]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/cfq-iosched.c
cfq-iosched: adapt slice to number of processes doing I/O
[mirror_ubuntu-artful-kernel.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
1da177e4 12#include <linux/rbtree.h>
22e2c507 13#include <linux/ioprio.h>
7b679138 14#include <linux/blktrace_api.h>
1da177e4
LT
15
16/*
17 * tunables
18 */
fe094d98
JA
19/* max queue in one round of service */
20static const int cfq_quantum = 4;
64100099 21static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
22/* maximum backwards seek, in KiB */
23static const int cfq_back_max = 16 * 1024;
24/* penalty of a backwards seek */
25static const int cfq_back_penalty = 2;
64100099 26static const int cfq_slice_sync = HZ / 10;
3b18152c 27static int cfq_slice_async = HZ / 25;
64100099 28static const int cfq_slice_async_rq = 2;
caaa5f9f 29static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
30static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
31static const int cfq_hist_divisor = 4;
22e2c507 32
d9e7620e 33/*
0871714e 34 * offset from end of service tree
d9e7620e 35 */
0871714e 36#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
37
38/*
39 * below this threshold, we consider thinktime immediate
40 */
41#define CFQ_MIN_TT (2)
42
e6c5bc73
JM
43/*
44 * Allow merged cfqqs to perform this amount of seeky I/O before
45 * deciding to break the queues up again.
46 */
47#define CFQQ_COOP_TOUT (HZ)
48
22e2c507 49#define CFQ_SLICE_SCALE (5)
45333d5a 50#define CFQ_HW_QUEUE_MIN (5)
22e2c507 51
fe094d98
JA
52#define RQ_CIC(rq) \
53 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 54#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 55
e18b890b
CL
56static struct kmem_cache *cfq_pool;
57static struct kmem_cache *cfq_ioc_pool;
1da177e4 58
245b2e70 59static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 60static struct completion *ioc_gone;
9a11b4ed 61static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 62
22e2c507
JA
63#define CFQ_PRIO_LISTS IOPRIO_BE_NR
64#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
65#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
206dc69b
JA
67#define sample_valid(samples) ((samples) > 80)
68
cc09e299
JA
69/*
70 * Most of our rbtree usage is for sorting with min extraction, so
71 * if we cache the leftmost node we don't have to walk down the tree
72 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
73 * move this into the elevator for the rq sorting as well.
74 */
75struct cfq_rb_root {
76 struct rb_root rb;
77 struct rb_node *left;
78};
79#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
80
6118b70b
JA
81/*
82 * Per process-grouping structure
83 */
84struct cfq_queue {
85 /* reference count */
86 atomic_t ref;
87 /* various state flags, see below */
88 unsigned int flags;
89 /* parent cfq_data */
90 struct cfq_data *cfqd;
91 /* service_tree member */
92 struct rb_node rb_node;
93 /* service_tree key */
94 unsigned long rb_key;
95 /* prio tree member */
96 struct rb_node p_node;
97 /* prio tree root we belong to, if any */
98 struct rb_root *p_root;
99 /* sorted list of pending requests */
100 struct rb_root sort_list;
101 /* if fifo isn't expired, next request to serve */
102 struct request *next_rq;
103 /* requests queued in sort_list */
104 int queued[2];
105 /* currently allocated requests */
106 int allocated[2];
107 /* fifo list of requests in sort_list */
108 struct list_head fifo;
109
110 unsigned long slice_end;
111 long slice_resid;
112 unsigned int slice_dispatch;
113
114 /* pending metadata requests */
115 int meta_pending;
116 /* number of requests that are on the dispatch list or inside driver */
117 int dispatched;
118
119 /* io prio of this group */
120 unsigned short ioprio, org_ioprio;
121 unsigned short ioprio_class, org_ioprio_class;
122
b2c18e1e
JM
123 unsigned int seek_samples;
124 u64 seek_total;
125 sector_t seek_mean;
126 sector_t last_request_pos;
e6c5bc73 127 unsigned long seeky_start;
b2c18e1e 128
6118b70b 129 pid_t pid;
df5fe3e8
JM
130
131 struct cfq_queue *new_cfqq;
6118b70b
JA
132};
133
22e2c507
JA
134/*
135 * Per block device queue structure
136 */
1da177e4 137struct cfq_data {
165125e1 138 struct request_queue *queue;
22e2c507
JA
139
140 /*
141 * rr list of queues with requests and the count of them
142 */
cc09e299 143 struct cfq_rb_root service_tree;
a36e71f9
JA
144
145 /*
146 * Each priority tree is sorted by next_request position. These
147 * trees are used when determining if two or more queues are
148 * interleaving requests (see cfq_close_cooperator).
149 */
150 struct rb_root prio_trees[CFQ_PRIO_LISTS];
151
22e2c507 152 unsigned int busy_queues;
5db5d642
CZ
153 unsigned int busy_rt_queues;
154 unsigned int busy_queues_avg[2];
22e2c507 155
5ad531db 156 int rq_in_driver[2];
3ed9a296 157 int sync_flight;
45333d5a
AC
158
159 /*
160 * queue-depth detection
161 */
162 int rq_queued;
25776e35 163 int hw_tag;
45333d5a
AC
164 int hw_tag_samples;
165 int rq_in_driver_peak;
1da177e4 166
22e2c507
JA
167 /*
168 * idle window management
169 */
170 struct timer_list idle_slice_timer;
23e018a1 171 struct work_struct unplug_work;
1da177e4 172
22e2c507
JA
173 struct cfq_queue *active_queue;
174 struct cfq_io_context *active_cic;
22e2c507 175
c2dea2d1
VT
176 /*
177 * async queue for each priority case
178 */
179 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
180 struct cfq_queue *async_idle_cfqq;
15c31be4 181
6d048f53 182 sector_t last_position;
1da177e4 183
1da177e4
LT
184 /*
185 * tunables, see top of file
186 */
187 unsigned int cfq_quantum;
22e2c507 188 unsigned int cfq_fifo_expire[2];
1da177e4
LT
189 unsigned int cfq_back_penalty;
190 unsigned int cfq_back_max;
22e2c507
JA
191 unsigned int cfq_slice[2];
192 unsigned int cfq_slice_async_rq;
193 unsigned int cfq_slice_idle;
963b72fc 194 unsigned int cfq_latency;
d9ff4187
AV
195
196 struct list_head cic_list;
1da177e4 197
6118b70b
JA
198 /*
199 * Fallback dummy cfqq for extreme OOM conditions
200 */
201 struct cfq_queue oom_cfqq;
365722bb
VG
202
203 unsigned long last_end_sync_rq;
1da177e4
LT
204};
205
3b18152c 206enum cfqq_state_flags {
b0b8d749
JA
207 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
208 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 209 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 210 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
211 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
212 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
213 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 214 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 215 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 216 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
3b18152c
JA
217};
218
219#define CFQ_CFQQ_FNS(name) \
220static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
221{ \
fe094d98 222 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
223} \
224static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
225{ \
fe094d98 226 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
227} \
228static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
229{ \
fe094d98 230 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
231}
232
233CFQ_CFQQ_FNS(on_rr);
234CFQ_CFQQ_FNS(wait_request);
b029195d 235CFQ_CFQQ_FNS(must_dispatch);
3b18152c 236CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
237CFQ_CFQQ_FNS(fifo_expire);
238CFQ_CFQQ_FNS(idle_window);
239CFQ_CFQQ_FNS(prio_changed);
44f7c160 240CFQ_CFQQ_FNS(slice_new);
91fac317 241CFQ_CFQQ_FNS(sync);
a36e71f9 242CFQ_CFQQ_FNS(coop);
3b18152c
JA
243#undef CFQ_CFQQ_FNS
244
7b679138
JA
245#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
246 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
247#define cfq_log(cfqd, fmt, args...) \
248 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
249
165125e1 250static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 251static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 252 struct io_context *, gfp_t);
4ac845a2 253static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
254 struct io_context *);
255
5ad531db
JA
256static inline int rq_in_driver(struct cfq_data *cfqd)
257{
258 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
259}
260
91fac317 261static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 262 bool is_sync)
91fac317 263{
a6151c3a 264 return cic->cfqq[is_sync];
91fac317
VT
265}
266
267static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 268 struct cfq_queue *cfqq, bool is_sync)
91fac317 269{
a6151c3a 270 cic->cfqq[is_sync] = cfqq;
91fac317
VT
271}
272
273/*
274 * We regard a request as SYNC, if it's either a read or has the SYNC bit
275 * set (in which case it could also be direct WRITE).
276 */
a6151c3a 277static inline bool cfq_bio_sync(struct bio *bio)
91fac317 278{
a6151c3a 279 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 280}
1da177e4 281
99f95e52
AM
282/*
283 * scheduler run of queue, if there are requests pending and no one in the
284 * driver that will restart queueing
285 */
23e018a1 286static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 287{
7b679138
JA
288 if (cfqd->busy_queues) {
289 cfq_log(cfqd, "schedule dispatch");
23e018a1 290 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 291 }
99f95e52
AM
292}
293
165125e1 294static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
295{
296 struct cfq_data *cfqd = q->elevator->elevator_data;
297
b4878f24 298 return !cfqd->busy_queues;
99f95e52
AM
299}
300
44f7c160
JA
301/*
302 * Scale schedule slice based on io priority. Use the sync time slice only
303 * if a queue is marked sync and has sync io queued. A sync queue with async
304 * io only, should not get full sync slice length.
305 */
a6151c3a 306static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 307 unsigned short prio)
44f7c160 308{
d9e7620e 309 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 310
d9e7620e
JA
311 WARN_ON(prio >= IOPRIO_BE_NR);
312
313 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
314}
44f7c160 315
d9e7620e
JA
316static inline int
317cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
318{
319 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
320}
321
5db5d642
CZ
322/*
323 * get averaged number of queues of RT/BE priority.
324 * average is updated, with a formula that gives more weight to higher numbers,
325 * to quickly follows sudden increases and decrease slowly
326 */
327
328static inline unsigned
329cfq_get_avg_queues(struct cfq_data *cfqd, bool rt) {
330 unsigned min_q, max_q;
331 unsigned mult = cfq_hist_divisor - 1;
332 unsigned round = cfq_hist_divisor / 2;
333 unsigned busy = cfqd->busy_rt_queues;
334
335 if (!rt)
336 busy = cfqd->busy_queues - cfqd->busy_rt_queues;
337
338 min_q = min(cfqd->busy_queues_avg[rt], busy);
339 max_q = max(cfqd->busy_queues_avg[rt], busy);
340 cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
341 cfq_hist_divisor;
342 return cfqd->busy_queues_avg[rt];
343}
344
44f7c160
JA
345static inline void
346cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
347{
5db5d642
CZ
348 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
349 if (cfqd->cfq_latency) {
350 /* interested queues (we consider only the ones with the same
351 * priority class) */
352 unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
353 unsigned sync_slice = cfqd->cfq_slice[1];
354 unsigned expect_latency = sync_slice * iq;
355 if (expect_latency > cfq_target_latency) {
356 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
357 /* scale low_slice according to IO priority
358 * and sync vs async */
359 unsigned low_slice =
360 min(slice, base_low_slice * slice / sync_slice);
361 /* the adapted slice value is scaled to fit all iqs
362 * into the target latency */
363 slice = max(slice * cfq_target_latency / expect_latency,
364 low_slice);
365 }
366 }
367 cfqq->slice_end = jiffies + slice;
7b679138 368 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
369}
370
371/*
372 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
373 * isn't valid until the first request from the dispatch is activated
374 * and the slice time set.
