]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/free-space-cache.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / free-space-cache.c
CommitLineData
0f9dd46c
JB
1/*
2 * Copyright (C) 2008 Red Hat. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
96303081 19#include <linux/pagemap.h>
0f9dd46c 20#include <linux/sched.h>
f361bf4a 21#include <linux/sched/signal.h>
5a0e3ad6 22#include <linux/slab.h>
96303081 23#include <linux/math64.h>
6ab60601 24#include <linux/ratelimit.h>
0f9dd46c 25#include "ctree.h"
fa9c0d79
CM
26#include "free-space-cache.h"
27#include "transaction.h"
0af3d00b 28#include "disk-io.h"
43be2146 29#include "extent_io.h"
581bb050 30#include "inode-map.h"
04216820 31#include "volumes.h"
fa9c0d79 32
0ef6447a 33#define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
ee22184b 34#define MAX_CACHE_BYTES_PER_GIG SZ_32K
0f9dd46c 35
55507ce3
FM
36struct btrfs_trim_range {
37 u64 start;
38 u64 bytes;
39 struct list_head list;
40};
41
34d52cb6 42static int link_free_space(struct btrfs_free_space_ctl *ctl,
0cb59c99 43 struct btrfs_free_space *info);
cd023e7b
JB
44static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
45 struct btrfs_free_space *info);
afdb5718
JM
46static int btrfs_wait_cache_io_root(struct btrfs_root *root,
47 struct btrfs_trans_handle *trans,
48 struct btrfs_io_ctl *io_ctl,
49 struct btrfs_path *path);
0cb59c99 50
0414efae
LZ
51static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
52 struct btrfs_path *path,
53 u64 offset)
0af3d00b 54{
0b246afa 55 struct btrfs_fs_info *fs_info = root->fs_info;
0af3d00b
JB
56 struct btrfs_key key;
57 struct btrfs_key location;
58 struct btrfs_disk_key disk_key;
59 struct btrfs_free_space_header *header;
60 struct extent_buffer *leaf;
61 struct inode *inode = NULL;
62 int ret;
63
0af3d00b 64 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 65 key.offset = offset;
0af3d00b
JB
66 key.type = 0;
67
68 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
69 if (ret < 0)
70 return ERR_PTR(ret);
71 if (ret > 0) {
b3b4aa74 72 btrfs_release_path(path);
0af3d00b
JB
73 return ERR_PTR(-ENOENT);
74 }
75
76 leaf = path->nodes[0];
77 header = btrfs_item_ptr(leaf, path->slots[0],
78 struct btrfs_free_space_header);
79 btrfs_free_space_key(leaf, header, &disk_key);
80 btrfs_disk_key_to_cpu(&location, &disk_key);
b3b4aa74 81 btrfs_release_path(path);
0af3d00b 82
0b246afa 83 inode = btrfs_iget(fs_info->sb, &location, root, NULL);
0af3d00b
JB
84 if (IS_ERR(inode))
85 return inode;
86 if (is_bad_inode(inode)) {
87 iput(inode);
88 return ERR_PTR(-ENOENT);
89 }
90
528c0327 91 mapping_set_gfp_mask(inode->i_mapping,
c62d2555
MH
92 mapping_gfp_constraint(inode->i_mapping,
93 ~(__GFP_FS | __GFP_HIGHMEM)));
adae52b9 94
0414efae
LZ
95 return inode;
96}
97
77ab86bf 98struct inode *lookup_free_space_inode(struct btrfs_fs_info *fs_info,
0414efae
LZ
99 struct btrfs_block_group_cache
100 *block_group, struct btrfs_path *path)
101{
102 struct inode *inode = NULL;
5b0e95bf 103 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
0414efae
LZ
104
105 spin_lock(&block_group->lock);
106 if (block_group->inode)
107 inode = igrab(block_group->inode);
108 spin_unlock(&block_group->lock);
109 if (inode)
110 return inode;
111
77ab86bf 112 inode = __lookup_free_space_inode(fs_info->tree_root, path,
0414efae
LZ
113 block_group->key.objectid);
114 if (IS_ERR(inode))
115 return inode;
116
0af3d00b 117 spin_lock(&block_group->lock);
5b0e95bf 118 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
0b246afa 119 btrfs_info(fs_info, "Old style space inode found, converting.");
5b0e95bf
JB
120 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
121 BTRFS_INODE_NODATACOW;
2f356126
JB
122 block_group->disk_cache_state = BTRFS_DC_CLEAR;
123 }
124
300e4f8a 125 if (!block_group->iref) {
0af3d00b
JB
126 block_group->inode = igrab(inode);
127 block_group->iref = 1;
128 }
129 spin_unlock(&block_group->lock);
130
131 return inode;
132}
133
48a3b636
ES
134static int __create_free_space_inode(struct btrfs_root *root,
135 struct btrfs_trans_handle *trans,
136 struct btrfs_path *path,
137 u64 ino, u64 offset)
0af3d00b
JB
138{
139 struct btrfs_key key;
140 struct btrfs_disk_key disk_key;
141 struct btrfs_free_space_header *header;
142 struct btrfs_inode_item *inode_item;
143 struct extent_buffer *leaf;
5b0e95bf 144 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
0af3d00b
JB
145 int ret;
146
0414efae 147 ret = btrfs_insert_empty_inode(trans, root, path, ino);
0af3d00b
JB
148 if (ret)
149 return ret;
150
5b0e95bf
JB
151 /* We inline crc's for the free disk space cache */
152 if (ino != BTRFS_FREE_INO_OBJECTID)
153 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
154
0af3d00b
JB
155 leaf = path->nodes[0];
156 inode_item = btrfs_item_ptr(leaf, path->slots[0],
157 struct btrfs_inode_item);
158 btrfs_item_key(leaf, &disk_key, path->slots[0]);
b159fa28 159 memzero_extent_buffer(leaf, (unsigned long)inode_item,
0af3d00b
JB
160 sizeof(*inode_item));
161 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
162 btrfs_set_inode_size(leaf, inode_item, 0);
163 btrfs_set_inode_nbytes(leaf, inode_item, 0);
164 btrfs_set_inode_uid(leaf, inode_item, 0);
165 btrfs_set_inode_gid(leaf, inode_item, 0);
166 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
5b0e95bf 167 btrfs_set_inode_flags(leaf, inode_item, flags);
0af3d00b
JB
168 btrfs_set_inode_nlink(leaf, inode_item, 1);
169 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
0414efae 170 btrfs_set_inode_block_group(leaf, inode_item, offset);
0af3d00b 171 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 172 btrfs_release_path(path);
0af3d00b
JB
173
174 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 175 key.offset = offset;
0af3d00b 176 key.type = 0;
0af3d00b
JB
177 ret = btrfs_insert_empty_item(trans, root, path, &key,
178 sizeof(struct btrfs_free_space_header));
179 if (ret < 0) {
b3b4aa74 180 btrfs_release_path(path);
0af3d00b
JB
181 return ret;
182 }
c9dc4c65 183
0af3d00b
JB
184 leaf = path->nodes[0];
185 header = btrfs_item_ptr(leaf, path->slots[0],
186 struct btrfs_free_space_header);
b159fa28 187 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
0af3d00b
JB
188 btrfs_set_free_space_key(leaf, header, &disk_key);
189 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 190 btrfs_release_path(path);
0af3d00b
JB
191
192 return 0;
193}
194
77ab86bf 195int create_free_space_inode(struct btrfs_fs_info *fs_info,
0414efae
LZ
196 struct btrfs_trans_handle *trans,
197 struct btrfs_block_group_cache *block_group,
198 struct btrfs_path *path)
199{
200 int ret;
201 u64 ino;
202
77ab86bf 203 ret = btrfs_find_free_objectid(fs_info->tree_root, &ino);
0414efae
LZ
204 if (ret < 0)
205 return ret;
206
77ab86bf 207 return __create_free_space_inode(fs_info->tree_root, trans, path, ino,
0414efae
LZ
208 block_group->key.objectid);
209}
210
2ff7e61e 211int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
7b61cd92 212 struct btrfs_block_rsv *rsv)
0af3d00b 213{
c8174313 214 u64 needed_bytes;
7b61cd92 215 int ret;
c8174313
JB
216
217 /* 1 for slack space, 1 for updating the inode */
0b246afa
JM
218 needed_bytes = btrfs_calc_trunc_metadata_size(fs_info, 1) +
219 btrfs_calc_trans_metadata_size(fs_info, 1);
c8174313 220
7b61cd92
MX
221 spin_lock(&rsv->lock);
222 if (rsv->reserved < needed_bytes)
223 ret = -ENOSPC;
224 else
225 ret = 0;
226 spin_unlock(&rsv->lock);
4b286cd1 227 return ret;
7b61cd92
MX
228}
229
77ab86bf 230int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
1bbc621e 231 struct btrfs_block_group_cache *block_group,
7b61cd92
MX
232 struct inode *inode)
233{
77ab86bf 234 struct btrfs_root *root = BTRFS_I(inode)->root;
7b61cd92 235 int ret = 0;
35c76642 236 bool locked = false;
1bbc621e 237
1bbc621e 238 if (block_group) {
21e75ffe
JM
239 struct btrfs_path *path = btrfs_alloc_path();
240
241 if (!path) {
242 ret = -ENOMEM;
243 goto fail;
244 }
35c76642 245 locked = true;
1bbc621e
CM
246 mutex_lock(&trans->transaction->cache_write_mutex);
247 if (!list_empty(&block_group->io_list)) {
248 list_del_init(&block_group->io_list);
249
afdb5718 250 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
251 btrfs_put_block_group(block_group);
252 }
253
254 /*
255 * now that we've truncated the cache away, its no longer
256 * setup or written
257 */
258 spin_lock(&block_group->lock);
259 block_group->disk_cache_state = BTRFS_DC_CLEAR;
260 spin_unlock(&block_group->lock);
21e75ffe 261 btrfs_free_path(path);
1bbc621e 262 }
0af3d00b 263
6ef06d27 264 btrfs_i_size_write(BTRFS_I(inode), 0);
7caef267 265 truncate_pagecache(inode, 0);
0af3d00b
JB
266
267 /*
268 * We don't need an orphan item because truncating the free space cache
269 * will never be split across transactions.
28ed1345
CM
270 * We don't need to check for -EAGAIN because we're a free space
271 * cache inode
0af3d00b
JB
272 */
273 ret = btrfs_truncate_inode_items(trans, root, inode,
274 0, BTRFS_EXTENT_DATA_KEY);
35c76642
FM
275 if (ret)
276 goto fail;
0af3d00b 277
82d5902d 278 ret = btrfs_update_inode(trans, root, inode);
1bbc621e 279
1bbc621e 280fail:
35c76642
FM
281 if (locked)
282 mutex_unlock(&trans->transaction->cache_write_mutex);
79787eaa 283 if (ret)
66642832 284 btrfs_abort_transaction(trans, ret);
c8174313 285
82d5902d 286 return ret;
0af3d00b
JB
287}
288
1d480538 289static void readahead_cache(struct inode *inode)
9d66e233
JB
290{
291 struct file_ra_state *ra;
292 unsigned long last_index;
293
294 ra = kzalloc(sizeof(*ra), GFP_NOFS);
295 if (!ra)
1d480538 296 return;
9d66e233
JB
297
298 file_ra_state_init(ra, inode->i_mapping);
09cbfeaf 299 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
9d66e233
JB
300
301 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
302
303 kfree(ra);
9d66e233
JB
304}
305
4c6d1d85 306static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
f15376df 307 int write)
a67509c3 308{
5349d6c3
MX
309 int num_pages;
310 int check_crcs = 0;
311
09cbfeaf 312 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
5349d6c3 313
4a0cc7ca 314 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
5349d6c3
MX
315 check_crcs = 1;
316
317 /* Make sure we can fit our crcs into the first page */
318 if (write && check_crcs &&
09cbfeaf 319 (num_pages * sizeof(u32)) >= PAGE_SIZE)
5349d6c3
MX
320 return -ENOSPC;
321
4c6d1d85 322 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
5349d6c3 323
31e818fe 324 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
a67509c3
JB
325 if (!io_ctl->pages)
326 return -ENOMEM;
5349d6c3
MX
327
328 io_ctl->num_pages = num_pages;
f15376df 329 io_ctl->fs_info = btrfs_sb(inode->i_sb);
5349d6c3 330 io_ctl->check_crcs = check_crcs;
c9dc4c65 331 io_ctl->inode = inode;
5349d6c3 332
a67509c3
JB
333 return 0;
334}
335
4c6d1d85 336static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
a67509c3
JB
337{
338 kfree(io_ctl->pages);
c9dc4c65 339 io_ctl->pages = NULL;
a67509c3
JB
340}
341
4c6d1d85 342static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
a67509c3
JB
343{
344 if (io_ctl->cur) {
a67509c3
JB
345 io_ctl->cur = NULL;
346 io_ctl->orig = NULL;
347 }
348}
349
4c6d1d85 350static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
a67509c3 351{
b12d6869 352 ASSERT(io_ctl->index < io_ctl->num_pages);
a67509c3 353 io_ctl->page = io_ctl->pages[io_ctl->index++];
2b108268 354 io_ctl->cur = page_address(io_ctl->page);
a67509c3 355 io_ctl->orig = io_ctl->cur;
09cbfeaf 356 io_ctl->size = PAGE_SIZE;
a67509c3 357 if (clear)
619a9742 358 clear_page(io_ctl->cur);
a67509c3
JB
359}
360
4c6d1d85 361static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
a67509c3
JB
362{
363 int i;
364
365 io_ctl_unmap_page(io_ctl);
366
367 for (i = 0; i < io_ctl->num_pages; i++) {
a1ee5a45
LZ
368 if (io_ctl->pages[i]) {
369 ClearPageChecked(io_ctl->pages[i]);
370 unlock_page(io_ctl->pages[i]);
09cbfeaf 371 put_page(io_ctl->pages[i]);
a1ee5a45 372 }
a67509c3
JB
373 }
374}
375
4c6d1d85 376static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
a67509c3
JB
377 int uptodate)
378{
379 struct page *page;
380 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
381 int i;
382
383 for (i = 0; i < io_ctl->num_pages; i++) {
384 page = find_or_create_page(inode->i_mapping, i, mask);
385 if (!page) {
386 io_ctl_drop_pages(io_ctl);
387 return -ENOMEM;
388 }
389 io_ctl->pages[i] = page;
390 if (uptodate && !PageUptodate(page)) {
391 btrfs_readpage(NULL, page);
392 lock_page(page);
393 if (!PageUptodate(page)) {
efe120a0
FH
394 btrfs_err(BTRFS_I(inode)->root->fs_info,
395 "error reading free space cache");
a67509c3
JB
396 io_ctl_drop_pages(io_ctl);
397 return -EIO;
398 }
399 }
400 }
401
f7d61dcd
JB
402 for (i = 0; i < io_ctl->num_pages; i++) {
403 clear_page_dirty_for_io(io_ctl->pages[i]);
404 set_page_extent_mapped(io_ctl->pages[i]);
405 }
406
a67509c3
JB
407 return 0;
408}
409
4c6d1d85 410static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
a67509c3 411{
528c0327 412 __le64 *val;
a67509c3
JB
413
414 io_ctl_map_page(io_ctl, 1);
415
416 /*
5b0e95bf
JB
417 * Skip the csum areas. If we don't check crcs then we just have a
418 * 64bit chunk at the front of the first page.
a67509c3 419 */
5b0e95bf
JB
420 if (io_ctl->check_crcs) {
421 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
422 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
423 } else {
424 io_ctl->cur += sizeof(u64);
425 io_ctl->size -= sizeof(u64) * 2;
426 }
a67509c3
JB
427
428 val = io_ctl->cur;
429 *val = cpu_to_le64(generation);
430 io_ctl->cur += sizeof(u64);
a67509c3
JB
431}
432
4c6d1d85 433static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
a67509c3 434{
528c0327 435 __le64 *gen;
a67509c3 436
5b0e95bf
JB
437 /*
438 * Skip the crc area. If we don't check crcs then we just have a 64bit
439 * chunk at the front of the first page.
