]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-wbt.c
block: move poll code to blk-mq
[mirror_ubuntu-artful-kernel.git] / block / blk-wbt.c
CommitLineData
e34cbd30
JA
1/*
2 * buffered writeback throttling. loosely based on CoDel. We can't drop
3 * packets for IO scheduling, so the logic is something like this:
4 *
5 * - Monitor latencies in a defined window of time.
6 * - If the minimum latency in the above window exceeds some target, increment
7 * scaling step and scale down queue depth by a factor of 2x. The monitoring
8 * window is then shrunk to 100 / sqrt(scaling step + 1).
9 * - For any window where we don't have solid data on what the latencies
10 * look like, retain status quo.
11 * - If latencies look good, decrement scaling step.
12 * - If we're only doing writes, allow the scaling step to go negative. This
13 * will temporarily boost write performance, snapping back to a stable
14 * scaling step of 0 if reads show up or the heavy writers finish. Unlike
15 * positive scaling steps where we shrink the monitoring window, a negative
16 * scaling step retains the default step==0 window size.
17 *
18 * Copyright (C) 2016 Jens Axboe
19 *
20 */
21#include <linux/kernel.h>
22#include <linux/blk_types.h>
23#include <linux/slab.h>
24#include <linux/backing-dev.h>
25#include <linux/swap.h>
26
27#include "blk-wbt.h"
28
29#define CREATE_TRACE_POINTS
30#include <trace/events/wbt.h>
31
32enum {
33 /*
34 * Default setting, we'll scale up (to 75% of QD max) or down (min 1)
35 * from here depending on device stats
36 */
37 RWB_DEF_DEPTH = 16,
38
39 /*
40 * 100msec window
41 */
42 RWB_WINDOW_NSEC = 100 * 1000 * 1000ULL,
43
44 /*
45 * Disregard stats, if we don't meet this minimum
46 */
47 RWB_MIN_WRITE_SAMPLES = 3,
48
49 /*
50 * If we have this number of consecutive windows with not enough
51 * information to scale up or down, scale up.
52 */
53 RWB_UNKNOWN_BUMP = 5,
54};
55
56static inline bool rwb_enabled(struct rq_wb *rwb)
57{
58 return rwb && rwb->wb_normal != 0;
59}
60
61/*
62 * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded,
63 * false if 'v' + 1 would be bigger than 'below'.
64 */
65static bool atomic_inc_below(atomic_t *v, int below)
66{
67 int cur = atomic_read(v);
68
69 for (;;) {
70 int old;
71
72 if (cur >= below)
73 return false;
74 old = atomic_cmpxchg(v, cur, cur + 1);
75 if (old == cur)
76 break;
77 cur = old;
78 }
79
80 return true;
81}
82
83static void wb_timestamp(struct rq_wb *rwb, unsigned long *var)
84{
85 if (rwb_enabled(rwb)) {
86 const unsigned long cur = jiffies;
87
88 if (cur != *var)
89 *var = cur;
90 }
91}
92
93/*
94 * If a task was rate throttled in balance_dirty_pages() within the last
95 * second or so, use that to indicate a higher cleaning rate.
96 */
97static bool wb_recent_wait(struct rq_wb *rwb)
98{
99 struct bdi_writeback *wb = &rwb->bdi->wb;
100
101 return time_before(jiffies, wb->dirty_sleep + HZ);
102}
103
104static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb, bool is_kswapd)
105{
106 return &rwb->rq_wait[is_kswapd];
107}
108
109static void rwb_wake_all(struct rq_wb *rwb)
110{
111 int i;
112
113 for (i = 0; i < WBT_NUM_RWQ; i++) {
114 struct rq_wait *rqw = &rwb->rq_wait[i];
115
116 if (waitqueue_active(&rqw->wait))
117 wake_up_all(&rqw->wait);
118 }
119}
120
121void __wbt_done(struct rq_wb *rwb, enum wbt_flags wb_acct)
122{
123 struct rq_wait *rqw;
124 int inflight, limit;
125
126 if (!(wb_acct & WBT_TRACKED))
127 return;
128
129 rqw = get_rq_wait(rwb, wb_acct & WBT_KSWAPD);
130 inflight = atomic_dec_return(&rqw->inflight);
131
132 /*
133 * wbt got disabled with IO in flight. Wake up any potential
134 * waiters, we don't have to do more than that.