375 */
a6151c3a 376static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
377{
378 if (cfq_cfqq_slice_new(cfqq))
379 return 0;
380 if (time_before(jiffies, cfqq->slice_end))
381 return 0;
382
383 return 1;
384}
385
1da177e4 386/*
5e705374 387 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 388 * We choose the request that is closest to the head right now. Distance
e8a99053 389 * behind the head is penalized and only allowed to a certain extent.
1da177e4 390 */
5e705374
JA
391static struct request *
392cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
1da177e4
LT
393{
394 sector_t last, s1, s2, d1 = 0, d2 = 0;
1da177e4 395 unsigned long back_max;
e8a99053
AM
396#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
397#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
398 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 399
5e705374
JA
400 if (rq1 == NULL || rq1 == rq2)
401 return rq2;
402 if (rq2 == NULL)
403 return rq1;
9c2c38a1 404
5e705374
JA
405 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
406 return rq1;
407 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
408 return rq2;
374f84ac
JA
409 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
410 return rq1;
411 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
412 return rq2;
1da177e4 413
83096ebf
TH
414 s1 = blk_rq_pos(rq1);
415 s2 = blk_rq_pos(rq2);
1da177e4 416
6d048f53 417 last = cfqd->last_position;
1da177e4 418
1da177e4
LT
419 /*
420 * by definition, 1KiB is 2 sectors
421 */
422 back_max = cfqd->cfq_back_max * 2;
423
424 /*
425 * Strict one way elevator _except_ in the case where we allow
426 * short backward seeks which are biased as twice the cost of a
427 * similar forward seek.
428 */
429 if (s1 >= last)
430 d1 = s1 - last;
431 else if (s1 + back_max >= last)
432 d1 = (last - s1) * cfqd->cfq_back_penalty;
433 else
e8a99053 434 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
435
436 if (s2 >= last)
437 d2 = s2 - last;
438 else if (s2 + back_max >= last)
439 d2 = (last - s2) * cfqd->cfq_back_penalty;
440 else
e8a99053 441 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
442
443 /* Found required data */
e8a99053
AM
444
445 /*
446 * By doing switch() on the bit mask "wrap" we avoid having to
447 * check two variables for all permutations: --> faster!
448 */
449 switch (wrap) {
5e705374 450 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 451 if (d1 < d2)
5e705374 452 return rq1;
e8a99053 453 else if (d2 < d1)
5e705374 454 return rq2;
e8a99053
AM
455 else {
456 if (s1 >= s2)
5e705374 457 return rq1;
e8a99053 458 else
5e705374 459 return rq2;
e8a99053 460 }
1da177e4 461
e8a99053 462 case CFQ_RQ2_WRAP:
5e705374 463 return rq1;
e8a99053 464 case CFQ_RQ1_WRAP:
5e705374
JA
465 return rq2;
466 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
467 default:
468 /*
469 * Since both rqs are wrapped,
470 * start with the one that's further behind head
471 * (--> only *one* back seek required),
472 * since back seek takes more time than forward.
473 */
474 if (s1 <= s2)
5e705374 475 return rq1;
1da177e4 476 else
5e705374 477 return rq2;
1da177e4
LT
478 }
479}
480
498d3aa2
JA
481/*
482 * The below is leftmost cache rbtree addon
483 */
0871714e 484static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299
JA
485{
486 if (!root->left)
487 root->left = rb_first(&root->rb);
488
0871714e
JA
489 if (root->left)
490 return rb_entry(root->left, struct cfq_queue, rb_node);
491
492 return NULL;
cc09e299
JA
493}
494
a36e71f9
JA
495static void rb_erase_init(struct rb_node *n, struct rb_root *root)
496{
497 rb_erase(n, root);
498 RB_CLEAR_NODE(n);
499}
500
cc09e299
JA
501static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
502{
503 if (root->left == n)
504 root->left = NULL;
a36e71f9 505 rb_erase_init(n, &root->rb);
cc09e299
JA
506}
507
1da177e4
LT
508/*
509 * would be nice to take fifo expire time into account as well
510 */
5e705374
JA
511static struct request *
512cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
513 struct request *last)
1da177e4 514{
21183b07
JA
515 struct rb_node *rbnext = rb_next(&last->rb_node);
516 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 517 struct request *next = NULL, *prev = NULL;
1da177e4 518
21183b07 519 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
520
521 if (rbprev)
5e705374 522 prev = rb_entry_rq(rbprev);
1da177e4 523
21183b07 524 if (rbnext)
5e705374 525 next = rb_entry_rq(rbnext);
21183b07
JA
526 else {
527 rbnext = rb_first(&cfqq->sort_list);
528 if (rbnext && rbnext != &last->rb_node)
5e705374 529 next = rb_entry_rq(rbnext);
21183b07 530 }
1da177e4 531
21183b07 532 return cfq_choose_req(cfqd, next, prev);
1da177e4
LT
533}
534
d9e7620e
JA
535static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
536 struct cfq_queue *cfqq)
1da177e4 537{
d9e7620e
JA
538 /*
539 * just an approximation, should be ok.
540 */
67e6b49e
JA
541 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
542 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
543}
544
498d3aa2
JA
545/*
546 * The cfqd->service_tree holds all pending cfq_queue's that have
547 * requests waiting to be processed. It is sorted in the order that
548 * we will service the queues.
549 */
a36e71f9 550static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 551 bool add_front)
d9e7620e 552{
0871714e
JA
553 struct rb_node **p, *parent;
554 struct cfq_queue *__cfqq;
d9e7620e 555 unsigned long rb_key;
498d3aa2 556 int left;
d9e7620e 557
0871714e
JA
558 if (cfq_class_idle(cfqq)) {
559 rb_key = CFQ_IDLE_DELAY;
560 parent = rb_last(&cfqd->service_tree.rb);
561 if (parent && parent != &cfqq->rb_node) {
562 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
563 rb_key += __cfqq->rb_key;
564 } else
565 rb_key += jiffies;
566 } else if (!add_front) {
b9c8946b
JA
567 /*
568 * Get our rb key offset. Subtract any residual slice
569 * value carried from last service. A negative resid
570 * count indicates slice overrun, and this should position
571 * the next service time further away in the tree.
572 */
edd75ffd 573 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 574 rb_key -= cfqq->slice_resid;
edd75ffd 575 cfqq->slice_resid = 0;
48e025e6
CZ
576 } else {
577 rb_key = -HZ;
578 __cfqq = cfq_rb_first(&cfqd->service_tree);
579 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
580 }
1da177e4 581
d9e7620e 582 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
99f9628a 583 /*
d9e7620e 584 * same position, nothing more to do
99f9628a 585 */
d9e7620e
JA
586 if (rb_key == cfqq->rb_key)
587 return;
1da177e4 588
cc09e299 589 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
1da177e4 590 }
d9e7620e 591
498d3aa2 592 left = 1;
0871714e
JA
593 parent = NULL;
594 p = &cfqd->service_tree.rb.rb_node;
d9e7620e 595 while (*p) {
67060e37 596 struct rb_node **n;
cc09e299 597
d9e7620e
JA
598 parent = *p;
599 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
600
0c534e0a
JA
601 /*
602 * sort RT queues first, we always want to give
67060e37
JA
603 * preference to them. IDLE queues goes to the back.
604 * after that, sort on the next service time.
0c534e0a
JA
605 */
606 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
67060e37 607 n = &(*p)->rb_left;
0c534e0a 608 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
67060e37
JA
609 n = &(*p)->rb_right;
610 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
611 n = &(*p)->rb_left;
612 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
613 n = &(*p)->rb_right;
48e025e6 614 else if (time_before(rb_key, __cfqq->rb_key))
67060e37
JA
615 n = &(*p)->rb_left;
616 else
617 n = &(*p)->rb_right;
618
619 if (n == &(*p)->rb_right)
cc09e299 620 left = 0;
67060e37
JA
621
622 p = n;
d9e7620e
JA
623 }
624
cc09e299
JA
625 if (left)
626 cfqd->service_tree.left = &cfqq->rb_node;
627
d9e7620e
JA
628 cfqq->rb_key = rb_key;
629 rb_link_node(&cfqq->rb_node, parent, p);
cc09e299 630 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
1da177e4
LT
631}
632
a36e71f9 633static struct cfq_queue *
f2d1f0ae
JA
634cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
635 sector_t sector, struct rb_node **ret_parent,
636 struct rb_node ***rb_link)
a36e71f9 637{
a36e71f9
JA
638 struct rb_node **p, *parent;
639 struct cfq_queue *cfqq = NULL;
640
641 parent = NULL;
642 p = &root->rb_node;
643 while (*p) {
644 struct rb_node **n;
645
646 parent = *p;
647 cfqq = rb_entry(parent, struct cfq_queue, p_node);
648
649 /*
650 * Sort strictly based on sector. Smallest to the left,
651 * largest to the right.
652 */
2e46e8b2 653 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 654 n = &(*p)->rb_right;
2e46e8b2 655 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
656 n = &(*p)->rb_left;
657 else
658 break;
659 p = n;
3ac6c9f8 660 cfqq = NULL;
a36e71f9
JA
661 }
662
663 *ret_parent = parent;
664 if (rb_link)
665 *rb_link = p;
3ac6c9f8 666 return cfqq;
a36e71f9
JA
667}
668
669static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
670{
a36e71f9
JA
671 struct rb_node **p, *parent;
672 struct cfq_queue *__cfqq;
673
f2d1f0ae
JA
674 if (cfqq->p_root) {
675 rb_erase(&cfqq->p_node, cfqq->p_root);
676 cfqq->p_root = NULL;
677 }
a36e71f9
JA
678
679 if (cfq_class_idle(cfqq))
680 return;
681 if (!cfqq->next_rq)
682 return;
683
f2d1f0ae 684 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
685 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
686 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
687 if (!__cfqq) {
688 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
689 rb_insert_color(&cfqq->p_node, cfqq->p_root);
690 } else
691 cfqq->p_root = NULL;
a36e71f9
JA
692}
693
498d3aa2
JA
694/*
695 * Update cfqq's position in the service tree.
696 */
edd75ffd 697static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 698{
6d048f53
JA
699 /*
700 * Resorting requires the cfqq to be on the RR list already.
701 */
a36e71f9 702 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 703 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
704 cfq_prio_tree_add(cfqd, cfqq);
705 }
6d048f53
JA
706}
707
1da177e4
LT
708/*
709 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 710 * the pending list according to last request service
1da177e4 711 */
febffd61 712static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 713{
7b679138 714 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
715 BUG_ON(cfq_cfqq_on_rr(cfqq));
716 cfq_mark_cfqq_on_rr(cfqq);
1da177e4 717 cfqd->busy_queues++;
5db5d642
CZ
718 if (cfq_class_rt(cfqq))
719 cfqd->busy_rt_queues++;
edd75ffd 720 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
721}
722
498d3aa2
JA
723/*
724 * Called when the cfqq no longer has requests pending, remove it from
725 * the service tree.