440 */
441 if (io_ctl->check_crcs) {
442 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
443 io_ctl->size -= sizeof(u64) +
444 (sizeof(u32) * io_ctl->num_pages);
445 } else {
446 io_ctl->cur += sizeof(u64);
447 io_ctl->size -= sizeof(u64) * 2;
448 }
a67509c3 449
a67509c3
JB
450 gen = io_ctl->cur;
451 if (le64_to_cpu(*gen) != generation) {
f15376df 452 btrfs_err_rl(io_ctl->fs_info,
94647322
DS
453 "space cache generation (%llu) does not match inode (%llu)",
454 *gen, generation);
a67509c3
JB
455 io_ctl_unmap_page(io_ctl);
456 return -EIO;
457 }
458 io_ctl->cur += sizeof(u64);
5b0e95bf
JB
459 return 0;
460}
461
4c6d1d85 462static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
5b0e95bf
JB
463{
464 u32 *tmp;
465 u32 crc = ~(u32)0;
466 unsigned offset = 0;
467
468 if (!io_ctl->check_crcs) {
469 io_ctl_unmap_page(io_ctl);
470 return;
471 }
472
473 if (index == 0)
cb54f257 474 offset = sizeof(u32) * io_ctl->num_pages;
5b0e95bf 475
b0496686 476 crc = btrfs_csum_data(io_ctl->orig + offset, crc,
09cbfeaf 477 PAGE_SIZE - offset);
0b5e3daf 478 btrfs_csum_final(crc, (u8 *)&crc);
5b0e95bf 479 io_ctl_unmap_page(io_ctl);
2b108268 480 tmp = page_address(io_ctl->pages[0]);
5b0e95bf
JB
481 tmp += index;
482 *tmp = crc;
5b0e95bf
JB
483}
484
4c6d1d85 485static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
5b0e95bf
JB
486{
487 u32 *tmp, val;
488 u32 crc = ~(u32)0;
489 unsigned offset = 0;
490
491 if (!io_ctl->check_crcs) {
492 io_ctl_map_page(io_ctl, 0);
493 return 0;
494 }
495
496 if (index == 0)
497 offset = sizeof(u32) * io_ctl->num_pages;
498
2b108268 499 tmp = page_address(io_ctl->pages[0]);
5b0e95bf
JB
500 tmp += index;
501 val = *tmp;
5b0e95bf
JB
502
503 io_ctl_map_page(io_ctl, 0);
b0496686 504 crc = btrfs_csum_data(io_ctl->orig + offset, crc,
09cbfeaf 505 PAGE_SIZE - offset);
0b5e3daf 506 btrfs_csum_final(crc, (u8 *)&crc);
5b0e95bf 507 if (val != crc) {
f15376df 508 btrfs_err_rl(io_ctl->fs_info,
94647322 509 "csum mismatch on free space cache");
5b0e95bf
JB
510 io_ctl_unmap_page(io_ctl);
511 return -EIO;
512 }
513
a67509c3
JB
514 return 0;
515}
516
4c6d1d85 517static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
a67509c3
JB
518 void *bitmap)
519{
520 struct btrfs_free_space_entry *entry;
521
522 if (!io_ctl->cur)
523 return -ENOSPC;
524
525 entry = io_ctl->cur;
526 entry->offset = cpu_to_le64(offset);
527 entry->bytes = cpu_to_le64(bytes);
528 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
529 BTRFS_FREE_SPACE_EXTENT;
530 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
531 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
532
533 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
534 return 0;
535
5b0e95bf 536 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
537
538 /* No more pages to map */
539 if (io_ctl->index >= io_ctl->num_pages)
540 return 0;
541
542 /* map the next page */
543 io_ctl_map_page(io_ctl, 1);
544 return 0;
545}
546
4c6d1d85 547static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
a67509c3
JB
548{
549 if (!io_ctl->cur)
550 return -ENOSPC;
551
552 /*
553 * If we aren't at the start of the current page, unmap this one and
554 * map the next one if there is any left.
555 */
556 if (io_ctl->cur != io_ctl->orig) {
5b0e95bf 557 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
558 if (io_ctl->index >= io_ctl->num_pages)
559 return -ENOSPC;
560 io_ctl_map_page(io_ctl, 0);
561 }
562
09cbfeaf 563 memcpy(io_ctl->cur, bitmap, PAGE_SIZE);
5b0e95bf 564 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
565 if (io_ctl->index < io_ctl->num_pages)
566 io_ctl_map_page(io_ctl, 0);
567 return 0;
568}
569
4c6d1d85 570static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
a67509c3 571{
5b0e95bf
JB
572 /*
573 * If we're not on the boundary we know we've modified the page and we
574 * need to crc the page.
575 */
576 if (io_ctl->cur != io_ctl->orig)
577 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
578 else
579 io_ctl_unmap_page(io_ctl);
a67509c3
JB
580
581 while (io_ctl->index < io_ctl->num_pages) {
582 io_ctl_map_page(io_ctl, 1);
5b0e95bf 583 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
584 }
585}
586
4c6d1d85 587static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
5b0e95bf 588 struct btrfs_free_space *entry, u8 *type)
a67509c3
JB
589{
590 struct btrfs_free_space_entry *e;
2f120c05
JB
591 int ret;
592
593 if (!io_ctl->cur) {
594 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
595 if (ret)
596 return ret;
597 }
a67509c3
JB
598
599 e = io_ctl->cur;
600 entry->offset = le64_to_cpu(e->offset);
601 entry->bytes = le64_to_cpu(e->bytes);
5b0e95bf 602 *type = e->type;
a67509c3
JB
603 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
604 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
605
606 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
5b0e95bf 607 return 0;
a67509c3
JB
608
609 io_ctl_unmap_page(io_ctl);
610
2f120c05 611 return 0;
a67509c3
JB
612}
613
4c6d1d85 614static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
5b0e95bf 615 struct btrfs_free_space *entry)
a67509c3 616{
5b0e95bf
JB
617 int ret;
618
5b0e95bf
JB
619 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
620 if (ret)
621 return ret;
622
09cbfeaf 623 memcpy(entry->bitmap, io_ctl->cur, PAGE_SIZE);
a67509c3 624 io_ctl_unmap_page(io_ctl);
5b0e95bf
JB
625
626 return 0;
a67509c3
JB
627}
628
cd023e7b
JB
629/*
630 * Since we attach pinned extents after the fact we can have contiguous sections
631 * of free space that are split up in entries. This poses a problem with the
632 * tree logging stuff since it could have allocated across what appears to be 2
633 * entries since we would have merged the entries when adding the pinned extents
634 * back to the free space cache. So run through the space cache that we just
635 * loaded and merge contiguous entries. This will make the log replay stuff not
636 * blow up and it will make for nicer allocator behavior.
637 */
638static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
639{
640 struct btrfs_free_space *e, *prev = NULL;
641 struct rb_node *n;
642
643again:
644 spin_lock(&ctl->tree_lock);
645 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
646 e = rb_entry(n, struct btrfs_free_space, offset_index);
647 if (!prev)
648 goto next;
649 if (e->bitmap || prev->bitmap)
650 goto next;
651 if (prev->offset + prev->bytes == e->offset) {
652 unlink_free_space(ctl, prev);
653 unlink_free_space(ctl, e);
654 prev->bytes += e->bytes;
655 kmem_cache_free(btrfs_free_space_cachep, e);
656 link_free_space(ctl, prev);
657 prev = NULL;
658 spin_unlock(&ctl->tree_lock);
659 goto again;
660 }
661next:
662 prev = e;
663 }
664 spin_unlock(&ctl->tree_lock);
665}
666
48a3b636
ES
667static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
668 struct btrfs_free_space_ctl *ctl,
669 struct btrfs_path *path, u64 offset)
9d66e233 670{
0b246afa 671 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9d66e233
JB
672 struct btrfs_free_space_header *header;
673 struct extent_buffer *leaf;
4c6d1d85 674 struct btrfs_io_ctl io_ctl;
9d66e233 675 struct btrfs_key key;
a67509c3 676 struct btrfs_free_space *e, *n;
b76808fc 677 LIST_HEAD(bitmaps);
9d66e233
JB
678 u64 num_entries;
679 u64 num_bitmaps;
680 u64 generation;
a67509c3 681 u8 type;
f6a39829 682 int ret = 0;
9d66e233 683
9d66e233 684 /* Nothing in the space cache, goodbye */
0414efae 685 if (!i_size_read(inode))
a67509c3 686 return 0;
9d66e233
JB
687
688 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 689 key.offset = offset;
9d66e233
JB
690 key.type = 0;
691
692 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0414efae 693 if (ret < 0)
a67509c3 694 return 0;
0414efae 695 else if (ret > 0) {
945d8962 696 btrfs_release_path(path);
a67509c3 697 return 0;
9d66e233
JB
698 }
699
0414efae
LZ
700 ret = -1;
701
9d66e233
JB
702 leaf = path->nodes[0];
703 header = btrfs_item_ptr(leaf, path->slots[0],
704 struct btrfs_free_space_header);
705 num_entries = btrfs_free_space_entries(leaf, header);
706 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
707 generation = btrfs_free_space_generation(leaf, header);
945d8962 708 btrfs_release_path(path);
9d66e233 709
e570fd27 710 if (!BTRFS_I(inode)->generation) {
0b246afa 711 btrfs_info(fs_info,
e570fd27
MX
712 "The free space cache file (%llu) is invalid. skip it\n",
713 offset);
714 return 0;
715 }
716
9d66e233 717 if (BTRFS_I(inode)->generation != generation) {
0b246afa
JM
718 btrfs_err(fs_info,
719 "free space inode generation (%llu) did not match free space cache generation (%llu)",
720 BTRFS_I(inode)->generation, generation);
a67509c3 721 return 0;
9d66e233
JB
722 }
723
724 if (!num_entries)
a67509c3 725 return 0;
9d66e233 726
f15376df 727 ret = io_ctl_init(&io_ctl, inode, 0);
706efc66
LZ
728 if (ret)
729 return ret;
730
1d480538 731 readahead_cache(inode);
9d66e233 732
a67509c3
JB
733 ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
734 if (ret)
735 goto out;
9d66e233 736
5b0e95bf
JB
737 ret = io_ctl_check_crc(&io_ctl, 0);
738 if (ret)
739 goto free_cache;
740
a67509c3
JB
741 ret = io_ctl_check_generation(&io_ctl, generation);
742 if (ret)
743 goto free_cache;
9d66e233 744
a67509c3
JB
745 while (num_entries) {
746 e = kmem_cache_zalloc(btrfs_free_space_cachep,
747 GFP_NOFS);
748 if (!e)
9d66e233 749 goto free_cache;
9d66e233 750
5b0e95bf
JB
751 ret = io_ctl_read_entry(&io_ctl, e, &type);
752 if (ret) {
753 kmem_cache_free(btrfs_free_space_cachep, e);
754 goto free_cache;
755 }
756
a67509c3
JB
757 if (!e->bytes) {
758 kmem_cache_free(btrfs_free_space_cachep, e);
759 goto free_cache;
9d66e233 760 }
a67509c3
JB
761
762 if (type == BTRFS_FREE_SPACE_EXTENT) {
763 spin_lock(&ctl->tree_lock);
764 ret = link_free_space(ctl, e);
765 spin_unlock(&ctl->tree_lock);
766 if (ret) {
0b246afa 767 btrfs_err(fs_info,
c2cf52eb 768 "Duplicate entries in free space cache, dumping");
a67509c3 769 kmem_cache_free(btrfs_free_space_cachep, e);
9d66e233
JB
770 goto free_cache;
771 }
a67509c3 772 } else {
b12d6869 773 ASSERT(num_bitmaps);
a67509c3 774 num_bitmaps--;
09cbfeaf 775 e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
a67509c3
JB
776 if (!e->bitmap) {
777 kmem_cache_free(
778 btrfs_free_space_cachep, e);
9d66e233
JB
779 goto free_cache;
780 }
a67509c3
JB
781 spin_lock(&ctl->tree_lock);
782 ret = link_free_space(ctl, e);
783 ctl->total_bitmaps++;
784 ctl->op->recalc_thresholds(ctl);
785 spin_unlock(&ctl->tree_lock);
786 if (ret) {
0b246afa 787 btrfs_err(fs_info,
c2cf52eb 788 "Duplicate entries in free space cache, dumping");
dc89e982 789 kmem_cache_free(btrfs_free_space_cachep, e);
9d66e233
JB
790 goto free_cache;
791 }
a67509c3 792 list_add_tail(&e->list, &bitmaps);
9d66e233
JB
793 }
794
a67509c3
JB
795 num_entries--;
796 }
9d66e233 797
2f120c05
JB
798 io_ctl_unmap_page(&io_ctl);
799
a67509c3
JB
800 /*
801 * We add the bitmaps at the end of the entries in order that
802 * the bitmap entries are added to the cache.
803 */
804 list_for_each_entry_safe(e, n, &bitmaps, list) {
9d66e233 805 list_del_init(&e->list);
5b0e95bf
JB
806 ret = io_ctl_read_bitmap(&io_ctl, e);
807 if (ret)
808 goto free_cache;
9d66e233
JB
809 }
810
a67509c3 811 io_ctl_drop_pages(&io_ctl);
cd023e7b 812 merge_space_tree(ctl);
9d66e233
JB
813 ret = 1;
814out:
a67509c3 815 io_ctl_free(&io_ctl);
9d66e233 816 return ret;
9d66e233 817free_cache:
a67509c3 818 io_ctl_drop_pages(&io_ctl);
0414efae 819 __btrfs_remove_free_space_cache(ctl);
9d66e233
JB
820 goto out;
821}
822
0414efae
LZ
823int load_free_space_cache(struct btrfs_fs_info *fs_info,
824 struct btrfs_block_group_cache *block_group)
0cb59c99 825{
34d52cb6 826 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0414efae
LZ
827 struct inode *inode;
828 struct btrfs_path *path;
5b0e95bf 829 int ret = 0;
0414efae
LZ
830 bool matched;
831 u64 used = btrfs_block_group_used(&block_group->item);
832
0414efae
LZ
833 /*
834 * If this block group has been marked to be cleared for one reason or
835 * another then we can't trust the on disk cache, so just return.
836 */
9d66e233 837 spin_lock(&block_group->lock);
0414efae
LZ
838 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
839 spin_unlock(&block_group->lock);
840 return 0;
841 }
9d66e233 842 spin_unlock(&block_group->lock);
0414efae
LZ
843
844 path = btrfs_alloc_path();
845 if (!path)
846 return 0;
d53ba474
JB
847 path->search_commit_root = 1;
848 path->skip_locking = 1;
0414efae 849
77ab86bf 850 inode = lookup_free_space_inode(fs_info, block_group, path);
0414efae
LZ
851 if (IS_ERR(inode)) {
852 btrfs_free_path(path);
853 return 0;
854 }
855
5b0e95bf
JB
856 /* We may have converted the inode and made the cache invalid. */
857 spin_lock(&block_group->lock);
858 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
859 spin_unlock(&block_group->lock);
a7e221e9 860 btrfs_free_path(path);
5b0e95bf
JB
861 goto out;
862 }
863 spin_unlock(&block_group->lock);
864
0414efae
LZ
865 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
866 path, block_group->key.objectid);
867 btrfs_free_path(path);
868 if (ret <= 0)
869 goto out;
870
871 spin_lock(&ctl->tree_lock);
872 matched = (ctl->free_space == (block_group->key.offset - used -
873 block_group->bytes_super));
874 spin_unlock(&ctl->tree_lock);
875
876 if (!matched) {
877 __btrfs_remove_free_space_cache(ctl);
5d163e0e
JM
878 btrfs_warn(fs_info,
879 "block group %llu has wrong amount of free space",
880 block_group->key.objectid);
0414efae
LZ
881 ret = -1;
882 }
883out:
884 if (ret < 0) {
885 /* This cache is bogus, make sure it gets cleared */
886 spin_lock(&block_group->lock);
887 block_group->disk_cache_state = BTRFS_DC_CLEAR;
888 spin_unlock(&block_group->lock);
82d5902d 889 ret = 0;
0414efae 890
5d163e0e
JM
891 btrfs_warn(fs_info,
892 "failed to load free space cache for block group %llu, rebuilding it now",
893 block_group->key.objectid);
0414efae
LZ
894 }
895
896 iput(inode);
897 return ret;
9d66e233
JB
898}
899
d4452bc5 900static noinline_for_stack
4c6d1d85 901int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
d4452bc5
CM
902 struct btrfs_free_space_ctl *ctl,
903 struct btrfs_block_group_cache *block_group,
904 int *entries, int *bitmaps,
905 struct list_head *bitmap_list)
0cb59c99 906{
c09544e0 907 int ret;
d4452bc5 908 struct btrfs_free_cluster *cluster = NULL;
1bbc621e 909 struct btrfs_free_cluster *cluster_locked = NULL;
d4452bc5 910 struct rb_node *node = rb_first(&ctl->free_space_offset);
55507ce3 911 struct btrfs_trim_range *trim_entry;
be1a12a0 912
43be2146 913 /* Get the cluster for this block_group if it exists */
d4452bc5 914 if (block_group && !list_empty(&block_group->cluster_list)) {
43be2146
JB
915 cluster = list_entry(block_group->cluster_list.next,
916 struct btrfs_free_cluster,
917 block_group_list);
d4452bc5 918 }
43be2146 919
f75b130e 920 if (!node && cluster) {
1bbc621e
CM
921 cluster_locked = cluster;
922 spin_lock(&cluster_locked->lock);
f75b130e
JB
923 node = rb_first(&cluster->root);
924 cluster = NULL;
925 }
926
a67509c3
JB
927 /* Write out the extent entries */
928 while (node) {
929 struct btrfs_free_space *e;
0cb59c99 930
a67509c3 931 e = rb_entry(node, struct btrfs_free_space, offset_index);
d4452bc5 932 *entries += 1;
0cb59c99 933
d4452bc5 934 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
a67509c3
JB
935 e->bitmap);
936 if (ret)
d4452bc5 937 goto fail;
2f356126 938
a67509c3 939 if (e->bitmap) {
d4452bc5
CM
940 list_add_tail(&e->list, bitmap_list);
941 *bitmaps += 1;
2f356126 942 }
a67509c3
JB
943 node = rb_next(node);
944 if (!node && cluster) {
945 node = rb_first(&cluster->root);
1bbc621e
CM
946 cluster_locked = cluster;
947 spin_lock(&cluster_locked->lock);
a67509c3 948 cluster = NULL;
43be2146 949 }
a67509c3 950 }
1bbc621e
CM
951 if (cluster_locked) {
952 spin_unlock(&cluster_locked->lock);
953 cluster_locked = NULL;
954 }
55507ce3
FM
955
956 /*
957 * Make sure we don't miss any range that was removed from our rbtree
958 * because trimming is running. Otherwise after a umount+mount (or crash
959 * after committing the transaction) we would leak free space and get
960 * an inconsistent free space cache report from fsck.