135 */
136 if (unlikely(!rwb_enabled(rwb))) {
137 rwb_wake_all(rwb);
138 return;
139 }
140
141 /*
142 * If the device does write back caching, drop further down
143 * before we wake people up.
144 */
145 if (rwb->wc && !wb_recent_wait(rwb))
146 limit = 0;
147 else
148 limit = rwb->wb_normal;
149
150 /*
151 * Don't wake anyone up if we are above the normal limit.
152 */
153 if (inflight && inflight >= limit)
154 return;
155
156 if (waitqueue_active(&rqw->wait)) {
157 int diff = limit - inflight;
158
159 if (!inflight || diff >= rwb->wb_background / 2)
160 wake_up_all(&rqw->wait);
161 }
162}
163
164/*
165 * Called on completion of a request. Note that it's also called when
166 * a request is merged, when the request gets freed.
167 */
168void wbt_done(struct rq_wb *rwb, struct blk_issue_stat *stat)
169{
170 if (!rwb)
171 return;
172
173 if (!wbt_is_tracked(stat)) {
174 if (rwb->sync_cookie == stat) {
175 rwb->sync_issue = 0;
176 rwb->sync_cookie = NULL;
177 }
178
179 if (wbt_is_read(stat))
180 wb_timestamp(rwb, &rwb->last_comp);
181 wbt_clear_state(stat);
182 } else {
183 WARN_ON_ONCE(stat == rwb->sync_cookie);
184 __wbt_done(rwb, wbt_stat_to_mask(stat));
185 wbt_clear_state(stat);
186 }
187}
188
189/*
190 * Return true, if we can't increase the depth further by scaling
191 */
192static bool calc_wb_limits(struct rq_wb *rwb)
193{
194 unsigned int depth;
195 bool ret = false;
196
197 if (!rwb->min_lat_nsec) {
198 rwb->wb_max = rwb->wb_normal = rwb->wb_background = 0;
199 return false;
200 }
201
202 /*
203 * For QD=1 devices, this is a special case. It's important for those
204 * to have one request ready when one completes, so force a depth of
205 * 2 for those devices. On the backend, it'll be a depth of 1 anyway,
206 * since the device can't have more than that in flight. If we're
207 * scaling down, then keep a setting of 1/1/1.
208 */
209 if (rwb->queue_depth == 1) {
210 if (rwb->scale_step > 0)
211 rwb->wb_max = rwb->wb_normal = 1;
212 else {
213 rwb->wb_max = rwb->wb_normal = 2;
214 ret = true;
215 }
216 rwb->wb_background = 1;
217 } else {
218 /*
219 * scale_step == 0 is our default state. If we have suffered
220 * latency spikes, step will be > 0, and we shrink the
221 * allowed write depths. If step is < 0, we're only doing
222 * writes, and we allow a temporarily higher depth to
223 * increase performance.
224 */
225 depth = min_t(unsigned int, RWB_DEF_DEPTH, rwb->queue_depth);
226 if (rwb->scale_step > 0)
227 depth = 1 + ((depth - 1) >> min(31, rwb->scale_step));
228 else if (rwb->scale_step < 0) {
229 unsigned int maxd = 3 * rwb->queue_depth / 4;
230
231 depth = 1 + ((depth - 1) << -rwb->scale_step);
232 if (depth > maxd) {
233 depth = maxd;
234 ret = true;
235 }
236 }
237
238 /*
239 * Set our max/normal/bg queue depths based on how far
240 * we have scaled down (->scale_step).