726 */
febffd61 727static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 728{
7b679138 729 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
730 BUG_ON(!cfq_cfqq_on_rr(cfqq));
731 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 732
cc09e299
JA
733 if (!RB_EMPTY_NODE(&cfqq->rb_node))
734 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
f2d1f0ae
JA
735 if (cfqq->p_root) {
736 rb_erase(&cfqq->p_node, cfqq->p_root);
737 cfqq->p_root = NULL;
738 }
d9e7620e 739
1da177e4
LT
740 BUG_ON(!cfqd->busy_queues);
741 cfqd->busy_queues--;
5db5d642
CZ
742 if (cfq_class_rt(cfqq))
743 cfqd->busy_rt_queues--;
1da177e4
LT
744}
745
746/*
747 * rb tree support functions
748 */
febffd61 749static void cfq_del_rq_rb(struct request *rq)
1da177e4 750{
5e705374 751 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 752 struct cfq_data *cfqd = cfqq->cfqd;
5e705374 753 const int sync = rq_is_sync(rq);
1da177e4 754
b4878f24
JA
755 BUG_ON(!cfqq->queued[sync]);
756 cfqq->queued[sync]--;
1da177e4 757
5e705374 758 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 759
dd67d051 760 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
b4878f24 761 cfq_del_cfqq_rr(cfqd, cfqq);
1da177e4
LT
762}
763
5e705374 764static void cfq_add_rq_rb(struct request *rq)
1da177e4 765{
5e705374 766 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 767 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 768 struct request *__alias, *prev;
1da177e4 769
5380a101 770 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
771
772 /*
773 * looks a little odd, but the first insert might return an alias.
774 * if that happens, put the alias on the dispatch list
775 */
21183b07 776 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 777 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
778
779 if (!cfq_cfqq_on_rr(cfqq))
780 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
781
782 /*
783 * check if this request is a better next-serve candidate
784 */
a36e71f9 785 prev = cfqq->next_rq;
5044eed4 786 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
a36e71f9
JA
787
788 /*
789 * adjust priority tree position, if ->next_rq changes
790 */
791 if (prev != cfqq->next_rq)
792 cfq_prio_tree_add(cfqd, cfqq);
793
5044eed4 794 BUG_ON(!cfqq->next_rq);
1da177e4
LT
795}
796
febffd61 797static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 798{
5380a101
JA
799 elv_rb_del(&cfqq->sort_list, rq);
800 cfqq->queued[rq_is_sync(rq)]--;
5e705374 801 cfq_add_rq_rb(rq);
1da177e4
LT
802}
803
206dc69b
JA
804static struct request *
805cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 806{
206dc69b 807 struct task_struct *tsk = current;
91fac317 808 struct cfq_io_context *cic;
206dc69b 809 struct cfq_queue *cfqq;
1da177e4 810
4ac845a2 811 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
812 if (!cic)
813 return NULL;
814
815 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
816 if (cfqq) {
817 sector_t sector = bio->bi_sector + bio_sectors(bio);
818
21183b07 819 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 820 }
1da177e4 821
1da177e4
LT
822 return NULL;
823}
824
165125e1 825static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 826{
22e2c507 827 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 828
5ad531db 829 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 830 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 831 rq_in_driver(cfqd));
25776e35 832
5b93629b 833 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
834}
835
165125e1 836static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 837{
b4878f24 838 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 839 const int sync = rq_is_sync(rq);
b4878f24 840
5ad531db
JA
841 WARN_ON(!cfqd->rq_in_driver[sync]);
842 cfqd->rq_in_driver[sync]--;
7b679138 843 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 844 rq_in_driver(cfqd));
1da177e4
LT
845}
846
b4878f24 847static void cfq_remove_request(struct request *rq)
1da177e4 848{
5e705374 849 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 850
5e705374
JA
851 if (cfqq->next_rq == rq)
852 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 853
b4878f24 854 list_del_init(&rq->queuelist);
5e705374 855 cfq_del_rq_rb(rq);
374f84ac 856
45333d5a 857 cfqq->cfqd->rq_queued--;
374f84ac
JA
858 if (rq_is_meta(rq)) {
859 WARN_ON(!cfqq->meta_pending);
860 cfqq->meta_pending--;
861 }
1da177e4
LT
862}
863
165125e1
JA
864static int cfq_merge(struct request_queue *q, struct request **req,
865 struct bio *bio)
1da177e4
LT
866{
867 struct cfq_data *cfqd = q->elevator->elevator_data;
868 struct request *__rq;
1da177e4 869
206dc69b 870 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 871 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
872 *req = __rq;
873 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
874 }
875
876 return ELEVATOR_NO_MERGE;
1da177e4
LT
877}
878
165125e1 879static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 880 int type)
1da177e4 881{
21183b07 882 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 883 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 884
5e705374 885 cfq_reposition_rq_rb(cfqq, req);
1da177e4 886 }
1da177e4
LT
887}
888
889static void
165125e1 890cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
891 struct request *next)
892{
22e2c507
JA
893 /*
894 * reposition in fifo if next is older than rq
895 */
896 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 897 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 898 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
899 rq_set_fifo_time(rq, rq_fifo_time(next));
900 }
22e2c507 901
b4878f24 902 cfq_remove_request(next);
22e2c507
JA
903}
904
165125e1 905static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
906 struct bio *bio)
907{
908 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 909 struct cfq_io_context *cic;
da775265 910 struct cfq_queue *cfqq;
da775265
JA
911
912 /*
ec8acb69 913 * Disallow merge of a sync bio into an async request.
da775265 914 */
91fac317 915 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 916 return false;
da775265
JA
917
918 /*
719d3402
JA
919 * Lookup the cfqq that this bio will be queued with. Allow
920 * merge only if rq is queued there.
da775265 921 */
4ac845a2 922 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 923 if (!cic)
a6151c3a 924 return false;
719d3402 925
91fac317 926 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 927 return cfqq == RQ_CFQQ(rq);
da775265
JA
928}
929
febffd61
JA
930static void __cfq_set_active_queue(struct cfq_data *cfqd,
931 struct cfq_queue *cfqq)
22e2c507
JA
932{
933 if (cfqq) {
7b679138 934 cfq_log_cfqq(cfqd, cfqq, "set_active");
22e2c507 935 cfqq->slice_end = 0;
2f5cb738
JA
936 cfqq->slice_dispatch = 0;
937
2f5cb738 938 cfq_clear_cfqq_wait_request(cfqq);
b029195d 939 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
940 cfq_clear_cfqq_must_alloc_slice(cfqq);
941 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 942 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
943
944 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
945 }
946
947 cfqd->active_queue = cfqq;
948}
949
7b14e3b5
JA
950/*
951 * current cfqq expired its slice (or was too idle), select new one
952 */
953static void
954__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 955 bool timed_out)
7b14e3b5 956{
7b679138
JA
957 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
958
7b14e3b5
JA
959 if (cfq_cfqq_wait_request(cfqq))
960 del_timer(&cfqd->idle_slice_timer);
961
7b14e3b5
JA
962 cfq_clear_cfqq_wait_request(cfqq);
963
964 /*
6084cdda 965 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 966 */
7b679138 967 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 968 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
969 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
970 }
7b14e3b5 971
edd75ffd 972 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
973
974 if (cfqq == cfqd->active_queue)
975 cfqd->active_queue = NULL;
976
977 if (cfqd->active_cic) {
978 put_io_context(cfqd->active_cic->ioc);
979 cfqd->active_cic = NULL;
980 }
7b14e3b5
JA
981}
982
a6151c3a 983static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
984{
985 struct cfq_queue *cfqq = cfqd->active_queue;
986
987 if (cfqq)
6084cdda 988 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
989}
990
498d3aa2
JA
991/*
992 * Get next queue for service. Unless we have a queue preemption,
993 * we'll simply select the first cfqq in the service tree.
994 */
6d048f53 995static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 996{
edd75ffd
JA
997 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
998 return NULL;
d9e7620e 999
0871714e 1000 return cfq_rb_first(&cfqd->service_tree);
6d048f53
JA
1001}
1002
498d3aa2
JA
1003/*
1004 * Get and set a new active queue for service.
1005 */
a36e71f9
JA
1006static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1007 struct cfq_queue *cfqq)
6d048f53 1008{
b3b6d040 1009 if (!cfqq)
a36e71f9 1010 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1011
22e2c507 1012 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1013 return cfqq;
22e2c507
JA
1014}
1015
d9e7620e
JA
1016static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1017 struct request *rq)
1018{
83096ebf
TH
1019 if (blk_rq_pos(rq) >= cfqd->last_position)
1020 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1021 else
83096ebf 1022 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1023}
1024
b2c18e1e
JM
1025#define CFQQ_SEEK_THR 8 * 1024
1026#define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
04dc6e71 1027
b2c18e1e
JM
1028static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1029 struct request *rq)
6d048f53 1030{
b2c18e1e 1031 sector_t sdist = cfqq->seek_mean;
6d048f53 1032
b2c18e1e
JM
1033 if (!sample_valid(cfqq->seek_samples))
1034 sdist = CFQQ_SEEK_THR;
6d048f53 1035
04dc6e71 1036 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
1037}
1038
a36e71f9
JA
1039static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1040 struct cfq_queue *cur_cfqq)
1041{
f2d1f0ae 1042 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1043 struct rb_node *parent, *node;
1044 struct cfq_queue *__cfqq;
1045 sector_t sector = cfqd->last_position;
1046
1047 if (RB_EMPTY_ROOT(root))
1048 return NULL;
1049
1050 /*
1051 * First, if we find a request starting at the end of the last
1052 * request, choose it.
1053 */
f2d1f0ae 1054 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1055 if (__cfqq)
1056 return __cfqq;
1057
1058 /*
1059 * If the exact sector wasn't found, the parent of the NULL leaf
1060 * will contain the closest sector.
1061 */
1062 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
b2c18e1e 1063 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1064 return __cfqq;
1065
2e46e8b2 1066 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1067 node = rb_next(&__cfqq->p_node);
1068 else
1069 node = rb_prev(&__cfqq->p_node);
1070 if (!node)
1071 return NULL;
1072
1073 __cfqq = rb_entry(node, struct cfq_queue, p_node);
b2c18e1e 1074 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1075 return __cfqq;
1076
1077 return NULL;
1078}
1079
1080/*
1081 * cfqd - obvious
1082 * cur_cfqq - passed in so that we don't decide that the current queue is
1083 * closely cooperating with itself.
1084 *
1085 * So, basically we're assuming that that cur_cfqq has dispatched at least
1086 * one request, and that cfqd->last_position reflects a position on the disk
1087 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1088 * assumption.
1089 */
1090static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1091 struct cfq_queue *cur_cfqq)
6d048f53 1092{
a36e71f9
JA
1093 struct cfq_queue *cfqq;
1094
e6c5bc73
JM
1095 if (!cfq_cfqq_sync(cur_cfqq))
1096 return NULL;
1097 if (CFQQ_SEEKY(cur_cfqq))
1098 return NULL;
1099
6d048f53 1100 /*
d9e7620e
JA
1101 * We should notice if some of the queues are cooperating, eg
1102 * working closely on the same area of the disk. In that case,
1103 * we can group them together and don't waste time idling.
6d048f53 1104 */
a36e71f9
JA
1105 cfqq = cfqq_close(cfqd, cur_cfqq);
1106 if (!cfqq)
1107 return NULL;
1108
df5fe3e8
JM
1109 /*
1110 * It only makes sense to merge sync queues.