961 */
962 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
963 ret = io_ctl_add_entry(io_ctl, trim_entry->start,
964 trim_entry->bytes, NULL);
965 if (ret)
966 goto fail;
967 *entries += 1;
968 }
969
d4452bc5
CM
970 return 0;
971fail:
1bbc621e
CM
972 if (cluster_locked)
973 spin_unlock(&cluster_locked->lock);
d4452bc5
CM
974 return -ENOSPC;
975}
976
977static noinline_for_stack int
978update_cache_item(struct btrfs_trans_handle *trans,
979 struct btrfs_root *root,
980 struct inode *inode,
981 struct btrfs_path *path, u64 offset,
982 int entries, int bitmaps)
983{
984 struct btrfs_key key;
985 struct btrfs_free_space_header *header;
986 struct extent_buffer *leaf;
987 int ret;
988
989 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
990 key.offset = offset;
991 key.type = 0;
992
993 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
994 if (ret < 0) {
995 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
996 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
997 GFP_NOFS);
998 goto fail;
999 }
1000 leaf = path->nodes[0];
1001 if (ret > 0) {
1002 struct btrfs_key found_key;
1003 ASSERT(path->slots[0]);
1004 path->slots[0]--;
1005 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1006 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1007 found_key.offset != offset) {
1008 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1009 inode->i_size - 1,
1010 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1011 NULL, GFP_NOFS);
1012 btrfs_release_path(path);
1013 goto fail;
1014 }
1015 }
1016
1017 BTRFS_I(inode)->generation = trans->transid;
1018 header = btrfs_item_ptr(leaf, path->slots[0],
1019 struct btrfs_free_space_header);
1020 btrfs_set_free_space_entries(leaf, header, entries);
1021 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1022 btrfs_set_free_space_generation(leaf, header, trans->transid);
1023 btrfs_mark_buffer_dirty(leaf);
1024 btrfs_release_path(path);
1025
1026 return 0;
1027
1028fail:
1029 return -1;
1030}
1031
1032static noinline_for_stack int
2ff7e61e 1033write_pinned_extent_entries(struct btrfs_fs_info *fs_info,
5349d6c3 1034 struct btrfs_block_group_cache *block_group,
4c6d1d85 1035 struct btrfs_io_ctl *io_ctl,
5349d6c3 1036 int *entries)
d4452bc5
CM
1037{
1038 u64 start, extent_start, extent_end, len;
d4452bc5
CM
1039 struct extent_io_tree *unpin = NULL;
1040 int ret;
43be2146 1041
5349d6c3
MX
1042 if (!block_group)
1043 return 0;
1044
a67509c3
JB
1045 /*
1046 * We want to add any pinned extents to our free space cache
1047 * so we don't leak the space
d4452bc5 1048 *
db804f23
LZ
1049 * We shouldn't have switched the pinned extents yet so this is the
1050 * right one
1051 */
0b246afa 1052 unpin = fs_info->pinned_extents;
db804f23 1053
5349d6c3 1054 start = block_group->key.objectid;
db804f23 1055
5349d6c3 1056 while (start < block_group->key.objectid + block_group->key.offset) {
db804f23
LZ
1057 ret = find_first_extent_bit(unpin, start,
1058 &extent_start, &extent_end,
e6138876 1059 EXTENT_DIRTY, NULL);
5349d6c3
MX
1060 if (ret)
1061 return 0;
0cb59c99 1062
a67509c3 1063 /* This pinned extent is out of our range */
db804f23 1064 if (extent_start >= block_group->key.objectid +
a67509c3 1065 block_group->key.offset)
5349d6c3 1066 return 0;
2f356126 1067
db804f23
LZ
1068 extent_start = max(extent_start, start);
1069 extent_end = min(block_group->key.objectid +
1070 block_group->key.offset, extent_end + 1);
1071 len = extent_end - extent_start;
0cb59c99 1072
d4452bc5
CM
1073 *entries += 1;
1074 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
a67509c3 1075 if (ret)
5349d6c3 1076 return -ENOSPC;
0cb59c99 1077
db804f23 1078 start = extent_end;
a67509c3 1079 }
0cb59c99 1080
5349d6c3
MX
1081 return 0;
1082}
1083
1084static noinline_for_stack int
4c6d1d85 1085write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
5349d6c3 1086{
7ae1681e 1087 struct btrfs_free_space *entry, *next;
5349d6c3
MX
1088 int ret;
1089
0cb59c99 1090 /* Write out the bitmaps */
7ae1681e 1091 list_for_each_entry_safe(entry, next, bitmap_list, list) {
d4452bc5 1092 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
a67509c3 1093 if (ret)
5349d6c3 1094 return -ENOSPC;
0cb59c99 1095 list_del_init(&entry->list);
be1a12a0
JB
1096 }
1097
5349d6c3
MX
1098 return 0;
1099}
0cb59c99 1100
5349d6c3
MX
1101static int flush_dirty_cache(struct inode *inode)
1102{
1103 int ret;
be1a12a0 1104
0ef8b726 1105 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5349d6c3 1106 if (ret)
0ef8b726
JB
1107 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1108 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1109 GFP_NOFS);
0cb59c99 1110
5349d6c3 1111 return ret;
d4452bc5
CM
1112}
1113
1114static void noinline_for_stack
a3bdccc4 1115cleanup_bitmap_list(struct list_head *bitmap_list)
d4452bc5 1116{
7ae1681e 1117 struct btrfs_free_space *entry, *next;
5349d6c3 1118
7ae1681e 1119 list_for_each_entry_safe(entry, next, bitmap_list, list)
d4452bc5 1120 list_del_init(&entry->list);
a3bdccc4
CM
1121}
1122
1123static void noinline_for_stack
1124cleanup_write_cache_enospc(struct inode *inode,
1125 struct btrfs_io_ctl *io_ctl,
7bf1a159 1126 struct extent_state **cached_state)
a3bdccc4 1127{
d4452bc5
CM
1128 io_ctl_drop_pages(io_ctl);
1129 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1130 i_size_read(inode) - 1, cached_state,
1131 GFP_NOFS);
1132}
549b4fdb 1133
afdb5718
JM
1134static int __btrfs_wait_cache_io(struct btrfs_root *root,
1135 struct btrfs_trans_handle *trans,
1136 struct btrfs_block_group_cache *block_group,
1137 struct btrfs_io_ctl *io_ctl,
1138 struct btrfs_path *path, u64 offset)
c9dc4c65
CM
1139{
1140 int ret;
1141 struct inode *inode = io_ctl->inode;
0b246afa 1142 struct btrfs_fs_info *fs_info;
c9dc4c65 1143
1bbc621e
CM
1144 if (!inode)
1145 return 0;
1146
0b246afa
JM
1147 fs_info = btrfs_sb(inode->i_sb);
1148
c9dc4c65
CM
1149 /* Flush the dirty pages in the cache file. */
1150 ret = flush_dirty_cache(inode);
1151 if (ret)
1152 goto out;
1153
1154 /* Update the cache item to tell everyone this cache file is valid. */
1155 ret = update_cache_item(trans, root, inode, path, offset,
1156 io_ctl->entries, io_ctl->bitmaps);
1157out:
1158 io_ctl_free(io_ctl);
1159 if (ret) {
1160 invalidate_inode_pages2(inode->i_mapping);
1161 BTRFS_I(inode)->generation = 0;
1162 if (block_group) {
1163#ifdef DEBUG
0b246afa
JM
1164 btrfs_err(fs_info,
1165 "failed to write free space cache for block group %llu",
1166 block_group->key.objectid);
c9dc4c65
CM
1167#endif
1168 }
1169 }
1170 btrfs_update_inode(trans, root, inode);
1171
1172 if (block_group) {
1bbc621e
CM
1173 /* the dirty list is protected by the dirty_bgs_lock */
1174 spin_lock(&trans->transaction->dirty_bgs_lock);
1175
1176 /* the disk_cache_state is protected by the block group lock */
c9dc4c65
CM
1177 spin_lock(&block_group->lock);
1178
1179 /*
1180 * only mark this as written if we didn't get put back on
1bbc621e
CM
1181 * the dirty list while waiting for IO. Otherwise our
1182 * cache state won't be right, and we won't get written again
c9dc4c65
CM
1183 */
1184 if (!ret && list_empty(&block_group->dirty_list))
1185 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1186 else if (ret)
1187 block_group->disk_cache_state = BTRFS_DC_ERROR;
1188
1189 spin_unlock(&block_group->lock);
1bbc621e 1190 spin_unlock(&trans->transaction->dirty_bgs_lock);
c9dc4c65
CM
1191 io_ctl->inode = NULL;
1192 iput(inode);
1193 }
1194
1195 return ret;
1196
1197}
1198
afdb5718
JM
1199static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1200 struct btrfs_trans_handle *trans,
1201 struct btrfs_io_ctl *io_ctl,
1202 struct btrfs_path *path)
1203{
1204 return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1205}
1206
1207int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1208 struct btrfs_block_group_cache *block_group,
1209 struct btrfs_path *path)
1210{
1211 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1212 block_group, &block_group->io_ctl,
1213 path, block_group->key.objectid);
1214}
1215
d4452bc5
CM
1216/**
1217 * __btrfs_write_out_cache - write out cached info to an inode
1218 * @root - the root the inode belongs to
1219 * @ctl - the free space cache we are going to write out
1220 * @block_group - the block_group for this cache if it belongs to a block_group
1221 * @trans - the trans handle
d4452bc5
CM
1222 *
1223 * This function writes out a free space cache struct to disk for quick recovery
8cd1e731 1224 * on mount. This will return 0 if it was successful in writing the cache out,
b8605454 1225 * or an errno if it was not.
d4452bc5
CM
1226 */
1227static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1228 struct btrfs_free_space_ctl *ctl,
1229 struct btrfs_block_group_cache *block_group,
c9dc4c65 1230 struct btrfs_io_ctl *io_ctl,
0e8d931a 1231 struct btrfs_trans_handle *trans)
d4452bc5 1232{
2ff7e61e 1233 struct btrfs_fs_info *fs_info = root->fs_info;
d4452bc5 1234 struct extent_state *cached_state = NULL;
5349d6c3 1235 LIST_HEAD(bitmap_list);
d4452bc5
CM
1236 int entries = 0;
1237 int bitmaps = 0;
1238 int ret;
c9dc4c65 1239 int must_iput = 0;
d4452bc5
CM
1240
1241 if (!i_size_read(inode))
b8605454 1242 return -EIO;
d4452bc5 1243
c9dc4c65 1244 WARN_ON(io_ctl->pages);
f15376df 1245 ret = io_ctl_init(io_ctl, inode, 1);
d4452bc5 1246 if (ret)
b8605454 1247 return ret;
d4452bc5 1248
e570fd27
MX
1249 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1250 down_write(&block_group->data_rwsem);
1251 spin_lock(&block_group->lock);
1252 if (block_group->delalloc_bytes) {
1253 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1254 spin_unlock(&block_group->lock);
1255 up_write(&block_group->data_rwsem);
1256 BTRFS_I(inode)->generation = 0;
1257 ret = 0;
c9dc4c65 1258 must_iput = 1;
e570fd27
MX
1259 goto out;
1260 }
1261 spin_unlock(&block_group->lock);
1262 }
1263
d4452bc5 1264 /* Lock all pages first so we can lock the extent safely. */
b8605454
OS
1265 ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1266 if (ret)
1267 goto out;
d4452bc5
CM
1268
1269 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
ff13db41 1270 &cached_state);
d4452bc5 1271
c9dc4c65 1272 io_ctl_set_generation(io_ctl, trans->transid);
d4452bc5 1273
55507ce3 1274 mutex_lock(&ctl->cache_writeout_mutex);
5349d6c3 1275 /* Write out the extent entries in the free space cache */
1bbc621e 1276 spin_lock(&ctl->tree_lock);
c9dc4c65 1277 ret = write_cache_extent_entries(io_ctl, ctl,
d4452bc5
CM
1278 block_group, &entries, &bitmaps,
1279 &bitmap_list);
a3bdccc4
CM
1280 if (ret)
1281 goto out_nospc_locked;
d4452bc5 1282
5349d6c3
MX
1283 /*
1284 * Some spaces that are freed in the current transaction are pinned,
1285 * they will be added into free space cache after the transaction is
1286 * committed, we shouldn't lose them.
1bbc621e
CM
1287 *
1288 * If this changes while we are working we'll get added back to
1289 * the dirty list and redo it. No locking needed
5349d6c3 1290 */
2ff7e61e
JM
1291 ret = write_pinned_extent_entries(fs_info, block_group,
1292 io_ctl, &entries);
a3bdccc4
CM
1293 if (ret)
1294 goto out_nospc_locked;
5349d6c3 1295
55507ce3
FM
1296 /*
1297 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1298 * locked while doing it because a concurrent trim can be manipulating
1299 * or freeing the bitmap.
1300 */
c9dc4c65 1301 ret = write_bitmap_entries(io_ctl, &bitmap_list);
1bbc621e 1302 spin_unlock(&ctl->tree_lock);
55507ce3 1303 mutex_unlock(&ctl->cache_writeout_mutex);
5349d6c3
MX
1304 if (ret)
1305 goto out_nospc;
1306
1307 /* Zero out the rest of the pages just to make sure */
c9dc4c65 1308 io_ctl_zero_remaining_pages(io_ctl);
d4452bc5 1309
5349d6c3 1310 /* Everything is written out, now we dirty the pages in the file. */
2ff7e61e
JM
1311 ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1312 i_size_read(inode), &cached_state);
5349d6c3 1313 if (ret)
d4452bc5 1314 goto out_nospc;
5349d6c3 1315
e570fd27
MX
1316 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1317 up_write(&block_group->data_rwsem);
5349d6c3
MX
1318 /*
1319 * Release the pages and unlock the extent, we will flush
1320 * them out later
1321 */
c9dc4c65 1322 io_ctl_drop_pages(io_ctl);
5349d6c3
MX
1323
1324 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1325 i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1326
c9dc4c65
CM
1327 /*
1328 * at this point the pages are under IO and we're happy,
1329 * The caller is responsible for waiting on them and updating the
1330 * the cache and the inode
1331 */
1332 io_ctl->entries = entries;
1333 io_ctl->bitmaps = bitmaps;
1334
1335 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
5349d6c3 1336 if (ret)
d4452bc5
CM
1337 goto out;
1338
c9dc4c65
CM
1339 return 0;
1340
2f356126 1341out:
c9dc4c65
CM
1342 io_ctl->inode = NULL;
1343 io_ctl_free(io_ctl);
5349d6c3 1344 if (ret) {
a67509c3 1345 invalidate_inode_pages2(inode->i_mapping);
0cb59c99
JB
1346 BTRFS_I(inode)->generation = 0;
1347 }
0cb59c99 1348 btrfs_update_inode(trans, root, inode);
c9dc4c65
CM
1349 if (must_iput)
1350 iput(inode);
5349d6c3 1351 return ret;
a67509c3 1352
a3bdccc4
CM
1353out_nospc_locked:
1354 cleanup_bitmap_list(&bitmap_list);
1355 spin_unlock(&ctl->tree_lock);
1356 mutex_unlock(&ctl->cache_writeout_mutex);
1357
a67509c3 1358out_nospc:
7bf1a159 1359 cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
e570fd27
MX
1360
1361 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1362 up_write(&block_group->data_rwsem);
1363
a67509c3 1364 goto out;
0414efae
LZ
1365}
1366
5b4aacef 1367int btrfs_write_out_cache(struct btrfs_fs_info *fs_info,
0414efae
LZ
1368 struct btrfs_trans_handle *trans,
1369 struct btrfs_block_group_cache *block_group,
1370 struct btrfs_path *path)
1371{
1372 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1373 struct inode *inode;
1374 int ret = 0;
1375
0414efae
LZ
1376 spin_lock(&block_group->lock);
1377 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1378 spin_unlock(&block_group->lock);
e570fd27
MX
1379 return 0;
1380 }
0414efae
LZ
1381 spin_unlock(&block_group->lock);
1382
77ab86bf 1383 inode = lookup_free_space_inode(fs_info, block_group, path);
0414efae
LZ
1384 if (IS_ERR(inode))
1385 return 0;
1386
77ab86bf
JM
1387 ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1388 block_group, &block_group->io_ctl, trans);
c09544e0 1389 if (ret) {
c09544e0 1390#ifdef DEBUG
0b246afa
JM
1391 btrfs_err(fs_info,
1392 "failed to write free space cache for block group %llu",
1393 block_group->key.objectid);
c09544e0 1394#endif
c9dc4c65
CM
1395 spin_lock(&block_group->lock);
1396 block_group->disk_cache_state = BTRFS_DC_ERROR;
1397 spin_unlock(&block_group->lock);
1398
1399 block_group->io_ctl.inode = NULL;
1400 iput(inode);
0414efae
LZ
1401 }
1402
c9dc4c65
CM
1403 /*
1404 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1405 * to wait for IO and put the inode
1406 */
1407
0cb59c99
JB
1408 return ret;
1409}
1410
34d52cb6 1411static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
96303081 1412 u64 offset)
0f9dd46c 1413{
b12d6869 1414 ASSERT(offset >= bitmap_start);
96303081 1415 offset -= bitmap_start;
34d52cb6 1416 return (unsigned long)(div_u64(offset, unit));
96303081 1417}
0f9dd46c 1418
34d52cb6 1419static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
96303081 1420{
34d52cb6 1421 return (unsigned long)(div_u64(bytes, unit));
96303081 1422}
0f9dd46c 1423
34d52cb6 1424static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1425 u64 offset)
1426{
1427 u64 bitmap_start;
0ef6447a 1428 u64 bytes_per_bitmap;
0f9dd46c 1429
34d52cb6
LZ
1430 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1431 bitmap_start = offset - ctl->start;
0ef6447a 1432 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
96303081 1433 bitmap_start *= bytes_per_bitmap;
34d52cb6 1434 bitmap_start += ctl->start;
0f9dd46c 1435
96303081 1436 return bitmap_start;
0f9dd46c
JB
1437}
1438
96303081
JB
1439static int tree_insert_offset(struct rb_root *root, u64 offset,
1440 struct rb_node *node, int bitmap)
0f9dd46c
JB
1441{
1442 struct rb_node **p = &root->rb_node;
1443 struct rb_node *parent = NULL;
1444 struct btrfs_free_space *info;
1445
1446 while (*p) {
1447 parent = *p;
96303081 1448 info = rb_entry(parent, struct btrfs_free_space, offset_index);
0f9dd46c 1449
96303081 1450 if (offset < info->offset) {
0f9dd46c 1451 p = &(*p)->rb_left;
96303081 1452 } else if (offset > info->offset) {
0f9dd46c 1453 p = &(*p)->rb_right;
96303081
JB
1454 } else {
1455 /*
1456 * we could have a bitmap entry and an extent entry
1457 * share the same offset. If this is the case, we want
1458 * the extent entry to always be found first if we do a
1459 * linear search through the tree, since we want to have
1460 * the quickest allocation time, and allocating from an
1461 * extent is faster than allocating from a bitmap. So
1462 * if we're inserting a bitmap and we find an entry at
1463 * this offset, we want to go right, or after this entry
1464 * logically. If we are inserting an extent and we've
1465 * found a bitmap, we want to go left, or before
1466 * logically.
