]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/bio.c
block: adjust blkdev_issue_discard for swap
[mirror_ubuntu-artful-kernel.git] / fs / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/slab.h>
23#include <linux/init.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/mempool.h>
27#include <linux/workqueue.h>
2056a782 28#include <linux/blktrace_api.h>
f1970baf 29#include <scsi/sg.h> /* for struct sg_iovec */
1da177e4 30
e18b890b 31static struct kmem_cache *bio_slab __read_mostly;
1da177e4 32
fa3536cc 33mempool_t *bio_split_pool __read_mostly;
1da177e4 34
1da177e4
LT
35/*
36 * if you change this list, also change bvec_alloc or things will
37 * break badly! cannot be bigger than what you can fit into an
38 * unsigned short
39 */
40
41#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
6c036527 42static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
1da177e4
LT
43 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
44};
45#undef BV
46
1da177e4
LT
47/*
48 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
49 * IO code that does not need private memory pools.
50 */
51d654e1 51struct bio_set *fs_bio_set;
1da177e4 52
7ba1ba12
MP
53unsigned int bvec_nr_vecs(unsigned short idx)
54{
55 return bvec_slabs[idx].nr_vecs;
56}
57
51d654e1 58struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx, struct bio_set *bs)
1da177e4
LT
59{
60 struct bio_vec *bvl;
1da177e4
LT
61
62 /*
63 * see comment near bvec_array define!
64 */
65 switch (nr) {
66 case 1 : *idx = 0; break;
67 case 2 ... 4: *idx = 1; break;
68 case 5 ... 16: *idx = 2; break;
69 case 17 ... 64: *idx = 3; break;
70 case 65 ... 128: *idx = 4; break;
71 case 129 ... BIO_MAX_PAGES: *idx = 5; break;
72 default:
73 return NULL;
74 }
75 /*
76 * idx now points to the pool we want to allocate from
77 */
78
1da177e4 79 bvl = mempool_alloc(bs->bvec_pools[*idx], gfp_mask);
1ac0ae06
DC
80 if (bvl)
81 memset(bvl, 0, bvec_nr_vecs(*idx) * sizeof(struct bio_vec));
1da177e4
LT
82
83 return bvl;
84}
85
3676347a 86void bio_free(struct bio *bio, struct bio_set *bio_set)
1da177e4 87{
992c5dda
JA
88 if (bio->bi_io_vec) {
89 const int pool_idx = BIO_POOL_IDX(bio);
1da177e4 90
992c5dda
JA
91 BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS);
92
93 mempool_free(bio->bi_io_vec, bio_set->bvec_pools[pool_idx]);
94 }
1da177e4 95
7ba1ba12
MP
96 if (bio_integrity(bio))
97 bio_integrity_free(bio, bio_set);
98
3676347a
PO
99 mempool_free(bio, bio_set->bio_pool);
100}
101
102/*
103 * default destructor for a bio allocated with bio_alloc_bioset()
104 */
105static void bio_fs_destructor(struct bio *bio)
106{
107 bio_free(bio, fs_bio_set);
1da177e4
LT
108}
109
858119e1 110void bio_init(struct bio *bio)
1da177e4 111{
2b94de55 112 memset(bio, 0, sizeof(*bio));
1da177e4 113 bio->bi_flags = 1 << BIO_UPTODATE;
c7c22e4d 114 bio->bi_comp_cpu = -1;
1da177e4 115 atomic_set(&bio->bi_cnt, 1);
1da177e4
LT
116}
117
118/**
119 * bio_alloc_bioset - allocate a bio for I/O
120 * @gfp_mask: the GFP_ mask given to the slab allocator
121 * @nr_iovecs: number of iovecs to pre-allocate
67be2dd1 122 * @bs: the bio_set to allocate from
1da177e4
LT
123 *
124 * Description:
125 * bio_alloc_bioset will first try it's on mempool to satisfy the allocation.
126 * If %__GFP_WAIT is set then we will block on the internal pool waiting
127 * for a &struct bio to become free.
128 *
129 * allocate bio and iovecs from the memory pools specified by the
130 * bio_set structure.
131 **/
dd0fc66f 132struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4
LT
133{
134 struct bio *bio = mempool_alloc(bs->bio_pool, gfp_mask);
135
136 if (likely(bio)) {
137 struct bio_vec *bvl = NULL;
138
139 bio_init(bio);
140 if (likely(nr_iovecs)) {
eeae1d48 141 unsigned long uninitialized_var(idx);
1da177e4
LT
142
143 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
144 if (unlikely(!bvl)) {
145 mempool_free(bio, bs->bio_pool);
146 bio = NULL;
147 goto out;
148 }
149 bio->bi_flags |= idx << BIO_POOL_OFFSET;
1ac0ae06 150 bio->bi_max_vecs = bvec_nr_vecs(idx);
1da177e4
LT
151 }
152 bio->bi_io_vec = bvl;
1da177e4
LT
153 }
154out:
155 return bio;
156}
157
dd0fc66f 158struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
1da177e4 159{
3676347a
PO
160 struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
161
162 if (bio)
163 bio->bi_destructor = bio_fs_destructor;
164
165 return bio;
1da177e4
LT
166}
167
168void zero_fill_bio(struct bio *bio)
169{
170 unsigned long flags;
171 struct bio_vec *bv;
172 int i;
173
174 bio_for_each_segment(bv, bio, i) {
175 char *data = bvec_kmap_irq(bv, &flags);
176 memset(data, 0, bv->bv_len);
177 flush_dcache_page(bv->bv_page);
178 bvec_kunmap_irq(data, &flags);
179 }
180}
181EXPORT_SYMBOL(zero_fill_bio);
182
183/**
184 * bio_put - release a reference to a bio
185 * @bio: bio to release reference to
186 *
187 * Description:
188 * Put a reference to a &struct bio, either one you have gotten with
189 * bio_alloc or bio_get. The last put of a bio will free it.
