= ~THROTL_TG_WAS_EMPTY;
e43473b7
VG
1121}
1122
32ee5bc4
VG
1123static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1124 struct throtl_grp *parent_tg, bool rw)
1125{
1126 if (throtl_slice_used(parent_tg, rw)) {
1127 throtl_start_new_slice_with_credit(parent_tg, rw,
1128 child_tg->slice_start[rw]);
1129 }
1130
1131}
1132
77216b04 1133static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
e43473b7 1134{
73f0d49a 1135 struct throtl_service_queue *sq = &tg->service_queue;
6bc9c2b4
TH
1136 struct throtl_service_queue *parent_sq = sq->parent_sq;
1137 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
c5cc2070 1138 struct throtl_grp *tg_to_put = NULL;
e43473b7
VG
1139 struct bio *bio;
1140
c5cc2070
TH
1141 /*
1142 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1143 * from @tg may put its reference and @parent_sq might end up
1144 * getting released prematurely. Remember the tg to put and put it
1145 * after @bio is transferred to @parent_sq.
1146 */
1147 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
73f0d49a 1148 sq->nr_queued[rw]--;
e43473b7
VG
1149
1150 throtl_charge_bio(tg, bio);
6bc9c2b4
TH
1151
1152 /*
1153 * If our parent is another tg, we just need to transfer @bio to
1154 * the parent using throtl_add_bio_tg(). If our parent is
1155 * @td->service_queue, @bio is ready to be issued. Put it on its
1156 * bio_lists[] and decrease total number queued. The caller is
1157 * responsible for issuing these bios.
1158 */
1159 if (parent_tg) {
c5cc2070 1160 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
32ee5bc4 1161 start_parent_slice_with_credit(tg, parent_tg, rw);
6bc9c2b4 1162 } else {
c5cc2070
TH
1163 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1164 &parent_sq->queued[rw]);
6bc9c2b4
TH
1165 BUG_ON(tg->td->nr_queued[rw] <= 0);
1166 tg->td->nr_queued[rw]--;
1167 }
e43473b7 1168
0f3457f6 1169 throtl_trim_slice(tg, rw);
6bc9c2b4 1170
c5cc2070
TH
1171 if (tg_to_put)
1172 blkg_put(tg_to_blkg(tg_to_put));
e43473b7
VG
1173}
1174
77216b04 1175static int throtl_dispatch_tg(struct throtl_grp *tg)
e43473b7 1176{
73f0d49a 1177 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1178 unsigned int nr_reads = 0, nr_writes = 0;
1179 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
c2f6805d 1180 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
e43473b7
VG
1181 struct bio *bio;
1182
1183 /* Try to dispatch 75% READS and 25% WRITES */
1184
c5cc2070 1185 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
0f3457f6 1186 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1187
77216b04 1188 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1189 nr_reads++;
1190
1191 if (nr_reads >= max_nr_reads)
1192 break;
1193 }
1194
c5cc2070 1195 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
0f3457f6 1196 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1197
77216b04 1198 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1199 nr_writes++;
1200
1201 if (nr_writes >= max_nr_writes)
1202 break;
1203 }
1204
1205 return nr_reads + nr_writes;
1206}
1207
651930bc 1208static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
e43473b7
VG
1209{
1210 unsigned int nr_disp = 0;
e43473b7
VG
1211
1212 while (1) {
73f0d49a
TH
1213 struct throtl_grp *tg = throtl_rb_first(parent_sq);
1214 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1215
1216 if (!tg)
1217 break;
1218
1219 if (time_before(jiffies, tg->disptime))
1220 break;
1221
77216b04 1222 throtl_dequeue_tg(tg);
e43473b7 1223
77216b04 1224 nr_disp += throtl_dispatch_tg(tg);
e43473b7 1225
73f0d49a 1226 if (sq->nr_queued[0] || sq->nr_queued[1])
77216b04 1227 tg_update_disptime(tg);
e43473b7
VG
1228
1229 if (nr_disp >= throtl_quantum)
1230 break;
1231 }
1232
1233 return nr_disp;
1234}
1235
c79892c5
SL
1236static bool throtl_can_upgrade(struct throtl_data *td,
1237 struct throtl_grp *this_tg);
6e1a5704
TH
1238/**
1239 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1240 * @arg: the throtl_service_queue being serviced
1241 *
1242 * This timer is armed when a child throtl_grp with active bio's become
1243 * pending and queued on the service_queue's pending_tree and expires when
1244 * the first child throtl_grp should be dispatched. This function
2e48a530
TH
1245 * dispatches bio's from the children throtl_grps to the parent
1246 * service_queue.
1247 *
1248 * If the parent's parent is another throtl_grp, dispatching is propagated
1249 * by either arming its pending_timer or repeating dispatch directly. If
1250 * the top-level service_tree is reached, throtl_data->dispatch_work is
1251 * kicked so that the ready bio's are issued.
6e1a5704 1252 */
69df0ab0
TH
1253static void throtl_pending_timer_fn(unsigned long arg)
1254{
1255 struct throtl_service_queue *sq = (void *)arg;
2e48a530 1256 struct throtl_grp *tg = sq_to_tg(sq);
69df0ab0 1257 struct throtl_data *td = sq_to_td(sq);
cb76199c 1258 struct request_queue *q = td->queue;
2e48a530
TH
1259 struct throtl_service_queue *parent_sq;
1260 bool dispatched;
6e1a5704 1261 int ret;
e43473b7
VG
1262
1263 spin_lock_irq(q->queue_lock);
c79892c5
SL
1264 if (throtl_can_upgrade(td, NULL))
1265 throtl_upgrade_state(td);
1266
2e48a530
TH
1267again:
1268 parent_sq = sq->parent_sq;
1269 dispatched = false;
e43473b7 1270
7f52f98c
TH
1271 while (true) {
1272 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
2e48a530
TH
1273 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1274 sq->nr_queued[READ], sq->nr_queued[WRITE]);
7f52f98c
TH
1275
1276 ret = throtl_select_dispatch(sq);
1277 if (ret) {
7f52f98c
TH
1278 throtl_log(sq, "bios disp=%u", ret);
1279 dispatched = true;
1280 }
e43473b7 1281
7f52f98c
TH
1282 if (throtl_schedule_next_dispatch(sq, false))
1283 break;
e43473b7 1284
7f52f98c
TH
1285 /* this dispatch windows is still open, relax and repeat */
1286 spin_unlock_irq(q->queue_lock);
1287 cpu_relax();
1288 spin_lock_irq(q->queue_lock);
651930bc 1289 }
e43473b7 1290
2e48a530
TH
1291 if (!dispatched)
1292 goto out_unlock;
6e1a5704 1293
2e48a530
TH
1294 if (parent_sq) {
1295 /* @parent_sq is another throl_grp, propagate dispatch */
1296 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1297 tg_update_disptime(tg);
1298 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1299 /* window is already open, repeat dispatching */
1300 sq = parent_sq;
1301 tg = sq_to_tg(sq);
1302 goto again;
1303 }
1304 }
1305 } else {
1306 /* reached the top-level, queue issueing */
1307 queue_work(kthrotld_workqueue, &td->dispatch_work);
1308 }
1309out_unlock:
e43473b7 1310 spin_unlock_irq(q->queue_lock);
6e1a5704 1311}
e43473b7 1312
6e1a5704
TH
1313/**
1314 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1315 * @work: work item being executed
1316 *
1317 * This function is queued for execution when bio's reach the bio_lists[]
1318 * of throtl_data->service_queue. Those bio's are ready and issued by this
1319 * function.