1467 */
1468 if (bitmap) {
207dde82
JB
1469 if (info->bitmap) {
1470 WARN_ON_ONCE(1);
1471 return -EEXIST;
1472 }
96303081
JB
1473 p = &(*p)->rb_right;
1474 } else {
207dde82
JB
1475 if (!info->bitmap) {
1476 WARN_ON_ONCE(1);
1477 return -EEXIST;
1478 }
96303081
JB
1479 p = &(*p)->rb_left;
1480 }
1481 }
0f9dd46c
JB
1482 }
1483
1484 rb_link_node(node, parent, p);
1485 rb_insert_color(node, root);
1486
1487 return 0;
1488}
1489
1490/*
70cb0743
JB
1491 * searches the tree for the given offset.
1492 *
96303081
JB
1493 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1494 * want a section that has at least bytes size and comes at or after the given
1495 * offset.
0f9dd46c 1496 */
96303081 1497static struct btrfs_free_space *
34d52cb6 1498tree_search_offset(struct btrfs_free_space_ctl *ctl,
96303081 1499 u64 offset, int bitmap_only, int fuzzy)
0f9dd46c 1500{
34d52cb6 1501 struct rb_node *n = ctl->free_space_offset.rb_node;
96303081
JB
1502 struct btrfs_free_space *entry, *prev = NULL;
1503
1504 /* find entry that is closest to the 'offset' */
1505 while (1) {
1506 if (!n) {
1507 entry = NULL;
1508 break;
1509 }
0f9dd46c 1510
0f9dd46c 1511 entry = rb_entry(n, struct btrfs_free_space, offset_index);
96303081 1512 prev = entry;
0f9dd46c 1513
96303081 1514 if (offset < entry->offset)
0f9dd46c 1515 n = n->rb_left;
96303081 1516 else if (offset > entry->offset)
0f9dd46c 1517 n = n->rb_right;
96303081 1518 else
0f9dd46c 1519 break;
0f9dd46c
JB
1520 }
1521
96303081
JB
1522 if (bitmap_only) {
1523 if (!entry)
1524 return NULL;
1525 if (entry->bitmap)
1526 return entry;
0f9dd46c 1527
96303081
JB
1528 /*
1529 * bitmap entry and extent entry may share same offset,
1530 * in that case, bitmap entry comes after extent entry.
1531 */
1532 n = rb_next(n);
1533 if (!n)
1534 return NULL;
1535 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1536 if (entry->offset != offset)
1537 return NULL;
0f9dd46c 1538
96303081
JB
1539 WARN_ON(!entry->bitmap);
1540 return entry;
1541 } else if (entry) {
1542 if (entry->bitmap) {
0f9dd46c 1543 /*
96303081
JB
1544 * if previous extent entry covers the offset,
1545 * we should return it instead of the bitmap entry
0f9dd46c 1546 */
de6c4115
MX
1547 n = rb_prev(&entry->offset_index);
1548 if (n) {
96303081
JB
1549 prev = rb_entry(n, struct btrfs_free_space,
1550 offset_index);
de6c4115
MX
1551 if (!prev->bitmap &&
1552 prev->offset + prev->bytes > offset)
1553 entry = prev;
0f9dd46c 1554 }
96303081
JB
1555 }
1556 return entry;
1557 }
1558
1559 if (!prev)
1560 return NULL;
1561
1562 /* find last entry before the 'offset' */
1563 entry = prev;
1564 if (entry->offset > offset) {
1565 n = rb_prev(&entry->offset_index);
1566 if (n) {
1567 entry = rb_entry(n, struct btrfs_free_space,
1568 offset_index);
b12d6869 1569 ASSERT(entry->offset <= offset);
0f9dd46c 1570 } else {
96303081
JB
1571 if (fuzzy)
1572 return entry;
1573 else
1574 return NULL;
0f9dd46c
JB
1575 }
1576 }
1577
96303081 1578 if (entry->bitmap) {
de6c4115
MX
1579 n = rb_prev(&entry->offset_index);
1580 if (n) {
96303081
JB
1581 prev = rb_entry(n, struct btrfs_free_space,
1582 offset_index);
de6c4115
MX
1583 if (!prev->bitmap &&
1584 prev->offset + prev->bytes > offset)
1585 return prev;
96303081 1586 }
34d52cb6 1587 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
96303081
JB
1588 return entry;
1589 } else if (entry->offset + entry->bytes > offset)
1590 return entry;
1591
1592 if (!fuzzy)
1593 return NULL;
1594
1595 while (1) {
1596 if (entry->bitmap) {
1597 if (entry->offset + BITS_PER_BITMAP *
34d52cb6 1598 ctl->unit > offset)
96303081
JB
1599 break;
1600 } else {
1601 if (entry->offset + entry->bytes > offset)
1602 break;
1603 }
1604
1605 n = rb_next(&entry->offset_index);
1606 if (!n)
1607 return NULL;
1608 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1609 }
1610 return entry;
0f9dd46c
JB
1611}
1612
f333adb5 1613static inline void
34d52cb6 1614__unlink_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5 1615 struct btrfs_free_space *info)
0f9dd46c 1616{
34d52cb6
LZ
1617 rb_erase(&info->offset_index, &ctl->free_space_offset);
1618 ctl->free_extents--;
f333adb5
LZ
1619}
1620
34d52cb6 1621static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5
LZ
1622 struct btrfs_free_space *info)
1623{
34d52cb6
LZ
1624 __unlink_free_space(ctl, info);
1625 ctl->free_space -= info->bytes;
0f9dd46c
JB
1626}
1627
34d52cb6 1628static int link_free_space(struct btrfs_free_space_ctl *ctl,
0f9dd46c
JB
1629 struct btrfs_free_space *info)
1630{
1631 int ret = 0;
1632
b12d6869 1633 ASSERT(info->bytes || info->bitmap);
34d52cb6 1634 ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
96303081 1635 &info->offset_index, (info->bitmap != NULL));
0f9dd46c
JB
1636 if (ret)
1637 return ret;
1638
34d52cb6
LZ
1639 ctl->free_space += info->bytes;
1640 ctl->free_extents++;
96303081
JB
1641 return ret;
1642}
1643
34d52cb6 1644static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
96303081 1645{
34d52cb6 1646 struct btrfs_block_group_cache *block_group = ctl->private;
25891f79
JB
1647 u64 max_bytes;
1648 u64 bitmap_bytes;
1649 u64 extent_bytes;
8eb2d829 1650 u64 size = block_group->key.offset;
0ef6447a
FX
1651 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1652 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
34d52cb6 1653
0ef6447a 1654 max_bitmaps = max_t(u64, max_bitmaps, 1);
dde5740f 1655
b12d6869 1656 ASSERT(ctl->total_bitmaps <= max_bitmaps);
96303081
JB
1657
1658 /*
1659 * The goal is to keep the total amount of memory used per 1gb of space
1660 * at or below 32k, so we need to adjust how much memory we allow to be
1661 * used by extent based free space tracking
1662 */
ee22184b 1663 if (size < SZ_1G)
8eb2d829
LZ
1664 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1665 else
ee22184b 1666 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
96303081 1667
25891f79
JB
1668 /*
1669 * we want to account for 1 more bitmap than what we have so we can make
1670 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1671 * we add more bitmaps.
1672 */
b9ef22de 1673 bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
96303081 1674
25891f79 1675 if (bitmap_bytes >= max_bytes) {
34d52cb6 1676 ctl->extents_thresh = 0;
25891f79
JB
1677 return;
1678 }
96303081 1679
25891f79 1680 /*
f8c269d7 1681 * we want the extent entry threshold to always be at most 1/2 the max
25891f79
JB
1682 * bytes we can have, or whatever is less than that.
1683 */
1684 extent_bytes = max_bytes - bitmap_bytes;
f8c269d7 1685 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
96303081 1686
34d52cb6 1687 ctl->extents_thresh =
f8c269d7 1688 div_u64(extent_bytes, sizeof(struct btrfs_free_space));
96303081
JB
1689}
1690
bb3ac5a4
MX
1691static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1692 struct btrfs_free_space *info,
1693 u64 offset, u64 bytes)
96303081 1694{
f38b6e75 1695 unsigned long start, count;
96303081 1696
34d52cb6
LZ
1697 start = offset_to_bit(info->offset, ctl->unit, offset);
1698 count = bytes_to_bits(bytes, ctl->unit);
b12d6869 1699 ASSERT(start + count <= BITS_PER_BITMAP);
96303081 1700
f38b6e75 1701 bitmap_clear(info->bitmap, start, count);
96303081
JB
1702
1703 info->bytes -= bytes;
bb3ac5a4
MX
1704}
1705
1706static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1707 struct btrfs_free_space *info, u64 offset,
1708 u64 bytes)
1709{
1710 __bitmap_clear_bits(ctl, info, offset, bytes);
34d52cb6 1711 ctl->free_space -= bytes;
96303081
JB
1712}
1713
34d52cb6 1714static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
817d52f8
JB
1715 struct btrfs_free_space *info, u64 offset,
1716 u64 bytes)
96303081 1717{
f38b6e75 1718 unsigned long start, count;
96303081 1719
34d52cb6
LZ
1720 start = offset_to_bit(info->offset, ctl->unit, offset);
1721 count = bytes_to_bits(bytes, ctl->unit);
b12d6869 1722 ASSERT(start + count <= BITS_PER_BITMAP);
96303081 1723
f38b6e75 1724 bitmap_set(info->bitmap, start, count);
96303081
JB
1725
1726 info->bytes += bytes;
34d52cb6 1727 ctl->free_space += bytes;
96303081
JB
1728}
1729
a4820398
MX
1730/*
1731 * If we can not find suitable extent, we will use bytes to record
1732 * the size of the max extent.
1733 */
34d52cb6 1734static int search_bitmap(struct btrfs_free_space_ctl *ctl,
96303081 1735 struct btrfs_free_space *bitmap_info, u64 *offset,
0584f718 1736 u64 *bytes, bool for_alloc)
96303081
JB
1737{
1738 unsigned long found_bits = 0;
a4820398 1739 unsigned long max_bits = 0;
96303081
JB
1740 unsigned long bits, i;
1741 unsigned long next_zero;
a4820398 1742 unsigned long extent_bits;
96303081 1743
cef40483
JB
1744 /*
1745 * Skip searching the bitmap if we don't have a contiguous section that
1746 * is large enough for this allocation.
1747 */
0584f718
JB
1748 if (for_alloc &&
1749 bitmap_info->max_extent_size &&
cef40483
JB
1750 bitmap_info->max_extent_size < *bytes) {
1751 *bytes = bitmap_info->max_extent_size;
1752 return -1;
1753 }
1754
34d52cb6 1755 i = offset_to_bit(bitmap_info->offset, ctl->unit,
96303081 1756 max_t(u64, *offset, bitmap_info->offset));
34d52cb6 1757 bits = bytes_to_bits(*bytes, ctl->unit);
96303081 1758
ebb3dad4 1759 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
0584f718
JB
1760 if (for_alloc && bits == 1) {
1761 found_bits = 1;
1762 break;
1763 }
96303081
JB
1764 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1765 BITS_PER_BITMAP, i);
a4820398
MX
1766 extent_bits = next_zero - i;
1767 if (extent_bits >= bits) {
1768 found_bits = extent_bits;
96303081 1769 break;
a4820398
MX
1770 } else if (extent_bits > max_bits) {
1771 max_bits = extent_bits;
96303081
JB
1772 }
1773 i = next_zero;
1774 }
1775
1776 if (found_bits) {
34d52cb6
LZ
1777 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1778 *bytes = (u64)(found_bits) * ctl->unit;
96303081
JB
1779 return 0;
1780 }
1781
a4820398 1782 *bytes = (u64)(max_bits) * ctl->unit;
cef40483 1783 bitmap_info->max_extent_size = *bytes;
96303081
JB
1784 return -1;
1785}
1786
a4820398 1787/* Cache the size of the max extent in bytes */
34d52cb6 1788static struct btrfs_free_space *
53b381b3 1789find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
a4820398 1790 unsigned long align, u64 *max_extent_size)
96303081
JB
1791{
1792 struct btrfs_free_space *entry;
1793 struct rb_node *node;
53b381b3
DW
1794 u64 tmp;
1795 u64 align_off;
96303081
JB
1796 int ret;
1797
34d52cb6 1798 if (!ctl->free_space_offset.rb_node)
a4820398 1799 goto out;
96303081 1800
34d52cb6 1801 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
96303081 1802 if (!entry)
a4820398 1803 goto out;
96303081
JB
1804
1805 for (node = &entry->offset_index; node; node = rb_next(node)) {
1806 entry = rb_entry(node, struct btrfs_free_space, offset_index);
a4820398
MX
1807 if (entry->bytes < *bytes) {
1808 if (entry->bytes > *max_extent_size)
1809 *max_extent_size = entry->bytes;
96303081 1810 continue;
a4820398 1811 }
96303081 1812
53b381b3
DW
1813 /* make sure the space returned is big enough
1814 * to match our requested alignment
1815 */
1816 if (*bytes >= align) {
a4820398 1817 tmp = entry->offset - ctl->start + align - 1;
47c5713f 1818 tmp = div64_u64(tmp, align);
53b381b3
DW
1819 tmp = tmp * align + ctl->start;
1820 align_off = tmp - entry->offset;
1821 } else {
1822 align_off = 0;
1823 tmp = entry->offset;
1824 }
1825
a4820398
MX
1826 if (entry->bytes < *bytes + align_off) {
1827 if (entry->bytes > *max_extent_size)
1828 *max_extent_size = entry->bytes;
53b381b3 1829 continue;
a4820398 1830 }
53b381b3 1831
96303081 1832 if (entry->bitmap) {
a4820398
MX
1833 u64 size = *bytes;
1834
0584f718 1835 ret = search_bitmap(ctl, entry, &tmp, &size, true);
53b381b3
DW
1836 if (!ret) {
1837 *offset = tmp;
a4820398 1838 *bytes = size;
96303081 1839 return entry;
a4820398
MX
1840 } else if (size > *max_extent_size) {
1841 *max_extent_size = size;
53b381b3 1842 }
96303081
JB
1843 continue;
1844 }
1845
53b381b3
DW
1846 *offset = tmp;
1847 *bytes = entry->bytes - align_off;
96303081
JB
1848 return entry;
1849 }
a4820398 1850out:
96303081
JB
1851 return NULL;
1852}
1853
34d52cb6 1854static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1855 struct btrfs_free_space *info, u64 offset)
1856{
34d52cb6 1857 info->offset = offset_to_bitmap(ctl, offset);
f019f426 1858 info->bytes = 0;
f2d0f676 1859 INIT_LIST_HEAD(&info->list);
34d52cb6
LZ
1860 link_free_space(ctl, info);
1861 ctl->total_bitmaps++;
96303081 1862
34d52cb6 1863 ctl->op->recalc_thresholds(ctl);
96303081
JB
1864}
1865
34d52cb6 1866static void free_bitmap(struct btrfs_free_space_ctl *ctl,
edf6e2d1
LZ
1867 struct btrfs_free_space *bitmap_info)
1868{
34d52cb6 1869 unlink_free_space(ctl, bitmap_info);
edf6e2d1 1870 kfree(bitmap_info->bitmap);
dc89e982 1871 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
34d52cb6
LZ
1872 ctl->total_bitmaps--;
1873 ctl->op->recalc_thresholds(ctl);
edf6e2d1
LZ
1874}
1875
34d52cb6 1876static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1877 struct btrfs_free_space *bitmap_info,
1878 u64 *offset, u64 *bytes)
1879{
1880 u64 end;
6606bb97
JB
1881 u64 search_start, search_bytes;
1882 int ret;
96303081
JB
1883
1884again:
34d52cb6 1885 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
96303081 1886
6606bb97 1887 /*
bdb7d303
JB
1888 * We need to search for bits in this bitmap. We could only cover some
1889 * of the extent in this bitmap thanks to how we add space, so we need
1890 * to search for as much as it as we can and clear that amount, and then
1891 * go searching for the next bit.