241 */
242 rwb->wb_max = depth;
243 rwb->wb_normal = (rwb->wb_max + 1) / 2;
244 rwb->wb_background = (rwb->wb_max + 3) / 4;
245 }
246
247 return ret;
248}
249
250static bool inline stat_sample_valid(struct blk_rq_stat *stat)
251{
252 /*
253 * We need at least one read sample, and a minimum of
254 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know
255 * that it's writes impacting us, and not just some sole read on
256 * a device that is in a lower power state.
257 */
258 return stat[0].nr_samples >= 1 &&
259 stat[1].nr_samples >= RWB_MIN_WRITE_SAMPLES;
260}
261
262static u64 rwb_sync_issue_lat(struct rq_wb *rwb)
263{
264 u64 now, issue = ACCESS_ONCE(rwb->sync_issue);
265
266 if (!issue || !rwb->sync_cookie)
267 return 0;
268
269 now = ktime_to_ns(ktime_get());
270 return now - issue;
271}
272
273enum {
274 LAT_OK = 1,
275 LAT_UNKNOWN,
276 LAT_UNKNOWN_WRITES,
277 LAT_EXCEEDED,
278};
279
280static int __latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat)
281{
282 u64 thislat;
283
284 /*
285 * If our stored sync issue exceeds the window size, or it
286 * exceeds our min target AND we haven't logged any entries,
287 * flag the latency as exceeded. wbt works off completion latencies,
288 * but for a flooded device, a single sync IO can take a long time
289 * to complete after being issued. If this time exceeds our
290 * monitoring window AND we didn't see any other completions in that
291 * window, then count that sync IO as a violation of the latency.
292 */
293 thislat = rwb_sync_issue_lat(rwb);
294 if (thislat > rwb->cur_win_nsec ||
295 (thislat > rwb->min_lat_nsec && !stat[0].nr_samples)) {
296 trace_wbt_lat(rwb->bdi, thislat);
297 return LAT_EXCEEDED;
298 }
299
300 /*
301 * No read/write mix, if stat isn't valid
302 */
303 if (!stat_sample_valid(stat)) {
304 /*
305 * If we had writes in this stat window and the window is
306 * current, we're only doing writes. If a task recently
307 * waited or still has writes in flights, consider us doing
308 * just writes as well.
309 */
310 if ((stat[1].nr_samples && rwb->stat_ops->is_current(stat)) ||
311 wb_recent_wait(rwb) || wbt_inflight(rwb))
312 return LAT_UNKNOWN_WRITES;
313 return LAT_UNKNOWN;
314 }
315
316 /*
317 * If the 'min' latency exceeds our target, step down.
318 */
319 if (stat[0].min > rwb->min_lat_nsec) {
320 trace_wbt_lat(rwb->bdi, stat[0].min);
321 trace_wbt_stat(rwb->bdi, stat);
322 return LAT_EXCEEDED;
323 }
324
325 if (rwb->scale_step)
326 trace_wbt_stat(rwb->bdi, stat);
327
328 return LAT_OK;
329}
330
331static int latency_exceeded(struct rq_wb *rwb)
332{
333 struct blk_rq_stat stat[2];
334
335 rwb->stat_ops->get(rwb->ops_data, stat);
336 return __latency_exceeded(rwb, stat);
337}
338
339static void rwb_trace_step(struct rq_wb *rwb, const char *msg)
340{
341 trace_wbt_step(rwb->bdi, msg, rwb->scale_step, rwb->cur_win_nsec,
342 rwb->wb_background, rwb->wb_normal, rwb->wb_max);
343}
344
345static void scale_up(struct rq_wb *rwb)
346{
347 /*
348 * Hit max in previous round, stop here
349 */
350 if (rwb->scaled_max)
351 return;
352
353 rwb->scale_step--;
354 rwb->unknown_cnt = 0;
355 rwb->stat_ops->clear(rwb->ops_data);
356
357 rwb->scaled_max = calc_wb_limits(rwb);
358
359 rwb_wake_all(rwb);
360
361 rwb_trace_step(rwb, "step up");
362}
363
364/*
365 * Scale rwb down. If 'hard_throttle' is set, do it quicker, since we
366 * had a latency violation.