190 **/
191void bio_put(struct bio *bio)
192{
193 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
194
195 /*
196 * last put frees it
197 */
198 if (atomic_dec_and_test(&bio->bi_cnt)) {
199 bio->bi_next = NULL;
200 bio->bi_destructor(bio);
201 }
202}
203
165125e1 204inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
205{
206 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
207 blk_recount_segments(q, bio);
208
209 return bio->bi_phys_segments;
210}
211
1da177e4
LT
212/**
213 * __bio_clone - clone a bio
214 * @bio: destination bio
215 * @bio_src: bio to clone
216 *
217 * Clone a &bio. Caller will own the returned bio, but not
218 * the actual data it points to. Reference count of returned
219 * bio will be one.
220 */
858119e1 221void __bio_clone(struct bio *bio, struct bio *bio_src)
1da177e4 222{
e525e153
AM
223 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
224 bio_src->bi_max_vecs * sizeof(struct bio_vec));
1da177e4 225
5d84070e
JA
226 /*
227 * most users will be overriding ->bi_bdev with a new target,
228 * so we don't set nor calculate new physical/hw segment counts here
229 */
1da177e4
LT
230 bio->bi_sector = bio_src->bi_sector;
231 bio->bi_bdev = bio_src->bi_bdev;
232 bio->bi_flags |= 1 << BIO_CLONED;
233 bio->bi_rw = bio_src->bi_rw;
1da177e4
LT
234 bio->bi_vcnt = bio_src->bi_vcnt;
235 bio->bi_size = bio_src->bi_size;
a5453be4 236 bio->bi_idx = bio_src->bi_idx;
1da177e4
LT
237}
238
239/**
240 * bio_clone - clone a bio
241 * @bio: bio to clone
242 * @gfp_mask: allocation priority
243 *
244 * Like __bio_clone, only also allocates the returned bio
245 */
dd0fc66f 246struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
247{
248 struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
249
7ba1ba12
MP
250 if (!b)
251 return NULL;
252
253 b->bi_destructor = bio_fs_destructor;
254 __bio_clone(b, bio);
255
256 if (bio_integrity(bio)) {
257 int ret;
258
259 ret = bio_integrity_clone(b, bio, fs_bio_set);
260
261 if (ret < 0)
262 return NULL;
3676347a 263 }
1da177e4
LT
264
265 return b;
266}
267
268/**
269 * bio_get_nr_vecs - return approx number of vecs
270 * @bdev: I/O target
271 *
272 * Return the approximate number of pages we can send to this target.
273 * There's no guarantee that you will be able to fit this number of pages
274 * into a bio, it does not account for dynamic restrictions that vary
275 * on offset.
276 */
277int bio_get_nr_vecs(struct block_device *bdev)
278{
165125e1 279 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
280 int nr_pages;
281
282 nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
283 if (nr_pages > q->max_phys_segments)
284 nr_pages = q->max_phys_segments;
285 if (nr_pages > q->max_hw_segments)
286 nr_pages = q->max_hw_segments;
287
288 return nr_pages;
289}
290
165125e1 291static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
defd94b7
MC
292 *page, unsigned int len, unsigned int offset,
293 unsigned short max_sectors)
1da177e4
LT
294{
295 int retried_segments = 0;
296 struct bio_vec *bvec;
297
298 /*
299 * cloned bio must not modify vec list
300 */
301 if (unlikely(bio_flagged(bio, BIO_CLONED)))
302 return 0;
303
80cfd548 304 if (((bio->bi_size + len) >> 9) > max_sectors)
1da177e4
LT
305 return 0;
306
80cfd548
JA
307 /*
308 * For filesystems with a blocksize smaller than the pagesize
309 * we will often be called with the same page as last time and
310 * a consecutive offset. Optimize this special case.
311 */
312 if (bio->bi_vcnt > 0) {
313 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
314
315 if (page == prev->bv_page &&
316 offset == prev->bv_offset + prev->bv_len) {
317 prev->bv_len += len;
cc371e66
AK
318
319 if (q->merge_bvec_fn) {
320 struct bvec_merge_data bvm = {
321 .bi_bdev = bio->bi_bdev,
322 .bi_sector = bio->bi_sector,
323 .bi_size = bio->bi_size,
324 .bi_rw = bio->bi_rw,
325 };
326
327 if (q->merge_bvec_fn(q, &bvm, prev) < len) {
328 prev->bv_len -= len;
329 return 0;
330 }
80cfd548
JA
331 }
332
333 goto done;
334 }
335 }
336
337 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
338 return 0;
339
340 /*
341 * we might lose a segment or two here, but rather that than
342 * make this too complex.