6606bb97
JB
1892 */
1893 search_start = *offset;
bdb7d303 1894 search_bytes = ctl->unit;
13dbc089 1895 search_bytes = min(search_bytes, end - search_start + 1);
0584f718
JB
1896 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1897 false);
b50c6e25
JB
1898 if (ret < 0 || search_start != *offset)
1899 return -EINVAL;
6606bb97 1900
bdb7d303
JB
1901 /* We may have found more bits than what we need */
1902 search_bytes = min(search_bytes, *bytes);
1903
1904 /* Cannot clear past the end of the bitmap */
1905 search_bytes = min(search_bytes, end - search_start + 1);
1906
1907 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1908 *offset += search_bytes;
1909 *bytes -= search_bytes;
96303081
JB
1910
1911 if (*bytes) {
6606bb97 1912 struct rb_node *next = rb_next(&bitmap_info->offset_index);
edf6e2d1 1913 if (!bitmap_info->bytes)
34d52cb6 1914 free_bitmap(ctl, bitmap_info);
96303081 1915
6606bb97
JB
1916 /*
1917 * no entry after this bitmap, but we still have bytes to
1918 * remove, so something has gone wrong.
1919 */
1920 if (!next)
96303081
JB
1921 return -EINVAL;
1922
6606bb97
JB
1923 bitmap_info = rb_entry(next, struct btrfs_free_space,
1924 offset_index);
1925
1926 /*
1927 * if the next entry isn't a bitmap we need to return to let the
1928 * extent stuff do its work.
1929 */
96303081
JB
1930 if (!bitmap_info->bitmap)
1931 return -EAGAIN;
1932
6606bb97
JB
1933 /*
1934 * Ok the next item is a bitmap, but it may not actually hold
1935 * the information for the rest of this free space stuff, so
1936 * look for it, and if we don't find it return so we can try
1937 * everything over again.
1938 */
1939 search_start = *offset;
bdb7d303 1940 search_bytes = ctl->unit;
34d52cb6 1941 ret = search_bitmap(ctl, bitmap_info, &search_start,
0584f718 1942 &search_bytes, false);
6606bb97
JB
1943 if (ret < 0 || search_start != *offset)
1944 return -EAGAIN;
1945
96303081 1946 goto again;
edf6e2d1 1947 } else if (!bitmap_info->bytes)
34d52cb6 1948 free_bitmap(ctl, bitmap_info);
96303081
JB
1949
1950 return 0;
1951}
1952
2cdc342c
JB
1953static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1954 struct btrfs_free_space *info, u64 offset,
1955 u64 bytes)
1956{
1957 u64 bytes_to_set = 0;
1958 u64 end;
1959
1960 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1961
1962 bytes_to_set = min(end - offset, bytes);
1963
1964 bitmap_set_bits(ctl, info, offset, bytes_to_set);
1965
cef40483
JB
1966 /*
1967 * We set some bytes, we have no idea what the max extent size is
1968 * anymore.
1969 */
1970 info->max_extent_size = 0;
1971
2cdc342c
JB
1972 return bytes_to_set;
1973
1974}
1975
34d52cb6
LZ
1976static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1977 struct btrfs_free_space *info)
96303081 1978{
34d52cb6 1979 struct btrfs_block_group_cache *block_group = ctl->private;
0b246afa 1980 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
1981 bool forced = false;
1982
1983#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 1984 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
1985 forced = true;
1986#endif
96303081
JB
1987
1988 /*
1989 * If we are below the extents threshold then we can add this as an
1990 * extent, and don't have to deal with the bitmap
1991 */
d0bd4560 1992 if (!forced && ctl->free_extents < ctl->extents_thresh) {
32cb0840
JB
1993 /*
1994 * If this block group has some small extents we don't want to
1995 * use up all of our free slots in the cache with them, we want
01327610 1996 * to reserve them to larger extents, however if we have plenty
32cb0840
JB
1997 * of cache left then go ahead an dadd them, no sense in adding
1998 * the overhead of a bitmap if we don't have to.
1999 */
0b246afa 2000 if (info->bytes <= fs_info->sectorsize * 4) {
34d52cb6
LZ
2001 if (ctl->free_extents * 2 <= ctl->extents_thresh)
2002 return false;
32cb0840 2003 } else {
34d52cb6 2004 return false;
32cb0840
JB
2005 }
2006 }
96303081
JB
2007
2008 /*
dde5740f
JB
2009 * The original block groups from mkfs can be really small, like 8
2010 * megabytes, so don't bother with a bitmap for those entries. However
2011 * some block groups can be smaller than what a bitmap would cover but
2012 * are still large enough that they could overflow the 32k memory limit,
2013 * so allow those block groups to still be allowed to have a bitmap
2014 * entry.
96303081 2015 */
dde5740f 2016 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
34d52cb6
LZ
2017 return false;
2018
2019 return true;
2020}
2021
20e5506b 2022static const struct btrfs_free_space_op free_space_op = {
2cdc342c
JB
2023 .recalc_thresholds = recalculate_thresholds,
2024 .use_bitmap = use_bitmap,
2025};
2026
34d52cb6
LZ
2027static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2028 struct btrfs_free_space *info)
2029{
2030 struct btrfs_free_space *bitmap_info;
2cdc342c 2031 struct btrfs_block_group_cache *block_group = NULL;
34d52cb6 2032 int added = 0;
2cdc342c 2033 u64 bytes, offset, bytes_added;
34d52cb6 2034 int ret;
96303081
JB
2035
2036 bytes = info->bytes;
2037 offset = info->offset;
2038
34d52cb6
LZ
2039 if (!ctl->op->use_bitmap(ctl, info))
2040 return 0;
2041
2cdc342c
JB
2042 if (ctl->op == &free_space_op)
2043 block_group = ctl->private;
38e87880 2044again:
2cdc342c
JB
2045 /*
2046 * Since we link bitmaps right into the cluster we need to see if we
2047 * have a cluster here, and if so and it has our bitmap we need to add
2048 * the free space to that bitmap.
2049 */
2050 if (block_group && !list_empty(&block_group->cluster_list)) {
2051 struct btrfs_free_cluster *cluster;
2052 struct rb_node *node;
2053 struct btrfs_free_space *entry;
2054
2055 cluster = list_entry(block_group->cluster_list.next,
2056 struct btrfs_free_cluster,
2057 block_group_list);
2058 spin_lock(&cluster->lock);
2059 node = rb_first(&cluster->root);
2060 if (!node) {
2061 spin_unlock(&cluster->lock);
38e87880 2062 goto no_cluster_bitmap;
2cdc342c
JB
2063 }
2064
2065 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2066 if (!entry->bitmap) {
2067 spin_unlock(&cluster->lock);
38e87880 2068 goto no_cluster_bitmap;
2cdc342c
JB
2069 }
2070
2071 if (entry->offset == offset_to_bitmap(ctl, offset)) {
2072 bytes_added = add_bytes_to_bitmap(ctl, entry,
2073 offset, bytes);
2074 bytes -= bytes_added;
2075 offset += bytes_added;
2076 }
2077 spin_unlock(&cluster->lock);
2078 if (!bytes) {
2079 ret = 1;
2080 goto out;
2081 }
2082 }
38e87880
CM
2083
2084no_cluster_bitmap:
34d52cb6 2085 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
96303081
JB
2086 1, 0);
2087 if (!bitmap_info) {
b12d6869 2088 ASSERT(added == 0);
96303081
JB
2089 goto new_bitmap;
2090 }
2091
2cdc342c
JB
2092 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2093 bytes -= bytes_added;
2094 offset += bytes_added;
2095 added = 0;
96303081
JB
2096
2097 if (!bytes) {
2098 ret = 1;
2099 goto out;
2100 } else
2101 goto again;
2102
2103new_bitmap:
2104 if (info && info->bitmap) {
34d52cb6 2105 add_new_bitmap(ctl, info, offset);
96303081
JB
2106 added = 1;
2107 info = NULL;
2108 goto again;
2109 } else {
34d52cb6 2110 spin_unlock(&ctl->tree_lock);
96303081
JB
2111
2112 /* no pre-allocated info, allocate a new one */
2113 if (!info) {
dc89e982
JB
2114 info = kmem_cache_zalloc(btrfs_free_space_cachep,
2115 GFP_NOFS);
96303081 2116 if (!info) {
34d52cb6 2117 spin_lock(&ctl->tree_lock);
96303081
JB
2118 ret = -ENOMEM;
2119 goto out;
2120 }
2121 }
2122
2123 /* allocate the bitmap */
09cbfeaf 2124 info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
34d52cb6 2125 spin_lock(&ctl->tree_lock);
96303081
JB
2126 if (!info->bitmap) {
2127 ret = -ENOMEM;
2128 goto out;
2129 }
2130 goto again;
2131 }
2132
2133out:
2134 if (info) {
2135 if (info->bitmap)
2136 kfree(info->bitmap);
dc89e982 2137 kmem_cache_free(btrfs_free_space_cachep, info);
96303081 2138 }
0f9dd46c
JB
2139
2140 return ret;
2141}
2142
945d8962 2143static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5 2144 struct btrfs_free_space *info, bool update_stat)
0f9dd46c 2145{
120d66ee
LZ
2146 struct btrfs_free_space *left_info;
2147 struct btrfs_free_space *right_info;
2148 bool merged = false;
2149 u64 offset = info->offset;
2150 u64 bytes = info->bytes;
6226cb0a 2151
0f9dd46c
JB
2152 /*
2153 * first we want to see if there is free space adjacent to the range we
2154 * are adding, if there is remove that struct and add a new one to
2155 * cover the entire range
2156 */
34d52cb6 2157 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
96303081
JB
2158 if (right_info && rb_prev(&right_info->offset_index))
2159 left_info = rb_entry(rb_prev(&right_info->offset_index),
2160 struct btrfs_free_space, offset_index);
2161 else
34d52cb6 2162 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
0f9dd46c 2163
96303081 2164 if (right_info && !right_info->bitmap) {
f333adb5 2165 if (update_stat)
34d52cb6 2166 unlink_free_space(ctl, right_info);
f333adb5 2167 else
34d52cb6 2168 __unlink_free_space(ctl, right_info);
6226cb0a 2169 info->bytes += right_info->bytes;
dc89e982 2170 kmem_cache_free(btrfs_free_space_cachep, right_info);
120d66ee 2171 merged = true;
0f9dd46c
JB
2172 }
2173
96303081
JB
2174 if (left_info && !left_info->bitmap &&
2175 left_info->offset + left_info->bytes == offset) {
f333adb5 2176 if (update_stat)
34d52cb6 2177 unlink_free_space(ctl, left_info);
f333adb5 2178 else
34d52cb6 2179 __unlink_free_space(ctl, left_info);
6226cb0a
JB
2180 info->offset = left_info->offset;
2181 info->bytes += left_info->bytes;
dc89e982 2182 kmem_cache_free(btrfs_free_space_cachep, left_info);
120d66ee 2183 merged = true;
0f9dd46c
JB
2184 }
2185
120d66ee
LZ
2186 return merged;
2187}
2188
20005523
FM
2189static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2190 struct btrfs_free_space *info,
2191 bool update_stat)
2192{
2193 struct btrfs_free_space *bitmap;
2194 unsigned long i;
2195 unsigned long j;
2196 const u64 end = info->offset + info->bytes;
2197 const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2198 u64 bytes;
2199
2200 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2201 if (!bitmap)
2202 return false;
2203
2204 i = offset_to_bit(bitmap->offset, ctl->unit, end);
2205 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2206 if (j == i)
2207 return false;
2208 bytes = (j - i) * ctl->unit;
2209 info->bytes += bytes;
2210
2211 if (update_stat)
2212 bitmap_clear_bits(ctl, bitmap, end, bytes);
2213 else
2214 __bitmap_clear_bits(ctl, bitmap, end, bytes);
2215
2216 if (!bitmap->bytes)
2217 free_bitmap(ctl, bitmap);
2218
2219 return true;
2220}
2221
2222static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2223 struct btrfs_free_space *info,
2224 bool update_stat)
2225{
2226 struct btrfs_free_space *bitmap;
2227 u64 bitmap_offset;
2228 unsigned long i;
2229 unsigned long j;
2230 unsigned long prev_j;
2231 u64 bytes;
2232
2233 bitmap_offset = offset_to_bitmap(ctl, info->offset);
2234 /* If we're on a boundary, try the previous logical bitmap. */
2235 if (bitmap_offset == info->offset) {
2236 if (info->offset == 0)
2237 return false;
2238 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2239 }
2240
2241 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2242 if (!bitmap)
2243 return false;
2244
2245 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2246 j = 0;
2247 prev_j = (unsigned long)-1;
2248 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2249 if (j > i)
2250 break;
2251 prev_j = j;
2252 }
2253 if (prev_j == i)
2254 return false;
2255
2256 if (prev_j == (unsigned long)-1)
2257 bytes = (i + 1) * ctl->unit;
2258 else
2259 bytes = (i - prev_j) * ctl->unit;
2260
2261 info->offset -= bytes;
2262 info->bytes += bytes;
2263
2264 if (update_stat)
2265 bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2266 else
2267 __bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2268
2269 if (!bitmap->bytes)
2270 free_bitmap(ctl, bitmap);
2271
2272 return true;
2273}
2274
2275/*
2276 * We prefer always to allocate from extent entries, both for clustered and
2277 * non-clustered allocation requests. So when attempting to add a new extent
2278 * entry, try to see if there's adjacent free space in bitmap entries, and if
2279 * there is, migrate that space from the bitmaps to the extent.
2280 * Like this we get better chances of satisfying space allocation requests
2281 * because we attempt to satisfy them based on a single cache entry, and never
2282 * on 2 or more entries - even if the entries represent a contiguous free space
2283 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2284 * ends).
2285 */
2286static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2287 struct btrfs_free_space *info,
2288 bool update_stat)
2289{
2290 /*
2291 * Only work with disconnected entries, as we can change their offset,
2292 * and must be extent entries.
2293 */
2294 ASSERT(!info->bitmap);
2295 ASSERT(RB_EMPTY_NODE(&info->offset_index));
2296
2297 if (ctl->total_bitmaps > 0) {
2298 bool stole_end;
2299 bool stole_front = false;
2300
2301 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2302 if (ctl->total_bitmaps > 0)
2303 stole_front = steal_from_bitmap_to_front(ctl, info,
2304 update_stat);
2305
2306 if (stole_end || stole_front)
2307 try_merge_free_space(ctl, info, update_stat);
2308 }
2309}
2310
ab8d0fc4
JM
2311int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2312 struct btrfs_free_space_ctl *ctl,
581bb050 2313 u64 offset, u64 bytes)
120d66ee
LZ
2314{
2315 struct btrfs_free_space *info;
2316 int ret = 0;
2317
dc89e982 2318 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
120d66ee
LZ
2319 if (!info)
2320 return -ENOMEM;
2321
2322 info->offset = offset;
2323 info->bytes = bytes;
20005523 2324 RB_CLEAR_NODE(&info->offset_index);
120d66ee 2325
34d52cb6 2326 spin_lock(&ctl->tree_lock);
120d66ee 2327
34d52cb6 2328 if (try_merge_free_space(ctl, info, true))
120d66ee
LZ
2329 goto link;
2330
2331 /*
2332 * There was no extent directly to the left or right of this new
2333 * extent then we know we're going to have to allocate a new extent, so
2334 * before we do that see if we need to drop this into a bitmap
2335 */
34d52cb6 2336 ret = insert_into_bitmap(ctl, info);
120d66ee
LZ
2337 if (ret < 0) {
2338 goto out;
2339 } else if (ret) {
2340 ret = 0;
2341 goto out;
2342 }
2343link:
20005523
FM
2344 /*
2345 * Only steal free space from adjacent bitmaps if we're sure we're not
2346 * going to add the new free space to existing bitmap entries - because
2347 * that would mean unnecessary work that would be reverted. Therefore
2348 * attempt to steal space from bitmaps if we're adding an extent entry.