1320 */
8876e140 1321static void blk_throtl_dispatch_work_fn(struct work_struct *work)
6e1a5704
TH
1322{
1323 struct throtl_data *td = container_of(work, struct throtl_data,
1324 dispatch_work);
1325 struct throtl_service_queue *td_sq = &td->service_queue;
1326 struct request_queue *q = td->queue;
1327 struct bio_list bio_list_on_stack;
1328 struct bio *bio;
1329 struct blk_plug plug;
1330 int rw;
1331
1332 bio_list_init(&bio_list_on_stack);
1333
1334 spin_lock_irq(q->queue_lock);
c5cc2070
TH
1335 for (rw = READ; rw <= WRITE; rw++)
1336 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1337 bio_list_add(&bio_list_on_stack, bio);
6e1a5704
TH
1338 spin_unlock_irq(q->queue_lock);
1339
1340 if (!bio_list_empty(&bio_list_on_stack)) {
69d60eb9 1341 blk_start_plug(&plug);
e43473b7
VG
1342 while((bio = bio_list_pop(&bio_list_on_stack)))
1343 generic_make_request(bio);
69d60eb9 1344 blk_finish_plug(&plug);
e43473b7 1345 }
e43473b7
VG
1346}
1347
f95a04af
TH
1348static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1349 int off)
60c2bc2d 1350{
f95a04af
TH
1351 struct throtl_grp *tg = pd_to_tg(pd);
1352 u64 v = *(u64 *)((void *)tg + off);
60c2bc2d 1353
2ab5492d 1354 if (v == U64_MAX)
60c2bc2d 1355 return 0;
f95a04af 1356 return __blkg_prfill_u64(sf, pd, v);
60c2bc2d
TH
1357}
1358
f95a04af
TH
1359static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1360 int off)
e43473b7 1361{
f95a04af
TH
1362 struct throtl_grp *tg = pd_to_tg(pd);
1363 unsigned int v = *(unsigned int *)((void *)tg + off);
fe071437 1364
2ab5492d 1365 if (v == UINT_MAX)
af133ceb 1366 return 0;
f95a04af 1367 return __blkg_prfill_u64(sf, pd, v);
e43473b7
VG
1368}
1369
2da8ca82 1370static int tg_print_conf_u64(struct seq_file *sf, void *v)
8e89d13f 1371{
2da8ca82
TH
1372 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1373 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1374 return 0;
8e89d13f
VG
1375}
1376
2da8ca82 1377static int tg_print_conf_uint(struct seq_file *sf, void *v)
8e89d13f 1378{
2da8ca82
TH
1379 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1380 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1381 return 0;
60c2bc2d
TH
1382}
1383
9bb67aeb 1384static void tg_conf_updated(struct throtl_grp *tg, bool global)
60c2bc2d 1385{
69948b07 1386 struct throtl_service_queue *sq = &tg->service_queue;
492eb21b 1387 struct cgroup_subsys_state *pos_css;
69948b07 1388 struct blkcg_gq *blkg;
af133ceb 1389
fda6f272
TH
1390 throtl_log(&tg->service_queue,
1391 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
9f626e37
SL
1392 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1393 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
632b4493 1394
693e751e
TH
1395 /*
1396 * Update has_rules[] flags for the updated tg's subtree. A tg is
1397 * considered to have rules if either the tg itself or any of its
1398 * ancestors has rules. This identifies groups without any
1399 * restrictions in the whole hierarchy and allows them to bypass
1400 * blk-throttle.
1401 */
9bb67aeb
SL
1402 blkg_for_each_descendant_pre(blkg, pos_css,
1403 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
5b81fc3c
SL
1404 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1405 struct throtl_grp *parent_tg;
1406
1407 tg_update_has_rules(this_tg);
1408 /* ignore root/second level */
1409 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1410 !blkg->parent->parent)
1411 continue;
1412 parent_tg = blkg_to_tg(blkg->parent);
1413 /*
1414 * make sure all children has lower idle time threshold and
1415 * higher latency target
1416 */
1417 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1418 parent_tg->idletime_threshold);
1419 this_tg->latency_target = max(this_tg->latency_target,
1420 parent_tg->latency_target);
1421 }
693e751e 1422
632b4493
TH
1423 /*
1424 * We're already holding queue_lock and know @tg is valid. Let's
1425 * apply the new config directly.
1426 *
1427 * Restart the slices for both READ and WRITES. It might happen
1428 * that a group's limit are dropped suddenly and we don't want to
1429 * account recently dispatched IO with new low rate.
1430 */
0f3457f6
TH
1431 throtl_start_new_slice(tg, 0);
1432 throtl_start_new_slice(tg, 1);
632b4493 1433
5b2c16aa 1434 if (tg->flags & THROTL_TG_PENDING) {
77216b04 1435 tg_update_disptime(tg);
7f52f98c 1436 throtl_schedule_next_dispatch(sq->parent_sq, true);
632b4493 1437 }
69948b07
TH
1438}
1439
1440static ssize_t tg_set_conf(struct kernfs_open_file *of,
1441 char *buf, size_t nbytes, loff_t off, bool is_u64)
1442{
1443 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1444 struct blkg_conf_ctx ctx;
1445 struct throtl_grp *tg;
1446 int ret;
1447 u64 v;
1448
1449 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1450 if (ret)
1451 return ret;
1452
1453 ret = -EINVAL;
1454 if (sscanf(ctx.body, "%llu", &v) != 1)
1455 goto out_finish;
1456 if (!v)
2ab5492d 1457 v = U64_MAX;
69948b07
TH
1458
1459 tg = blkg_to_tg(ctx.blkg);
1460
1461 if (is_u64)
1462 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1463 else
1464 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
60c2bc2d 1465
9bb67aeb 1466 tg_conf_updated(tg, false);
36aa9e5f
TH
1467 ret = 0;
1468out_finish:
60c2bc2d 1469 blkg_conf_finish(&ctx);
36aa9e5f 1470 return ret ?: nbytes;
8e89d13f
VG
1471}
1472
451af504
TH
1473static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1474 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1475{
451af504 1476 return tg_set_conf(of, buf, nbytes, off, true);
60c2bc2d
TH
1477}
1478
451af504
TH
1479static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1480 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1481{
451af504 1482 return tg_set_conf(of, buf, nbytes, off, false);
60c2bc2d
TH
1483}
1484
880f50e2 1485static struct cftype throtl_legacy_files[] = {
60c2bc2d
TH
1486 {
1487 .name = "throttle.read_bps_device",
9f626e37 1488 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
2da8ca82 1489 .seq_show = tg_print_conf_u64,
451af504 1490 .write = tg_set_conf_u64,
60c2bc2d
TH
1491 },
1492 {
1493 .name = "throttle.write_bps_device",
9f626e37 1494 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
2da8ca82 1495 .seq_show = tg_print_conf_u64,
451af504 1496 .write = tg_set_conf_u64,
60c2bc2d
TH
1497 },
1498 {
1499 .name = "throttle.read_iops_device",
9f626e37 1500 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
2da8ca82 1501 .seq_show = tg_print_conf_uint,
451af504 1502 .write = tg_set_conf_uint,
60c2bc2d
TH
1503 },
1504 {
1505 .name = "throttle.write_iops_device",
9f626e37 1506 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
2da8ca82 1507 .seq_show = tg_print_conf_uint,
451af504 1508 .write = tg_set_conf_uint,
60c2bc2d
TH
1509 },
1510 {
1511 .name = "throttle.io_service_bytes",
77ea7338
TH
1512 .private = (unsigned long)&blkcg_policy_throtl,
1513 .seq_show = blkg_print_stat_bytes,
60c2bc2d
TH
1514 },
1515 {
1516 .name = "throttle.io_serviced",
77ea7338
TH
1517 .private = (unsigned long)&blkcg_policy_throtl,
1518 .seq_show = blkg_print_stat_ios,
60c2bc2d
TH
1519 },
1520 { } /* terminate */
1521};
1522
cd5ab1b0 1523static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
2ee867dc
TH
1524 int off)
1525{
1526 struct throtl_grp *tg = pd_to_tg(pd);
1527 const char *dname = blkg_dev_name(pd->blkg);
1528 char bufs[4][21] = { "max", "max", "max", "max" };
cd5ab1b0
SL
1529 u64 bps_dft;
1530 unsigned int iops_dft;
ada75b6e 1531 char idle_time[26] = "";
ec80991d 1532 char latency_time[26] = "";
2ee867dc
TH
1533
1534 if (!dname)
1535 return 0;
9f626e37 1536
cd5ab1b0
SL
1537 if (off == LIMIT_LOW) {
1538 bps_dft = 0;
1539 iops_dft = 0;
1540 } else {
1541 bps_dft = U64_MAX;
1542 iops_dft = UINT_MAX;
1543 }
1544
1545 if (tg->bps_conf[READ][off] == bps_dft &&
1546 tg->bps_conf[WRITE][off] == bps_dft &&
1547 tg->iops_conf[READ][off] == iops_dft &&
ada75b6e 1548 tg->iops_conf[WRITE][off] == iops_dft &&
ec80991d 1549 (off != LIMIT_LOW ||
b4f428ef 1550 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
5b81fc3c 1551 tg->latency_target_conf == DFL_LATENCY_TARGET)))
2ee867dc
TH
1552 return 0;
1553
9bb67aeb 1554 if (tg->bps_conf[READ][off] != U64_MAX)
9f626e37 1555 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
cd5ab1b0 1556 tg->bps_conf[READ][off]);
9bb67aeb 1557 if (tg->bps_conf[WRITE][off] != U64_MAX)
9f626e37 1558 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
cd5ab1b0 1559 tg->bps_conf[WRITE][off]);
9bb67aeb 1560 if (tg->iops_conf[READ][off] != UINT_MAX)
9f626e37 1561 snprintf(bufs[2], sizeof(bufs[2]), "%u",
cd5ab1b0 1562 tg->iops_conf[READ][off]);
9bb67aeb 1563 if (tg->iops_conf[WRITE][off] != UINT_MAX)
9f626e37 1564 snprintf(bufs[3], sizeof(bufs[3]), "%u",
cd5ab1b0 1565 tg->iops_conf[WRITE][off]);
ada75b6e 1566 if (off == LIMIT_LOW) {
5b81fc3c 1567 if (tg->idletime_threshold_conf == ULONG_MAX)
ada75b6e
SL
1568 strcpy(idle_time, " idle=max");
1569 else
1570 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
5b81fc3c 1571 tg->idletime_threshold_conf);
ec80991d 1572
5b81fc3c 1573 if (tg->latency_target_conf == ULONG_MAX)
ec80991d
SL
1574 strcpy(latency_time, " latency=max");
1575 else
1576 snprintf(latency_time, sizeof(latency_time),
5b81fc3c 1577 " latency=%lu", tg->latency_target_conf);
ada75b6e 1578 }
2ee867dc 1579
ec80991d
SL
1580 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1581 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1582 latency_time);
2ee867dc
TH
1583 return 0;
1584}
1585
cd5ab1b0 1586static int tg_print_limit(struct seq_file *sf, void *v)
2ee867dc 1587{
cd5ab1b0 1588 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
2ee867dc
TH
1589 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1590 return 0;
1591}
1592
cd5ab1b0 1593static ssize_t tg_set_limit(struct kernfs_open_file *of,
2ee867dc
TH
1594 char *buf, size_t nbytes, loff_t off)
1595{
1596 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1597 struct blkg_conf_ctx ctx;
1598 struct throtl_grp *tg;
1599 u64 v[4];
ada75b6e 1600 unsigned long idle_time;
ec80991d 1601 unsigned long latency_time;
2ee867dc 1602 int ret;
cd5ab1b0 1603 int index = of_cft(of)->private;
2ee867dc
TH
1604
1605 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1606 if (ret)
1607 return ret;
1608
1609 tg = blkg_to_tg(ctx.blkg);
1610
cd5ab1b0
SL
1611 v[0] = tg->bps_conf[READ][index];
1612 v[1] = tg->bps_conf[WRITE][index];
1613 v[2] = tg->iops_conf[READ][index];
1614 v[3] = tg->iops_conf[WRITE][index];
2ee867dc 1615
5b81fc3c
SL
1616 idle_time = tg->idletime_threshold_conf;
1617 latency_time = tg->latency_target_conf;
2ee867dc
TH
1618 while (true) {
1619 char tok[27]; /* wiops=18446744073709551616 */
1620 char *p;
2ab5492d 1621 u64 val = U64_MAX;
2ee867dc
TH
1622 int len;
1623
1624 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1625 break;
1626 if (tok[0] == '\0')
1627 break;
1628 ctx.body += len;
1629
1630 ret = -EINVAL;
1631 p = tok;
1632 strsep(&p, "=");
1633 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1634 goto out_finish;
1635
1636 ret = -ERANGE;
1637 if (!val)
1638 goto out_finish;
1639
1640 ret = -EINVAL;
1641 if (!strcmp(tok, "rbps"))
1642 v[0] = val;
1643 else if (!strcmp(tok, "wbps"))
1644 v[1] = val;
1645 else if (!strcmp(tok, "riops"))
1646 v[2] = min_t(u64, val, UINT_MAX);
1647 else if (!strcmp(tok, "wiops"))
1648 v[3] = min_t(u64, val, UINT_MAX);
ada75b6e
SL
1649 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1650 idle_time = val;
ec80991d
SL
1651 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1652 latency_time = val;
2ee867dc
TH
1653 else
1654 goto out_finish;
1655 }
1656
cd5ab1b0
SL
1657 tg->bps_conf[READ][index] = v[0];
1658 tg->bps_conf[WRITE][index] = v[1];
1659 tg->iops_conf[READ][index] = v[2];
1660 tg->iops_conf[WRITE][index] = v[3];
2ee867dc 1661
cd5ab1b0
SL
1662 if (index == LIMIT_MAX) {
1663 tg->bps[READ][index] = v[0];
1664 tg->bps[WRITE][index] = v[1];
1665 tg->iops[READ][index] = v[2];
1666 tg->iops[WRITE][index] = v[3];
1667 }
1668 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1669 tg->bps_conf[READ][LIMIT_MAX]);
1670 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1671 tg->bps_conf[WRITE][LIMIT_MAX]);
1672 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1673 tg->iops_conf[READ][LIMIT_MAX]);
1674 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1675 tg->iops_conf[WRITE][LIMIT_MAX]);
b4f428ef
SL
1676 tg->idletime_threshold_conf = idle_time;
1677 tg->latency_target_conf = latency_time;
1678
1679 /* force user to configure all settings for low limit */
1680 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1681 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1682 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1683 tg->latency_target_conf == DFL_LATENCY_TARGET) {
1684 tg->bps[READ][LIMIT_LOW] = 0;
1685 tg->bps[WRITE][LIMIT_LOW] = 0;
1686 tg->iops[READ][LIMIT_LOW] = 0;
1687 tg->iops[WRITE][LIMIT_LOW] = 0;
1688 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1689 tg->latency_target = DFL_LATENCY_TARGET;
1690 } else if (index == LIMIT_LOW) {
5b81fc3c 1691 tg->idletime_threshold = tg->idletime_threshold_conf;
5b81fc3c 1692 tg->latency_target = tg->latency_target_conf;
cd5ab1b0 1693 }
b4f428ef
SL
1694
1695 blk_throtl_update_limit_valid(tg->td);
1696 if (tg->td->limit_valid[LIMIT_LOW]) {
1697 if (index == LIMIT_LOW)
1698 tg->td->limit_index = LIMIT_LOW;
1699 } else
1700 tg->td->limit_index = LIMIT_MAX;
9bb67aeb
SL
1701 tg_conf_updated(tg, index == LIMIT_LOW &&
1702 tg->td->limit_valid[LIMIT_LOW]);
2ee867dc
TH
1703 ret = 0;
1704out_finish:
1705 blkg_conf_finish(&ctx);
1706 return ret ?: nbytes;
1707}
1708
1709static struct cftype throtl_files[] = {
cd5ab1b0
SL
1710#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1711 {
1712 .name = "low",
1713 .flags = CFTYPE_NOT_ON_ROOT,
1714 .seq_show = tg_print_limit,
1715 .write = tg_set_limit,
1716 .private = LIMIT_LOW,
1717 },
1718#endif
2ee867dc
TH
1719 {
1720 .name = "max",
1721 .flags = CFTYPE_NOT_ON_ROOT,
cd5ab1b0
SL
1722 .seq_show = tg_print_limit,
1723 .write = tg_set_limit,
1724 .private = LIMIT_MAX,
2ee867dc
TH
1725 },
1726 { } /* terminate */
1727};
1728
da527770 1729static void throtl_shutdown_wq(struct request_queue *q)
e43473b7
VG
1730{
1731 struct throtl_data *td = q->td;
1732
69df0ab0 1733 cancel_work_sync(&td->dispatch_work);
e43473b7
VG
1734}
1735
3c798398 1736static struct blkcg_policy blkcg_policy_throtl = {
2ee867dc 1737 .dfl_cftypes = throtl_files,
880f50e2 1738 .legacy_cftypes = throtl_legacy_files,
f9fcc2d3 1739
001bea73 1740 .pd_alloc_fn = throtl_pd_alloc,
f9fcc2d3 1741 .pd_init_fn = throtl_pd_init,
693e751e 1742 .pd_online_fn = throtl_pd_online,
cd5ab1b0 1743 .pd_offline_fn = throtl_pd_offline,
001bea73 1744 .pd_free_fn = throtl_pd_free,
e43473b7
VG
1745};
1746
3f0abd80
SL
1747static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1748{
1749 unsigned long rtime = jiffies, wtime = jiffies;
1750
1751 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1752 rtime = tg->last_low_overflow_time[READ];
1753 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1754 wtime = tg->last_low_overflow_time[WRITE];
1755 return min(rtime, wtime);
1756}
1757
1758/* tg should not be an intermediate node */
1759static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1760{
1761 struct throtl_service_queue *parent_sq;
1762 struct throtl_grp *parent = tg;
1763 unsigned long ret = __tg_last_low_overflow_time(tg);
1764
1765 while (true) {
1766 parent_sq = parent->service_queue.parent_sq;
1767 parent = sq_to_tg(parent_sq);
1768 if (!parent)
1769 break;
1770
1771 /*
1772 * The parent doesn't have low limit, it always reaches low
1773 * limit. Its overflow time is useless for children
1774 */
1775 if (!parent->bps[READ][LIMIT_LOW] &&
1776 !parent->iops[READ][LIMIT_LOW] &&
1777 !parent->bps[WRITE][LIMIT_LOW] &&
1778 !parent->iops[WRITE][LIMIT_LOW])
1779 continue;
1780 if (time_after(__tg_last_low_overflow_time(parent), ret))
1781 ret = __tg_last_low_overflow_time(parent);
1782 }
1783 return ret;
1784}
1785
9e234eea
SL
1786static bool throtl_tg_is_idle(struct throtl_grp *tg)
1787{
1788 /*
1789 * cgroup is idle if:
1790 * - single idle is too long, longer than a fixed value (in case user
b4f428ef 1791 * configure a too big threshold) or 4 times of idletime threshold
9e234eea 1792 * - average think time is more than threshold
53696b8d 1793 * - IO latency is largely below threshold
9e234eea 1794 */
b4f428ef 1795 unsigned long time;
4cff729f 1796 bool ret;
9e234eea 1797
b4f428ef
SL
1798 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1799 ret = tg->latency_target == DFL_LATENCY_TARGET ||
1800 tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1801 (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1802 tg->avg_idletime > tg->idletime_threshold ||
1803 (tg->latency_target && tg->bio_cnt &&
53696b8d 1804 tg->bad_bio_cnt * 5 < tg->bio_cnt);
4cff729f
SL
1805 throtl_log(&tg->service_queue,
1806 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1807 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1808 tg->bio_cnt, ret, tg->td->scale);
1809 return ret;
9e234eea
SL
1810}
1811
c79892c5
SL
1812static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1813{
1814 struct throtl_service_queue *sq = &tg->service_queue;
1815 bool read_limit, write_limit;
1816
1817 /*
1818 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1819 * reaches), it's ok to upgrade to next limit
1820 */
1821 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1822 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1823 if (!read_limit && !write_limit)
1824 return true;
1825 if (read_limit && sq->nr_queued[READ] &&
1826 (!write_limit || sq->nr_queued[WRITE]))
1827 return true;
1828 if (write_limit && sq->nr_queued[WRITE] &&
1829 (!read_limit || sq->nr_queued[READ]))
1830 return true;
aec24246
SL
1831
1832 if (time_after_eq(jiffies,
fa6fb5aa
SL
1833 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1834 throtl_tg_is_idle(tg))
aec24246 1835 return true;
c79892c5
SL
1836 return false;
1837}
1838
1839static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1840{
1841 while (true) {
1842 if (throtl_tg_can_upgrade(tg))
1843 return true;
1844 tg = sq_to_tg(tg->service_queue.parent_sq);
1845 if (!tg || !tg_to_blkg(tg)->parent)
1846 return false;
1847 }
1848 return false;
1849}
1850
1851static bool throtl_can_upgrade(struct throtl_data *td,
1852 struct throtl_grp *this_tg)
1853{
1854 struct cgroup_subsys_state *pos_css;
1855 struct blkcg_gq *blkg;
1856
1857 if (td->limit_index != LIMIT_LOW)
1858 return false;
1859
297e3d85 1860 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
3f0abd80
SL
1861 return false;
1862
c79892c5
SL
1863 rcu_read_lock();
1864 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1865 struct throtl_grp *tg = blkg_to_tg(blkg);
1866
1867 if (tg == this_tg)
1868 continue;
1869 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1870 continue;
1871 if (!throtl_hierarchy_can_upgrade(tg)) {
1872 rcu_read_unlock();
1873 return false;
1874 }
1875 }
1876 rcu_read_unlock();
1877 return true;
1878}
1879
fa6fb5aa
SL
1880static void throtl_upgrade_check(struct throtl_grp *tg)
1881{
1882 unsigned long now = jiffies;
1883
1884 if (tg->td->limit_index != LIMIT_LOW)
1885 return;
1886
1887 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1888 return;
1889
1890 tg->last_check_time = now;
1891
1892 if (!time_after_eq(now,
1893 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1894 return;
1895
1896 if (throtl_can_upgrade(tg->td, NULL))
1897 throtl_upgrade_state(tg->td);
1898}
1899
c79892c5
SL
1900static void throtl_upgrade_state(struct throtl_data *td)
1901{
1902 struct cgroup_subsys_state *pos_css;
1903 struct blkcg_gq *blkg;
1904
4cff729f 1905 throtl_log(&td->service_queue, "upgrade to max");
c79892c5 1906 td->limit_index = LIMIT_MAX;
3f0abd80 1907 td->low_upgrade_time = jiffies;
7394e31f 1908 td->scale = 0;
c79892c5
SL
1909 rcu_read_lock();
1910 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1911 struct throtl_grp *tg = blkg_to_tg(blkg);
1912 struct throtl_service_queue *sq = &tg->service_queue;
1913
1914 tg->disptime = jiffies - 1;
1915 throtl_select_dispatch(sq);
1916 throtl_schedule_next_dispatch(sq, false);
1917 }
1918 rcu_read_unlock();
1919 throtl_select_dispatch(&td->service_queue);
1920 throtl_schedule_next_dispatch(&td->service_queue, false);
1921 queue_work(kthrotld_workqueue, &td->dispatch_work);
1922}
1923
3f0abd80
SL
1924static void throtl_downgrade_state(struct throtl_data *td, int new)
1925{
7394e31f
SL
1926 td->scale /= 2;
1927
4cff729f 1928 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
7394e31f
SL
1929 if (td->scale) {
1930 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1931 return;
1932 }
1933
3f0abd80
SL
1934 td->limit_index = new;
1935 td->low_downgrade_time = jiffies;
1936}
1937
1938static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1939{
1940 struct throtl_data *td = tg->td;
1941 unsigned long now = jiffies;
1942
1943 /*
1944 * If cgroup is below low limit, consider downgrade and throttle other
1945 * cgroups
1946 */
297e3d85
SL
1947 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1948 time_after_eq(now, tg_last_low_overflow_time(tg) +
fa6fb5aa
SL
1949 td->throtl_slice) &&
1950 (!throtl_tg_is_idle(tg) ||
1951 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
3f0abd80
SL
1952 return true;
1953 return false;
1954}
1955
1956static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1957{
1958 while (true) {
1959 if (!throtl_tg_can_downgrade(tg))
1960 return false;
1961 tg = sq_to_tg(tg->service_queue.parent_sq);
1962 if (!tg || !tg_to_blkg(tg)->parent)
1963 break;
1964 }
1965 return true;
1966}
1967
1968static void throtl_downgrade_check(struct throtl_grp *tg)
1969{
1970 uint64_t bps;
1971 unsigned int iops;
1972 unsigned long elapsed_time;
1973 unsigned long now = jiffies;
1974
1975 if (tg->td->limit_index != LIMIT_MAX ||
1976 !tg->td->limit_valid[LIMIT_LOW])
1977 return;
1978 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1979 return;
297e3d85 1980 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
3f0abd80
SL
1981 return;
1982
1983 elapsed_time = now - tg->last_check_time;
1984 tg->last_check_time = now;
1985
297e3d85
SL
1986 if (time_before(now, tg_last_low_overflow_time(tg) +
1987 tg->td->throtl_slice))
3f0abd80
SL
1988 return;
1989
1990 if (tg->bps[READ][LIMIT_LOW]) {
1991 bps = tg->last_bytes_disp[READ] * HZ;
1992 do_div(bps, elapsed_time);
1993 if (bps >= tg->bps[READ][LIMIT_LOW])
1994 tg->last_low_overflow_time[READ] = now;
1995 }
1996
1997 if (tg->bps[WRITE][LIMIT_LOW]) {
1998 bps = tg->last_bytes_disp[WRITE] * HZ;
1999 do_div(bps, elapsed_time);
2000 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2001 tg->last_low_overflow_time[WRITE] = now;
2002 }
2003
2004 if (tg->iops[READ][LIMIT_LOW]) {
2005 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2006 if (iops >= tg->iops[READ][LIMIT_LOW])
2007 tg->last_low_overflow_time[READ] = now;
2008 }
2009
2010 if (tg->iops[WRITE][LIMIT_LOW]) {
2011 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2012 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2013 tg->last_low_overflow_time[WRITE] = now;
2014 }
2015
2016 /*
2017 * If cgroup is below low limit, consider downgrade and throttle other
2018 * cgroups
2019 */
2020 if (throtl_hierarchy_can_downgrade(tg))
2021 throtl_downgrade_state(tg->td, LIMIT_LOW);
2022
2023 tg->last_bytes_disp[READ] = 0;
2024 tg->last_bytes_disp[WRITE] = 0;
2025 tg->last_io_disp[READ] = 0;
2026 tg->last_io_disp[WRITE] = 0;
2027}
2028
9e234eea
SL
2029static void blk_throtl_update_idletime(struct throtl_grp *tg)
2030{
2031 unsigned long now = ktime_get_ns() >> 10;
2032 unsigned long last_finish_time = tg->last_finish_time;
2033
2034 if (now <= last_finish_time || last_finish_time == 0 ||
2035 last_finish_time == tg->checked_last_finish_time)
2036 return;
2037
2038 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2039 tg->checked_last_finish_time = last_finish_time;
2040}
2041
b9147dd1
SL
2042#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2043static void throtl_update_latency_buckets(struct throtl_data *td)
2044{
2045 struct avg_latency_bucket avg_latency[LATENCY_BUCKET_SIZE];
2046 int i, cpu;
2047 unsigned long last_latency = 0;
2048 unsigned long latency;
2049
2050 if (!blk_queue_nonrot(td->queue))
2051 return;
2052 if (time_before(jiffies, td->last_calculate_time + HZ))
2053 return;
2054 td->last_calculate_time = jiffies;
2055
2056 memset(avg_latency, 0, sizeof(avg_latency));
2057 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2058 struct latency_bucket *tmp = &td->tmp_buckets[i];
2059
2060 for_each_possible_cpu(cpu) {
2061 struct latency_bucket *bucket;
2062
2063 /* this isn't race free, but ok in practice */
2064 bucket = per_cpu_ptr(td->latency_buckets, cpu);
2065 tmp->total_latency += bucket[i].total_latency;
2066 tmp->samples += bucket[i].samples;
2067 bucket[i].total_latency = 0;
2068 bucket[i].samples = 0;
2069 }
2070
2071 if (tmp->samples >= 32) {
2072 int samples = tmp->samples;
2073
2074 latency = tmp->total_latency;
2075
2076 tmp->total_latency = 0;
2077 tmp->samples = 0;
2078 latency /= samples;
2079 if (latency == 0)
2080 continue;
2081 avg_latency[i].latency = latency;
2082 }
2083 }
2084
2085 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2086 if (!avg_latency[i].latency) {
2087 if (td->avg_buckets[i].latency < last_latency)
2088 td->avg_buckets[i].latency = last_latency;
2089 continue;
2090 }
2091
2092 if (!td->avg_buckets[i].valid)
2093 latency = avg_latency[i].latency;
2094 else
2095 latency = (td->avg_buckets[i].latency * 7 +
2096 avg_latency[i].latency) >> 3;
2097
2098 td->avg_buckets[i].latency = max(latency, last_latency);
2099 td->avg_buckets[i].valid = true;
2100 last_latency = td->avg_buckets[i].latency;
2101 }
4cff729f
SL
2102
2103 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2104 throtl_log(&td->service_queue,
2105 "Latency bucket %d: latency=%ld, valid=%d", i,
2106 td->avg_buckets[i].latency, td->avg_buckets[i].valid);
b9147dd1
SL
2107}
2108#else
2109static inline void throtl_update_latency_buckets(struct throtl_data *td)
2110{
2111}
2112#endif
2113
2bc19cd5
JA
2114static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
2115{
2116#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2117 int ret;
2118
2119 ret = bio_associate_current(bio);
2120 if (ret == 0 || ret == -EBUSY)
2121 bio->bi_cg_private = tg;
2122 blk_stat_set_issue(&bio->bi_issue_stat, bio_sectors(bio));
2123#else
2124 bio_associate_current(bio);
2125#endif
2126}
2127
ae118896
TH
2128bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
2129 struct bio *bio)
e43473b7 2130{
c5cc2070 2131 struct throtl_qnode *qn = NULL;
ae118896 2132 struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
73f0d49a 2133 struct throtl_service_queue *sq;
0e9f4164 2134 bool rw = bio_data_dir(bio);
bc16a4f9 2135 bool throttled = false;
b9147dd1 2136 struct throtl_data *td = tg->td;
e43473b7 2137
ae118896
TH
2138 WARN_ON_ONCE(!rcu_read_lock_held());
2139
2a0f61e6 2140 /* see throtl_charge_bio() */
8d2bbd4c 2141 if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
bc16a4f9 2142 goto out;
e43473b7
VG
2143
2144 spin_lock_irq(q->queue_lock);
c9589f03 2145
b9147dd1
SL
2146 throtl_update_latency_buckets(td);
2147
c9589f03 2148 if (unlikely(blk_queue_bypass(q)))
bc16a4f9 2149 goto out_unlock;
f469a7b4 2150
2bc19cd5 2151 blk_throtl_assoc_bio(tg, bio);
9e234eea
SL
2152 blk_throtl_update_idletime(tg);
2153
73f0d49a
TH
2154 sq = &tg->service_queue;
2155
c79892c5 2156again:
9e660acf 2157 while (true) {
3f0abd80
SL
2158 if (tg->last_low_overflow_time[rw] == 0)
2159 tg->last_low_overflow_time[rw] = jiffies;
2160 throtl_downgrade_check(tg);
fa6fb5aa 2161 throtl_upgrade_check(tg);
9e660acf
TH
2162 /* throtl is FIFO - if bios are already queued, should queue */
2163 if (sq->nr_queued[rw])
2164 break;
de701c74 2165
9e660acf 2166 /* if above limits, break to queue */
c79892c5 2167 if (!tg_may_dispatch(tg, bio, NULL)) {
3f0abd80 2168 tg->last_low_overflow_time[rw] = jiffies;
b9147dd1
SL
2169 if (throtl_can_upgrade(td, tg)) {
2170 throtl_upgrade_state(td);
c79892c5
SL
2171 goto again;
2172 }
9e660acf 2173 break;
c79892c5 2174 }
9e660acf
TH
2175
2176 /* within limits, let's charge and dispatch directly */
e43473b7 2177 throtl_charge_bio(tg, bio);
04521db0
VG
2178
2179 /*
2180 * We need to trim slice even when bios are not being queued
2181 * otherwise it might happen that a bio is not queued for
2182 * a long time and slice keeps on extending and trim is not
2183 * called for a long time. Now if limits are reduced suddenly
2184 * we take into account all the IO dispatched so far at new
2185 * low rate and * newly queued IO gets a really long dispatch
2186 * time.
2187 *
2188 * So keep on trimming slice even if bio is not queued.
2189 */
0f3457f6 2190 throtl_trim_slice(tg, rw);
9e660acf
TH
2191
2192 /*
2193 * @bio passed through this layer without being throttled.
2194 * Climb up the ladder. If we''re already at the top, it
2195 * can be executed directly.
2196 */
c5cc2070 2197 qn = &tg->qnode_on_parent[rw];
9e660acf
TH
2198 sq = sq->parent_sq;
2199 tg = sq_to_tg(sq);
2200 if (!tg)
2201 goto out_unlock;
e43473b7
VG
2202 }
2203
9e660acf 2204 /* out-of-limit, queue to @tg */
fda6f272
TH
2205 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2206 rw == READ ? 'R' : 'W',
9f626e37
SL
2207 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2208 tg_bps_limit(tg, rw),
2209 tg->io_disp[rw], tg_iops_limit(tg, rw),
fda6f272 2210 sq->nr_queued[READ], sq->nr_queued[WRITE]);
e43473b7 2211
3f0abd80
SL
2212 tg->last_low_overflow_time[rw] = jiffies;
2213
b9147dd1 2214 td->nr_queued[rw]++;
c5cc2070 2215 throtl_add_bio_tg(bio, qn, tg);
bc16a4f9 2216 throttled = true;
e43473b7 2217
7f52f98c
TH
2218 /*
2219 * Update @tg's dispatch time and force schedule dispatch if @tg
2220 * was empty before @bio. The forced scheduling isn't likely to
2221 * cause undue delay as @bio is likely to be dispatched directly if
2222 * its @tg's disptime is not in the future.
2223 */
0e9f4164 2224 if (tg->flags & THROTL_TG_WAS_EMPTY) {
77216b04 2225 tg_update_disptime(tg);
7f52f98c 2226 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
e43473b7
VG
2227 }
2228
bc16a4f9 2229out_unlock:
e43473b7 2230 spin_unlock_irq(q->queue_lock);
bc16a4f9 2231out:
2a0f61e6
TH
2232 /*
2233 * As multiple blk-throtls may stack in the same issue path, we
2234 * don't want bios to leave with the flag set. Clear the flag if
2235 * being issued.
2236 */
2237 if (!throttled)
8d2bbd4c 2238 bio_clear_flag(bio, BIO_THROTTLED);
b9147dd1
SL
2239
2240#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2241 if (throttled || !td->track_bio_latency)
2242 bio->bi_issue_stat.stat |= SKIP_LATENCY;
2243#endif
bc16a4f9 2244 return throttled;
e43473b7
VG
2245}
2246
9e234eea 2247#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
b9147dd1
SL
2248static void throtl_track_latency(struct throtl_data *td, sector_t size,
2249 int op, unsigned long time)
2250{
2251 struct latency_bucket *latency;
2252 int index;
2253
2254 if (!td || td->limit_index != LIMIT_LOW || op != REQ_OP_READ ||
2255 !blk_queue_nonrot(td->queue))
2256 return;
2257
2258 index = request_bucket_index(size);
2259
2260 latency = get_cpu_ptr(td->latency_buckets);
2261 latency[index].total_latency += time;
2262 latency[index].samples++;
2263 put_cpu_ptr(td->latency_buckets);
2264}
2265
2266void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2267{
2268 struct request_queue *q = rq->q;
2269 struct throtl_data *td = q->td;
2270
2271 throtl_track_latency(td, blk_stat_size(&rq->issue_stat),
2272 req_op(rq), time_ns >> 10);
2273}
2274
9e234eea
SL
2275void blk_throtl_bio_endio(struct bio *bio)
2276{
2277 struct throtl_grp *tg;
b9147dd1
SL
2278 u64 finish_time_ns;
2279 unsigned long finish_time;
2280 unsigned long start_time;
2281 unsigned long lat;
9e234eea
SL
2282
2283 tg = bio->bi_cg_private;
2284 if (!tg)
2285 return;
2286 bio->bi_cg_private = NULL;
2287
b9147dd1
SL
2288 finish_time_ns = ktime_get_ns();
2289 tg->last_finish_time = finish_time_ns >> 10;
2290
2291 start_time = blk_stat_time(&bio->bi_issue_stat) >> 10;
2292 finish_time = __blk_stat_time(finish_time_ns) >> 10;
53696b8d
SL
2293 if (!start_time || finish_time <= start_time)
2294 return;
2295
2296 lat = finish_time - start_time;
b9147dd1 2297 /* this is only for bio based driver */
53696b8d 2298 if (!(bio->bi_issue_stat.stat & SKIP_LATENCY))
b9147dd1
SL
2299 throtl_track_latency(tg->td, blk_stat_size(&bio->bi_issue_stat),
2300 bio_op(bio), lat);
53696b8d 2301
6679a90c 2302 if (tg->latency_target && lat >= tg->td->filtered_latency) {
53696b8d
SL
2303 int bucket;
2304 unsigned int threshold;
2305
2306 bucket = request_bucket_index(
2307 blk_stat_size(&bio->bi_issue_stat));
2308 threshold = tg->td->avg_buckets[bucket].latency +
2309 tg->latency_target;
2310 if (lat > threshold)
2311 tg->bad_bio_cnt++;
2312 /*
2313 * Not race free, could get wrong count, which means cgroups
2314 * will be throttled
2315 */
2316 tg->bio_cnt++;
2317 }
2318
2319 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2320 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2321 tg->bio_cnt /= 2;
2322 tg->bad_bio_cnt /= 2;
b9147dd1 2323 }
9e234eea
SL
2324}
2325#endif
2326
2a12f0dc
TH
2327/*
2328 * Dispatch all bios from all children tg's queued on @parent_sq. On
2329 * return, @parent_sq is guaranteed to not have any active children tg's
2330 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2331 */
2332static void tg_drain_bios(struct throtl_service_queue *parent_sq)
2333{
2334 struct throtl_grp *tg;
2335
2336 while ((tg = throtl_rb_first(parent_sq))) {
2337 struct throtl_service_queue *sq = &tg->service_queue;
2338 struct bio *bio;
2339
2340 throtl_dequeue_tg(tg);
2341
c5cc2070 2342 while ((bio = throtl_peek_queued(&sq->queued[READ])))
2a12f0dc 2343 tg_dispatch_one_bio(tg, bio_data_dir(bio));
c5cc2070 2344 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2a12f0dc
TH
2345 tg_dispatch_one_bio(tg, bio_data_dir(bio));
2346 }
2347}
2348
c9a929dd
TH
2349/**
2350 * blk_throtl_drain - drain throttled bios
2351 * @q: request_queue to drain throttled bios for
2352 *
2353 * Dispatch all currently throttled bios on @q through ->make_request_fn().
2354 */
2355void blk_throtl_drain(struct request_queue *q)
2356 __releases(q->queue_lock) __acquires(q->queue_lock)
2357{
2358 struct throtl_data *td = q->td;
2a12f0dc 2359 struct blkcg_gq *blkg;
492eb21b 2360 struct cgroup_subsys_state *pos_css;
c9a929dd 2361 struct bio *bio;
651930bc 2362 int rw;
c9a929dd 2363
8bcb6c7d 2364 queue_lockdep_assert_held(q);
2a12f0dc 2365 rcu_read_lock();
c9a929dd 2366
2a12f0dc
TH
2367 /*
2368 * Drain each tg while doing post-order walk on the blkg tree, so
2369 * that all bios are propagated to td->service_queue. It'd be
2370 * better to walk service_queue tree directly but blkg walk is
2371 * easier.
2372 */
492eb21b 2373 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2a12f0dc 2374 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
73f0d49a 2375
2a12f0dc
TH
2376 /* finally, transfer bios from top-level tg's into the td */
2377 tg_drain_bios(&td->service_queue);
2378
2379 rcu_read_unlock();
c9a929dd
TH
2380 spin_unlock_irq(q->queue_lock);
2381
2a12f0dc 2382 /* all bios now should be in td->service_queue, issue them */
651930bc 2383 for (rw = READ; rw <= WRITE; rw++)
c5cc2070
TH
2384 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
2385 NULL)))
651930bc 2386 generic_make_request(bio);
c9a929dd
TH
2387
2388 spin_lock_irq(q->queue_lock);
2389}
2390
e43473b7
VG
2391int blk_throtl_init(struct request_queue *q)
2392{
2393 struct throtl_data *td;
a2b1693b 2394 int ret;
e43473b7
VG
2395
2396 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2397 if (!td)
2398 return -ENOMEM;
b9147dd1
SL
2399 td->latency_buckets = __alloc_percpu(sizeof(struct latency_bucket) *
2400 LATENCY_BUCKET_SIZE, __alignof__(u64));
2401 if (!td->latency_buckets) {
2402 kfree(td);
2403 return -ENOMEM;
2404 }
e43473b7 2405
69df0ab0 2406 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
b2ce2643 2407 throtl_service_queue_init(&td->service_queue);
e43473b7 2408
cd1604fa 2409 q->td = td;
29b12589 2410 td->queue = q;
02977e4a 2411
9f626e37 2412 td->limit_valid[LIMIT_MAX] = true;
cd5ab1b0 2413 td->limit_index = LIMIT_MAX;
3f0abd80
SL
2414 td->low_upgrade_time = jiffies;
2415 td->low_downgrade_time = jiffies;
9e234eea 2416
a2b1693b 2417 /* activate policy */
3c798398 2418 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
b9147dd1
SL
2419 if (ret) {
2420 free_percpu(td->latency_buckets);
f51b802c 2421 kfree(td);
b9147dd1 2422 }
a2b1693b 2423 return ret;
e43473b7
VG
2424}
2425
2426void blk_throtl_exit(struct request_queue *q)
2427{
c875f4d0 2428 BUG_ON(!q->td);
da527770 2429 throtl_shutdown_wq(q);
3c798398 2430 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
b9147dd1 2431 free_percpu(q->td->latency_buckets);
c9a929dd 2432 kfree(q->td);
e43473b7
VG
2433}
2434
d61fcfa4
SL
2435void blk_throtl_register_queue(struct request_queue *q)
2436{
2437 struct throtl_data *td;
6679a90c 2438 int i;
d61fcfa4
SL
2439
2440 td = q->td;
2441 BUG_ON(!td);
2442
6679a90c 2443 if (blk_queue_nonrot(q)) {
d61fcfa4 2444 td->throtl_slice = DFL_THROTL_SLICE_SSD;
6679a90c
SL
2445 td->filtered_latency = LATENCY_FILTERED_SSD;
2446 } else {
d61fcfa4 2447 td->throtl_slice = DFL_THROTL_SLICE_HD;
6679a90c
SL
2448 td->filtered_latency = LATENCY_FILTERED_HD;
2449 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2450 td->avg_buckets[i].latency = DFL_HD_BASELINE_LATENCY;
2451 }
d61fcfa4
SL
2452#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2453 /* if no low limit, use previous default */
2454 td->throtl_slice = DFL_THROTL_SLICE_HD;
2455#endif
9e234eea 2456
b9147dd1
SL
2457 td->track_bio_latency = !q->mq_ops && !q->request_fn;
2458 if (!td->track_bio_latency)
2459 blk_stat_enable_accounting(q);
d61fcfa4
SL
2460}
2461
297e3d85
SL
2462#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2463ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2464{
2465 if (!q->td)
2466 return -EINVAL;
2467 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2468}
2469
2470ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2471 const char *page, size_t count)
2472{
2473 unsigned long v;
2474 unsigned long t;
2475
2476 if (!q->td)
2477 return -EINVAL;
2478 if (kstrtoul(page, 10, &v))
2479 return -EINVAL;
2480 t = msecs_to_jiffies(v);
2481 if (t == 0 || t > MAX_THROTL_SLICE)
2482 return -EINVAL;
2483 q->td->throtl_slice = t;
2484 return count;
2485}
2486#endif
2487
e43473b7
VG
2488static int __init throtl_init(void)
2489{
450adcbe
VG
2490 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2491 if (!kthrotld_workqueue)
2492 panic("Failed to create kthrotld\n");
2493
3c798398 2494 return blkcg_policy_register(&blkcg_policy_throtl);
e43473b7
VG
2495}
2496
2497module_init(throtl_init);