367 */
368static void scale_down(struct rq_wb *rwb, bool hard_throttle)
369{
370 /*
371 * Stop scaling down when we've hit the limit. This also prevents
372 * ->scale_step from going to crazy values, if the device can't
373 * keep up.
374 */
375 if (rwb->wb_max == 1)
376 return;
377
378 if (rwb->scale_step < 0 && hard_throttle)
379 rwb->scale_step = 0;
380 else
381 rwb->scale_step++;
382
383 rwb->scaled_max = false;
384 rwb->unknown_cnt = 0;
385 rwb->stat_ops->clear(rwb->ops_data);
386 calc_wb_limits(rwb);
387 rwb_trace_step(rwb, "step down");
388}
389
390static void rwb_arm_timer(struct rq_wb *rwb)
391{
392 unsigned long expires;
393
394 if (rwb->scale_step > 0) {
395 /*
396 * We should speed this up, using some variant of a fast
397 * integer inverse square root calculation. Since we only do
398 * this for every window expiration, it's not a huge deal,
399 * though.
400 */
401 rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4,
402 int_sqrt((rwb->scale_step + 1) << 8));
403 } else {
404 /*
405 * For step < 0, we don't want to increase/decrease the
406 * window size.
407 */
408 rwb->cur_win_nsec = rwb->win_nsec;
409 }
410
411 expires = jiffies + nsecs_to_jiffies(rwb->cur_win_nsec);
412 mod_timer(&rwb->window_timer, expires);
413}
414
415static void wb_timer_fn(unsigned long data)
416{
417 struct rq_wb *rwb = (struct rq_wb *) data;
418 unsigned int inflight = wbt_inflight(rwb);
419 int status;
420
421 status = latency_exceeded(rwb);
422
423 trace_wbt_timer(rwb->bdi, status, rwb->scale_step, inflight);
424
425 /*
426 * If we exceeded the latency target, step down. If we did not,
427 * step one level up. If we don't know enough to say either exceeded
428 * or ok, then don't do anything.
429 */
430 switch (status) {
431 case LAT_EXCEEDED:
432 scale_down(rwb, true);
433 break;
434 case LAT_OK:
435 scale_up(rwb);
436 break;
437 case LAT_UNKNOWN_WRITES:
438 /*
439 * We started a the center step, but don't have a valid
440 * read/write sample, but we do have writes going on.
441 * Allow step to go negative, to increase write perf.
442 */
443 scale_up(rwb);
444 break;
445 case LAT_UNKNOWN:
446 if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP)
447 break;
448 /*
449 * We get here when previously scaled reduced depth, and we
450 * currently don't have a valid read/write sample. For that
451 * case, slowly return to center state (step == 0).
452 */
453 if (rwb->scale_step > 0)
454 scale_up(rwb);
455 else if (rwb->scale_step < 0)
456 scale_down(rwb, false);
457 break;
458 default:
459 break;
460 }
461
462 /*
463 * Re-arm timer, if we have IO in flight
464 */
465 if (rwb->scale_step || inflight)
466 rwb_arm_timer(rwb);
467}
468
469void wbt_update_limits(struct rq_wb *rwb)
470{
471 rwb->scale_step = 0;
472 rwb->scaled_max = false;
473 calc_wb_limits(rwb);
474
475 rwb_wake_all(rwb);
476}
477
478static bool close_io(struct rq_wb *rwb)
479{
480 const unsigned long now = jiffies;
481
482 return time_before(now, rwb->last_issue + HZ / 10) ||
483 time_before(now, rwb->last_comp + HZ / 10);
484}
485
486#define REQ_HIPRIO (REQ_SYNC | REQ_META | REQ_PRIO)
487
488static inline unsigned int get_limit(struct rq_wb *rwb, unsigned long rw)
489{
490 unsigned int limit;
491
492 /*
493 * At this point we know it's a buffered write. If this is
494 * kswapd trying to free memory, or REQ_SYNC is set, set, then
495 * it's WB_SYNC_ALL writeback, and we'll use the max limit for
496 * that. If the write is marked as a background write, then use
497 * the idle limit, or go to normal if we haven't had competing
498 * IO for a bit.
499 */
500 if ((rw & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd())
501 limit = rwb->wb_max;
502 else if ((rw & REQ_BACKGROUND) || close_io(rwb)) {
503 /*
504 * If less than 100ms since we completed unrelated IO,
505 * limit us to half the depth for background writeback.
506 */
507 limit = rwb->wb_background;
508 } else
509 limit = rwb->wb_normal;
510
511 return limit;
512}
513
514static inline bool may_queue(struct rq_wb *rwb, struct rq_wait *rqw,
515 wait_queue_t *wait, unsigned long rw)
516{
517 /*
518 * inc it here even if disabled, since we'll dec it at completion.
519 * this only happens if the task was sleeping in __wbt_wait(),
520 * and someone turned it off at the same time.
521 */
522 if (!rwb_enabled(rwb)) {
523 atomic_inc(&rqw->inflight);
524 return true;
525 }
526
527 /*
528 * If the waitqueue is already active and we are not the next
529 * in line to be woken up, wait for our turn.
530 */
531 if (waitqueue_active(&rqw->wait) &&
532 rqw->wait.task_list.next != &wait->task_list)
533 return false;
534
535 return atomic_inc_below(&rqw->inflight, get_limit(rwb, rw));
536}
537
538/*
539 * Block if we will exceed our limit, or if we are currently waiting for
540 * the timer to kick off queuing again.
541 */
542static void __wbt_wait(struct rq_wb *rwb, unsigned long rw, spinlock_t *lock)
543{
544 struct rq_wait *rqw = get_rq_wait(rwb, current_is_kswapd());
545 DEFINE_WAIT(wait);
546
547 if (may_queue(rwb, rqw, &wait, rw))
548 return;
549
550 do {
551 prepare_to_wait_exclusive(&rqw->wait, &wait,
552 TASK_UNINTERRUPTIBLE);
553
554 if (may_queue(rwb, rqw, &wait, rw))
555 break;
556
557 if (lock)
558 spin_unlock_irq(lock);
559
560 io_schedule();
561
562 if (lock)
563 spin_lock_irq(lock);
564 } while (1);
565
566 finish_wait(&rqw->wait, &wait);
567}
568
569static inline bool wbt_should_throttle(struct rq_wb *rwb, struct bio *bio)
570{
571 const int op = bio_op(bio);
572
573 /*
574 * If not a WRITE (or a discard), do nothing
575 */
576 if (!(op == REQ_OP_WRITE || op == REQ_OP_DISCARD))
577 return false;
578
579 /*
580 * Don't throttle WRITE_ODIRECT
581 */
582 if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) == (REQ_SYNC | REQ_IDLE))
583 return false;
584
585 return true;
586}
587
588/*
589 * Returns true if the IO request should be accounted, false if not.
590 * May sleep, if we have exceeded the writeback limits. Caller can pass
591 * in an irq held spinlock, if it holds one when calling this function.
592 * If we do sleep, we'll release and re-grab it.
593 */
594unsigned int wbt_wait(struct rq_wb *rwb, struct bio *bio, spinlock_t *lock)
595{
596 unsigned int ret = 0;
597
598 if (!rwb_enabled(rwb))
599 return 0;
600
601 if (bio_op(bio) == REQ_OP_READ)
602 ret = WBT_READ;
603
604 if (!wbt_should_throttle(rwb, bio)) {
605 if (ret & WBT_READ)
606 wb_timestamp(rwb, &rwb->last_issue);
607 return ret;
608 }
609
610 __wbt_wait(rwb, bio->bi_opf, lock);
611
612 if (!timer_pending(&rwb->window_timer))
613 rwb_arm_timer(rwb);
614
615 if (current_is_kswapd())
616 ret |= WBT_KSWAPD;
617
618 return ret | WBT_TRACKED;
619}
620
621void wbt_issue(struct rq_wb *rwb, struct blk_issue_stat *stat)
622{
623 if (!rwb_enabled(rwb))
624 return;
625
626 /*
627 * Track sync issue, in case it takes a long time to complete. Allows
628 * us to react quicker, if a sync IO takes a long time to complete.
629 * Note that this is just a hint. 'stat' can go away when the
630 * request completes, so it's important we never dereference it. We
631 * only use the address to compare with, which is why we store the
632 * sync_issue time locally.
633 */
634 if (wbt_is_read(stat) && !rwb->sync_issue) {
635 rwb->sync_cookie = stat;
636 rwb->sync_issue = blk_stat_time(stat);
637 }
638}
639
640void wbt_requeue(struct rq_wb *rwb, struct blk_issue_stat *stat)
641{
642 if (!rwb_enabled(rwb))
643 return;
644 if (stat == rwb->sync_cookie) {
645 rwb->sync_issue = 0;
646 rwb->sync_cookie = NULL;
647 }
648}
649
650void wbt_set_queue_depth(struct rq_wb *rwb, unsigned int depth)
651{
652 if (rwb) {
653 rwb->queue_depth = depth;
654 wbt_update_limits(rwb);
655 }
656}
657
658void wbt_set_write_cache(struct rq_wb *rwb, bool write_cache_on)
659{
660 if (rwb)
661 rwb->wc = write_cache_on;
662}
663
664void wbt_disable(struct rq_wb *rwb)
665{
666 if (rwb) {
667 del_timer_sync(&rwb->window_timer);
668 rwb->win_nsec = rwb->min_lat_nsec = 0;
669 wbt_update_limits(rwb);
670 }
671}
672EXPORT_SYMBOL_GPL(wbt_disable);
673
674int wbt_init(struct request_queue *q, struct wb_stat_ops *ops)
675{
676 struct rq_wb *rwb;
677 int i;
678
679 /*
680 * For now, we depend on the stats window being larger than
681 * our monitoring window. Ensure that this isn't inadvertently
682 * violated.
683 */
684 BUILD_BUG_ON(RWB_WINDOW_NSEC > BLK_STAT_NSEC);
685 BUILD_BUG_ON(WBT_NR_BITS > BLK_STAT_RES_BITS);
686
687 if (!ops->get || !ops->is_current || !ops->clear)
688 return -EINVAL;
689
690 rwb = kzalloc(sizeof(*rwb), GFP_KERNEL);
691 if (!rwb)
692 return -ENOMEM;
693
694 for (i = 0; i < WBT_NUM_RWQ; i++) {
695 atomic_set(&rwb->rq_wait[i].inflight, 0);
696 init_waitqueue_head(&rwb->rq_wait[i].wait);
697 }
698
699 setup_timer(&rwb->window_timer, wb_timer_fn, (unsigned long) rwb);
700 rwb->wc = 1;
701 rwb->queue_depth = RWB_DEF_DEPTH;
702 rwb->last_comp = rwb->last_issue = jiffies;
703 rwb->bdi = &q->backing_dev_info;
704 rwb->win_nsec = RWB_WINDOW_NSEC;
705 rwb->stat_ops = ops;
706 rwb->ops_data = q;
707 wbt_update_limits(rwb);
708
709 /*
710 * Assign rwb, and turn on stats tracking for this queue
711 */
712 q->rq_wb = rwb;
713 blk_stat_enable(q);
714
715 if (blk_queue_nonrot(q))
716 rwb->min_lat_nsec = 2000000ULL;
717 else
718 rwb->min_lat_nsec = 75000000ULL;
719
720 wbt_set_queue_depth(rwb, blk_queue_depth(q));
721 wbt_set_write_cache(rwb, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
722
723 return 0;
724}
725
726void wbt_exit(struct request_queue *q)
727{
728 struct rq_wb *rwb = q->rq_wb;
729
730 if (rwb) {
731 del_timer_sync(&rwb->window_timer);
732 q->rq_wb = NULL;
733 kfree(rwb);
734 }
735}