2349 */
2350 steal_from_bitmap(ctl, info, true);
2351
34d52cb6 2352 ret = link_free_space(ctl, info);
0f9dd46c 2353 if (ret)
dc89e982 2354 kmem_cache_free(btrfs_free_space_cachep, info);
96303081 2355out:
34d52cb6 2356 spin_unlock(&ctl->tree_lock);
6226cb0a 2357
0f9dd46c 2358 if (ret) {
ab8d0fc4 2359 btrfs_crit(fs_info, "unable to add free space :%d", ret);
b12d6869 2360 ASSERT(ret != -EEXIST);
0f9dd46c
JB
2361 }
2362
0f9dd46c
JB
2363 return ret;
2364}
2365
6226cb0a
JB
2366int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2367 u64 offset, u64 bytes)
0f9dd46c 2368{
34d52cb6 2369 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c 2370 struct btrfs_free_space *info;
b0175117
JB
2371 int ret;
2372 bool re_search = false;
0f9dd46c 2373
34d52cb6 2374 spin_lock(&ctl->tree_lock);
6226cb0a 2375
96303081 2376again:
b0175117 2377 ret = 0;
bdb7d303
JB
2378 if (!bytes)
2379 goto out_lock;
2380
34d52cb6 2381 info = tree_search_offset(ctl, offset, 0, 0);
96303081 2382 if (!info) {
6606bb97
JB
2383 /*
2384 * oops didn't find an extent that matched the space we wanted
2385 * to remove, look for a bitmap instead
2386 */
34d52cb6 2387 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
6606bb97
JB
2388 1, 0);
2389 if (!info) {
b0175117
JB
2390 /*
2391 * If we found a partial bit of our free space in a
2392 * bitmap but then couldn't find the other part this may
2393 * be a problem, so WARN about it.
24a70313 2394 */
b0175117 2395 WARN_ON(re_search);
6606bb97
JB
2396 goto out_lock;
2397 }
96303081
JB
2398 }
2399
b0175117 2400 re_search = false;
bdb7d303 2401 if (!info->bitmap) {
34d52cb6 2402 unlink_free_space(ctl, info);
bdb7d303
JB
2403 if (offset == info->offset) {
2404 u64 to_free = min(bytes, info->bytes);
2405
2406 info->bytes -= to_free;
2407 info->offset += to_free;
2408 if (info->bytes) {
2409 ret = link_free_space(ctl, info);
2410 WARN_ON(ret);
2411 } else {
2412 kmem_cache_free(btrfs_free_space_cachep, info);
2413 }
0f9dd46c 2414
bdb7d303
JB
2415 offset += to_free;
2416 bytes -= to_free;
2417 goto again;
2418 } else {
2419 u64 old_end = info->bytes + info->offset;
9b49c9b9 2420
bdb7d303 2421 info->bytes = offset - info->offset;
34d52cb6 2422 ret = link_free_space(ctl, info);
96303081
JB
2423 WARN_ON(ret);
2424 if (ret)
2425 goto out_lock;
96303081 2426
bdb7d303
JB
2427 /* Not enough bytes in this entry to satisfy us */
2428 if (old_end < offset + bytes) {
2429 bytes -= old_end - offset;
2430 offset = old_end;
2431 goto again;
2432 } else if (old_end == offset + bytes) {
2433 /* all done */
2434 goto out_lock;
2435 }
2436 spin_unlock(&ctl->tree_lock);
2437
2438 ret = btrfs_add_free_space(block_group, offset + bytes,
2439 old_end - (offset + bytes));
2440 WARN_ON(ret);
2441 goto out;
2442 }
0f9dd46c 2443 }
96303081 2444
34d52cb6 2445 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
b0175117
JB
2446 if (ret == -EAGAIN) {
2447 re_search = true;
96303081 2448 goto again;
b0175117 2449 }
96303081 2450out_lock:
34d52cb6 2451 spin_unlock(&ctl->tree_lock);
0f9dd46c 2452out:
25179201
JB
2453 return ret;
2454}
2455
0f9dd46c
JB
2456void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2457 u64 bytes)
2458{
0b246afa 2459 struct btrfs_fs_info *fs_info = block_group->fs_info;
34d52cb6 2460 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c
JB
2461 struct btrfs_free_space *info;
2462 struct rb_node *n;
2463 int count = 0;
2464
34d52cb6 2465 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
0f9dd46c 2466 info = rb_entry(n, struct btrfs_free_space, offset_index);
f6175efa 2467 if (info->bytes >= bytes && !block_group->ro)
0f9dd46c 2468 count++;
0b246afa 2469 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
efe120a0 2470 info->offset, info->bytes,
96303081 2471 (info->bitmap) ? "yes" : "no");
0f9dd46c 2472 }
0b246afa 2473 btrfs_info(fs_info, "block group has cluster?: %s",
96303081 2474 list_empty(&block_group->cluster_list) ? "no" : "yes");
0b246afa 2475 btrfs_info(fs_info,
efe120a0 2476 "%d blocks of free space at or bigger than bytes is", count);
0f9dd46c
JB
2477}
2478
34d52cb6 2479void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
0f9dd46c 2480{
0b246afa 2481 struct btrfs_fs_info *fs_info = block_group->fs_info;
34d52cb6 2482 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c 2483
34d52cb6 2484 spin_lock_init(&ctl->tree_lock);
0b246afa 2485 ctl->unit = fs_info->sectorsize;
34d52cb6
LZ
2486 ctl->start = block_group->key.objectid;
2487 ctl->private = block_group;
2488 ctl->op = &free_space_op;
55507ce3
FM
2489 INIT_LIST_HEAD(&ctl->trimming_ranges);
2490 mutex_init(&ctl->cache_writeout_mutex);
0f9dd46c 2491
34d52cb6
LZ
2492 /*
2493 * we only want to have 32k of ram per block group for keeping
2494 * track of free space, and if we pass 1/2 of that we want to
2495 * start converting things over to using bitmaps
2496 */
ee22184b 2497 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
0f9dd46c
JB
2498}
2499
fa9c0d79
CM
2500/*
2501 * for a given cluster, put all of its extents back into the free
2502 * space cache. If the block group passed doesn't match the block group
2503 * pointed to by the cluster, someone else raced in and freed the
2504 * cluster already. In that case, we just return without changing anything
2505 */
2506static int
2507__btrfs_return_cluster_to_free_space(
2508 struct btrfs_block_group_cache *block_group,
2509 struct btrfs_free_cluster *cluster)
2510{
34d52cb6 2511 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79
CM
2512 struct btrfs_free_space *entry;
2513 struct rb_node *node;
2514
2515 spin_lock(&cluster->lock);
2516 if (cluster->block_group != block_group)
2517 goto out;
2518
96303081 2519 cluster->block_group = NULL;
fa9c0d79 2520 cluster->window_start = 0;
96303081 2521 list_del_init(&cluster->block_group_list);
96303081 2522
fa9c0d79 2523 node = rb_first(&cluster->root);
96303081 2524 while (node) {
4e69b598
JB
2525 bool bitmap;
2526
fa9c0d79
CM
2527 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2528 node = rb_next(&entry->offset_index);
2529 rb_erase(&entry->offset_index, &cluster->root);
20005523 2530 RB_CLEAR_NODE(&entry->offset_index);
4e69b598
JB
2531
2532 bitmap = (entry->bitmap != NULL);
20005523 2533 if (!bitmap) {
34d52cb6 2534 try_merge_free_space(ctl, entry, false);
20005523
FM
2535 steal_from_bitmap(ctl, entry, false);
2536 }
34d52cb6 2537 tree_insert_offset(&ctl->free_space_offset,
4e69b598 2538 entry->offset, &entry->offset_index, bitmap);
fa9c0d79 2539 }
6bef4d31 2540 cluster->root = RB_ROOT;
96303081 2541
fa9c0d79
CM
2542out:
2543 spin_unlock(&cluster->lock);
96303081 2544 btrfs_put_block_group(block_group);
fa9c0d79
CM
2545 return 0;
2546}
2547
48a3b636
ES
2548static void __btrfs_remove_free_space_cache_locked(
2549 struct btrfs_free_space_ctl *ctl)
0f9dd46c
JB
2550{
2551 struct btrfs_free_space *info;
2552 struct rb_node *node;
581bb050 2553
581bb050
LZ
2554 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2555 info = rb_entry(node, struct btrfs_free_space, offset_index);
9b90f513
JB
2556 if (!info->bitmap) {
2557 unlink_free_space(ctl, info);
2558 kmem_cache_free(btrfs_free_space_cachep, info);
2559 } else {
2560 free_bitmap(ctl, info);
2561 }
351810c1
DS
2562
2563 cond_resched_lock(&ctl->tree_lock);
581bb050 2564 }
09655373
CM
2565}
2566
2567void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2568{
2569 spin_lock(&ctl->tree_lock);
2570 __btrfs_remove_free_space_cache_locked(ctl);
581bb050
LZ
2571 spin_unlock(&ctl->tree_lock);
2572}
2573
2574void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2575{
2576 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79 2577 struct btrfs_free_cluster *cluster;
96303081 2578 struct list_head *head;
0f9dd46c 2579
34d52cb6 2580 spin_lock(&ctl->tree_lock);
96303081
JB
2581 while ((head = block_group->cluster_list.next) !=
2582 &block_group->cluster_list) {
2583 cluster = list_entry(head, struct btrfs_free_cluster,
2584 block_group_list);
fa9c0d79
CM
2585
2586 WARN_ON(cluster->block_group != block_group);
2587 __btrfs_return_cluster_to_free_space(block_group, cluster);
351810c1
DS
2588
2589 cond_resched_lock(&ctl->tree_lock);
fa9c0d79 2590 }
09655373 2591 __btrfs_remove_free_space_cache_locked(ctl);
34d52cb6 2592 spin_unlock(&ctl->tree_lock);
fa9c0d79 2593
0f9dd46c
JB
2594}
2595
6226cb0a 2596u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
a4820398
MX
2597 u64 offset, u64 bytes, u64 empty_size,
2598 u64 *max_extent_size)
0f9dd46c 2599{
34d52cb6 2600 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
6226cb0a 2601 struct btrfs_free_space *entry = NULL;
96303081 2602 u64 bytes_search = bytes + empty_size;
6226cb0a 2603 u64 ret = 0;
53b381b3
DW
2604 u64 align_gap = 0;
2605 u64 align_gap_len = 0;
0f9dd46c 2606
34d52cb6 2607 spin_lock(&ctl->tree_lock);
53b381b3 2608 entry = find_free_space(ctl, &offset, &bytes_search,
a4820398 2609 block_group->full_stripe_len, max_extent_size);
6226cb0a 2610 if (!entry)
96303081
JB
2611 goto out;
2612
2613 ret = offset;
2614 if (entry->bitmap) {
34d52cb6 2615 bitmap_clear_bits(ctl, entry, offset, bytes);
edf6e2d1 2616 if (!entry->bytes)
34d52cb6 2617 free_bitmap(ctl, entry);
96303081 2618 } else {
34d52cb6 2619 unlink_free_space(ctl, entry);
53b381b3
DW
2620 align_gap_len = offset - entry->offset;
2621 align_gap = entry->offset;
2622
2623 entry->offset = offset + bytes;
2624 WARN_ON(entry->bytes < bytes + align_gap_len);
2625
2626 entry->bytes -= bytes + align_gap_len;
6226cb0a 2627 if (!entry->bytes)
dc89e982 2628 kmem_cache_free(btrfs_free_space_cachep, entry);
6226cb0a 2629 else
34d52cb6 2630 link_free_space(ctl, entry);
6226cb0a 2631 }
96303081 2632out:
34d52cb6 2633 spin_unlock(&ctl->tree_lock);
817d52f8 2634
53b381b3 2635 if (align_gap_len)
ab8d0fc4
JM
2636 __btrfs_add_free_space(block_group->fs_info, ctl,
2637 align_gap, align_gap_len);
0f9dd46c
JB
2638 return ret;
2639}
fa9c0d79
CM
2640
2641/*
2642 * given a cluster, put all of its extents back into the free space
2643 * cache. If a block group is passed, this function will only free
2644 * a cluster that belongs to the passed block group.
2645 *
2646 * Otherwise, it'll get a reference on the block group pointed to by the
2647 * cluster and remove the cluster from it.
2648 */
2649int btrfs_return_cluster_to_free_space(
2650 struct btrfs_block_group_cache *block_group,
2651 struct btrfs_free_cluster *cluster)
2652{
34d52cb6 2653 struct btrfs_free_space_ctl *ctl;
fa9c0d79
CM
2654 int ret;
2655
2656 /* first, get a safe pointer to the block group */
2657 spin_lock(&cluster->lock);
2658 if (!block_group) {
2659 block_group = cluster->block_group;
2660 if (!block_group) {
2661 spin_unlock(&cluster->lock);
2662 return 0;
2663 }
2664 } else if (cluster->block_group != block_group) {
2665 /* someone else has already freed it don't redo their work */
2666 spin_unlock(&cluster->lock);
2667 return 0;
2668 }
2669 atomic_inc(&block_group->count);
2670 spin_unlock(&cluster->lock);
2671
34d52cb6
LZ
2672 ctl = block_group->free_space_ctl;
2673
fa9c0d79 2674 /* now return any extents the cluster had on it */
34d52cb6 2675 spin_lock(&ctl->tree_lock);
fa9c0d79 2676 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
34d52cb6 2677 spin_unlock(&ctl->tree_lock);
fa9c0d79
CM
2678
2679 /* finally drop our ref */
2680 btrfs_put_block_group(block_group);
2681 return ret;
2682}
2683
96303081
JB
2684static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2685 struct btrfs_free_cluster *cluster,
4e69b598 2686 struct btrfs_free_space *entry,
a4820398
MX
2687 u64 bytes, u64 min_start,
2688 u64 *max_extent_size)
96303081 2689{
34d52cb6 2690 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
96303081
JB
2691 int err;
2692 u64 search_start = cluster->window_start;
2693 u64 search_bytes = bytes;
2694 u64 ret = 0;
2695
96303081
JB
2696 search_start = min_start;
2697 search_bytes = bytes;
2698
0584f718 2699 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
a4820398
MX
2700 if (err) {
2701 if (search_bytes > *max_extent_size)
2702 *max_extent_size = search_bytes;
4e69b598 2703 return 0;
a4820398 2704 }
96303081
JB
2705
2706 ret = search_start;
bb3ac5a4 2707 __bitmap_clear_bits(ctl, entry, ret, bytes);
96303081
JB
2708
2709 return ret;
2710}
2711
fa9c0d79
CM
2712/*
2713 * given a cluster, try to allocate 'bytes' from it, returns 0
2714 * if it couldn't find anything suitably large, or a logical disk offset
2715 * if things worked out
2716 */
2717u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2718 struct btrfs_free_cluster *cluster, u64 bytes,
a4820398 2719 u64 min_start, u64 *max_extent_size)
fa9c0d79 2720{
34d52cb6 2721 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79
CM
2722 struct btrfs_free_space *entry = NULL;
2723 struct rb_node *node;
2724 u64 ret = 0;
2725
2726 spin_lock(&cluster->lock);
2727 if (bytes > cluster->max_size)
2728 goto out;
2729
2730 if (cluster->block_group != block_group)
2731 goto out;
2732
2733 node = rb_first(&cluster->root);
2734 if (!node)
2735 goto out;
2736
2737 entry = rb_entry(node, struct btrfs_free_space, offset_index);
67871254 2738 while (1) {
a4820398
MX
2739 if (entry->bytes < bytes && entry->bytes > *max_extent_size)
2740 *max_extent_size = entry->bytes;
2741
4e69b598
JB
2742 if (entry->bytes < bytes ||
2743 (!entry->bitmap && entry->offset < min_start)) {
fa9c0d79
CM
2744 node = rb_next(&entry->offset_index);
2745 if (!node)
2746 break;
2747 entry = rb_entry(node, struct btrfs_free_space,
2748 offset_index);
2749 continue;
2750 }
fa9c0d79 2751
4e69b598
JB
2752 if (entry->bitmap) {
2753 ret = btrfs_alloc_from_bitmap(block_group,
2754 cluster, entry, bytes,
a4820398
MX
2755 cluster->window_start,
2756 max_extent_size);
4e69b598 2757 if (ret == 0) {
4e69b598
JB
2758 node = rb_next(&entry->offset_index);
2759 if (!node)
2760 break;
2761 entry = rb_entry(node, struct btrfs_free_space,
2762 offset_index);
2763 continue;
2764 }
9b230628 2765 cluster->window_start += bytes;
4e69b598 2766 } else {
4e69b598
JB
2767 ret = entry->offset;
2768
2769 entry->offset += bytes;
2770 entry->bytes -= bytes;
2771 }
fa9c0d79 2772
5e71b5d5 2773 if (entry->bytes == 0)
fa9c0d79 2774 rb_erase(&entry->offset_index, &cluster->root);
fa9c0d79
CM
2775 break;
2776 }
2777out:
2778 spin_unlock(&cluster->lock);
96303081 2779
5e71b5d5
LZ
2780 if (!ret)
2781 return 0;
2782
34d52cb6 2783 spin_lock(&ctl->tree_lock);
5e71b5d5 2784
34d52cb6 2785 ctl->free_space -= bytes;
5e71b5d5 2786 if (entry->bytes == 0) {
34d52cb6 2787 ctl->free_extents--;
4e69b598
JB
2788 if (entry->bitmap) {
2789 kfree(entry->bitmap);
34d52cb6
LZ
2790 ctl->total_bitmaps--;
2791 ctl->op->recalc_thresholds(ctl);
4e69b598 2792 }
dc89e982 2793 kmem_cache_free(btrfs_free_space_cachep, entry);
5e71b5d5
LZ
2794 }
2795
34d52cb6 2796 spin_unlock(&ctl->tree_lock);
5e71b5d5 2797
fa9c0d79
CM
2798 return ret;
2799}
2800
96303081
JB
2801static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2802 struct btrfs_free_space *entry,
2803 struct btrfs_free_cluster *cluster,
1bb91902
AO
2804 u64 offset, u64 bytes,
2805 u64 cont1_bytes, u64 min_bytes)
96303081 2806{
34d52cb6 2807 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
96303081
JB
2808 unsigned long next_zero;
2809 unsigned long i;
1bb91902
AO
2810 unsigned long want_bits;
2811 unsigned long min_bits;
96303081 2812 unsigned long found_bits;
cef40483 2813 unsigned long max_bits = 0;
96303081
JB
2814 unsigned long start = 0;
2815 unsigned long total_found = 0;
4e69b598 2816 int ret;
96303081 2817
96009762 2818 i = offset_to_bit(entry->offset, ctl->unit,
96303081 2819 max_t(u64, offset, entry->offset));
96009762
WSH
2820 want_bits = bytes_to_bits(bytes, ctl->unit);
2821 min_bits = bytes_to_bits(min_bytes, ctl->unit);
96303081 2822
cef40483
JB
2823 /*
2824 * Don't bother looking for a cluster in this bitmap if it's heavily
2825 * fragmented.