1111 */
1112 if (!cfq_cfqq_sync(cfqq))
1113 return NULL;
e6c5bc73
JM
1114 if (CFQQ_SEEKY(cfqq))
1115 return NULL;
df5fe3e8 1116
a36e71f9 1117 return cfqq;
6d048f53
JA
1118}
1119
6d048f53 1120static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1121{
1792669c 1122 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1123 struct cfq_io_context *cic;
7b14e3b5
JA
1124 unsigned long sl;
1125
a68bbddb 1126 /*
f7d7b7a7
JA
1127 * SSD device without seek penalty, disable idling. But only do so
1128 * for devices that support queuing, otherwise we still have a problem
1129 * with sync vs async workloads.
a68bbddb 1130 */
f7d7b7a7 1131 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1132 return;
1133
dd67d051 1134 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1135 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1136
1137 /*
1138 * idle is disabled, either manually or by past process history
1139 */
6d048f53
JA
1140 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1141 return;
1142
7b679138
JA
1143 /*
1144 * still requests with the driver, don't idle
1145 */
5ad531db 1146 if (rq_in_driver(cfqd))
7b679138
JA
1147 return;
1148
22e2c507
JA
1149 /*
1150 * task has exited, don't wait
1151 */
206dc69b 1152 cic = cfqd->active_cic;
66dac98e 1153 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1154 return;
1155
355b659c
CZ
1156 /*
1157 * If our average think time is larger than the remaining time
1158 * slice, then don't idle. This avoids overrunning the allotted
1159 * time slice.
1160 */
1161 if (sample_valid(cic->ttime_samples) &&
1162 (cfqq->slice_end - jiffies < cic->ttime_mean))
1163 return;
1164
3b18152c 1165 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1166
206dc69b
JA
1167 /*
1168 * we don't want to idle for seeks, but we do want to allow
1169 * fair distribution of slice time for a process doing back-to-back
1170 * seeks. so allow a little bit of time for him to submit a new rq
1171 */
6d048f53 1172 sl = cfqd->cfq_slice_idle;
b2c18e1e 1173 if (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq))
d9e7620e 1174 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
206dc69b 1175
7b14e3b5 1176 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1177 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1178}
1179
498d3aa2
JA
1180/*
1181 * Move request from internal lists to the request queue dispatch list.
1182 */
165125e1 1183static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1184{
3ed9a296 1185 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1186 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1187
7b679138
JA
1188 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1189
06d21886 1190 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1191 cfq_remove_request(rq);
6d048f53 1192 cfqq->dispatched++;
5380a101 1193 elv_dispatch_sort(q, rq);
3ed9a296
JA
1194
1195 if (cfq_cfqq_sync(cfqq))
1196 cfqd->sync_flight++;
1da177e4
LT
1197}
1198
1199/*
1200 * return expired entry, or NULL to just start from scratch in rbtree
1201 */
febffd61 1202static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1203{
30996f40 1204 struct request *rq = NULL;
1da177e4 1205
3b18152c 1206 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1207 return NULL;
cb887411
JA
1208
1209 cfq_mark_cfqq_fifo_expire(cfqq);
1210
89850f7e
JA
1211 if (list_empty(&cfqq->fifo))
1212 return NULL;
1da177e4 1213
89850f7e 1214 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1215 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1216 rq = NULL;
1da177e4 1217
30996f40 1218 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1219 return rq;
1da177e4
LT
1220}
1221
22e2c507
JA
1222static inline int
1223cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1224{
1225 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1226
22e2c507 1227 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1228
22e2c507 1229 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1230}
1231
df5fe3e8
JM
1232/*
1233 * Must be called with the queue_lock held.
1234 */
1235static int cfqq_process_refs(struct cfq_queue *cfqq)
1236{
1237 int process_refs, io_refs;
1238
1239 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1240 process_refs = atomic_read(&cfqq->ref) - io_refs;
1241 BUG_ON(process_refs < 0);
1242 return process_refs;
1243}
1244
1245static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1246{
e6c5bc73 1247 int process_refs, new_process_refs;
df5fe3e8
JM
1248 struct cfq_queue *__cfqq;
1249
1250 /* Avoid a circular list and skip interim queue merges */
1251 while ((__cfqq = new_cfqq->new_cfqq)) {
1252 if (__cfqq == cfqq)
1253 return;
1254 new_cfqq = __cfqq;
1255 }
1256
1257 process_refs = cfqq_process_refs(cfqq);
1258 /*
1259 * If the process for the cfqq has gone away, there is no
1260 * sense in merging the queues.
1261 */
1262 if (process_refs == 0)
1263 return;
1264
e6c5bc73
JM
1265 /*
1266 * Merge in the direction of the lesser amount of work.
1267 */
1268 new_process_refs = cfqq_process_refs(new_cfqq);
1269 if (new_process_refs >= process_refs) {
1270 cfqq->new_cfqq = new_cfqq;
1271 atomic_add(process_refs, &new_cfqq->ref);
1272 } else {
1273 new_cfqq->new_cfqq = cfqq;
1274 atomic_add(new_process_refs, &cfqq->ref);
1275 }
df5fe3e8
JM
1276}
1277
22e2c507 1278/*
498d3aa2
JA
1279 * Select a queue for service. If we have a current active queue,
1280 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 1281 */
1b5ed5e1 1282static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 1283{
a36e71f9 1284 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 1285
22e2c507
JA
1286 cfqq = cfqd->active_queue;
1287 if (!cfqq)
1288 goto new_queue;
1da177e4 1289
22e2c507 1290 /*
6d048f53 1291 * The active queue has run out of time, expire it and select new.
22e2c507 1292 */
b029195d 1293 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 1294 goto expire;
1da177e4 1295
22e2c507 1296 /*
6d048f53
JA
1297 * The active queue has requests and isn't expired, allow it to
1298 * dispatch.
22e2c507 1299 */
dd67d051 1300 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 1301 goto keep_queue;
6d048f53 1302
a36e71f9
JA
1303 /*
1304 * If another queue has a request waiting within our mean seek
1305 * distance, let it run. The expire code will check for close
1306 * cooperators and put the close queue at the front of the service
df5fe3e8 1307 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 1308 */
b3b6d040 1309 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
1310 if (new_cfqq) {
1311 if (!cfqq->new_cfqq)
1312 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 1313 goto expire;
df5fe3e8 1314 }
a36e71f9 1315
6d048f53
JA
1316 /*
1317 * No requests pending. If the active queue still has requests in
1318 * flight or is idling for a new request, allow either of these
1319 * conditions to happen (or time out) before selecting a new queue.
1320 */
cc197479
JA
1321 if (timer_pending(&cfqd->idle_slice_timer) ||
1322 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
caaa5f9f
JA
1323 cfqq = NULL;
1324 goto keep_queue;
22e2c507
JA
1325 }
1326
3b18152c 1327expire:
6084cdda 1328 cfq_slice_expired(cfqd, 0);
3b18152c 1329new_queue:
a36e71f9 1330 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 1331keep_queue:
3b18152c 1332 return cfqq;
22e2c507
JA
1333}
1334
febffd61 1335static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
1336{
1337 int dispatched = 0;
1338
1339 while (cfqq->next_rq) {
1340 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1341 dispatched++;
1342 }
1343
1344 BUG_ON(!list_empty(&cfqq->fifo));
1345 return dispatched;
1346}
1347
498d3aa2
JA
1348/*
1349 * Drain our current requests. Used for barriers and when switching
1350 * io schedulers on-the-fly.
1351 */
d9e7620e 1352static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 1353{
0871714e 1354 struct cfq_queue *cfqq;
d9e7620e 1355 int dispatched = 0;
1b5ed5e1 1356
0871714e 1357 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
d9e7620e 1358 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1359
6084cdda 1360 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
1361
1362 BUG_ON(cfqd->busy_queues);
1363
6923715a 1364 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
1365 return dispatched;
1366}
1367
0b182d61 1368static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 1369{
2f5cb738 1370 unsigned int max_dispatch;
22e2c507 1371
5ad531db
JA
1372 /*
1373 * Drain async requests before we start sync IO
1374 */
1375 if (cfq_cfqq_idle_window(cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
0b182d61 1376 return false;
5ad531db 1377
2f5cb738
JA
1378 /*
1379 * If this is an async queue and we have sync IO in flight, let it wait
1380 */
1381 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
0b182d61 1382 return false;
2f5cb738
JA
1383
1384 max_dispatch = cfqd->cfq_quantum;
1385 if (cfq_class_idle(cfqq))
1386 max_dispatch = 1;
b4878f24 1387
2f5cb738
JA
1388 /*
1389 * Does this cfqq already have too much IO in flight?
1390 */
1391 if (cfqq->dispatched >= max_dispatch) {
1392 /*
1393 * idle queue must always only have a single IO in flight
1394 */
3ed9a296 1395 if (cfq_class_idle(cfqq))
0b182d61 1396 return false;
3ed9a296 1397
2f5cb738
JA
1398 /*
1399 * We have other queues, don't allow more IO from this one
1400 */
1401 if (cfqd->busy_queues > 1)
0b182d61 1402 return false;
9ede209e 1403
365722bb 1404 /*
8e296755 1405 * Sole queue user, allow bigger slice
365722bb 1406 */
8e296755
JA
1407 max_dispatch *= 4;
1408 }
1409
1410 /*
1411 * Async queues must wait a bit before being allowed dispatch.
1412 * We also ramp up the dispatch depth gradually for async IO,
1413 * based on the last sync IO we serviced
1414 */
963b72fc 1415 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
8e296755
JA
1416 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1417 unsigned int depth;
365722bb 1418
61f0c1dc 1419 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
1420 if (!depth && !cfqq->dispatched)
1421 depth = 1;
8e296755
JA
1422 if (depth < max_dispatch)
1423 max_dispatch = depth;
2f5cb738 1424 }
3ed9a296 1425
0b182d61
JA
1426 /*
1427 * If we're below the current max, allow a dispatch
1428 */
1429 return cfqq->dispatched < max_dispatch;
1430}
1431
1432/*
1433 * Dispatch a request from cfqq, moving them to the request queue
1434 * dispatch list.
1435 */
1436static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1437{
1438 struct request *rq;
1439
1440 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1441
1442 if (!cfq_may_dispatch(cfqd, cfqq))
1443 return false;
1444
1445 /*
1446 * follow expired path, else get first next available
1447 */
1448 rq = cfq_check_fifo(cfqq);
1449 if (!rq)
1450 rq = cfqq->next_rq;
1451
1452 /*
1453 * insert request into driver dispatch list
1454 */
1455 cfq_dispatch_insert(cfqd->queue, rq);
1456
1457 if (!cfqd->active_cic) {
1458 struct cfq_io_context *cic = RQ_CIC(rq);
1459
1460 atomic_long_inc(&cic->ioc->refcount);
1461 cfqd->active_cic = cic;
1462 }
1463
1464 return true;
1465}
1466
1467/*
1468 * Find the cfqq that we need to service and move a request from that to the
1469 * dispatch list
1470 */
1471static int cfq_dispatch_requests(struct request_queue *q, int force)
1472{
1473 struct cfq_data *cfqd = q->elevator->elevator_data;
1474 struct cfq_queue *cfqq;
1475
1476 if (!cfqd->busy_queues)
1477 return 0;
1478
1479 if (unlikely(force))
1480 return cfq_forced_dispatch(cfqd);
1481
1482 cfqq = cfq_select_queue(cfqd);
1483 if (!cfqq)
8e296755
JA
1484 return 0;
1485
2f5cb738 1486 /*
0b182d61 1487 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 1488 */
0b182d61
JA
1489 if (!cfq_dispatch_request(cfqd, cfqq))
1490 return 0;
1491
2f5cb738 1492 cfqq->slice_dispatch++;
b029195d 1493 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 1494
2f5cb738
JA
1495 /*
1496 * expire an async queue immediately if it has used up its slice. idle
1497 * queue always expire after 1 dispatch round.
1498 */
1499 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1500 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1501 cfq_class_idle(cfqq))) {
1502 cfqq->slice_end = jiffies + 1;
1503 cfq_slice_expired(cfqd, 0);
1da177e4
LT
1504 }
1505
b217a903 1506 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 1507 return 1;
1da177e4
LT
1508}
1509
1da177e4 1510/*
5e705374
JA
1511 * task holds one reference to the queue, dropped when task exits. each rq
1512 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4
LT
1513 *
1514 * queue lock must be held here.
1515 */
1516static void cfq_put_queue(struct cfq_queue *cfqq)
1517{
22e2c507
JA
1518 struct cfq_data *cfqd = cfqq->cfqd;
1519
1520 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
1521
1522 if (!atomic_dec_and_test(&cfqq->ref))
1523 return;
1524
7b679138 1525 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 1526 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 1527 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3b18152c 1528 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 1529
28f95cbc 1530 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 1531 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1532 cfq_schedule_dispatch(cfqd);
28f95cbc 1533 }
22e2c507 1534
1da177e4
LT
1535 kmem_cache_free(cfq_pool, cfqq);
1536}
1537
d6de8be7
JA
1538/*
1539 * Must always be called with the rcu_read_lock() held
1540 */
07416d29
JA
1541static void
1542__call_for_each_cic(struct io_context *ioc,
1543 void (*func)(struct io_context *, struct cfq_io_context *))
1544{
1545 struct cfq_io_context *cic;
1546 struct hlist_node *n;
1547
1548 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1549 func(ioc, cic);
1550}
1551
4ac845a2 1552/*
34e6bbf2 1553 * Call func for each cic attached to this ioc.
4ac845a2 1554 */
34e6bbf2 1555static void
4ac845a2
JA
1556call_for_each_cic(struct io_context *ioc,
1557 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 1558{
4ac845a2 1559 rcu_read_lock();
07416d29 1560 __call_for_each_cic(ioc, func);
4ac845a2 1561 rcu_read_unlock();
34e6bbf2
FC
1562}
1563
1564static void cfq_cic_free_rcu(struct rcu_head *head)
1565{
1566 struct cfq_io_context *cic;
1567
1568 cic = container_of(head, struct cfq_io_context, rcu_head);
1569
1570 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 1571 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 1572
9a11b4ed
JA
1573 if (ioc_gone) {
1574 /*
1575 * CFQ scheduler is exiting, grab exit lock and check
1576 * the pending io context count. If it hits zero,
1577 * complete ioc_gone and set it back to NULL
1578 */
1579 spin_lock(&ioc_gone_lock);
245b2e70 1580 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
1581 complete(ioc_gone);
1582 ioc_gone = NULL;
1583 }
1584 spin_unlock(&ioc_gone_lock);
1585 }
34e6bbf2 1586}
4ac845a2 1587
34e6bbf2
FC
1588static void cfq_cic_free(struct cfq_io_context *cic)
1589{
1590 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
1591}
1592
1593static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1594{
1595 unsigned long flags;
1596
1597 BUG_ON(!cic->dead_key);
1598
1599 spin_lock_irqsave(&ioc->lock, flags);
1600 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 1601 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1602 spin_unlock_irqrestore(&ioc->lock, flags);
1603
34e6bbf2 1604 cfq_cic_free(cic);
4ac845a2
JA
1605}
1606
d6de8be7
JA
1607/*
1608 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1609 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1610 * and ->trim() which is called with the task lock held
1611 */
4ac845a2
JA
1612static void cfq_free_io_context(struct io_context *ioc)
1613{
4ac845a2 1614 /*
34e6bbf2
FC
1615 * ioc->refcount is zero here, or we are called from elv_unregister(),
1616 * so no more cic's are allowed to be linked into this ioc. So it
1617 * should be ok to iterate over the known list, we will see all cic's
1618 * since no new ones are added.
4ac845a2 1619 */
07416d29 1620 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
1621}
1622
89850f7e 1623static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1624{
df5fe3e8
JM
1625 struct cfq_queue *__cfqq, *next;
1626
28f95cbc 1627 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 1628 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1629 cfq_schedule_dispatch(cfqd);
28f95cbc 1630 }
22e2c507 1631
df5fe3e8
JM
1632 /*
1633 * If this queue was scheduled to merge with another queue, be
1634 * sure to drop the reference taken on that queue (and others in
1635 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
1636 */
1637 __cfqq = cfqq->new_cfqq;
1638 while (__cfqq) {
1639 if (__cfqq == cfqq) {
1640 WARN(1, "cfqq->new_cfqq loop detected\n");
1641 break;
1642 }
1643 next = __cfqq->new_cfqq;
1644 cfq_put_queue(__cfqq);
1645 __cfqq = next;
1646 }
1647
89850f7e
JA
1648 cfq_put_queue(cfqq);
1649}
22e2c507 1650
89850f7e
JA
1651static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1652 struct cfq_io_context *cic)
1653{
4faa3c81
FC
1654 struct io_context *ioc = cic->ioc;
1655
fc46379d 1656 list_del_init(&cic->queue_list);
4ac845a2
JA
1657
1658 /*
1659 * Make sure key == NULL is seen for dead queues
1660 */
fc46379d 1661 smp_wmb();
4ac845a2 1662 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
1663 cic->key = NULL;
1664
4faa3c81
FC
1665 if (ioc->ioc_data == cic)
1666 rcu_assign_pointer(ioc->ioc_data, NULL);
1667
ff6657c6
JA
1668 if (cic->cfqq[BLK_RW_ASYNC]) {
1669 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1670 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
1671 }
1672
ff6657c6
JA
1673 if (cic->cfqq[BLK_RW_SYNC]) {
1674 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1675 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 1676 }
89850f7e
JA
1677}
1678
4ac845a2
JA
1679static void cfq_exit_single_io_context(struct io_context *ioc,
1680 struct cfq_io_context *cic)
89850f7e
JA
1681{
1682 struct cfq_data *cfqd = cic->key;
1683
89850f7e 1684 if (cfqd) {
165125e1 1685 struct request_queue *q = cfqd->queue;
4ac845a2 1686 unsigned long flags;
89850f7e 1687
4ac845a2 1688 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
1689
1690 /*
1691 * Ensure we get a fresh copy of the ->key to prevent
1692 * race between exiting task and queue
1693 */
1694 smp_read_barrier_depends();
1695 if (cic->key)
1696 __cfq_exit_single_io_context(cfqd, cic);
1697
4ac845a2 1698 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 1699 }
1da177e4
LT
1700}
1701
498d3aa2
JA
1702/*
1703 * The process that ioc belongs to has exited, we need to clean up
1704 * and put the internal structures we have that belongs to that process.
1705 */
e2d74ac0 1706static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 1707{
4ac845a2 1708 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
1709}
1710
22e2c507 1711static struct cfq_io_context *
8267e268 1712cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1713{
b5deef90 1714 struct cfq_io_context *cic;
1da177e4 1715
94f6030c
CL
1716 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1717 cfqd->queue->node);
1da177e4 1718 if (cic) {
22e2c507 1719 cic->last_end_request = jiffies;
553698f9 1720 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 1721 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
1722 cic->dtor = cfq_free_io_context;
1723 cic->exit = cfq_exit_io_context;
245b2e70 1724 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
1725 }
1726
1727 return cic;
1728}
1729
fd0928df 1730static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
1731{
1732 struct task_struct *tsk = current;
1733 int ioprio_class;
1734
3b18152c 1735 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
1736 return;
1737
fd0928df 1738 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 1739 switch (ioprio_class) {
fe094d98
JA
1740 default:
1741 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1742 case IOPRIO_CLASS_NONE:
1743 /*
6d63c275 1744 * no prio set, inherit CPU scheduling settings
fe094d98
JA
1745 */
1746 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 1747 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
1748 break;
1749 case IOPRIO_CLASS_RT:
1750 cfqq->ioprio = task_ioprio(ioc);
1751 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1752 break;
1753 case IOPRIO_CLASS_BE:
1754 cfqq->ioprio = task_ioprio(ioc);
1755 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1756 break;
1757 case IOPRIO_CLASS_IDLE:
1758 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1759 cfqq->ioprio = 7;
1760 cfq_clear_cfqq_idle_window(cfqq);
1761 break;
22e2c507
JA
1762 }
1763
1764 /*
1765 * keep track of original prio settings in case we have to temporarily
1766 * elevate the priority of this queue
1767 */
1768 cfqq->org_ioprio = cfqq->ioprio;
1769 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 1770 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
1771}
1772
febffd61 1773static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 1774{
478a82b0
AV
1775 struct cfq_data *cfqd = cic->key;
1776 struct cfq_queue *cfqq;
c1b707d2 1777 unsigned long flags;
35e6077c 1778
caaa5f9f
JA
1779 if (unlikely(!cfqd))
1780 return;
1781
c1b707d2 1782 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 1783
ff6657c6 1784 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
1785 if (cfqq) {
1786 struct cfq_queue *new_cfqq;
ff6657c6
JA
1787 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1788 GFP_ATOMIC);
caaa5f9f 1789 if (new_cfqq) {
ff6657c6 1790 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
1791 cfq_put_queue(cfqq);
1792 }
22e2c507 1793 }
caaa5f9f 1794
ff6657c6 1795 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
1796 if (cfqq)
1797 cfq_mark_cfqq_prio_changed(cfqq);
1798
c1b707d2 1799 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
1800}
1801
fc46379d 1802static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 1803{
4ac845a2 1804 call_for_each_cic(ioc, changed_ioprio);
fc46379d 1805 ioc->ioprio_changed = 0;
22e2c507
JA
1806}
1807
d5036d77 1808static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1809 pid_t pid, bool is_sync)
d5036d77
JA
1810{
1811 RB_CLEAR_NODE(&cfqq->rb_node);
1812 RB_CLEAR_NODE(&cfqq->p_node);
1813 INIT_LIST_HEAD(&cfqq->fifo);
1814
1815 atomic_set(&cfqq->ref, 0);
1816 cfqq->cfqd = cfqd;
1817
1818 cfq_mark_cfqq_prio_changed(cfqq);
1819
1820 if (is_sync) {
1821 if (!cfq_class_idle(cfqq))
1822 cfq_mark_cfqq_idle_window(cfqq);
1823 cfq_mark_cfqq_sync(cfqq);
1824 }
1825 cfqq->pid = pid;
1826}
1827
22e2c507 1828static struct cfq_queue *
a6151c3a 1829cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 1830 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 1831{
22e2c507 1832 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 1833 struct cfq_io_context *cic;
22e2c507
JA
1834
1835retry:
4ac845a2 1836 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
1837 /* cic always exists here */
1838 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 1839
6118b70b
JA
1840 /*
1841 * Always try a new alloc if we fell back to the OOM cfqq
1842 * originally, since it should just be a temporary situation.
1843 */
1844 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1845 cfqq = NULL;
22e2c507
JA
1846 if (new_cfqq) {
1847 cfqq = new_cfqq;
1848 new_cfqq = NULL;
1849 } else if (gfp_mask & __GFP_WAIT) {
1850 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 1851 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 1852 gfp_mask | __GFP_ZERO,
94f6030c 1853 cfqd->queue->node);
22e2c507 1854 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
1855 if (new_cfqq)
1856 goto retry;
22e2c507 1857 } else {
94f6030c
CL
1858 cfqq = kmem_cache_alloc_node(cfq_pool,
1859 gfp_mask | __GFP_ZERO,
1860 cfqd->queue->node);
22e2c507
JA
1861 }
1862
6118b70b
JA
1863 if (cfqq) {
1864 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1865 cfq_init_prio_data(cfqq, ioc);
1866 cfq_log_cfqq(cfqd, cfqq, "alloced");
1867 } else
1868 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
1869 }
1870
1871 if (new_cfqq)
1872 kmem_cache_free(cfq_pool, new_cfqq);
1873
22e2c507
JA
1874 return cfqq;
1875}
1876
c2dea2d1
VT
1877static struct cfq_queue **
1878cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1879{
fe094d98 1880 switch (ioprio_class) {
c2dea2d1
VT
1881 case IOPRIO_CLASS_RT:
1882 return &cfqd->async_cfqq[0][ioprio];
1883 case IOPRIO_CLASS_BE:
1884 return &cfqd->async_cfqq[1][ioprio];
1885 case IOPRIO_CLASS_IDLE:
1886 return &cfqd->async_idle_cfqq;
1887 default:
1888 BUG();
1889 }
1890}
1891
15c31be4 1892static struct cfq_queue *
a6151c3a 1893cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
1894 gfp_t gfp_mask)
1895{
fd0928df
JA
1896 const int ioprio = task_ioprio(ioc);
1897 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 1898 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
1899 struct cfq_queue *cfqq = NULL;
1900
c2dea2d1
VT
1901 if (!is_sync) {
1902 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1903 cfqq = *async_cfqq;
1904 }
1905
6118b70b 1906 if (!cfqq)
fd0928df 1907 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
1908
1909 /*
1910 * pin the queue now that it's allocated, scheduler exit will prune it
1911 */
c2dea2d1 1912 if (!is_sync && !(*async_cfqq)) {
15c31be4 1913 atomic_inc(&cfqq->ref);
c2dea2d1 1914 *async_cfqq = cfqq;
15c31be4
JA
1915 }
1916
1917 atomic_inc(&cfqq->ref);
1918 return cfqq;
1919}
1920
498d3aa2
JA
1921/*
1922 * We drop cfq io contexts lazily, so we may find a dead one.
1923 */
dbecf3ab 1924static void
4ac845a2
JA
1925cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1926 struct cfq_io_context *cic)
dbecf3ab 1927{
4ac845a2
JA
1928 unsigned long flags;
1929
fc46379d 1930 WARN_ON(!list_empty(&cic->queue_list));
597bc485 1931
4ac845a2
JA
1932 spin_lock_irqsave(&ioc->lock, flags);
1933
4faa3c81 1934 BUG_ON(ioc->ioc_data == cic);
597bc485 1935
4ac845a2 1936 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 1937 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1938 spin_unlock_irqrestore(&ioc->lock, flags);
1939
1940 cfq_cic_free(cic);
dbecf3ab
OH
1941}
1942
e2d74ac0 1943static struct cfq_io_context *
4ac845a2 1944cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 1945{
e2d74ac0 1946 struct cfq_io_context *cic;
d6de8be7 1947 unsigned long flags;
4ac845a2 1948 void *k;
e2d74ac0 1949
91fac317
VT
1950 if (unlikely(!ioc))
1951 return NULL;
1952
d6de8be7
JA
1953 rcu_read_lock();
1954
597bc485
JA
1955 /*
1956 * we maintain a last-hit cache, to avoid browsing over the tree
1957 */
4ac845a2 1958 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
1959 if (cic && cic->key == cfqd) {
1960 rcu_read_unlock();
597bc485 1961 return cic;
d6de8be7 1962 }
597bc485 1963
4ac845a2 1964 do {
4ac845a2
JA
1965 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1966 rcu_read_unlock();
1967 if (!cic)
1968 break;
be3b0753
OH
1969 /* ->key must be copied to avoid race with cfq_exit_queue() */
1970 k = cic->key;
1971 if (unlikely(!k)) {
4ac845a2 1972 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 1973 rcu_read_lock();
4ac845a2 1974 continue;
dbecf3ab 1975 }
e2d74ac0 1976
d6de8be7 1977 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 1978 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 1979 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
1980 break;
1981 } while (1);
e2d74ac0 1982
4ac845a2 1983 return cic;
e2d74ac0
JA
1984}
1985
4ac845a2
JA
1986/*
1987 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1988 * the process specific cfq io context when entered from the block layer.
1989 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1990 */
febffd61
JA
1991static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1992 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 1993{
0261d688 1994 unsigned long flags;
4ac845a2 1995 int ret;
e2d74ac0 1996
4ac845a2
JA
1997 ret = radix_tree_preload(gfp_mask);
1998 if (!ret) {
1999 cic->ioc = ioc;
2000 cic->key = cfqd;
e2d74ac0 2001
4ac845a2
JA
2002 spin_lock_irqsave(&ioc->lock, flags);
2003 ret = radix_tree_insert(&ioc->radix_root,
2004 (unsigned long) cfqd, cic);
ffc4e759
JA
2005 if (!ret)
2006 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2007 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2008
4ac845a2
JA
2009 radix_tree_preload_end();
2010
2011 if (!ret) {
2012 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2013 list_add(&cic->queue_list, &cfqd->cic_list);
2014 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2015 }
e2d74ac0
JA
2016 }
2017
4ac845a2
JA
2018 if (ret)
2019 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2020
4ac845a2 2021 return ret;
e2d74ac0
JA
2022}
2023
1da177e4
LT
2024/*
2025 * Setup general io context and cfq io context. There can be several cfq
2026 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2027 * than one device managed by cfq.
1da177e4
LT
2028 */
2029static struct cfq_io_context *
e2d74ac0 2030cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2031{
22e2c507 2032 struct io_context *ioc = NULL;
1da177e4 2033 struct cfq_io_context *cic;
1da177e4 2034
22e2c507 2035 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2036
b5deef90 2037 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2038 if (!ioc)
2039 return NULL;
2040
4ac845a2 2041 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2042 if (cic)
2043 goto out;
1da177e4 2044
e2d74ac0
JA
2045 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2046 if (cic == NULL)
2047 goto err;
1da177e4 2048
4ac845a2
JA
2049 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2050 goto err_free;
2051
1da177e4 2052out:
fc46379d
JA
2053 smp_read_barrier_depends();
2054 if (unlikely(ioc->ioprio_changed))
2055 cfq_ioc_set_ioprio(ioc);
2056
1da177e4 2057 return cic;
4ac845a2
JA
2058err_free:
2059 cfq_cic_free(cic);
1da177e4
LT
2060err:
2061 put_io_context(ioc);
2062 return NULL;
2063}
2064
22e2c507
JA
2065static void
2066cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2067{
aaf1228d
JA
2068 unsigned long elapsed = jiffies - cic->last_end_request;
2069 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2070
22e2c507
JA
2071 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2072 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2073 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2074}
1da177e4 2075
206dc69b 2076static void
b2c18e1e 2077cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 2078 struct request *rq)
206dc69b
JA
2079{
2080 sector_t sdist;
2081 u64 total;
2082
b2c18e1e 2083 if (!cfqq->last_request_pos)
4d00aa47 2084 sdist = 0;
b2c18e1e
JM
2085 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2086 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
206dc69b 2087 else
b2c18e1e 2088 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
2089
2090 /*
2091 * Don't allow the seek distance to get too large from the
2092 * odd fragment, pagein, etc
2093 */
b2c18e1e
JM
2094 if (cfqq->seek_samples <= 60) /* second&third seek */
2095 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
206dc69b 2096 else
b2c18e1e 2097 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
206dc69b 2098
b2c18e1e
JM
2099 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2100 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2101 total = cfqq->seek_total + (cfqq->seek_samples/2);
2102 do_div(total, cfqq->seek_samples);
2103 cfqq->seek_mean = (sector_t)total;
e6c5bc73
JM
2104
2105 /*
2106 * If this cfqq is shared between multiple processes, check to
2107 * make sure that those processes are still issuing I/Os within
2108 * the mean seek distance. If not, it may be time to break the
2109 * queues apart again.
2110 */
2111 if (cfq_cfqq_coop(cfqq)) {
2112 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2113 cfqq->seeky_start = jiffies;
2114 else if (!CFQQ_SEEKY(cfqq))
2115 cfqq->seeky_start = 0;
2116 }
206dc69b 2117}
1da177e4 2118
22e2c507
JA
2119/*
2120 * Disable idle window if the process thinks too long or seeks so much that
2121 * it doesn't matter
2122 */
2123static void
2124cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2125 struct cfq_io_context *cic)
2126{
7b679138 2127 int old_idle, enable_idle;
1be92f2f 2128
0871714e
JA
2129 /*
2130 * Don't idle for async or idle io prio class
2131 */
2132 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
2133 return;
2134
c265a7f4 2135 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 2136
66dac98e 2137 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
b2c18e1e 2138 (!cfqd->cfq_latency && cfqd->hw_tag && CFQQ_SEEKY(cfqq)))
22e2c507
JA
2139 enable_idle = 0;
2140 else if (sample_valid(cic->ttime_samples)) {
ec60e4f6 2141 unsigned int slice_idle = cfqd->cfq_slice_idle;
b2c18e1e 2142 if (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq))
ec60e4f6
CZ
2143 slice_idle = msecs_to_jiffies(CFQ_MIN_TT);
2144 if (cic->ttime_mean > slice_idle)
22e2c507
JA
2145 enable_idle = 0;
2146 else
2147 enable_idle = 1;
1da177e4
LT
2148 }
2149
7b679138
JA
2150 if (old_idle != enable_idle) {
2151 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2152 if (enable_idle)
2153 cfq_mark_cfqq_idle_window(cfqq);
2154 else
2155 cfq_clear_cfqq_idle_window(cfqq);
2156 }
22e2c507 2157}
1da177e4 2158
22e2c507
JA
2159/*
2160 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2161 * no or if we aren't sure, a 1 will cause a preempt.
2162 */
a6151c3a 2163static bool
22e2c507 2164cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 2165 struct request *rq)
22e2c507 2166{
6d048f53 2167 struct cfq_queue *cfqq;
22e2c507 2168
6d048f53
JA
2169 cfqq = cfqd->active_queue;
2170 if (!cfqq)
a6151c3a 2171 return false;
22e2c507 2172
6d048f53 2173 if (cfq_slice_used(cfqq))
a6151c3a 2174 return true;
6d048f53
JA
2175
2176 if (cfq_class_idle(new_cfqq))
a6151c3a 2177 return false;
22e2c507
JA
2178
2179 if (cfq_class_idle(cfqq))
a6151c3a 2180 return true;
1e3335de 2181
374f84ac
JA
2182 /*
2183 * if the new request is sync, but the currently running queue is
2184 * not, let the sync request have priority.
2185 */
5e705374 2186 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 2187 return true;
1e3335de 2188
374f84ac
JA
2189 /*
2190 * So both queues are sync. Let the new request get disk time if
2191 * it's a metadata request and the current queue is doing regular IO.
2192 */
2193 if (rq_is_meta(rq) && !cfqq->meta_pending)
a6151c3a 2194 return false;
22e2c507 2195
3a9a3f6c
DS
2196 /*
2197 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2198 */
2199 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 2200 return true;
3a9a3f6c 2201
1e3335de 2202 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 2203 return false;
1e3335de
JA
2204
2205 /*
2206 * if this request is as-good as one we would expect from the
2207 * current cfqq, let it preempt
2208 */
b2c18e1e 2209 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 2210 return true;
1e3335de 2211
a6151c3a 2212 return false;
22e2c507
JA
2213}
2214
2215/*
2216 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2217 * let it have half of its nominal slice.
2218 */
2219static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2220{
7b679138 2221 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 2222 cfq_slice_expired(cfqd, 1);
22e2c507 2223
bf572256
JA
2224 /*
2225 * Put the new queue at the front of the of the current list,
2226 * so we know that it will be selected next.