343 */
344
345 while (bio->bi_phys_segments >= q->max_phys_segments
5df97b91 346 || bio->bi_phys_segments >= q->max_hw_segments) {
1da177e4
LT
347
348 if (retried_segments)
349 return 0;
350
351 retried_segments = 1;
352 blk_recount_segments(q, bio);
353 }
354
355 /*
356 * setup the new entry, we might clear it again later if we
357 * cannot add the page
358 */
359 bvec = &bio->bi_io_vec[bio->bi_vcnt];
360 bvec->bv_page = page;
361 bvec->bv_len = len;
362 bvec->bv_offset = offset;
363
364 /*
365 * if queue has other restrictions (eg varying max sector size
366 * depending on offset), it can specify a merge_bvec_fn in the
367 * queue to get further control
368 */
369 if (q->merge_bvec_fn) {
cc371e66
AK
370 struct bvec_merge_data bvm = {
371 .bi_bdev = bio->bi_bdev,
372 .bi_sector = bio->bi_sector,
373 .bi_size = bio->bi_size,
374 .bi_rw = bio->bi_rw,
375 };
376
1da177e4
LT
377 /*
378 * merge_bvec_fn() returns number of bytes it can accept
379 * at this offset
380 */
cc371e66 381 if (q->merge_bvec_fn(q, &bvm, bvec) < len) {
1da177e4
LT
382 bvec->bv_page = NULL;
383 bvec->bv_len = 0;
384 bvec->bv_offset = 0;
385 return 0;
386 }
387 }
388
389 /* If we may be able to merge these biovecs, force a recount */
b8b3e16c 390 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
1da177e4
LT
391 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
392
393 bio->bi_vcnt++;
394 bio->bi_phys_segments++;
80cfd548 395 done:
1da177e4
LT
396 bio->bi_size += len;
397 return len;
398}
399
6e68af66
MC
400/**
401 * bio_add_pc_page - attempt to add page to bio
fddfdeaf 402 * @q: the target queue
6e68af66
MC
403 * @bio: destination bio
404 * @page: page to add
405 * @len: vec entry length
406 * @offset: vec entry offset
407 *
408 * Attempt to add a page to the bio_vec maplist. This can fail for a
409 * number of reasons, such as the bio being full or target block
410 * device limitations. The target block device must allow bio's
411 * smaller than PAGE_SIZE, so it is always possible to add a single
412 * page to an empty bio. This should only be used by REQ_PC bios.
413 */
165125e1 414int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
6e68af66
MC
415 unsigned int len, unsigned int offset)
416{
defd94b7 417 return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors);
6e68af66
MC
418}
419
1da177e4
LT
420/**
421 * bio_add_page - attempt to add page to bio
422 * @bio: destination bio
423 * @page: page to add
424 * @len: vec entry length
425 * @offset: vec entry offset
426 *
427 * Attempt to add a page to the bio_vec maplist. This can fail for a
428 * number of reasons, such as the bio being full or target block
429 * device limitations. The target block device must allow bio's
430 * smaller than PAGE_SIZE, so it is always possible to add a single
431 * page to an empty bio.
432 */
433int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
434 unsigned int offset)
435{
defd94b7
MC
436 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
437 return __bio_add_page(q, bio, page, len, offset, q->max_sectors);
1da177e4
LT
438}
439
440struct bio_map_data {
441 struct bio_vec *iovecs;
c5dec1c3 442 struct sg_iovec *sgvecs;
152e283f
FT
443 int nr_sgvecs;
444 int is_our_pages;
1da177e4
LT
445};
446
c5dec1c3 447static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
152e283f
FT
448 struct sg_iovec *iov, int iov_count,
449 int is_our_pages)
1da177e4
LT
450{
451 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
c5dec1c3
FT
452 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
453 bmd->nr_sgvecs = iov_count;
152e283f 454 bmd->is_our_pages = is_our_pages;
1da177e4
LT
455 bio->bi_private = bmd;
456}
457
458static void bio_free_map_data(struct bio_map_data *bmd)
459{
460 kfree(bmd->iovecs);
c5dec1c3 461 kfree(bmd->sgvecs);
1da177e4
LT
462 kfree(bmd);
463}
464
76029ff3
FT
465static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
466 gfp_t gfp_mask)
1da177e4 467{
76029ff3 468 struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask);
1da177e4
LT
469
470 if (!bmd)
471 return NULL;
472
76029ff3 473 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
c5dec1c3
FT
474 if (!bmd->iovecs) {
475 kfree(bmd);
476 return NULL;
477 }
478
76029ff3 479 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
c5dec1c3 480 if (bmd->sgvecs)
1da177e4
LT
481 return bmd;
482
c5dec1c3 483 kfree(bmd->iovecs);
1da177e4
LT
484 kfree(bmd);
485 return NULL;
486}
487
aefcc28a 488static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
152e283f
FT
489 struct sg_iovec *iov, int iov_count, int uncopy,
490 int do_free_page)
c5dec1c3
FT
491{
492 int ret = 0, i;
493 struct bio_vec *bvec;
494 int iov_idx = 0;
495 unsigned int iov_off = 0;
496 int read = bio_data_dir(bio) == READ;
497
498 __bio_for_each_segment(bvec, bio, i, 0) {
499 char *bv_addr = page_address(bvec->bv_page);
aefcc28a 500 unsigned int bv_len = iovecs[i].bv_len;
c5dec1c3
FT
501
502 while (bv_len && iov_idx < iov_count) {
503 unsigned int bytes;
504 char *iov_addr;
505
506 bytes = min_t(unsigned int,
507 iov[iov_idx].iov_len - iov_off, bv_len);
508 iov_addr = iov[iov_idx].iov_base + iov_off;
509
510 if (!ret) {
511 if (!read && !uncopy)
512 ret = copy_from_user(bv_addr, iov_addr,
513 bytes);
514 if (read && uncopy)
515 ret = copy_to_user(iov_addr, bv_addr,
516 bytes);
517
518 if (ret)
519 ret = -EFAULT;
520 }
521
522 bv_len -= bytes;
523 bv_addr += bytes;
524 iov_addr += bytes;
525 iov_off += bytes;
526
527 if (iov[iov_idx].iov_len == iov_off) {
528 iov_idx++;
529 iov_off = 0;
530 }
531 }
532
152e283f 533 if (do_free_page)
c5dec1c3
FT
534 __free_page(bvec->bv_page);
535 }
536
537 return ret;
538}
539
1da177e4
LT
540/**
541 * bio_uncopy_user - finish previously mapped bio
542 * @bio: bio being terminated
543 *
544 * Free pages allocated from bio_copy_user() and write back data
545 * to user space in case of a read.
546 */
547int bio_uncopy_user(struct bio *bio)
548{
549 struct bio_map_data *bmd = bio->bi_private;
81882766 550 int ret = 0;
1da177e4 551
81882766
FT
552 if (!bio_flagged(bio, BIO_NULL_MAPPED))
553 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
554 bmd->nr_sgvecs, 1, bmd->is_our_pages);
1da177e4
LT
555 bio_free_map_data(bmd);
556 bio_put(bio);
557 return ret;
558}
559
560/**
c5dec1c3 561 * bio_copy_user_iov - copy user data to bio
1da177e4 562 * @q: destination block queue
152e283f 563 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
564 * @iov: the iovec.
565 * @iov_count: number of elements in the iovec
1da177e4 566 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 567 * @gfp_mask: memory allocation flags
1da177e4
LT
568 *
569 * Prepares and returns a bio for indirect user io, bouncing data
570 * to/from kernel pages as necessary. Must be paired with
571 * call bio_uncopy_user() on io completion.
572 */
152e283f
FT
573struct bio *bio_copy_user_iov(struct request_queue *q,
574 struct rq_map_data *map_data,
575 struct sg_iovec *iov, int iov_count,
576 int write_to_vm, gfp_t gfp_mask)
1da177e4 577{
1da177e4
LT
578 struct bio_map_data *bmd;
579 struct bio_vec *bvec;
580 struct page *page;
581 struct bio *bio;
582 int i, ret;
c5dec1c3
FT
583 int nr_pages = 0;
584 unsigned int len = 0;
1da177e4 585
c5dec1c3
FT
586 for (i = 0; i < iov_count; i++) {
587 unsigned long uaddr;
588 unsigned long end;
589 unsigned long start;
590
591 uaddr = (unsigned long)iov[i].iov_base;
592 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
593 start = uaddr >> PAGE_SHIFT;
594
595 nr_pages += end - start;
596 len += iov[i].iov_len;
597 }
598
a3bce90e 599 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
1da177e4
LT
600 if (!bmd)
601 return ERR_PTR(-ENOMEM);
602
1da177e4 603 ret = -ENOMEM;
a3bce90e 604 bio = bio_alloc(gfp_mask, nr_pages);
1da177e4
LT
605 if (!bio)
606 goto out_bmd;
607
608 bio->bi_rw |= (!write_to_vm << BIO_RW);
609
610 ret = 0;
152e283f 611 i = 0;
1da177e4 612 while (len) {
152e283f
FT
613 unsigned int bytes;
614
615 if (map_data)
616 bytes = 1U << (PAGE_SHIFT + map_data->page_order);
617 else
618 bytes = PAGE_SIZE;
1da177e4
LT
619
620 if (bytes > len)
621 bytes = len;
622
152e283f
FT
623 if (map_data) {
624 if (i == map_data->nr_entries) {
625 ret = -ENOMEM;
626 break;
627 }
628 page = map_data->pages[i++];
629 } else
630 page = alloc_page(q->bounce_gfp | gfp_mask);
1da177e4
LT
631 if (!page) {
632 ret = -ENOMEM;
633 break;
634 }
635
0e75f906 636 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1da177e4 637 break;
1da177e4
LT
638
639 len -= bytes;
640 }
641
642 if (ret)
643 goto cleanup;
644
645 /*
646 * success
647 */
648 if (!write_to_vm) {
152e283f 649 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 0);
c5dec1c3
FT
650 if (ret)
651 goto cleanup;
1da177e4
LT
652 }
653
152e283f 654 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1da177e4
LT
655 return bio;
656cleanup:
152e283f
FT
657 if (!map_data)
658 bio_for_each_segment(bvec, bio, i)
659 __free_page(bvec->bv_page);
1da177e4
LT
660
661 bio_put(bio);
662out_bmd:
663 bio_free_map_data(bmd);
664 return ERR_PTR(ret);
665}
666
c5dec1c3
FT
667/**
668 * bio_copy_user - copy user data to bio
669 * @q: destination block queue
152e283f 670 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
671 * @uaddr: start of user address
672 * @len: length in bytes
673 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 674 * @gfp_mask: memory allocation flags
c5dec1c3
FT
675 *
676 * Prepares and returns a bio for indirect user io, bouncing data
677 * to/from kernel pages as necessary. Must be paired with
678 * call bio_uncopy_user() on io completion.
679 */
152e283f
FT
680struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
681 unsigned long uaddr, unsigned int len,
682 int write_to_vm, gfp_t gfp_mask)
c5dec1c3
FT
683{
684 struct sg_iovec iov;
685
686 iov.iov_base = (void __user *)uaddr;
687 iov.iov_len = len;
688
152e283f 689 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
c5dec1c3
FT
690}
691
165125e1 692static struct bio *__bio_map_user_iov(struct request_queue *q,
f1970baf
JB
693 struct block_device *bdev,
694 struct sg_iovec *iov, int iov_count,
a3bce90e 695 int write_to_vm, gfp_t gfp_mask)
1da177e4 696{
f1970baf
JB
697 int i, j;
698 int nr_pages = 0;
1da177e4
LT
699 struct page **pages;
700 struct bio *bio;
f1970baf
JB
701 int cur_page = 0;
702 int ret, offset;
1da177e4 703
f1970baf
JB
704 for (i = 0; i < iov_count; i++) {
705 unsigned long uaddr = (unsigned long)iov[i].iov_base;
706 unsigned long len = iov[i].iov_len;
707 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
708 unsigned long start = uaddr >> PAGE_SHIFT;
709
710 nr_pages += end - start;
711 /*
ad2d7225 712 * buffer must be aligned to at least hardsector size for now
f1970baf 713 */
ad2d7225 714 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
715 return ERR_PTR(-EINVAL);
716 }
717
718 if (!nr_pages)
1da177e4
LT
719 return ERR_PTR(-EINVAL);
720
a3bce90e 721 bio = bio_alloc(gfp_mask, nr_pages);
1da177e4
LT
722 if (!bio)
723 return ERR_PTR(-ENOMEM);
724
725 ret = -ENOMEM;
a3bce90e 726 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
727 if (!pages)
728 goto out;
729
f1970baf
JB
730 for (i = 0; i < iov_count; i++) {
731 unsigned long uaddr = (unsigned long)iov[i].iov_base;
732 unsigned long len = iov[i].iov_len;
733 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
734 unsigned long start = uaddr >> PAGE_SHIFT;
735 const int local_nr_pages = end - start;
736 const int page_limit = cur_page + local_nr_pages;
737
f5dd33c4
NP
738 ret = get_user_pages_fast(uaddr, local_nr_pages,
739 write_to_vm, &pages[cur_page]);
99172157
JA
740 if (ret < local_nr_pages) {
741 ret = -EFAULT;
f1970baf 742 goto out_unmap;
99172157 743 }
f1970baf
JB
744
745 offset = uaddr & ~PAGE_MASK;
746 for (j = cur_page; j < page_limit; j++) {
747 unsigned int bytes = PAGE_SIZE - offset;
748
749 if (len <= 0)
750 break;
751
752 if (bytes > len)
753 bytes = len;
754
755 /*
756 * sorry...
757 */
defd94b7
MC
758 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
759 bytes)
f1970baf
JB
760 break;
761
762 len -= bytes;
763 offset = 0;
764 }
1da177e4 765
f1970baf 766 cur_page = j;
1da177e4 767 /*
f1970baf 768 * release the pages we didn't map into the bio, if any
1da177e4 769 */
f1970baf
JB
770 while (j < page_limit)
771 page_cache_release(pages[j++]);
1da177e4
LT
772 }
773
1da177e4
LT
774 kfree(pages);
775
776 /*
777 * set data direction, and check if mapped pages need bouncing
778 */
779 if (!write_to_vm)
780 bio->bi_rw |= (1 << BIO_RW);
781
f1970baf 782 bio->bi_bdev = bdev;
1da177e4
LT
783 bio->bi_flags |= (1 << BIO_USER_MAPPED);
784 return bio;
f1970baf
JB
785
786 out_unmap:
787 for (i = 0; i < nr_pages; i++) {
788 if(!pages[i])
789 break;
790 page_cache_release(pages[i]);
791 }
792 out:
1da177e4
LT
793 kfree(pages);
794 bio_put(bio);
795 return ERR_PTR(ret);
796}
797
798/**
799 * bio_map_user - map user address into bio
165125e1 800 * @q: the struct request_queue for the bio
1da177e4
LT
801 * @bdev: destination block device
802 * @uaddr: start of user address
803 * @len: length in bytes
804 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 805 * @gfp_mask: memory allocation flags
1da177e4
LT
806 *
807 * Map the user space address into a bio suitable for io to a block
808 * device. Returns an error pointer in case of error.
809 */
165125e1 810struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
a3bce90e
FT
811 unsigned long uaddr, unsigned int len, int write_to_vm,
812 gfp_t gfp_mask)
f1970baf
JB
813{
814 struct sg_iovec iov;
815
3f70353e 816 iov.iov_base = (void __user *)uaddr;
f1970baf
JB
817 iov.iov_len = len;
818
a3bce90e 819 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
f1970baf
JB
820}
821
822/**
823 * bio_map_user_iov - map user sg_iovec table into bio
165125e1 824 * @q: the struct request_queue for the bio
f1970baf
JB
825 * @bdev: destination block device
826 * @iov: the iovec.
827 * @iov_count: number of elements in the iovec
828 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 829 * @gfp_mask: memory allocation flags
f1970baf
JB
830 *
831 * Map the user space address into a bio suitable for io to a block
832 * device. Returns an error pointer in case of error.
833 */
165125e1 834struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
f1970baf 835 struct sg_iovec *iov, int iov_count,
a3bce90e 836 int write_to_vm, gfp_t gfp_mask)
1da177e4
LT
837{
838 struct bio *bio;
839
a3bce90e
FT
840 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
841 gfp_mask);
1da177e4
LT
842 if (IS_ERR(bio))
843 return bio;
844
845 /*
846 * subtle -- if __bio_map_user() ended up bouncing a bio,
847 * it would normally disappear when its bi_end_io is run.
848 * however, we need it for the unmap, so grab an extra
849 * reference to it
850 */
851 bio_get(bio);
852
0e75f906 853 return bio;
1da177e4
LT
854}
855
856static void __bio_unmap_user(struct bio *bio)
857{
858 struct bio_vec *bvec;
859 int i;
860
861 /*
862 * make sure we dirty pages we wrote to
863 */
864 __bio_for_each_segment(bvec, bio, i, 0) {
865 if (bio_data_dir(bio) == READ)
866 set_page_dirty_lock(bvec->bv_page);
867
868 page_cache_release(bvec->bv_page);
869 }
870
871 bio_put(bio);
872}
873
874/**
875 * bio_unmap_user - unmap a bio
876 * @bio: the bio being unmapped
877 *
878 * Unmap a bio previously mapped by bio_map_user(). Must be called with
879 * a process context.
880 *
881 * bio_unmap_user() may sleep.
882 */
883void bio_unmap_user(struct bio *bio)
884{
885 __bio_unmap_user(bio);
886 bio_put(bio);
887}
888
6712ecf8 889static void bio_map_kern_endio(struct bio *bio, int err)
b823825e 890{
b823825e 891 bio_put(bio);
b823825e
JA
892}
893
894
165125e1 895static struct bio *__bio_map_kern(struct request_queue *q, void *data,
27496a8c 896 unsigned int len, gfp_t gfp_mask)
df46b9a4
MC
897{
898 unsigned long kaddr = (unsigned long)data;
899 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
900 unsigned long start = kaddr >> PAGE_SHIFT;
901 const int nr_pages = end - start;
902 int offset, i;
903 struct bio *bio;
904
905 bio = bio_alloc(gfp_mask, nr_pages);
906 if (!bio)
907 return ERR_PTR(-ENOMEM);
908
909 offset = offset_in_page(kaddr);
910 for (i = 0; i < nr_pages; i++) {
911 unsigned int bytes = PAGE_SIZE - offset;
912
913 if (len <= 0)
914 break;
915
916 if (bytes > len)
917 bytes = len;
918
defd94b7
MC
919 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
920 offset) < bytes)
df46b9a4
MC
921 break;
922
923 data += bytes;
924 len -= bytes;
925 offset = 0;
926 }
927
b823825e 928 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
929 return bio;
930}
931
932/**
933 * bio_map_kern - map kernel address into bio
165125e1 934 * @q: the struct request_queue for the bio
df46b9a4
MC
935 * @data: pointer to buffer to map
936 * @len: length in bytes
937 * @gfp_mask: allocation flags for bio allocation
938 *
939 * Map the kernel address into a bio suitable for io to a block
940 * device. Returns an error pointer in case of error.
941 */
165125e1 942struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
27496a8c 943 gfp_t gfp_mask)
df46b9a4
MC
944{
945 struct bio *bio;
946
947 bio = __bio_map_kern(q, data, len, gfp_mask);
948 if (IS_ERR(bio))
949 return bio;
950
951 if (bio->bi_size == len)
952 return bio;
953
954 /*
955 * Don't support partial mappings.
956 */
957 bio_put(bio);
958 return ERR_PTR(-EINVAL);
959}
960
68154e90
FT
961static void bio_copy_kern_endio(struct bio *bio, int err)
962{
963 struct bio_vec *bvec;
964 const int read = bio_data_dir(bio) == READ;
76029ff3 965 struct bio_map_data *bmd = bio->bi_private;
68154e90 966 int i;
76029ff3 967 char *p = bmd->sgvecs[0].iov_base;
68154e90
FT
968
969 __bio_for_each_segment(bvec, bio, i, 0) {
970 char *addr = page_address(bvec->bv_page);
76029ff3 971 int len = bmd->iovecs[i].bv_len;
68154e90
FT
972
973 if (read && !err)
76029ff3 974 memcpy(p, addr, len);
68154e90
FT
975
976 __free_page(bvec->bv_page);
76029ff3 977 p += len;
68154e90
FT
978 }
979
76029ff3 980 bio_free_map_data(bmd);
68154e90
FT
981 bio_put(bio);
982}
983
984/**
985 * bio_copy_kern - copy kernel address into bio
986 * @q: the struct request_queue for the bio
987 * @data: pointer to buffer to copy
988 * @len: length in bytes
989 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 990 * @reading: data direction is READ
68154e90
FT
991 *
992 * copy the kernel address into a bio suitable for io to a block
993 * device. Returns an error pointer in case of error.
994 */
995struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
996 gfp_t gfp_mask, int reading)
997{
68154e90
FT
998 struct bio *bio;
999 struct bio_vec *bvec;
4d8ab62e 1000 int i;
68154e90 1001
4d8ab62e
FT
1002 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1003 if (IS_ERR(bio))
1004 return bio;
68154e90
FT
1005
1006 if (!reading) {
1007 void *p = data;
1008
1009 bio_for_each_segment(bvec, bio, i) {
1010 char *addr = page_address(bvec->bv_page);
1011
1012 memcpy(addr, p, bvec->bv_len);
1013 p += bvec->bv_len;
1014 }
1015 }
1016
68154e90 1017 bio->bi_end_io = bio_copy_kern_endio;
76029ff3 1018
68154e90 1019 return bio;
68154e90
FT
1020}
1021
1da177e4
LT
1022/*
1023 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1024 * for performing direct-IO in BIOs.
1025 *
1026 * The problem is that we cannot run set_page_dirty() from interrupt context
1027 * because the required locks are not interrupt-safe. So what we can do is to
1028 * mark the pages dirty _before_ performing IO. And in interrupt context,
1029 * check that the pages are still dirty. If so, fine. If not, redirty them
1030 * in process context.
1031 *
1032 * We special-case compound pages here: normally this means reads into hugetlb
1033 * pages. The logic in here doesn't really work right for compound pages
1034 * because the VM does not uniformly chase down the head page in all cases.
1035 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1036 * handle them at all. So we skip compound pages here at an early stage.
1037 *
1038 * Note that this code is very hard to test under normal circumstances because
1039 * direct-io pins the pages with get_user_pages(). This makes
1040 * is_page_cache_freeable return false, and the VM will not clean the pages.
1041 * But other code (eg, pdflush) could clean the pages if they are mapped
1042 * pagecache.
1043 *
1044 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1045 * deferred bio dirtying paths.
1046 */
1047
1048/*
1049 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1050 */
1051void bio_set_pages_dirty(struct bio *bio)
1052{
1053 struct bio_vec *bvec = bio->bi_io_vec;
1054 int i;
1055
1056 for (i = 0; i < bio->bi_vcnt; i++) {
1057 struct page *page = bvec[i].bv_page;
1058
1059 if (page && !PageCompound(page))
1060 set_page_dirty_lock(page);
1061 }
1062}
1063
86b6c7a7 1064static void bio_release_pages(struct bio *bio)
1da177e4
LT
1065{
1066 struct bio_vec *bvec = bio->bi_io_vec;
1067 int i;
1068
1069 for (i = 0; i < bio->bi_vcnt; i++) {
1070 struct page *page = bvec[i].bv_page;
1071
1072 if (page)
1073 put_page(page);
1074 }
1075}
1076
1077/*
1078 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1079 * If they are, then fine. If, however, some pages are clean then they must
1080 * have been written out during the direct-IO read. So we take another ref on
1081 * the BIO and the offending pages and re-dirty the pages in process context.
1082 *
1083 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1084 * here on. It will run one page_cache_release() against each page and will
1085 * run one bio_put() against the BIO.
1086 */
1087
65f27f38 1088static void bio_dirty_fn(struct work_struct *work);
1da177e4 1089
65f27f38 1090static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1091static DEFINE_SPINLOCK(bio_dirty_lock);
1092static struct bio *bio_dirty_list;
1093
1094/*
1095 * This runs in process context
1096 */
65f27f38 1097static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1098{
1099 unsigned long flags;
1100 struct bio *bio;
1101
1102 spin_lock_irqsave(&bio_dirty_lock, flags);
1103 bio = bio_dirty_list;
1104 bio_dirty_list = NULL;
1105 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1106
1107 while (bio) {
1108 struct bio *next = bio->bi_private;
1109
1110 bio_set_pages_dirty(bio);
1111 bio_release_pages(bio);
1112 bio_put(bio);
1113 bio = next;
1114 }
1115}
1116
1117void bio_check_pages_dirty(struct bio *bio)
1118{
1119 struct bio_vec *bvec = bio->bi_io_vec;
1120 int nr_clean_pages = 0;
1121 int i;
1122
1123 for (i = 0; i < bio->bi_vcnt; i++) {
1124 struct page *page = bvec[i].bv_page;
1125
1126 if (PageDirty(page) || PageCompound(page)) {
1127 page_cache_release(page);
1128 bvec[i].bv_page = NULL;
1129 } else {
1130 nr_clean_pages++;
1131 }
1132 }
1133
1134 if (nr_clean_pages) {
1135 unsigned long flags;
1136
1137 spin_lock_irqsave(&bio_dirty_lock, flags);
1138 bio->bi_private = bio_dirty_list;
1139 bio_dirty_list = bio;
1140 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1141 schedule_work(&bio_dirty_work);
1142 } else {
1143 bio_put(bio);
1144 }
1145}
1146
1147/**
1148 * bio_endio - end I/O on a bio
1149 * @bio: bio
1da177e4
LT
1150 * @error: error, if any
1151 *
1152 * Description:
6712ecf8 1153 * bio_endio() will end I/O on the whole bio. bio_endio() is the
5bb23a68
N
1154 * preferred way to end I/O on a bio, it takes care of clearing
1155 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1156 * established -Exxxx (-EIO, for instance) error values in case
1157 * something went wrong. Noone should call bi_end_io() directly on a
1158 * bio unless they own it and thus know that it has an end_io
1159 * function.
1da177e4 1160 **/
6712ecf8 1161void bio_endio(struct bio *bio, int error)
1da177e4
LT
1162{
1163 if (error)
1164 clear_bit(BIO_UPTODATE, &bio->bi_flags);
9cc54d40
N
1165 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1166 error = -EIO;
1da177e4 1167
5bb23a68 1168 if (bio->bi_end_io)
6712ecf8 1169 bio->bi_end_io(bio, error);
1da177e4
LT
1170}
1171
1172void bio_pair_release(struct bio_pair *bp)
1173{
1174 if (atomic_dec_and_test(&bp->cnt)) {
1175 struct bio *master = bp->bio1.bi_private;
1176
6712ecf8 1177 bio_endio(master, bp->error);
1da177e4
LT
1178 mempool_free(bp, bp->bio2.bi_private);
1179 }
1180}
1181
6712ecf8 1182static void bio_pair_end_1(struct bio *bi, int err)
1da177e4
LT
1183{
1184 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1185
1186 if (err)
1187 bp->error = err;
1188
1da177e4 1189 bio_pair_release(bp);
1da177e4
LT
1190}
1191
6712ecf8 1192static void bio_pair_end_2(struct bio *bi, int err)
1da177e4
LT
1193{
1194 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1195
1196 if (err)
1197 bp->error = err;
1198
1da177e4 1199 bio_pair_release(bp);
1da177e4
LT
1200}
1201
1202/*
1203 * split a bio - only worry about a bio with a single page
1204 * in it's iovec
1205 */
1206struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors)
1207{
1208 struct bio_pair *bp = mempool_alloc(pool, GFP_NOIO);
1209
1210 if (!bp)
1211 return bp;
1212
2056a782
JA
1213 blk_add_trace_pdu_int(bdev_get_queue(bi->bi_bdev), BLK_TA_SPLIT, bi,
1214 bi->bi_sector + first_sectors);
1215
1da177e4
LT
1216 BUG_ON(bi->bi_vcnt != 1);
1217 BUG_ON(bi->bi_idx != 0);
1218 atomic_set(&bp->cnt, 3);
1219 bp->error = 0;
1220 bp->bio1 = *bi;
1221 bp->bio2 = *bi;
1222 bp->bio2.bi_sector += first_sectors;
1223 bp->bio2.bi_size -= first_sectors << 9;
1224 bp->bio1.bi_size = first_sectors << 9;
1225
1226 bp->bv1 = bi->bi_io_vec[0];
1227 bp->bv2 = bi->bi_io_vec[0];
1228 bp->bv2.bv_offset += first_sectors << 9;
1229 bp->bv2.bv_len -= first_sectors << 9;
1230 bp->bv1.bv_len = first_sectors << 9;
1231
1232 bp->bio1.bi_io_vec = &bp->bv1;
1233 bp->bio2.bi_io_vec = &bp->bv2;
1234
a2eb0c10
N
1235 bp->bio1.bi_max_vecs = 1;
1236 bp->bio2.bi_max_vecs = 1;
1237
1da177e4
LT
1238 bp->bio1.bi_end_io = bio_pair_end_1;
1239 bp->bio2.bi_end_io = bio_pair_end_2;
1240
1241 bp->bio1.bi_private = bi;
1242 bp->bio2.bi_private = pool;
1243
7ba1ba12
MP
1244 if (bio_integrity(bi))
1245 bio_integrity_split(bi, bp, first_sectors);
1246
1da177e4
LT
1247 return bp;
1248}
1249
1da177e4
LT
1250
1251/*
1252 * create memory pools for biovec's in a bio_set.
1253 * use the global biovec slabs created for general use.
1254 */
5972511b 1255static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1da177e4
LT
1256{
1257 int i;
1258
1259 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1260 struct biovec_slab *bp = bvec_slabs + i;
1261 mempool_t **bvp = bs->bvec_pools + i;
1262
93d2341c 1263 *bvp = mempool_create_slab_pool(pool_entries, bp->slab);
1da177e4
LT
1264 if (!*bvp)
1265 return -ENOMEM;
1266 }
1267 return 0;
1268}
1269
1270static void biovec_free_pools(struct bio_set *bs)
1271{
1272 int i;
1273
1274 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1275 mempool_t *bvp = bs->bvec_pools[i];
1276
1277 if (bvp)
1278 mempool_destroy(bvp);
1279 }
1280
1281}
1282
1283void bioset_free(struct bio_set *bs)
1284{
1285 if (bs->bio_pool)
1286 mempool_destroy(bs->bio_pool);
1287
7ba1ba12 1288 bioset_integrity_free(bs);
1da177e4
LT
1289 biovec_free_pools(bs);
1290
1291 kfree(bs);
1292}
1293
5972511b 1294struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size)
1da177e4 1295{
11b0b5ab 1296 struct bio_set *bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1297
1298 if (!bs)
1299 return NULL;
1300
93d2341c 1301 bs->bio_pool = mempool_create_slab_pool(bio_pool_size, bio_slab);
1da177e4
LT
1302 if (!bs->bio_pool)
1303 goto bad;
1304
7ba1ba12
MP
1305 if (bioset_integrity_create(bs, bio_pool_size))
1306 goto bad;
1307
5972511b 1308 if (!biovec_create_pools(bs, bvec_pool_size))
1da177e4
LT
1309 return bs;
1310
1311bad:
1312 bioset_free(bs);
1313 return NULL;
1314}
1315
1316static void __init biovec_init_slabs(void)
1317{
1318 int i;
1319
1320 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1321 int size;
1322 struct biovec_slab *bvs = bvec_slabs + i;
1323
1324 size = bvs->nr_vecs * sizeof(struct bio_vec);
1325 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 1326 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
1327 }
1328}
1329
1330static int __init init_bio(void)
1331{
0a31bd5f 1332 bio_slab = KMEM_CACHE(bio, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
1da177e4 1333
7ba1ba12 1334 bio_integrity_init_slab();
1da177e4
LT
1335 biovec_init_slabs();
1336
5972511b 1337 fs_bio_set = bioset_create(BIO_POOL_SIZE, 2);
1da177e4
LT
1338 if (!fs_bio_set)
1339 panic("bio: can't allocate bios\n");
1340
0eaae62a
MD
1341 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1342 sizeof(struct bio_pair));
1da177e4
LT
1343 if (!bio_split_pool)
1344 panic("bio: can't create split pool\n");
1345
1346 return 0;
1347}
1348
1349subsys_initcall(init_bio);
1350
1351EXPORT_SYMBOL(bio_alloc);
1352EXPORT_SYMBOL(bio_put);
3676347a 1353EXPORT_SYMBOL(bio_free);
1da177e4
LT
1354EXPORT_SYMBOL(bio_endio);
1355EXPORT_SYMBOL(bio_init);
1356EXPORT_SYMBOL(__bio_clone);
1357EXPORT_SYMBOL(bio_clone);
1358EXPORT_SYMBOL(bio_phys_segments);
1da177e4 1359EXPORT_SYMBOL(bio_add_page);
6e68af66 1360EXPORT_SYMBOL(bio_add_pc_page);
1da177e4 1361EXPORT_SYMBOL(bio_get_nr_vecs);
40044ce0
JA
1362EXPORT_SYMBOL(bio_map_user);
1363EXPORT_SYMBOL(bio_unmap_user);
df46b9a4 1364EXPORT_SYMBOL(bio_map_kern);
68154e90 1365EXPORT_SYMBOL(bio_copy_kern);
1da177e4
LT
1366EXPORT_SYMBOL(bio_pair_release);
1367EXPORT_SYMBOL(bio_split);
1368EXPORT_SYMBOL(bio_split_pool);
1369EXPORT_SYMBOL(bio_copy_user);
1370EXPORT_SYMBOL(bio_uncopy_user);
1371EXPORT_SYMBOL(bioset_create);
1372EXPORT_SYMBOL(bioset_free);
1373EXPORT_SYMBOL(bio_alloc_bioset);