2826 */
2827 if (entry->max_extent_size &&
2828 entry->max_extent_size < cont1_bytes)
2829 return -ENOSPC;
96303081
JB
2830again:
2831 found_bits = 0;
ebb3dad4 2832 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
96303081
JB
2833 next_zero = find_next_zero_bit(entry->bitmap,
2834 BITS_PER_BITMAP, i);
1bb91902 2835 if (next_zero - i >= min_bits) {
96303081 2836 found_bits = next_zero - i;
cef40483
JB
2837 if (found_bits > max_bits)
2838 max_bits = found_bits;
96303081
JB
2839 break;
2840 }
cef40483
JB
2841 if (next_zero - i > max_bits)
2842 max_bits = next_zero - i;
96303081
JB
2843 i = next_zero;
2844 }
2845
cef40483
JB
2846 if (!found_bits) {
2847 entry->max_extent_size = (u64)max_bits * ctl->unit;
4e69b598 2848 return -ENOSPC;
cef40483 2849 }
96303081 2850
1bb91902 2851 if (!total_found) {
96303081 2852 start = i;
b78d09bc 2853 cluster->max_size = 0;
96303081
JB
2854 }
2855
2856 total_found += found_bits;
2857
96009762
WSH
2858 if (cluster->max_size < found_bits * ctl->unit)
2859 cluster->max_size = found_bits * ctl->unit;
96303081 2860
1bb91902
AO
2861 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2862 i = next_zero + 1;
96303081
JB
2863 goto again;
2864 }
2865
96009762 2866 cluster->window_start = start * ctl->unit + entry->offset;
34d52cb6 2867 rb_erase(&entry->offset_index, &ctl->free_space_offset);
4e69b598
JB
2868 ret = tree_insert_offset(&cluster->root, entry->offset,
2869 &entry->offset_index, 1);
b12d6869 2870 ASSERT(!ret); /* -EEXIST; Logic error */
96303081 2871
3f7de037 2872 trace_btrfs_setup_cluster(block_group, cluster,
96009762 2873 total_found * ctl->unit, 1);
96303081
JB
2874 return 0;
2875}
2876
4e69b598
JB
2877/*
2878 * This searches the block group for just extents to fill the cluster with.
1bb91902
AO
2879 * Try to find a cluster with at least bytes total bytes, at least one
2880 * extent of cont1_bytes, and other clusters of at least min_bytes.
4e69b598 2881 */
3de85bb9
JB
2882static noinline int
2883setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2884 struct btrfs_free_cluster *cluster,
2885 struct list_head *bitmaps, u64 offset, u64 bytes,
1bb91902 2886 u64 cont1_bytes, u64 min_bytes)
4e69b598 2887{
34d52cb6 2888 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4e69b598
JB
2889 struct btrfs_free_space *first = NULL;
2890 struct btrfs_free_space *entry = NULL;
4e69b598
JB
2891 struct btrfs_free_space *last;
2892 struct rb_node *node;
4e69b598
JB
2893 u64 window_free;
2894 u64 max_extent;
3f7de037 2895 u64 total_size = 0;
4e69b598 2896
34d52cb6 2897 entry = tree_search_offset(ctl, offset, 0, 1);
4e69b598
JB
2898 if (!entry)
2899 return -ENOSPC;
2900
2901 /*
2902 * We don't want bitmaps, so just move along until we find a normal
2903 * extent entry.
2904 */
1bb91902
AO
2905 while (entry->bitmap || entry->bytes < min_bytes) {
2906 if (entry->bitmap && list_empty(&entry->list))
86d4a77b 2907 list_add_tail(&entry->list, bitmaps);
4e69b598
JB
2908 node = rb_next(&entry->offset_index);
2909 if (!node)
2910 return -ENOSPC;
2911 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2912 }
2913
4e69b598
JB
2914 window_free = entry->bytes;
2915 max_extent = entry->bytes;
2916 first = entry;
2917 last = entry;
4e69b598 2918
1bb91902
AO
2919 for (node = rb_next(&entry->offset_index); node;
2920 node = rb_next(&entry->offset_index)) {
4e69b598
JB
2921 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2922
86d4a77b
JB
2923 if (entry->bitmap) {
2924 if (list_empty(&entry->list))
2925 list_add_tail(&entry->list, bitmaps);
4e69b598 2926 continue;
86d4a77b
JB
2927 }
2928
1bb91902
AO
2929 if (entry->bytes < min_bytes)
2930 continue;
2931
2932 last = entry;
2933 window_free += entry->bytes;
2934 if (entry->bytes > max_extent)
4e69b598 2935 max_extent = entry->bytes;
4e69b598
JB
2936 }
2937
1bb91902
AO
2938 if (window_free < bytes || max_extent < cont1_bytes)
2939 return -ENOSPC;
2940
4e69b598
JB
2941 cluster->window_start = first->offset;
2942
2943 node = &first->offset_index;
2944
2945 /*
2946 * now we've found our entries, pull them out of the free space
2947 * cache and put them into the cluster rbtree
2948 */
2949 do {
2950 int ret;
2951
2952 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2953 node = rb_next(&entry->offset_index);
1bb91902 2954 if (entry->bitmap || entry->bytes < min_bytes)
4e69b598
JB
2955 continue;
2956
34d52cb6 2957 rb_erase(&entry->offset_index, &ctl->free_space_offset);
4e69b598
JB
2958 ret = tree_insert_offset(&cluster->root, entry->offset,
2959 &entry->offset_index, 0);
3f7de037 2960 total_size += entry->bytes;
b12d6869 2961 ASSERT(!ret); /* -EEXIST; Logic error */
4e69b598
JB
2962 } while (node && entry != last);
2963
2964 cluster->max_size = max_extent;
3f7de037 2965 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
4e69b598
JB
2966 return 0;
2967}
2968
2969/*
2970 * This specifically looks for bitmaps that may work in the cluster, we assume
2971 * that we have already failed to find extents that will work.
2972 */
3de85bb9
JB
2973static noinline int
2974setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2975 struct btrfs_free_cluster *cluster,
2976 struct list_head *bitmaps, u64 offset, u64 bytes,
1bb91902 2977 u64 cont1_bytes, u64 min_bytes)
4e69b598 2978{
34d52cb6 2979 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1b9b922a 2980 struct btrfs_free_space *entry = NULL;
4e69b598 2981 int ret = -ENOSPC;
0f0fbf1d 2982 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
4e69b598 2983
34d52cb6 2984 if (ctl->total_bitmaps == 0)
4e69b598
JB
2985 return -ENOSPC;
2986
0f0fbf1d
LZ
2987 /*
2988 * The bitmap that covers offset won't be in the list unless offset
2989 * is just its start offset.
2990 */
1b9b922a
CM
2991 if (!list_empty(bitmaps))
2992 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2993
2994 if (!entry || entry->offset != bitmap_offset) {
0f0fbf1d
LZ
2995 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2996 if (entry && list_empty(&entry->list))
2997 list_add(&entry->list, bitmaps);
2998 }
2999
86d4a77b 3000 list_for_each_entry(entry, bitmaps, list) {
357b9784 3001 if (entry->bytes < bytes)
86d4a77b
JB
3002 continue;
3003 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
1bb91902 3004 bytes, cont1_bytes, min_bytes);
86d4a77b
JB
3005 if (!ret)
3006 return 0;
3007 }
3008
3009 /*
52621cb6
LZ
3010 * The bitmaps list has all the bitmaps that record free space
3011 * starting after offset, so no more search is required.
86d4a77b 3012 */
52621cb6 3013 return -ENOSPC;
4e69b598
JB
3014}
3015
fa9c0d79
CM
3016/*
3017 * here we try to find a cluster of blocks in a block group. The goal
1bb91902 3018 * is to find at least bytes+empty_size.
fa9c0d79
CM
3019 * We might not find them all in one contiguous area.
3020 *
3021 * returns zero and sets up cluster if things worked out, otherwise
3022 * it returns -enospc
3023 */
2ff7e61e 3024int btrfs_find_space_cluster(struct btrfs_fs_info *fs_info,
fa9c0d79
CM
3025 struct btrfs_block_group_cache *block_group,
3026 struct btrfs_free_cluster *cluster,
3027 u64 offset, u64 bytes, u64 empty_size)
3028{
34d52cb6 3029 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
86d4a77b 3030 struct btrfs_free_space *entry, *tmp;
52621cb6 3031 LIST_HEAD(bitmaps);
fa9c0d79 3032 u64 min_bytes;
1bb91902 3033 u64 cont1_bytes;
fa9c0d79
CM
3034 int ret;
3035
1bb91902
AO
3036 /*
3037 * Choose the minimum extent size we'll require for this
3038 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3039 * For metadata, allow allocates with smaller extents. For
3040 * data, keep it dense.
3041 */
0b246afa 3042 if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
1bb91902 3043 cont1_bytes = min_bytes = bytes + empty_size;
451d7585 3044 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
1bb91902 3045 cont1_bytes = bytes;
0b246afa 3046 min_bytes = fs_info->sectorsize;
1bb91902
AO
3047 } else {
3048 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
0b246afa 3049 min_bytes = fs_info->sectorsize;
1bb91902 3050 }
fa9c0d79 3051
34d52cb6 3052 spin_lock(&ctl->tree_lock);
7d0d2e8e
JB
3053
3054 /*
3055 * If we know we don't have enough space to make a cluster don't even
3056 * bother doing all the work to try and find one.
3057 */
1bb91902 3058 if (ctl->free_space < bytes) {
34d52cb6 3059 spin_unlock(&ctl->tree_lock);
7d0d2e8e
JB
3060 return -ENOSPC;
3061 }
3062
fa9c0d79
CM
3063 spin_lock(&cluster->lock);
3064
3065 /* someone already found a cluster, hooray */
3066 if (cluster->block_group) {
3067 ret = 0;
3068 goto out;
3069 }
fa9c0d79 3070
3f7de037
JB
3071 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3072 min_bytes);
3073
86d4a77b 3074 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
1bb91902
AO
3075 bytes + empty_size,
3076 cont1_bytes, min_bytes);
4e69b598 3077 if (ret)
86d4a77b 3078 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
1bb91902
AO
3079 offset, bytes + empty_size,
3080 cont1_bytes, min_bytes);
86d4a77b
JB
3081
3082 /* Clear our temporary list */
3083 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3084 list_del_init(&entry->list);
fa9c0d79 3085
4e69b598
JB
3086 if (!ret) {
3087 atomic_inc(&block_group->count);
3088 list_add_tail(&cluster->block_group_list,
3089 &block_group->cluster_list);
3090 cluster->block_group = block_group;
3f7de037
JB
3091 } else {
3092 trace_btrfs_failed_cluster_setup(block_group);
fa9c0d79 3093 }
fa9c0d79
CM
3094out:
3095 spin_unlock(&cluster->lock);
34d52cb6 3096 spin_unlock(&ctl->tree_lock);
fa9c0d79
CM
3097
3098 return ret;
3099}
3100
3101/*
3102 * simple code to zero out a cluster
3103 */
3104void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3105{
3106 spin_lock_init(&cluster->lock);
3107 spin_lock_init(&cluster->refill_lock);
6bef4d31 3108 cluster->root = RB_ROOT;
fa9c0d79 3109 cluster->max_size = 0;
c759c4e1 3110 cluster->fragmented = false;
fa9c0d79
CM
3111 INIT_LIST_HEAD(&cluster->block_group_list);
3112 cluster->block_group = NULL;
3113}
3114
7fe1e641
LZ
3115static int do_trimming(struct btrfs_block_group_cache *block_group,
3116 u64 *total_trimmed, u64 start, u64 bytes,
55507ce3
FM
3117 u64 reserved_start, u64 reserved_bytes,
3118 struct btrfs_trim_range *trim_entry)
f7039b1d 3119{
7fe1e641 3120 struct btrfs_space_info *space_info = block_group->space_info;
f7039b1d 3121 struct btrfs_fs_info *fs_info = block_group->fs_info;
55507ce3 3122 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
7fe1e641
LZ
3123 int ret;
3124 int update = 0;
3125 u64 trimmed = 0;
f7039b1d 3126
7fe1e641
LZ
3127 spin_lock(&space_info->lock);
3128 spin_lock(&block_group->lock);
3129 if (!block_group->ro) {
3130 block_group->reserved += reserved_bytes;
3131 space_info->bytes_reserved += reserved_bytes;
3132 update = 1;
3133 }
3134 spin_unlock(&block_group->lock);
3135 spin_unlock(&space_info->lock);
3136
2ff7e61e 3137 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
7fe1e641
LZ
3138 if (!ret)
3139 *total_trimmed += trimmed;
3140
55507ce3 3141 mutex_lock(&ctl->cache_writeout_mutex);
7fe1e641 3142 btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
55507ce3
FM
3143 list_del(&trim_entry->list);
3144 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3145
3146 if (update) {
3147 spin_lock(&space_info->lock);
3148 spin_lock(&block_group->lock);
3149 if (block_group->ro)
3150 space_info->bytes_readonly += reserved_bytes;
3151 block_group->reserved -= reserved_bytes;
3152 space_info->bytes_reserved -= reserved_bytes;
3153 spin_unlock(&space_info->lock);
3154 spin_unlock(&block_group->lock);
3155 }
3156
3157 return ret;
3158}
3159
3160static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3161 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3162{
3163 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3164 struct btrfs_free_space *entry;
3165 struct rb_node *node;
3166 int ret = 0;
3167 u64 extent_start;
3168 u64 extent_bytes;
3169 u64 bytes;
f7039b1d
LD
3170
3171 while (start < end) {
55507ce3
FM
3172 struct btrfs_trim_range trim_entry;
3173
3174 mutex_lock(&ctl->cache_writeout_mutex);
34d52cb6 3175 spin_lock(&ctl->tree_lock);
f7039b1d 3176
34d52cb6
LZ
3177 if (ctl->free_space < minlen) {
3178 spin_unlock(&ctl->tree_lock);
55507ce3 3179 mutex_unlock(&ctl->cache_writeout_mutex);
f7039b1d
LD
3180 break;
3181 }
3182
34d52cb6 3183 entry = tree_search_offset(ctl, start, 0, 1);
7fe1e641 3184 if (!entry) {
34d52cb6 3185 spin_unlock(&ctl->tree_lock);
55507ce3 3186 mutex_unlock(&ctl->cache_writeout_mutex);
f7039b1d
LD
3187 break;
3188 }
3189
7fe1e641
LZ
3190 /* skip bitmaps */
3191 while (entry->bitmap) {
3192 node = rb_next(&entry->offset_index);
3193 if (!node) {
34d52cb6 3194 spin_unlock(&ctl->tree_lock);
55507ce3 3195 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641 3196 goto out;
f7039b1d 3197 }
7fe1e641
LZ
3198 entry = rb_entry(node, struct btrfs_free_space,
3199 offset_index);
f7039b1d
LD
3200 }
3201
7fe1e641
LZ
3202 if (entry->offset >= end) {
3203 spin_unlock(&ctl->tree_lock);
55507ce3 3204 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641 3205 break;
f7039b1d
LD
3206 }
3207
7fe1e641
LZ
3208 extent_start = entry->offset;
3209 extent_bytes = entry->bytes;
3210 start = max(start, extent_start);
3211 bytes = min(extent_start + extent_bytes, end) - start;
3212 if (bytes < minlen) {
3213 spin_unlock(&ctl->tree_lock);
55507ce3 3214 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641 3215 goto next;
f7039b1d
LD
3216 }
3217
7fe1e641
LZ
3218 unlink_free_space(ctl, entry);
3219 kmem_cache_free(btrfs_free_space_cachep, entry);
3220
34d52cb6 3221 spin_unlock(&ctl->tree_lock);
55507ce3
FM
3222 trim_entry.start = extent_start;
3223 trim_entry.bytes = extent_bytes;
3224 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3225 mutex_unlock(&ctl->cache_writeout_mutex);
f7039b1d 3226
7fe1e641 3227 ret = do_trimming(block_group, total_trimmed, start, bytes,
55507ce3 3228 extent_start, extent_bytes, &trim_entry);
7fe1e641
LZ
3229 if (ret)
3230 break;
3231next:
3232 start += bytes;
f7039b1d 3233
7fe1e641
LZ