2227 */
2228 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
2229
2230 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 2231
44f7c160
JA
2232 cfqq->slice_end = 0;
2233 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
2234}
2235
22e2c507 2236/*
5e705374 2237 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
2238 * something we should do about it
2239 */
2240static void
5e705374
JA
2241cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2242 struct request *rq)
22e2c507 2243{
5e705374 2244 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 2245
45333d5a 2246 cfqd->rq_queued++;
374f84ac
JA
2247 if (rq_is_meta(rq))
2248 cfqq->meta_pending++;
2249
9c2c38a1 2250 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 2251 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
2252 cfq_update_idle_window(cfqd, cfqq, cic);
2253
b2c18e1e 2254 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
2255
2256 if (cfqq == cfqd->active_queue) {
2257 /*
b029195d
JA
2258 * Remember that we saw a request from this process, but
2259 * don't start queuing just yet. Otherwise we risk seeing lots
2260 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
2261 * and merging. If the request is already larger than a single
2262 * page, let it rip immediately. For that case we assume that
2d870722
JA
2263 * merging is already done. Ditto for a busy system that
2264 * has other work pending, don't risk delaying until the
2265 * idle timer unplug to continue working.
22e2c507 2266 */
d6ceb25e 2267 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
2268 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2269 cfqd->busy_queues > 1) {
d6ceb25e 2270 del_timer(&cfqd->idle_slice_timer);
a7f55792 2271 __blk_run_queue(cfqd->queue);
d6ceb25e 2272 }
b029195d 2273 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 2274 }
5e705374 2275 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
2276 /*
2277 * not the active queue - expire current slice if it is
2278 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
2279 * has some old slice time left and is of higher priority or
2280 * this new queue is RT and the current one is BE
22e2c507
JA
2281 */
2282 cfq_preempt_queue(cfqd, cfqq);
a7f55792 2283 __blk_run_queue(cfqd->queue);
22e2c507 2284 }
1da177e4
LT
2285}
2286
165125e1 2287static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 2288{
b4878f24 2289 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2290 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2291
7b679138 2292 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 2293 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 2294
5e705374 2295 cfq_add_rq_rb(rq);
1da177e4 2296
30996f40 2297 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507
JA
2298 list_add_tail(&rq->queuelist, &cfqq->fifo);
2299
5e705374 2300 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
2301}
2302
45333d5a
AC
2303/*
2304 * Update hw_tag based on peak queue depth over 50 samples under
2305 * sufficient load.
2306 */
2307static void cfq_update_hw_tag(struct cfq_data *cfqd)
2308{
1a1238a7
SL
2309 struct cfq_queue *cfqq = cfqd->active_queue;
2310
5ad531db
JA
2311 if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2312 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
45333d5a
AC
2313
2314 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 2315 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2316 return;
2317
1a1238a7
SL
2318 /*
2319 * If active queue hasn't enough requests and can idle, cfq might not
2320 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2321 * case
2322 */
2323 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2324 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2325 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2326 return;
2327
45333d5a
AC
2328 if (cfqd->hw_tag_samples++ < 50)
2329 return;
2330
2331 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2332 cfqd->hw_tag = 1;
2333 else
2334 cfqd->hw_tag = 0;
2335
2336 cfqd->hw_tag_samples = 0;
2337 cfqd->rq_in_driver_peak = 0;
2338}
2339
165125e1 2340static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 2341{
5e705374 2342 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 2343 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 2344 const int sync = rq_is_sync(rq);
b4878f24 2345 unsigned long now;
1da177e4 2346
b4878f24 2347 now = jiffies;
7b679138 2348 cfq_log_cfqq(cfqd, cfqq, "complete");
1da177e4 2349
45333d5a
AC
2350 cfq_update_hw_tag(cfqd);
2351
5ad531db 2352 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 2353 WARN_ON(!cfqq->dispatched);
5ad531db 2354 cfqd->rq_in_driver[sync]--;
6d048f53 2355 cfqq->dispatched--;
1da177e4 2356
3ed9a296
JA
2357 if (cfq_cfqq_sync(cfqq))
2358 cfqd->sync_flight--;
2359
365722bb 2360 if (sync) {
5e705374 2361 RQ_CIC(rq)->last_end_request = now;
365722bb
VG
2362 cfqd->last_end_sync_rq = now;
2363 }
caaa5f9f
JA
2364
2365 /*
2366 * If this is the active queue, check if it needs to be expired,
2367 * or if we want to idle in case it has no pending requests.
2368 */
2369 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
2370 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2371
44f7c160
JA
2372 if (cfq_cfqq_slice_new(cfqq)) {
2373 cfq_set_prio_slice(cfqd, cfqq);
2374 cfq_clear_cfqq_slice_new(cfqq);
2375 }
a36e71f9
JA
2376 /*
2377 * If there are no requests waiting in this queue, and
2378 * there are other queues ready to issue requests, AND
2379 * those other queues are issuing requests within our
2380 * mean seek distance, give them a chance to run instead
2381 * of idling.
2382 */
0871714e 2383 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 2384 cfq_slice_expired(cfqd, 1);
b3b6d040 2385 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq) &&
a36e71f9 2386 sync && !rq_noidle(rq))
6d048f53 2387 cfq_arm_slice_timer(cfqd);
caaa5f9f 2388 }
6d048f53 2389
5ad531db 2390 if (!rq_in_driver(cfqd))
23e018a1 2391 cfq_schedule_dispatch(cfqd);
1da177e4
LT
2392}
2393
22e2c507
JA
2394/*
2395 * we temporarily boost lower priority queues if they are holding fs exclusive
2396 * resources. they are boosted to normal prio (CLASS_BE/4)
2397 */
2398static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 2399{
22e2c507
JA
2400 if (has_fs_excl()) {
2401 /*
2402 * boost idle prio on transactions that would lock out other
2403 * users of the filesystem
2404 */
2405 if (cfq_class_idle(cfqq))
2406 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2407 if (cfqq->ioprio > IOPRIO_NORM)
2408 cfqq->ioprio = IOPRIO_NORM;
2409 } else {
2410 /*
2411 * check if we need to unboost the queue
2412 */
2413 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2414 cfqq->ioprio_class = cfqq->org_ioprio_class;
2415 if (cfqq->ioprio != cfqq->org_ioprio)
2416 cfqq->ioprio = cfqq->org_ioprio;
2417 }
22e2c507 2418}
1da177e4 2419
89850f7e 2420static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 2421{
1b379d8d 2422 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 2423 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 2424 return ELV_MQUEUE_MUST;
3b18152c 2425 }
1da177e4 2426
22e2c507 2427 return ELV_MQUEUE_MAY;
22e2c507
JA
2428}
2429
165125e1 2430static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
2431{
2432 struct cfq_data *cfqd = q->elevator->elevator_data;
2433 struct task_struct *tsk = current;
91fac317 2434 struct cfq_io_context *cic;
22e2c507
JA
2435 struct cfq_queue *cfqq;
2436
2437 /*
2438 * don't force setup of a queue from here, as a call to may_queue
2439 * does not necessarily imply that a request actually will be queued.
2440 * so just lookup a possibly existing queue, or return 'may queue'
2441 * if that fails
2442 */
4ac845a2 2443 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
2444 if (!cic)
2445 return ELV_MQUEUE_MAY;
2446
b0b78f81 2447 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 2448 if (cfqq) {
fd0928df 2449 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
2450 cfq_prio_boost(cfqq);
2451
89850f7e 2452 return __cfq_may_queue(cfqq);
22e2c507
JA
2453 }
2454
2455 return ELV_MQUEUE_MAY;
1da177e4
LT
2456}
2457
1da177e4
LT
2458/*
2459 * queue lock held here
2460 */
bb37b94c 2461static void cfq_put_request(struct request *rq)
1da177e4 2462{
5e705374 2463 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 2464
5e705374 2465 if (cfqq) {
22e2c507 2466 const int rw = rq_data_dir(rq);
1da177e4 2467
22e2c507
JA
2468 BUG_ON(!cfqq->allocated[rw]);
2469 cfqq->allocated[rw]--;
1da177e4 2470
5e705374 2471 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 2472
1da177e4 2473 rq->elevator_private = NULL;
5e705374 2474 rq->elevator_private2 = NULL;
1da177e4 2475
1da177e4
LT
2476 cfq_put_queue(cfqq);
2477 }
2478}
2479
df5fe3e8
JM
2480static struct cfq_queue *
2481cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2482 struct cfq_queue *cfqq)
2483{
2484 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2485 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 2486 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
2487 cfq_put_queue(cfqq);
2488 return cic_to_cfqq(cic, 1);
2489}
2490
e6c5bc73
JM
2491static int should_split_cfqq(struct cfq_queue *cfqq)
2492{
2493 if (cfqq->seeky_start &&
2494 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
2495 return 1;
2496 return 0;
2497}
2498
2499/*
2500 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2501 * was the last process referring to said cfqq.
2502 */
2503static struct cfq_queue *
2504split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
2505{
2506 if (cfqq_process_refs(cfqq) == 1) {
2507 cfqq->seeky_start = 0;
2508 cfqq->pid = current->pid;
2509 cfq_clear_cfqq_coop(cfqq);
2510 return cfqq;
2511 }
2512
2513 cic_set_cfqq(cic, NULL, 1);
2514 cfq_put_queue(cfqq);
2515 return NULL;
2516}
1da177e4 2517/*
22e2c507 2518 * Allocate cfq data structures associated with this request.
1da177e4 2519 */
22e2c507 2520static int
165125e1 2521cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
2522{
2523 struct cfq_data *cfqd = q->elevator->elevator_data;
2524 struct cfq_io_context *cic;
2525 const int rw = rq_data_dir(rq);
a6151c3a 2526 const bool is_sync = rq_is_sync(rq);
22e2c507 2527 struct cfq_queue *cfqq;
1da177e4
LT
2528 unsigned long flags;
2529
2530 might_sleep_if(gfp_mask & __GFP_WAIT);
2531
e2d74ac0 2532 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 2533
1da177e4
LT
2534 spin_lock_irqsave(q->queue_lock, flags);
2535
22e2c507
JA
2536 if (!cic)
2537 goto queue_fail;
2538
e6c5bc73 2539new_queue:
91fac317 2540 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 2541 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 2542 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 2543 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 2544 } else {
e6c5bc73
JM
2545 /*
2546 * If the queue was seeky for too long, break it apart.
2547 */
2548 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
2549 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
2550 cfqq = split_cfqq(cic, cfqq);
2551 if (!cfqq)
2552 goto new_queue;
2553 }
2554
df5fe3e8
JM
2555 /*
2556 * Check to see if this queue is scheduled to merge with
2557 * another, closely cooperating queue. The merging of
2558 * queues happens here as it must be done in process context.
2559 * The reference on new_cfqq was taken in merge_cfqqs.
2560 */
2561 if (cfqq->new_cfqq)
2562 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 2563 }
1da177e4
LT
2564
2565 cfqq->allocated[rw]++;
22e2c507 2566 atomic_inc(&cfqq->ref);
1da177e4 2567
5e705374 2568 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 2569
5e705374
JA
2570 rq->elevator_private = cic;
2571 rq->elevator_private2 = cfqq;
2572 return 0;
1da177e4 2573
22e2c507
JA
2574queue_fail:
2575 if (cic)
2576 put_io_context(cic->ioc);
89850f7e 2577
23e018a1 2578 cfq_schedule_dispatch(cfqd);
1da177e4 2579 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 2580 cfq_log(cfqd, "set_request fail");
1da177e4
LT
2581 return 1;
2582}
2583
65f27f38 2584static void cfq_kick_queue(struct work_struct *work)
22e2c507 2585{
65f27f38 2586 struct cfq_data *cfqd =
23e018a1 2587 container_of(work, struct cfq_data, unplug_work);
165125e1 2588 struct request_queue *q = cfqd->queue;
22e2c507 2589
40bb54d1 2590 spin_lock_irq(q->queue_lock);
a7f55792 2591 __blk_run_queue(cfqd->queue);
40bb54d1 2592 spin_unlock_irq(q->queue_lock);
22e2c507
JA
2593}
2594
2595/*
2596 * Timer running if the active_queue is currently idling inside its time slice
2597 */
2598static void cfq_idle_slice_timer(unsigned long data)
2599{
2600 struct cfq_data *cfqd = (struct cfq_data *) data;
2601 struct cfq_queue *cfqq;
2602 unsigned long flags;
3c6bd2f8 2603 int timed_out = 1;
22e2c507 2604
7b679138
JA
2605 cfq_log(cfqd, "idle timer fired");
2606
22e2c507
JA
2607 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2608
fe094d98
JA
2609 cfqq = cfqd->active_queue;
2610 if (cfqq) {
3c6bd2f8
JA
2611 timed_out = 0;
2612
b029195d
JA
2613 /*
2614 * We saw a request before the queue expired, let it through
2615 */
2616 if (cfq_cfqq_must_dispatch(cfqq))
2617 goto out_kick;
2618
22e2c507
JA
2619 /*
2620 * expired
2621 */
44f7c160 2622 if (cfq_slice_used(cfqq))
22e2c507
JA
2623 goto expire;
2624
2625 /*
2626 * only expire and reinvoke request handler, if there are
2627 * other queues with pending requests
2628 */
caaa5f9f 2629 if (!cfqd->busy_queues)
22e2c507 2630 goto out_cont;
22e2c507
JA
2631
2632 /*
2633 * not expired and it has a request pending, let it dispatch
2634 */
75e50984 2635 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2636 goto out_kick;
22e2c507
JA
2637 }
2638expire:
6084cdda 2639 cfq_slice_expired(cfqd, timed_out);
22e2c507 2640out_kick:
23e018a1 2641 cfq_schedule_dispatch(cfqd);
22e2c507
JA
2642out_cont:
2643 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2644}
2645
3b18152c
JA
2646static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2647{
2648 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 2649 cancel_work_sync(&cfqd->unplug_work);
3b18152c 2650}
22e2c507 2651
c2dea2d1
VT
2652static void cfq_put_async_queues(struct cfq_data *cfqd)
2653{
2654 int i;
2655
2656 for (i = 0; i < IOPRIO_BE_NR; i++) {
2657 if (cfqd->async_cfqq[0][i])
2658 cfq_put_queue(cfqd->async_cfqq[0][i]);
2659 if (cfqd->async_cfqq[1][i])
2660 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 2661 }
2389d1ef
ON
2662
2663 if (cfqd->async_idle_cfqq)
2664 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
2665}
2666
b374d18a 2667static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 2668{
22e2c507 2669 struct cfq_data *cfqd = e->elevator_data;
165125e1 2670 struct request_queue *q = cfqd->queue;
22e2c507 2671
3b18152c 2672 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 2673
d9ff4187 2674 spin_lock_irq(q->queue_lock);
e2d74ac0 2675
d9ff4187 2676 if (cfqd->active_queue)
6084cdda 2677 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
2678
2679 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
2680 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2681 struct cfq_io_context,
2682 queue_list);
89850f7e
JA
2683
2684 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 2685 }
e2d74ac0 2686
c2dea2d1 2687 cfq_put_async_queues(cfqd);
15c31be4 2688
d9ff4187 2689 spin_unlock_irq(q->queue_lock);
a90d742e
AV
2690
2691 cfq_shutdown_timer_wq(cfqd);
2692
a90d742e 2693 kfree(cfqd);
1da177e4
LT
2694}
2695
165125e1 2696static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
2697{
2698 struct cfq_data *cfqd;
26a2ac00 2699 int i;
1da177e4 2700
94f6030c 2701 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 2702 if (!cfqd)
bc1c1169 2703 return NULL;
1da177e4 2704
cc09e299 2705 cfqd->service_tree = CFQ_RB_ROOT;
26a2ac00
JA
2706
2707 /*
2708 * Not strictly needed (since RB_ROOT just clears the node and we
2709 * zeroed cfqd on alloc), but better be safe in case someone decides
2710 * to add magic to the rb code
2711 */
2712 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2713 cfqd->prio_trees[i] = RB_ROOT;
2714
6118b70b
JA
2715 /*
2716 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2717 * Grab a permanent reference to it, so that the normal code flow
2718 * will not attempt to free it.
2719 */
2720 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2721 atomic_inc(&cfqd->oom_cfqq.ref);
2722
d9ff4187 2723 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 2724
1da177e4 2725 cfqd->queue = q;
1da177e4 2726
22e2c507
JA
2727 init_timer(&cfqd->idle_slice_timer);
2728 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2729 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2730
23e018a1 2731 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 2732
1da177e4 2733 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
2734 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2735 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
2736 cfqd->cfq_back_max = cfq_back_max;
2737 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
2738 cfqd->cfq_slice[0] = cfq_slice_async;
2739 cfqd->cfq_slice[1] = cfq_slice_sync;
2740 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2741 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 2742 cfqd->cfq_latency = 1;
45333d5a 2743 cfqd->hw_tag = 1;
365722bb 2744 cfqd->last_end_sync_rq = jiffies;
bc1c1169 2745 return cfqd;
1da177e4
LT
2746}
2747
2748static void cfq_slab_kill(void)
2749{
d6de8be7
JA
2750 /*
2751 * Caller already ensured that pending RCU callbacks are completed,
2752 * so we should have no busy allocations at this point.
2753 */
1da177e4
LT
2754 if (cfq_pool)
2755 kmem_cache_destroy(cfq_pool);
2756 if (cfq_ioc_pool)
2757 kmem_cache_destroy(cfq_ioc_pool);
2758}
2759
2760static int __init cfq_slab_setup(void)
2761{
0a31bd5f 2762 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
2763 if (!cfq_pool)
2764 goto fail;
2765
34e6bbf2 2766 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
2767 if (!cfq_ioc_pool)
2768 goto fail;
2769
2770 return 0;
2771fail:
2772 cfq_slab_kill();
2773 return -ENOMEM;
2774}
2775
1da177e4
LT
2776/*
2777 * sysfs parts below -->
2778 */
1da177e4
LT
2779static ssize_t
2780cfq_var_show(unsigned int var, char *page)
2781{
2782 return sprintf(page, "%d\n", var);
2783}
2784
2785static ssize_t
2786cfq_var_store(unsigned int *var, const char *page, size_t count)
2787{
2788 char *p = (char *) page;
2789
2790 *var = simple_strtoul(p, &p, 10);
2791 return count;
2792}
2793
1da177e4 2794#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 2795static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 2796{ \
3d1ab40f 2797 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2798 unsigned int __data = __VAR; \
2799 if (__CONV) \
2800 __data = jiffies_to_msecs(__data); \
2801 return cfq_var_show(__data, (page)); \
2802}
2803SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
2804SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2805SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
2806SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2807SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
2808SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2809SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2810SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2811SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 2812SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
2813#undef SHOW_FUNCTION
2814
2815#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 2816static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 2817{ \
3d1ab40f 2818 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2819 unsigned int __data; \
2820 int ret = cfq_var_store(&__data, (page), count); \
2821 if (__data < (MIN)) \
2822 __data = (MIN); \
2823 else if (__data > (MAX)) \
2824 __data = (MAX); \
2825 if (__CONV) \
2826 *(__PTR) = msecs_to_jiffies(__data); \
2827 else \
2828 *(__PTR) = __data; \
2829 return ret; \
2830}
2831STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
2832STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2833 UINT_MAX, 1);
2834STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2835 UINT_MAX, 1);
e572ec7e 2836STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
2837STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2838 UINT_MAX, 0);
22e2c507
JA
2839STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2840STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2841STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
2842STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2843 UINT_MAX, 0);
963b72fc 2844STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
2845#undef STORE_FUNCTION
2846
e572ec7e
AV
2847#define CFQ_ATTR(name) \
2848 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2849
2850static struct elv_fs_entry cfq_attrs[] = {
2851 CFQ_ATTR(quantum),
e572ec7e
AV
2852 CFQ_ATTR(fifo_expire_sync),
2853 CFQ_ATTR(fifo_expire_async),
2854 CFQ_ATTR(back_seek_max),
2855 CFQ_ATTR(back_seek_penalty),
2856 CFQ_ATTR(slice_sync),
2857 CFQ_ATTR(slice_async),
2858 CFQ_ATTR(slice_async_rq),
2859 CFQ_ATTR(slice_idle),
963b72fc 2860 CFQ_ATTR(low_latency),
e572ec7e 2861 __ATTR_NULL
1da177e4
LT
2862};
2863
1da177e4
LT
2864static struct elevator_type iosched_cfq = {
2865 .ops = {
2866 .elevator_merge_fn = cfq_merge,
2867 .elevator_merged_fn = cfq_merged_request,
2868 .elevator_merge_req_fn = cfq_merged_requests,
da775265 2869 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 2870 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 2871 .elevator_add_req_fn = cfq_insert_request,
b4878f24 2872 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
2873 .elevator_deactivate_req_fn = cfq_deactivate_request,
2874 .elevator_queue_empty_fn = cfq_queue_empty,
2875 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
2876 .elevator_former_req_fn = elv_rb_former_request,
2877 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
2878 .elevator_set_req_fn = cfq_set_request,
2879 .elevator_put_req_fn = cfq_put_request,
2880 .elevator_may_queue_fn = cfq_may_queue,
2881 .elevator_init_fn = cfq_init_queue,
2882 .elevator_exit_fn = cfq_exit_queue,
fc46379d 2883 .trim = cfq_free_io_context,
1da177e4 2884 },
3d1ab40f 2885 .elevator_attrs = cfq_attrs,
1da177e4
LT
2886 .elevator_name = "cfq",
2887 .elevator_owner = THIS_MODULE,
2888};
2889
2890static int __init cfq_init(void)
2891{
22e2c507
JA
2892 /*
2893 * could be 0 on HZ < 1000 setups
2894 */
2895 if (!cfq_slice_async)
2896 cfq_slice_async = 1;
2897 if (!cfq_slice_idle)
2898 cfq_slice_idle = 1;
2899
1da177e4
LT
2900 if (cfq_slab_setup())
2901 return -ENOMEM;
2902
2fdd82bd 2903 elv_register(&iosched_cfq);
1da177e4 2904
2fdd82bd 2905 return 0;
1da177e4
LT
2906}
2907
2908static void __exit cfq_exit(void)
2909{
6e9a4738 2910 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 2911 elv_unregister(&iosched_cfq);
334e94de 2912 ioc_gone = &all_gone;
fba82272
OH
2913 /* ioc_gone's update must be visible before reading ioc_count */
2914 smp_wmb();
d6de8be7
JA
2915
2916 /*
2917 * this also protects us from entering cfq_slab_kill() with
2918 * pending RCU callbacks
2919 */
245b2e70 2920 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 2921 wait_for_completion(&all_gone);
83521d3e 2922 cfq_slab_kill();
1da177e4
LT
2923}
2924
2925module_init(cfq_init);
2926module_exit(cfq_exit);
2927
2928MODULE_AUTHOR("Jens Axboe");
2929MODULE_LICENSE("GPL");
2930MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");