3234 if (fatal_signal_pending(current)) {
3235 ret = -ERESTARTSYS;
3236 break;
3237 }
3238
3239 cond_resched();
3240 }
3241out:
3242 return ret;
3243}
3244
3245static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3246 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3247{
3248 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3249 struct btrfs_free_space *entry;
3250 int ret = 0;
3251 int ret2;
3252 u64 bytes;
3253 u64 offset = offset_to_bitmap(ctl, start);
3254
3255 while (offset < end) {
3256 bool next_bitmap = false;
55507ce3 3257 struct btrfs_trim_range trim_entry;
7fe1e641 3258
55507ce3 3259 mutex_lock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3260 spin_lock(&ctl->tree_lock);
3261
3262 if (ctl->free_space < minlen) {
3263 spin_unlock(&ctl->tree_lock);
55507ce3 3264 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3265 break;
3266 }
3267
3268 entry = tree_search_offset(ctl, offset, 1, 0);
3269 if (!entry) {
3270 spin_unlock(&ctl->tree_lock);
55507ce3 3271 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3272 next_bitmap = true;
3273 goto next;
3274 }
3275
3276 bytes = minlen;
0584f718 3277 ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
7fe1e641
LZ
3278 if (ret2 || start >= end) {
3279 spin_unlock(&ctl->tree_lock);
55507ce3 3280 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3281 next_bitmap = true;
3282 goto next;
3283 }
3284
3285 bytes = min(bytes, end - start);
3286 if (bytes < minlen) {
3287 spin_unlock(&ctl->tree_lock);
55507ce3 3288 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3289 goto next;
3290 }
3291
3292 bitmap_clear_bits(ctl, entry, start, bytes);
3293 if (entry->bytes == 0)
3294 free_bitmap(ctl, entry);
3295
3296 spin_unlock(&ctl->tree_lock);
55507ce3
FM
3297 trim_entry.start = start;
3298 trim_entry.bytes = bytes;
3299 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3300 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3301
3302 ret = do_trimming(block_group, total_trimmed, start, bytes,
55507ce3 3303 start, bytes, &trim_entry);
7fe1e641
LZ
3304 if (ret)
3305 break;
3306next:
3307 if (next_bitmap) {
3308 offset += BITS_PER_BITMAP * ctl->unit;
3309 } else {
3310 start += bytes;
3311 if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3312 offset += BITS_PER_BITMAP * ctl->unit;
f7039b1d 3313 }
f7039b1d
LD
3314
3315 if (fatal_signal_pending(current)) {
3316 ret = -ERESTARTSYS;
3317 break;
3318 }
3319
3320 cond_resched();
3321 }
3322
3323 return ret;
3324}
581bb050 3325
e33e17ee 3326void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
7fe1e641 3327{
e33e17ee
JM
3328 atomic_inc(&cache->trimming);
3329}
7fe1e641 3330
e33e17ee
JM
3331void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3332{
0b246afa 3333 struct btrfs_fs_info *fs_info = block_group->fs_info;
e33e17ee
JM
3334 struct extent_map_tree *em_tree;
3335 struct extent_map *em;
3336 bool cleanup;
7fe1e641 3337
04216820 3338 spin_lock(&block_group->lock);
e33e17ee
JM
3339 cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3340 block_group->removed);
04216820
FM
3341 spin_unlock(&block_group->lock);
3342
e33e17ee 3343 if (cleanup) {
34441361 3344 mutex_lock(&fs_info->chunk_mutex);
0b246afa 3345 em_tree = &fs_info->mapping_tree.map_tree;
04216820
FM
3346 write_lock(&em_tree->lock);
3347 em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3348 1);
3349 BUG_ON(!em); /* logic error, can't happen */
a1e7e16e
FM
3350 /*
3351 * remove_extent_mapping() will delete us from the pinned_chunks
3352 * list, which is protected by the chunk mutex.
3353 */
04216820
FM
3354 remove_extent_mapping(em_tree, em);
3355 write_unlock(&em_tree->lock);
34441361 3356 mutex_unlock(&fs_info->chunk_mutex);
04216820
FM
3357
3358 /* once for us and once for the tree */
3359 free_extent_map(em);
3360 free_extent_map(em);
946ddbe8
FM
3361
3362 /*
3363 * We've left one free space entry and other tasks trimming
3364 * this block group have left 1 entry each one. Free them.
3365 */
3366 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
e33e17ee
JM
3367 }
3368}
3369
3370int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3371 u64 *trimmed, u64 start, u64 end, u64 minlen)
3372{
3373 int ret;
3374
3375 *trimmed = 0;
3376
3377 spin_lock(&block_group->lock);
3378 if (block_group->removed) {
04216820 3379 spin_unlock(&block_group->lock);
e33e17ee 3380 return 0;
04216820 3381 }
e33e17ee
JM
3382 btrfs_get_block_group_trimming(block_group);
3383 spin_unlock(&block_group->lock);
3384
3385 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3386 if (ret)
3387 goto out;
7fe1e641 3388
e33e17ee
JM
3389 ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3390out:
3391 btrfs_put_block_group_trimming(block_group);
7fe1e641
LZ
3392 return ret;
3393}
3394
581bb050
LZ
3395/*
3396 * Find the left-most item in the cache tree, and then return the
3397 * smallest inode number in the item.
3398 *
3399 * Note: the returned inode number may not be the smallest one in
3400 * the tree, if the left-most item is a bitmap.
3401 */
3402u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3403{
3404 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3405 struct btrfs_free_space *entry = NULL;
3406 u64 ino = 0;
3407
3408 spin_lock(&ctl->tree_lock);
3409
3410 if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3411 goto out;
3412
3413 entry = rb_entry(rb_first(&ctl->free_space_offset),
3414 struct btrfs_free_space, offset_index);
3415
3416 if (!entry->bitmap) {
3417 ino = entry->offset;
3418
3419 unlink_free_space(ctl, entry);
3420 entry->offset++;
3421 entry->bytes--;
3422 if (!entry->bytes)
3423 kmem_cache_free(btrfs_free_space_cachep, entry);
3424 else
3425 link_free_space(ctl, entry);
3426 } else {
3427 u64 offset = 0;
3428 u64 count = 1;
3429 int ret;
3430
0584f718 3431 ret = search_bitmap(ctl, entry, &offset, &count, true);
79787eaa 3432 /* Logic error; Should be empty if it can't find anything */
b12d6869 3433 ASSERT(!ret);
581bb050
LZ
3434
3435 ino = offset;
3436 bitmap_clear_bits(ctl, entry, offset, 1);
3437 if (entry->bytes == 0)
3438 free_bitmap(ctl, entry);
3439 }
3440out:
3441 spin_unlock(&ctl->tree_lock);
3442
3443 return ino;
3444}
82d5902d
LZ
3445
3446struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3447 struct btrfs_path *path)
3448{
3449 struct inode *inode = NULL;
3450
57cdc8db
DS
3451 spin_lock(&root->ino_cache_lock);
3452 if (root->ino_cache_inode)
3453 inode = igrab(root->ino_cache_inode);
3454 spin_unlock(&root->ino_cache_lock);
82d5902d
LZ
3455 if (inode)
3456 return inode;
3457
3458 inode = __lookup_free_space_inode(root, path, 0);
3459 if (IS_ERR(inode))
3460 return inode;
3461
57cdc8db 3462 spin_lock(&root->ino_cache_lock);
7841cb28 3463 if (!btrfs_fs_closing(root->fs_info))
57cdc8db
DS
3464 root->ino_cache_inode = igrab(inode);
3465 spin_unlock(&root->ino_cache_lock);
82d5902d
LZ
3466
3467 return inode;
3468}
3469
3470int create_free_ino_inode(struct btrfs_root *root,
3471 struct btrfs_trans_handle *trans,
3472 struct btrfs_path *path)
3473{
3474 return __create_free_space_inode(root, trans, path,
3475 BTRFS_FREE_INO_OBJECTID, 0);
3476}
3477
3478int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3479{
3480 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3481 struct btrfs_path *path;
3482 struct inode *inode;
3483 int ret = 0;
3484 u64 root_gen = btrfs_root_generation(&root->root_item);
3485
0b246afa 3486 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
4b9465cb
CM
3487 return 0;
3488
82d5902d
LZ
3489 /*
3490 * If we're unmounting then just return, since this does a search on the
3491 * normal root and not the commit root and we could deadlock.
3492 */
7841cb28 3493 if (btrfs_fs_closing(fs_info))
82d5902d
LZ
3494 return 0;
3495
3496 path = btrfs_alloc_path();
3497 if (!path)
3498 return 0;
3499
3500 inode = lookup_free_ino_inode(root, path);
3501 if (IS_ERR(inode))
3502 goto out;
3503
3504 if (root_gen != BTRFS_I(inode)->generation)
3505 goto out_put;
3506
3507 ret = __load_free_space_cache(root, inode, ctl, path, 0);
3508
3509 if (ret < 0)
c2cf52eb
SK
3510 btrfs_err(fs_info,
3511 "failed to load free ino cache for root %llu",
3512 root->root_key.objectid);
82d5902d
LZ
3513out_put:
3514 iput(inode);
3515out:
3516 btrfs_free_path(path);
3517 return ret;
3518}
3519
3520int btrfs_write_out_ino_cache(struct btrfs_root *root,
3521 struct btrfs_trans_handle *trans,
53645a91
FDBM
3522 struct btrfs_path *path,
3523 struct inode *inode)
82d5902d 3524{
0b246afa 3525 struct btrfs_fs_info *fs_info = root->fs_info;
82d5902d 3526 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
82d5902d 3527 int ret;
c9dc4c65 3528 struct btrfs_io_ctl io_ctl;
e43699d4 3529 bool release_metadata = true;
82d5902d 3530
0b246afa 3531 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
4b9465cb
CM
3532 return 0;
3533
85db36cf 3534 memset(&io_ctl, 0, sizeof(io_ctl));
0e8d931a 3535 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
e43699d4
FM
3536 if (!ret) {
3537 /*
3538 * At this point writepages() didn't error out, so our metadata
3539 * reservation is released when the writeback finishes, at
3540 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3541 * with or without an error.
3542 */
3543 release_metadata = false;
afdb5718 3544 ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
e43699d4 3545 }
85db36cf 3546
c09544e0 3547 if (ret) {
e43699d4 3548 if (release_metadata)
691fa059
NB
3549 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3550 inode->i_size);
c09544e0 3551#ifdef DEBUG
0b246afa
JM
3552 btrfs_err(fs_info,
3553 "failed to write free ino cache for root %llu",
3554 root->root_key.objectid);
c09544e0
JB
3555#endif
3556 }
82d5902d 3557
82d5902d
LZ
3558 return ret;
3559}
74255aa0
JB
3560
3561#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
dc11dd5d
JB
3562/*
3563 * Use this if you need to make a bitmap or extent entry specifically, it
3564 * doesn't do any of the merging that add_free_space does, this acts a lot like
3565 * how the free space cache loading stuff works, so you can get really weird
3566 * configurations.
3567 */
3568int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3569 u64 offset, u64 bytes, bool bitmap)
74255aa0 3570{
dc11dd5d
JB
3571 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3572 struct btrfs_free_space *info = NULL, *bitmap_info;
3573 void *map = NULL;
3574 u64 bytes_added;
3575 int ret;
74255aa0 3576
dc11dd5d
JB
3577again:
3578 if (!info) {
3579 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3580 if (!info)
3581 return -ENOMEM;
74255aa0
JB
3582 }
3583
dc11dd5d
JB
3584 if (!bitmap) {
3585 spin_lock(&ctl->tree_lock);
3586 info->offset = offset;
3587 info->bytes = bytes;
cef40483 3588 info->max_extent_size = 0;
dc11dd5d
JB
3589 ret = link_free_space(ctl, info);
3590 spin_unlock(&ctl->tree_lock);
3591 if (ret)
3592 kmem_cache_free(btrfs_free_space_cachep, info);
3593 return ret;
3594 }
3595
3596 if (!map) {
09cbfeaf 3597 map = kzalloc(PAGE_SIZE, GFP_NOFS);
dc11dd5d
JB
3598 if (!map) {
3599 kmem_cache_free(btrfs_free_space_cachep, info);
3600 return -ENOMEM;
3601 }
3602 }
3603
3604 spin_lock(&ctl->tree_lock);
3605 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3606 1, 0);
3607 if (!bitmap_info) {
3608 info->bitmap = map;
3609 map = NULL;
3610 add_new_bitmap(ctl, info, offset);
3611 bitmap_info = info;
20005523 3612 info = NULL;
dc11dd5d 3613 }
74255aa0 3614
dc11dd5d 3615 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
cef40483 3616
dc11dd5d
JB
3617 bytes -= bytes_added;
3618 offset += bytes_added;
3619 spin_unlock(&ctl->tree_lock);
74255aa0 3620
dc11dd5d
JB
3621 if (bytes)
3622 goto again;
74255aa0 3623
20005523
FM
3624 if (info)
3625 kmem_cache_free(btrfs_free_space_cachep, info);
dc11dd5d
JB
3626 if (map)
3627 kfree(map);
3628 return 0;
74255aa0
JB
3629}
3630
3631/*
3632 * Checks to see if the given range is in the free space cache. This is really
3633 * just used to check the absence of space, so if there is free space in the
3634 * range at all we will return 1.
3635 */
dc11dd5d
JB
3636int test_check_exists(struct btrfs_block_group_cache *cache,
3637 u64 offset, u64 bytes)
74255aa0
JB
3638{
3639 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3640 struct btrfs_free_space *info;
3641 int ret = 0;
3642
3643 spin_lock(&ctl->tree_lock);
3644 info = tree_search_offset(ctl, offset, 0, 0);
3645 if (!info) {
3646 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3647 1, 0);
3648 if (!info)
3649 goto out;
3650 }
3651
3652have_info:
3653 if (info->bitmap) {
3654 u64 bit_off, bit_bytes;
3655 struct rb_node *n;
3656 struct btrfs_free_space *tmp;
3657
3658 bit_off = offset;
3659 bit_bytes = ctl->unit;
0584f718 3660 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
74255aa0
JB
3661 if (!ret) {
3662 if (bit_off == offset) {
3663 ret = 1;
3664 goto out;
3665 } else if (bit_off > offset &&
3666 offset + bytes > bit_off) {
3667 ret = 1;
3668 goto out;
3669 }
3670 }
3671
3672 n = rb_prev(&info->offset_index);
3673 while (n) {
3674 tmp = rb_entry(n, struct btrfs_free_space,
3675 offset_index);
3676 if (tmp->offset + tmp->bytes < offset)
3677 break;
3678 if (offset + bytes < tmp->offset) {
5473e0c4 3679 n = rb_prev(&tmp->offset_index);
74255aa0
JB
3680 continue;
3681 }
3682 info = tmp;
3683 goto have_info;
3684 }
3685
3686 n = rb_next(&info->offset_index);
3687 while (n) {
3688 tmp = rb_entry(n, struct btrfs_free_space,
3689 offset_index);
3690 if (offset + bytes < tmp->offset)
3691 break;
3692 if (tmp->offset + tmp->bytes < offset) {
5473e0c4 3693 n = rb_next(&tmp->offset_index);
74255aa0
JB
3694 continue;
3695 }
3696 info = tmp;
3697 goto have_info;
3698 }
3699
20005523 3700 ret = 0;
74255aa0
JB
3701 goto out;
3702 }
3703
3704 if (info->offset == offset) {
3705 ret = 1;
3706 goto out;
3707 }
3708
3709 if (offset > info->offset && offset < info->offset + info->bytes)
3710 ret = 1;
3711out:
3712 spin_unlock(&ctl->tree_lock);
3713 return ret;
3714}
dc11dd5d 3715#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */