]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/buffer.c
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[mirror_ubuntu-artful-kernel.git] / fs / buffer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
1da177e4
LT
21#include <linux/kernel.h>
22#include <linux/syscalls.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25#include <linux/percpu.h>
26#include <linux/slab.h>
16f7e0fe 27#include <linux/capability.h>
1da177e4
LT
28#include <linux/blkdev.h>
29#include <linux/file.h>
30#include <linux/quotaops.h>
31#include <linux/highmem.h>
630d9c47 32#include <linux/export.h>
1da177e4
LT
33#include <linux/writeback.h>
34#include <linux/hash.h>
35#include <linux/suspend.h>
36#include <linux/buffer_head.h>
55e829af 37#include <linux/task_io_accounting_ops.h>
1da177e4
LT
38#include <linux/bio.h>
39#include <linux/notifier.h>
40#include <linux/cpu.h>
41#include <linux/bitops.h>
42#include <linux/mpage.h>
fb1c8f93 43#include <linux/bit_spinlock.h>
5305cb83 44#include <trace/events/block.h>
1da177e4
LT
45
46static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
1da177e4
LT
47
48#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
a3f3c29c 50void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
1da177e4
LT
51{
52 bh->b_end_io = handler;
53 bh->b_private = private;
54}
1fe72eaa 55EXPORT_SYMBOL(init_buffer);
1da177e4 56
f0059afd
TH
57inline void touch_buffer(struct buffer_head *bh)
58{
5305cb83 59 trace_block_touch_buffer(bh);
f0059afd
TH
60 mark_page_accessed(bh->b_page);
61}
62EXPORT_SYMBOL(touch_buffer);
63
fc9b52cd 64void __lock_buffer(struct buffer_head *bh)
1da177e4 65{
74316201 66 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4
LT
67}
68EXPORT_SYMBOL(__lock_buffer);
69
fc9b52cd 70void unlock_buffer(struct buffer_head *bh)
1da177e4 71{
51b07fc3 72 clear_bit_unlock(BH_Lock, &bh->b_state);
4e857c58 73 smp_mb__after_atomic();
1da177e4
LT
74 wake_up_bit(&bh->b_state, BH_Lock);
75}
1fe72eaa 76EXPORT_SYMBOL(unlock_buffer);
1da177e4 77
b4597226
MG
78/*
79 * Returns if the page has dirty or writeback buffers. If all the buffers
80 * are unlocked and clean then the PageDirty information is stale. If
81 * any of the pages are locked, it is assumed they are locked for IO.
82 */
83void buffer_check_dirty_writeback(struct page *page,
84 bool *dirty, bool *writeback)
85{
86 struct buffer_head *head, *bh;
87 *dirty = false;
88 *writeback = false;
89
90 BUG_ON(!PageLocked(page));
91
92 if (!page_has_buffers(page))
93 return;
94
95 if (PageWriteback(page))
96 *writeback = true;
97
98 head = page_buffers(page);
99 bh = head;
100 do {
101 if (buffer_locked(bh))
102 *writeback = true;
103
104 if (buffer_dirty(bh))
105 *dirty = true;
106
107 bh = bh->b_this_page;
108 } while (bh != head);
109}
110EXPORT_SYMBOL(buffer_check_dirty_writeback);
111
1da177e4
LT
112/*
113 * Block until a buffer comes unlocked. This doesn't stop it
114 * from becoming locked again - you have to lock it yourself
115 * if you want to preserve its state.
116 */
117void __wait_on_buffer(struct buffer_head * bh)
118{
74316201 119 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4 120}
1fe72eaa 121EXPORT_SYMBOL(__wait_on_buffer);
1da177e4
LT
122
123static void
124__clear_page_buffers(struct page *page)
125{
126 ClearPagePrivate(page);
4c21e2f2 127 set_page_private(page, 0);
1da177e4
LT
128 page_cache_release(page);
129}
130
08bafc03
KM
131
132static int quiet_error(struct buffer_head *bh)
133{
134 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
135 return 0;
136 return 1;
137}
138
139
1da177e4
LT
140static void buffer_io_error(struct buffer_head *bh)
141{
142 char b[BDEVNAME_SIZE];
1da177e4
LT
143 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
144 bdevname(bh->b_bdev, b),
145 (unsigned long long)bh->b_blocknr);
146}
147
148/*
68671f35
DM
149 * End-of-IO handler helper function which does not touch the bh after
150 * unlocking it.
151 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
152 * a race there is benign: unlock_buffer() only use the bh's address for
153 * hashing after unlocking the buffer, so it doesn't actually touch the bh
154 * itself.
1da177e4 155 */
68671f35 156static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
1da177e4
LT
157{
158 if (uptodate) {
159 set_buffer_uptodate(bh);
160 } else {
161 /* This happens, due to failed READA attempts. */
162 clear_buffer_uptodate(bh);
163 }
164 unlock_buffer(bh);
68671f35
DM
165}
166
167/*
168 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
169 * unlock the buffer. This is what ll_rw_block uses too.
170 */
171void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
172{
173 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
174 put_bh(bh);
175}
1fe72eaa 176EXPORT_SYMBOL(end_buffer_read_sync);
1da177e4
LT
177
178void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
179{
180 char b[BDEVNAME_SIZE];
181
182 if (uptodate) {
183 set_buffer_uptodate(bh);
184 } else {
0edd55fa 185 if (!quiet_error(bh)) {
1da177e4
LT
186 buffer_io_error(bh);
187 printk(KERN_WARNING "lost page write due to "
188 "I/O error on %s\n",
189 bdevname(bh->b_bdev, b));
190 }
191 set_buffer_write_io_error(bh);
192 clear_buffer_uptodate(bh);
193 }
194 unlock_buffer(bh);
195 put_bh(bh);
196}
1fe72eaa 197EXPORT_SYMBOL(end_buffer_write_sync);
1da177e4 198
1da177e4
LT
199/*
200 * Various filesystems appear to want __find_get_block to be non-blocking.
201 * But it's the page lock which protects the buffers. To get around this,
202 * we get exclusion from try_to_free_buffers with the blockdev mapping's
203 * private_lock.
204 *
205 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
206 * may be quite high. This code could TryLock the page, and if that
207 * succeeds, there is no need to take private_lock. (But if
208 * private_lock is contended then so is mapping->tree_lock).
209 */
210static struct buffer_head *
385fd4c5 211__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
212{
213 struct inode *bd_inode = bdev->bd_inode;
214 struct address_space *bd_mapping = bd_inode->i_mapping;
215 struct buffer_head *ret = NULL;
216 pgoff_t index;
217 struct buffer_head *bh;
218 struct buffer_head *head;
219 struct page *page;
220 int all_mapped = 1;
221
222 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
2457aec6 223 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
1da177e4
LT
224 if (!page)
225 goto out;
226
227 spin_lock(&bd_mapping->private_lock);
228 if (!page_has_buffers(page))
229 goto out_unlock;
230 head = page_buffers(page);
231 bh = head;
232 do {
97f76d3d
NK
233 if (!buffer_mapped(bh))
234 all_mapped = 0;
235 else if (bh->b_blocknr == block) {
1da177e4
LT
236 ret = bh;
237 get_bh(bh);
238 goto out_unlock;
239 }
1da177e4
LT
240 bh = bh->b_this_page;
241 } while (bh != head);
242
243 /* we might be here because some of the buffers on this page are
244 * not mapped. This is due to various races between
245 * file io on the block device and getblk. It gets dealt with
246 * elsewhere, don't buffer_error if we had some unmapped buffers
247 */
248 if (all_mapped) {
72a2ebd8
TM
249 char b[BDEVNAME_SIZE];
250
1da177e4
LT
251 printk("__find_get_block_slow() failed. "
252 "block=%llu, b_blocknr=%llu\n",
205f87f6
BP
253 (unsigned long long)block,
254 (unsigned long long)bh->b_blocknr);
255 printk("b_state=0x%08lx, b_size=%zu\n",
256 bh->b_state, bh->b_size);
72a2ebd8
TM
257 printk("device %s blocksize: %d\n", bdevname(bdev, b),
258 1 << bd_inode->i_blkbits);
1da177e4
LT
259 }
260out_unlock:
261 spin_unlock(&bd_mapping->private_lock);
262 page_cache_release(page);
263out:
264 return ret;
265}
266
1da177e4 267/*
5b0830cb 268 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
1da177e4
LT
269 */
270static void free_more_memory(void)
271{
19770b32 272 struct zone *zone;
0e88460d 273 int nid;
1da177e4 274
0e175a18 275 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
1da177e4
LT
276 yield();
277
0e88460d 278 for_each_online_node(nid) {
19770b32
MG
279 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
280 gfp_zone(GFP_NOFS), NULL,
281 &zone);
282 if (zone)
54a6eb5c 283 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
327c0e96 284 GFP_NOFS, NULL);
1da177e4
LT
285 }
286}
287
288/*
289 * I/O completion handler for block_read_full_page() - pages
290 * which come unlocked at the end of I/O.
291 */
292static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
293{
1da177e4 294 unsigned long flags;
a3972203 295 struct buffer_head *first;
1da177e4
LT
296 struct buffer_head *tmp;
297 struct page *page;
298 int page_uptodate = 1;
299
300 BUG_ON(!buffer_async_read(bh));
301
302 page = bh->b_page;
303 if (uptodate) {
304 set_buffer_uptodate(bh);
305 } else {
306 clear_buffer_uptodate(bh);
08bafc03 307 if (!quiet_error(bh))
1da177e4
LT
308 buffer_io_error(bh);
309 SetPageError(page);
310 }
311
312 /*
313 * Be _very_ careful from here on. Bad things can happen if
314 * two buffer heads end IO at almost the same time and both
315 * decide that the page is now completely done.
316 */
a3972203
NP
317 first = page_buffers(page);
318 local_irq_save(flags);
319 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
1da177e4
LT
320 clear_buffer_async_read(bh);
321 unlock_buffer(bh);
322 tmp = bh;
323 do {
324 if (!buffer_uptodate(tmp))
325 page_uptodate = 0;
326 if (buffer_async_read(tmp)) {
327 BUG_ON(!buffer_locked(tmp));
328 goto still_busy;
329 }
330 tmp = tmp->b_this_page;
331 } while (tmp != bh);
a3972203
NP
332 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
333 local_irq_restore(flags);
1da177e4
LT
334
335 /*
336 * If none of the buffers had errors and they are all
337 * uptodate then we can set the page uptodate.
338 */
339 if (page_uptodate && !PageError(page))
340 SetPageUptodate(page);
341 unlock_page(page);
342 return;
343
344still_busy:
a3972203
NP
345 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
346 local_irq_restore(flags);
1da177e4
LT
347 return;
348}
349
350/*
351 * Completion handler for block_write_full_page() - pages which are unlocked
352 * during I/O, and which have PageWriteback cleared upon I/O completion.
353 */
35c80d5f 354void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4
LT
355{
356 char b[BDEVNAME_SIZE];
1da177e4 357 unsigned long flags;
a3972203 358 struct buffer_head *first;
1da177e4
LT
359 struct buffer_head *tmp;
360 struct page *page;
361
362 BUG_ON(!buffer_async_write(bh));
363
364 page = bh->b_page;
365 if (uptodate) {
366 set_buffer_uptodate(bh);
367 } else {
08bafc03 368 if (!quiet_error(bh)) {
1da177e4
LT
369 buffer_io_error(bh);
370 printk(KERN_WARNING "lost page write due to "
371 "I/O error on %s\n",
372 bdevname(bh->b_bdev, b));
373 }
374 set_bit(AS_EIO, &page->mapping->flags);
58ff407b 375 set_buffer_write_io_error(bh);
1da177e4
LT
376 clear_buffer_uptodate(bh);
377 SetPageError(page);
378 }
379
a3972203
NP
380 first = page_buffers(page);
381 local_irq_save(flags);
382 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
383
1da177e4
LT
384 clear_buffer_async_write(bh);
385 unlock_buffer(bh);
386 tmp = bh->b_this_page;
387 while (tmp != bh) {
388 if (buffer_async_write(tmp)) {
389 BUG_ON(!buffer_locked(tmp));
390 goto still_busy;
391 }
392 tmp = tmp->b_this_page;
393 }
a3972203
NP
394 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
395 local_irq_restore(flags);
1da177e4
LT
396 end_page_writeback(page);
397 return;
398
399still_busy:
a3972203
NP
400 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
401 local_irq_restore(flags);
1da177e4
LT
402 return;
403}
1fe72eaa 404EXPORT_SYMBOL(end_buffer_async_write);
1da177e4
LT
405
406/*
407 * If a page's buffers are under async readin (end_buffer_async_read
408 * completion) then there is a possibility that another thread of
409 * control could lock one of the buffers after it has completed
410 * but while some of the other buffers have not completed. This
411 * locked buffer would confuse end_buffer_async_read() into not unlocking
412 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
413 * that this buffer is not under async I/O.
414 *
415 * The page comes unlocked when it has no locked buffer_async buffers
416 * left.
417 *
418 * PageLocked prevents anyone starting new async I/O reads any of
419 * the buffers.
420 *
421 * PageWriteback is used to prevent simultaneous writeout of the same
422 * page.
423 *
424 * PageLocked prevents anyone from starting writeback of a page which is
425 * under read I/O (PageWriteback is only ever set against a locked page).
426 */
427static void mark_buffer_async_read(struct buffer_head *bh)
428{
429 bh->b_end_io = end_buffer_async_read;
430 set_buffer_async_read(bh);
431}
432
1fe72eaa
HS
433static void mark_buffer_async_write_endio(struct buffer_head *bh,
434 bh_end_io_t *handler)
1da177e4 435{
35c80d5f 436 bh->b_end_io = handler;
1da177e4
LT
437 set_buffer_async_write(bh);
438}
35c80d5f
CM
439
440void mark_buffer_async_write(struct buffer_head *bh)
441{
442 mark_buffer_async_write_endio(bh, end_buffer_async_write);
443}
1da177e4
LT
444EXPORT_SYMBOL(mark_buffer_async_write);
445
446
447/*
448 * fs/buffer.c contains helper functions for buffer-backed address space's
449 * fsync functions. A common requirement for buffer-based filesystems is
450 * that certain data from the backing blockdev needs to be written out for
451 * a successful fsync(). For example, ext2 indirect blocks need to be
452 * written back and waited upon before fsync() returns.
453 *
454 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
455 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
456 * management of a list of dependent buffers at ->i_mapping->private_list.
457 *
458 * Locking is a little subtle: try_to_free_buffers() will remove buffers
459 * from their controlling inode's queue when they are being freed. But
460 * try_to_free_buffers() will be operating against the *blockdev* mapping
461 * at the time, not against the S_ISREG file which depends on those buffers.
462 * So the locking for private_list is via the private_lock in the address_space
463 * which backs the buffers. Which is different from the address_space
464 * against which the buffers are listed. So for a particular address_space,
465 * mapping->private_lock does *not* protect mapping->private_list! In fact,
466 * mapping->private_list will always be protected by the backing blockdev's
467 * ->private_lock.
468 *
469 * Which introduces a requirement: all buffers on an address_space's
470 * ->private_list must be from the same address_space: the blockdev's.
471 *
472 * address_spaces which do not place buffers at ->private_list via these
473 * utility functions are free to use private_lock and private_list for
474 * whatever they want. The only requirement is that list_empty(private_list)
475 * be true at clear_inode() time.
476 *
477 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
478 * filesystems should do that. invalidate_inode_buffers() should just go
479 * BUG_ON(!list_empty).
480 *
481 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
482 * take an address_space, not an inode. And it should be called
483 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
484 * queued up.
485 *
486 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
487 * list if it is already on a list. Because if the buffer is on a list,
488 * it *must* already be on the right one. If not, the filesystem is being
489 * silly. This will save a ton of locking. But first we have to ensure
490 * that buffers are taken *off* the old inode's list when they are freed
491 * (presumably in truncate). That requires careful auditing of all
492 * filesystems (do it inside bforget()). It could also be done by bringing
493 * b_inode back.
494 */
495
496/*
497 * The buffer's backing address_space's private_lock must be held
498 */
dbacefc9 499static void __remove_assoc_queue(struct buffer_head *bh)
1da177e4
LT
500{
501 list_del_init(&bh->b_assoc_buffers);
58ff407b
JK
502 WARN_ON(!bh->b_assoc_map);
503 if (buffer_write_io_error(bh))
504 set_bit(AS_EIO, &bh->b_assoc_map->flags);
505 bh->b_assoc_map = NULL;
1da177e4
LT
506}
507
508int inode_has_buffers(struct inode *inode)
509{
510 return !list_empty(&inode->i_data.private_list);
511}
512
513/*
514 * osync is designed to support O_SYNC io. It waits synchronously for
515 * all already-submitted IO to complete, but does not queue any new
516 * writes to the disk.
517 *
518 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
519 * you dirty the buffers, and then use osync_inode_buffers to wait for
520 * completion. Any other dirty buffers which are not yet queued for
521 * write will not be flushed to disk by the osync.
522 */
523static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
524{
525 struct buffer_head *bh;
526 struct list_head *p;
527 int err = 0;
528
529 spin_lock(lock);
530repeat:
531 list_for_each_prev(p, list) {
532 bh = BH_ENTRY(p);
533 if (buffer_locked(bh)) {
534 get_bh(bh);
535 spin_unlock(lock);
536 wait_on_buffer(bh);
537 if (!buffer_uptodate(bh))
538 err = -EIO;
539 brelse(bh);
540 spin_lock(lock);
541 goto repeat;
542 }
543 }
544 spin_unlock(lock);
545 return err;
546}
547
01a05b33 548static void do_thaw_one(struct super_block *sb, void *unused)
c2d75438 549{
c2d75438 550 char b[BDEVNAME_SIZE];
01a05b33
AV
551 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
552 printk(KERN_WARNING "Emergency Thaw on %s\n",
553 bdevname(sb->s_bdev, b));
554}
c2d75438 555
01a05b33
AV
556static void do_thaw_all(struct work_struct *work)
557{
558 iterate_supers(do_thaw_one, NULL);
053c525f 559 kfree(work);
c2d75438
ES
560 printk(KERN_WARNING "Emergency Thaw complete\n");
561}
562
563/**
564 * emergency_thaw_all -- forcibly thaw every frozen filesystem
565 *
566 * Used for emergency unfreeze of all filesystems via SysRq
567 */
568void emergency_thaw_all(void)
569{
053c525f
JA
570 struct work_struct *work;
571
572 work = kmalloc(sizeof(*work), GFP_ATOMIC);
573 if (work) {
574 INIT_WORK(work, do_thaw_all);
575 schedule_work(work);
576 }
c2d75438
ES
577}
578
1da177e4 579/**
78a4a50a 580 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
67be2dd1 581 * @mapping: the mapping which wants those buffers written
1da177e4
LT
582 *
583 * Starts I/O against the buffers at mapping->private_list, and waits upon
584 * that I/O.
585 *
67be2dd1
MW
586 * Basically, this is a convenience function for fsync().
587 * @mapping is a file or directory which needs those buffers to be written for
588 * a successful fsync().
1da177e4
LT
589 */
590int sync_mapping_buffers(struct address_space *mapping)
591{
252aa6f5 592 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
593
594 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
595 return 0;
596
597 return fsync_buffers_list(&buffer_mapping->private_lock,
598 &mapping->private_list);
599}
600EXPORT_SYMBOL(sync_mapping_buffers);
601
602/*
603 * Called when we've recently written block `bblock', and it is known that
604 * `bblock' was for a buffer_boundary() buffer. This means that the block at
605 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
606 * dirty, schedule it for IO. So that indirects merge nicely with their data.
607 */
608void write_boundary_block(struct block_device *bdev,
609 sector_t bblock, unsigned blocksize)
610{
611 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
612 if (bh) {
613 if (buffer_dirty(bh))
614 ll_rw_block(WRITE, 1, &bh);
615 put_bh(bh);
616 }
617}
618
619void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
620{
621 struct address_space *mapping = inode->i_mapping;
622 struct address_space *buffer_mapping = bh->b_page->mapping;
623
624 mark_buffer_dirty(bh);
252aa6f5
RA
625 if (!mapping->private_data) {
626 mapping->private_data = buffer_mapping;
1da177e4 627 } else {
252aa6f5 628 BUG_ON(mapping->private_data != buffer_mapping);
1da177e4 629 }
535ee2fb 630 if (!bh->b_assoc_map) {
1da177e4
LT
631 spin_lock(&buffer_mapping->private_lock);
632 list_move_tail(&bh->b_assoc_buffers,
633 &mapping->private_list);
58ff407b 634 bh->b_assoc_map = mapping;
1da177e4
LT
635 spin_unlock(&buffer_mapping->private_lock);
636 }
637}
638EXPORT_SYMBOL(mark_buffer_dirty_inode);
639
787d2214
NP
640/*
641 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
642 * dirty.
643 *
644 * If warn is true, then emit a warning if the page is not uptodate and has
645 * not been truncated.
646 */
a8e7d49a 647static void __set_page_dirty(struct page *page,
787d2214
NP
648 struct address_space *mapping, int warn)
649{
227d53b3
KM
650 unsigned long flags;
651
652 spin_lock_irqsave(&mapping->tree_lock, flags);
787d2214
NP
653 if (page->mapping) { /* Race with truncate? */
654 WARN_ON_ONCE(warn && !PageUptodate(page));
e3a7cca1 655 account_page_dirtied(page, mapping);
787d2214
NP
656 radix_tree_tag_set(&mapping->page_tree,
657 page_index(page), PAGECACHE_TAG_DIRTY);
658 }
227d53b3 659 spin_unlock_irqrestore(&mapping->tree_lock, flags);
787d2214 660 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
787d2214
NP
661}
662
1da177e4
LT
663/*
664 * Add a page to the dirty page list.
665 *
666 * It is a sad fact of life that this function is called from several places
667 * deeply under spinlocking. It may not sleep.
668 *
669 * If the page has buffers, the uptodate buffers are set dirty, to preserve
670 * dirty-state coherency between the page and the buffers. It the page does
671 * not have buffers then when they are later attached they will all be set
672 * dirty.
673 *
674 * The buffers are dirtied before the page is dirtied. There's a small race
675 * window in which a writepage caller may see the page cleanness but not the
676 * buffer dirtiness. That's fine. If this code were to set the page dirty
677 * before the buffers, a concurrent writepage caller could clear the page dirty
678 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
679 * page on the dirty page list.
680 *
681 * We use private_lock to lock against try_to_free_buffers while using the
682 * page's buffer list. Also use this to protect against clean buffers being
683 * added to the page after it was set dirty.
684 *
685 * FIXME: may need to call ->reservepage here as well. That's rather up to the
686 * address_space though.
687 */
688int __set_page_dirty_buffers(struct page *page)
689{
a8e7d49a 690 int newly_dirty;
787d2214 691 struct address_space *mapping = page_mapping(page);
ebf7a227
NP
692
693 if (unlikely(!mapping))
694 return !TestSetPageDirty(page);
1da177e4
LT
695
696 spin_lock(&mapping->private_lock);
697 if (page_has_buffers(page)) {
698 struct buffer_head *head = page_buffers(page);
699 struct buffer_head *bh = head;
700
701 do {
702 set_buffer_dirty(bh);
703 bh = bh->b_this_page;
704 } while (bh != head);
705 }
a8e7d49a 706 newly_dirty = !TestSetPageDirty(page);
1da177e4
LT
707 spin_unlock(&mapping->private_lock);
708
a8e7d49a
LT
709 if (newly_dirty)
710 __set_page_dirty(page, mapping, 1);
711 return newly_dirty;
1da177e4
LT
712}
713EXPORT_SYMBOL(__set_page_dirty_buffers);
714
715/*
716 * Write out and wait upon a list of buffers.
717 *
718 * We have conflicting pressures: we want to make sure that all
719 * initially dirty buffers get waited on, but that any subsequently
720 * dirtied buffers don't. After all, we don't want fsync to last
721 * forever if somebody is actively writing to the file.
722 *
723 * Do this in two main stages: first we copy dirty buffers to a
724 * temporary inode list, queueing the writes as we go. Then we clean
725 * up, waiting for those writes to complete.
726 *
727 * During this second stage, any subsequent updates to the file may end
728 * up refiling the buffer on the original inode's dirty list again, so
729 * there is a chance we will end up with a buffer queued for write but
730 * not yet completed on that list. So, as a final cleanup we go through
731 * the osync code to catch these locked, dirty buffers without requeuing
732 * any newly dirty buffers for write.
733 */
734static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
735{
736 struct buffer_head *bh;
737 struct list_head tmp;
7eaceacc 738 struct address_space *mapping;
1da177e4 739 int err = 0, err2;
4ee2491e 740 struct blk_plug plug;
1da177e4
LT
741
742 INIT_LIST_HEAD(&tmp);
4ee2491e 743 blk_start_plug(&plug);
1da177e4
LT
744
745 spin_lock(lock);
746 while (!list_empty(list)) {
747 bh = BH_ENTRY(list->next);
535ee2fb 748 mapping = bh->b_assoc_map;
58ff407b 749 __remove_assoc_queue(bh);
535ee2fb
JK
750 /* Avoid race with mark_buffer_dirty_inode() which does
751 * a lockless check and we rely on seeing the dirty bit */
752 smp_mb();
1da177e4
LT
753 if (buffer_dirty(bh) || buffer_locked(bh)) {
754 list_add(&bh->b_assoc_buffers, &tmp);
535ee2fb 755 bh->b_assoc_map = mapping;
1da177e4
LT
756 if (buffer_dirty(bh)) {
757 get_bh(bh);
758 spin_unlock(lock);
759 /*
760 * Ensure any pending I/O completes so that
9cb569d6
CH
761 * write_dirty_buffer() actually writes the
762 * current contents - it is a noop if I/O is
763 * still in flight on potentially older
764 * contents.
1da177e4 765 */
721a9602 766 write_dirty_buffer(bh, WRITE_SYNC);
9cf6b720
JA
767
768 /*
769 * Kick off IO for the previous mapping. Note
770 * that we will not run the very last mapping,
771 * wait_on_buffer() will do that for us
772 * through sync_buffer().
773 */
1da177e4
LT
774 brelse(bh);
775 spin_lock(lock);
776 }
777 }
778 }
779
4ee2491e
JA
780 spin_unlock(lock);
781 blk_finish_plug(&plug);
782 spin_lock(lock);
783
1da177e4
LT
784 while (!list_empty(&tmp)) {
785 bh = BH_ENTRY(tmp.prev);
1da177e4 786 get_bh(bh);
535ee2fb
JK
787 mapping = bh->b_assoc_map;
788 __remove_assoc_queue(bh);
789 /* Avoid race with mark_buffer_dirty_inode() which does
790 * a lockless check and we rely on seeing the dirty bit */
791 smp_mb();
792 if (buffer_dirty(bh)) {
793 list_add(&bh->b_assoc_buffers,
e3892296 794 &mapping->private_list);
535ee2fb
JK
795 bh->b_assoc_map = mapping;
796 }
1da177e4
LT
797 spin_unlock(lock);
798 wait_on_buffer(bh);
799 if (!buffer_uptodate(bh))
800 err = -EIO;
801 brelse(bh);
802 spin_lock(lock);
803 }
804
805 spin_unlock(lock);
806 err2 = osync_buffers_list(lock, list);
807 if (err)
808 return err;
809 else
810 return err2;
811}
812
813/*
814 * Invalidate any and all dirty buffers on a given inode. We are
815 * probably unmounting the fs, but that doesn't mean we have already
816 * done a sync(). Just drop the buffers from the inode list.
817 *
818 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
819 * assumes that all the buffers are against the blockdev. Not true
820 * for reiserfs.
821 */
822void invalidate_inode_buffers(struct inode *inode)
823{
824 if (inode_has_buffers(inode)) {
825 struct address_space *mapping = &inode->i_data;
826 struct list_head *list = &mapping->private_list;
252aa6f5 827 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
828
829 spin_lock(&buffer_mapping->private_lock);
830 while (!list_empty(list))
831 __remove_assoc_queue(BH_ENTRY(list->next));
832 spin_unlock(&buffer_mapping->private_lock);
833 }
834}
52b19ac9 835EXPORT_SYMBOL(invalidate_inode_buffers);
1da177e4
LT
836
837/*
838 * Remove any clean buffers from the inode's buffer list. This is called
839 * when we're trying to free the inode itself. Those buffers can pin it.
840 *
841 * Returns true if all buffers were removed.
842 */
843int remove_inode_buffers(struct inode *inode)
844{
845 int ret = 1;
846
847 if (inode_has_buffers(inode)) {
848 struct address_space *mapping = &inode->i_data;
849 struct list_head *list = &mapping->private_list;
252aa6f5 850 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
851
852 spin_lock(&buffer_mapping->private_lock);
853 while (!list_empty(list)) {
854 struct buffer_head *bh = BH_ENTRY(list->next);
855 if (buffer_dirty(bh)) {
856 ret = 0;
857 break;
858 }
859 __remove_assoc_queue(bh);
860 }
861 spin_unlock(&buffer_mapping->private_lock);
862 }
863 return ret;
864}
865
866/*
867 * Create the appropriate buffers when given a page for data area and
868 * the size of each buffer.. Use the bh->b_this_page linked list to
869 * follow the buffers created. Return NULL if unable to create more
870 * buffers.
871 *
872 * The retry flag is used to differentiate async IO (paging, swapping)
873 * which may not fail from ordinary buffer allocations.
874 */
875struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
876 int retry)
877{
878 struct buffer_head *bh, *head;
879 long offset;
880
881try_again:
882 head = NULL;
883 offset = PAGE_SIZE;
884 while ((offset -= size) >= 0) {
885 bh = alloc_buffer_head(GFP_NOFS);
886 if (!bh)
887 goto no_grow;
888
1da177e4
LT
889 bh->b_this_page = head;
890 bh->b_blocknr = -1;
891 head = bh;
892
1da177e4
LT
893 bh->b_size = size;
894
895 /* Link the buffer to its page */
896 set_bh_page(bh, page, offset);
1da177e4
LT
897 }
898 return head;
899/*
900 * In case anything failed, we just free everything we got.
901 */
902no_grow:
903 if (head) {
904 do {
905 bh = head;
906 head = head->b_this_page;
907 free_buffer_head(bh);
908 } while (head);
909 }
910
911 /*
912 * Return failure for non-async IO requests. Async IO requests
913 * are not allowed to fail, so we have to wait until buffer heads
914 * become available. But we don't want tasks sleeping with
915 * partially complete buffers, so all were released above.
916 */
917 if (!retry)
918 return NULL;
919
920 /* We're _really_ low on memory. Now we just
921 * wait for old buffer heads to become free due to
922 * finishing IO. Since this is an async request and
923 * the reserve list is empty, we're sure there are
924 * async buffer heads in use.
925 */
926 free_more_memory();
927 goto try_again;
928}
929EXPORT_SYMBOL_GPL(alloc_page_buffers);
930
931static inline void
932link_dev_buffers(struct page *page, struct buffer_head *head)
933{
934 struct buffer_head *bh, *tail;
935
936 bh = head;
937 do {
938 tail = bh;
939 bh = bh->b_this_page;
940 } while (bh);
941 tail->b_this_page = head;
942 attach_page_buffers(page, head);
943}
944
bbec0270
LT
945static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
946{
947 sector_t retval = ~((sector_t)0);
948 loff_t sz = i_size_read(bdev->bd_inode);
949
950 if (sz) {
951 unsigned int sizebits = blksize_bits(size);
952 retval = (sz >> sizebits);
953 }
954 return retval;
955}
956
1da177e4
LT
957/*
958 * Initialise the state of a blockdev page's buffers.
959 */
676ce6d5 960static sector_t
1da177e4
LT
961init_page_buffers(struct page *page, struct block_device *bdev,
962 sector_t block, int size)
963{
964 struct buffer_head *head = page_buffers(page);
965 struct buffer_head *bh = head;
966 int uptodate = PageUptodate(page);
bbec0270 967 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
1da177e4
LT
968
969 do {
970 if (!buffer_mapped(bh)) {
971 init_buffer(bh, NULL, NULL);
972 bh->b_bdev = bdev;
973 bh->b_blocknr = block;
974 if (uptodate)
975 set_buffer_uptodate(bh);
080399aa
JM
976 if (block < end_block)
977 set_buffer_mapped(bh);
1da177e4
LT
978 }
979 block++;
980 bh = bh->b_this_page;
981 } while (bh != head);
676ce6d5
HD
982
983 /*
984 * Caller needs to validate requested block against end of device.
985 */
986 return end_block;
1da177e4
LT
987}
988
989/*
990 * Create the page-cache page that contains the requested block.
991 *
676ce6d5 992 * This is used purely for blockdev mappings.
1da177e4 993 */
676ce6d5 994static int
1da177e4 995grow_dev_page(struct block_device *bdev, sector_t block,
3b5e6454 996 pgoff_t index, int size, int sizebits, gfp_t gfp)
1da177e4
LT
997{
998 struct inode *inode = bdev->bd_inode;
999 struct page *page;
1000 struct buffer_head *bh;
676ce6d5
HD
1001 sector_t end_block;
1002 int ret = 0; /* Will call free_more_memory() */
84235de3 1003 gfp_t gfp_mask;
1da177e4 1004
3b5e6454
GK
1005 gfp_mask = (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS) | gfp;
1006
84235de3
JW
1007 /*
1008 * XXX: __getblk_slow() can not really deal with failure and
1009 * will endlessly loop on improvised global reclaim. Prefer
1010 * looping in the allocator rather than here, at least that
1011 * code knows what it's doing.
1012 */
1013 gfp_mask |= __GFP_NOFAIL;
1014
1015 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1da177e4 1016 if (!page)
676ce6d5 1017 return ret;
1da177e4 1018
e827f923 1019 BUG_ON(!PageLocked(page));
1da177e4
LT
1020
1021 if (page_has_buffers(page)) {
1022 bh = page_buffers(page);
1023 if (bh->b_size == size) {
676ce6d5 1024 end_block = init_page_buffers(page, bdev,
f2d5a944
AA
1025 (sector_t)index << sizebits,
1026 size);
676ce6d5 1027 goto done;
1da177e4
LT
1028 }
1029 if (!try_to_free_buffers(page))
1030 goto failed;
1031 }
1032
1033 /*
1034 * Allocate some buffers for this page
1035 */
1036 bh = alloc_page_buffers(page, size, 0);
1037 if (!bh)
1038 goto failed;
1039
1040 /*
1041 * Link the page to the buffers and initialise them. Take the
1042 * lock to be atomic wrt __find_get_block(), which does not
1043 * run under the page lock.
1044 */
1045 spin_lock(&inode->i_mapping->private_lock);
1046 link_dev_buffers(page, bh);
f2d5a944
AA
1047 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1048 size);
1da177e4 1049 spin_unlock(&inode->i_mapping->private_lock);
676ce6d5
HD
1050done:
1051 ret = (block < end_block) ? 1 : -ENXIO;
1da177e4 1052failed:
1da177e4
LT
1053 unlock_page(page);
1054 page_cache_release(page);
676ce6d5 1055 return ret;
1da177e4
LT
1056}
1057
1058/*
1059 * Create buffers for the specified block device block's page. If
1060 * that page was dirty, the buffers are set dirty also.
1da177e4 1061 */
858119e1 1062static int
3b5e6454 1063grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1da177e4 1064{
1da177e4
LT
1065 pgoff_t index;
1066 int sizebits;
1067
1068 sizebits = -1;
1069 do {
1070 sizebits++;
1071 } while ((size << sizebits) < PAGE_SIZE);
1072
1073 index = block >> sizebits;
1da177e4 1074
e5657933
AM
1075 /*
1076 * Check for a block which wants to lie outside our maximum possible
1077 * pagecache index. (this comparison is done using sector_t types).
1078 */
1079 if (unlikely(index != block >> sizebits)) {
1080 char b[BDEVNAME_SIZE];
1081
1082 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1083 "device %s\n",
8e24eea7 1084 __func__, (unsigned long long)block,
e5657933
AM
1085 bdevname(bdev, b));
1086 return -EIO;
1087 }
676ce6d5 1088
1da177e4 1089 /* Create a page with the proper size buffers.. */
3b5e6454 1090 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1da177e4
LT
1091}
1092
3b5e6454
GK
1093struct buffer_head *
1094__getblk_slow(struct block_device *bdev, sector_t block,
1095 unsigned size, gfp_t gfp)
1da177e4
LT
1096{
1097 /* Size must be multiple of hard sectorsize */
e1defc4f 1098 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1da177e4
LT
1099 (size < 512 || size > PAGE_SIZE))) {
1100 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1101 size);
e1defc4f
MP
1102 printk(KERN_ERR "logical block size: %d\n",
1103 bdev_logical_block_size(bdev));
1da177e4
LT
1104
1105 dump_stack();
1106 return NULL;
1107 }
1108
676ce6d5
HD
1109 for (;;) {
1110 struct buffer_head *bh;
1111 int ret;
1da177e4
LT
1112
1113 bh = __find_get_block(bdev, block, size);
1114 if (bh)
1115 return bh;
676ce6d5 1116
3b5e6454 1117 ret = grow_buffers(bdev, block, size, gfp);
676ce6d5
HD
1118 if (ret < 0)
1119 return NULL;
1120 if (ret == 0)
1121 free_more_memory();
1da177e4
LT
1122 }
1123}
3b5e6454 1124EXPORT_SYMBOL(__getblk_slow);
1da177e4
LT
1125
1126/*
1127 * The relationship between dirty buffers and dirty pages:
1128 *
1129 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1130 * the page is tagged dirty in its radix tree.
1131 *
1132 * At all times, the dirtiness of the buffers represents the dirtiness of
1133 * subsections of the page. If the page has buffers, the page dirty bit is
1134 * merely a hint about the true dirty state.
1135 *
1136 * When a page is set dirty in its entirety, all its buffers are marked dirty
1137 * (if the page has buffers).
1138 *
1139 * When a buffer is marked dirty, its page is dirtied, but the page's other
1140 * buffers are not.
1141 *
1142 * Also. When blockdev buffers are explicitly read with bread(), they
1143 * individually become uptodate. But their backing page remains not
1144 * uptodate - even if all of its buffers are uptodate. A subsequent
1145 * block_read_full_page() against that page will discover all the uptodate
1146 * buffers, will set the page uptodate and will perform no I/O.
1147 */
1148
1149/**
1150 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1151 * @bh: the buffer_head to mark dirty
1da177e4
LT
1152 *
1153 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1154 * backing page dirty, then tag the page as dirty in its address_space's radix
1155 * tree and then attach the address_space's inode to its superblock's dirty
1156 * inode list.
1157 *
1158 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
250df6ed 1159 * mapping->tree_lock and mapping->host->i_lock.
1da177e4 1160 */
fc9b52cd 1161void mark_buffer_dirty(struct buffer_head *bh)
1da177e4 1162{
787d2214 1163 WARN_ON_ONCE(!buffer_uptodate(bh));
1be62dc1 1164
5305cb83
TH
1165 trace_block_dirty_buffer(bh);
1166
1be62dc1
LT
1167 /*
1168 * Very *carefully* optimize the it-is-already-dirty case.
1169 *
1170 * Don't let the final "is it dirty" escape to before we
1171 * perhaps modified the buffer.
1172 */
1173 if (buffer_dirty(bh)) {
1174 smp_mb();
1175 if (buffer_dirty(bh))
1176 return;
1177 }
1178
a8e7d49a
LT
1179 if (!test_set_buffer_dirty(bh)) {
1180 struct page *page = bh->b_page;
8e9d78ed
LT
1181 if (!TestSetPageDirty(page)) {
1182 struct address_space *mapping = page_mapping(page);
1183 if (mapping)
1184 __set_page_dirty(page, mapping, 0);
1185 }
a8e7d49a 1186 }
1da177e4 1187}
1fe72eaa 1188EXPORT_SYMBOL(mark_buffer_dirty);
1da177e4
LT
1189
1190/*
1191 * Decrement a buffer_head's reference count. If all buffers against a page
1192 * have zero reference count, are clean and unlocked, and if the page is clean
1193 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1194 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1195 * a page but it ends up not being freed, and buffers may later be reattached).
1196 */
1197void __brelse(struct buffer_head * buf)
1198{
1199 if (atomic_read(&buf->b_count)) {
1200 put_bh(buf);
1201 return;
1202 }
5c752ad9 1203 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1da177e4 1204}
1fe72eaa 1205EXPORT_SYMBOL(__brelse);
1da177e4
LT
1206
1207/*
1208 * bforget() is like brelse(), except it discards any
1209 * potentially dirty data.
1210 */
1211void __bforget(struct buffer_head *bh)
1212{
1213 clear_buffer_dirty(bh);
535ee2fb 1214 if (bh->b_assoc_map) {
1da177e4
LT
1215 struct address_space *buffer_mapping = bh->b_page->mapping;
1216
1217 spin_lock(&buffer_mapping->private_lock);
1218 list_del_init(&bh->b_assoc_buffers);
58ff407b 1219 bh->b_assoc_map = NULL;
1da177e4
LT
1220 spin_unlock(&buffer_mapping->private_lock);
1221 }
1222 __brelse(bh);
1223}
1fe72eaa 1224EXPORT_SYMBOL(__bforget);
1da177e4
LT
1225
1226static struct buffer_head *__bread_slow(struct buffer_head *bh)
1227{
1228 lock_buffer(bh);
1229 if (buffer_uptodate(bh)) {
1230 unlock_buffer(bh);
1231 return bh;
1232 } else {
1233 get_bh(bh);
1234 bh->b_end_io = end_buffer_read_sync;
1235 submit_bh(READ, bh);
1236 wait_on_buffer(bh);
1237 if (buffer_uptodate(bh))
1238 return bh;
1239 }
1240 brelse(bh);
1241 return NULL;
1242}
1243
1244/*
1245 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1246 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1247 * refcount elevated by one when they're in an LRU. A buffer can only appear
1248 * once in a particular CPU's LRU. A single buffer can be present in multiple
1249 * CPU's LRUs at the same time.
1250 *
1251 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1252 * sb_find_get_block().
1253 *
1254 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1255 * a local interrupt disable for that.
1256 */
1257
86cf78d7 1258#define BH_LRU_SIZE 16
1da177e4
LT
1259
1260struct bh_lru {
1261 struct buffer_head *bhs[BH_LRU_SIZE];
1262};
1263
1264static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1265
1266#ifdef CONFIG_SMP
1267#define bh_lru_lock() local_irq_disable()
1268#define bh_lru_unlock() local_irq_enable()
1269#else
1270#define bh_lru_lock() preempt_disable()
1271#define bh_lru_unlock() preempt_enable()
1272#endif
1273
1274static inline void check_irqs_on(void)
1275{
1276#ifdef irqs_disabled
1277 BUG_ON(irqs_disabled());
1278#endif
1279}
1280
1281/*
1282 * The LRU management algorithm is dopey-but-simple. Sorry.
1283 */
1284static void bh_lru_install(struct buffer_head *bh)
1285{
1286 struct buffer_head *evictee = NULL;
1da177e4
LT
1287
1288 check_irqs_on();
1289 bh_lru_lock();
c7b92516 1290 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1da177e4
LT
1291 struct buffer_head *bhs[BH_LRU_SIZE];
1292 int in;
1293 int out = 0;
1294
1295 get_bh(bh);
1296 bhs[out++] = bh;
1297 for (in = 0; in < BH_LRU_SIZE; in++) {
c7b92516
CL
1298 struct buffer_head *bh2 =
1299 __this_cpu_read(bh_lrus.bhs[in]);
1da177e4
LT
1300
1301 if (bh2 == bh) {
1302 __brelse(bh2);
1303 } else {
1304 if (out >= BH_LRU_SIZE) {
1305 BUG_ON(evictee != NULL);
1306 evictee = bh2;
1307 } else {
1308 bhs[out++] = bh2;
1309 }
1310 }
1311 }
1312 while (out < BH_LRU_SIZE)
1313 bhs[out++] = NULL;
ca6673b0 1314 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1da177e4
LT
1315 }
1316 bh_lru_unlock();
1317
1318 if (evictee)
1319 __brelse(evictee);
1320}
1321
1322/*
1323 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1324 */
858119e1 1325static struct buffer_head *
3991d3bd 1326lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1327{
1328 struct buffer_head *ret = NULL;
3991d3bd 1329 unsigned int i;
1da177e4
LT
1330
1331 check_irqs_on();
1332 bh_lru_lock();
1da177e4 1333 for (i = 0; i < BH_LRU_SIZE; i++) {
c7b92516 1334 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1da177e4 1335
9470dd5d
ZB
1336 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1337 bh->b_size == size) {
1da177e4
LT
1338 if (i) {
1339 while (i) {
c7b92516
CL
1340 __this_cpu_write(bh_lrus.bhs[i],
1341 __this_cpu_read(bh_lrus.bhs[i - 1]));
1da177e4
LT
1342 i--;
1343 }
c7b92516 1344 __this_cpu_write(bh_lrus.bhs[0], bh);
1da177e4
LT
1345 }
1346 get_bh(bh);
1347 ret = bh;
1348 break;
1349 }
1350 }
1351 bh_lru_unlock();
1352 return ret;
1353}
1354
1355/*
1356 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1357 * it in the LRU and mark it as accessed. If it is not present then return
1358 * NULL
1359 */
1360struct buffer_head *
3991d3bd 1361__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1362{
1363 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1364
1365 if (bh == NULL) {
2457aec6 1366 /* __find_get_block_slow will mark the page accessed */
385fd4c5 1367 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1368 if (bh)
1369 bh_lru_install(bh);
2457aec6 1370 } else
1da177e4 1371 touch_buffer(bh);
2457aec6 1372
1da177e4
LT
1373 return bh;
1374}
1375EXPORT_SYMBOL(__find_get_block);
1376
1377/*
3b5e6454 1378 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1da177e4
LT
1379 * which corresponds to the passed block_device, block and size. The
1380 * returned buffer has its reference count incremented.
1381 *
3b5e6454
GK
1382 * __getblk_gfp() will lock up the machine if grow_dev_page's
1383 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1da177e4
LT
1384 */
1385struct buffer_head *
3b5e6454
GK
1386__getblk_gfp(struct block_device *bdev, sector_t block,
1387 unsigned size, gfp_t gfp)
1da177e4
LT
1388{
1389 struct buffer_head *bh = __find_get_block(bdev, block, size);
1390
1391 might_sleep();
1392 if (bh == NULL)
3b5e6454 1393 bh = __getblk_slow(bdev, block, size, gfp);
1da177e4
LT
1394 return bh;
1395}
3b5e6454 1396EXPORT_SYMBOL(__getblk_gfp);
1da177e4
LT
1397
1398/*
1399 * Do async read-ahead on a buffer..
1400 */
3991d3bd 1401void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1402{
1403 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5
AM
1404 if (likely(bh)) {
1405 ll_rw_block(READA, 1, &bh);
1406 brelse(bh);
1407 }
1da177e4
LT
1408}
1409EXPORT_SYMBOL(__breadahead);
1410
1411/**
3b5e6454 1412 * __bread_gfp() - reads a specified block and returns the bh
67be2dd1 1413 * @bdev: the block_device to read from
1da177e4
LT
1414 * @block: number of block
1415 * @size: size (in bytes) to read
3b5e6454
GK
1416 * @gfp: page allocation flag
1417 *
1da177e4 1418 * Reads a specified block, and returns buffer head that contains it.
3b5e6454
GK
1419 * The page cache can be allocated from non-movable area
1420 * not to prevent page migration if you set gfp to zero.
1da177e4
LT
1421 * It returns NULL if the block was unreadable.
1422 */
1423struct buffer_head *
3b5e6454
GK
1424__bread_gfp(struct block_device *bdev, sector_t block,
1425 unsigned size, gfp_t gfp)
1da177e4 1426{
3b5e6454 1427 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1da177e4 1428
a3e713b5 1429 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1430 bh = __bread_slow(bh);
1431 return bh;
1432}
3b5e6454 1433EXPORT_SYMBOL(__bread_gfp);
1da177e4
LT
1434
1435/*
1436 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1437 * This doesn't race because it runs in each cpu either in irq
1438 * or with preempt disabled.
1439 */
1440static void invalidate_bh_lru(void *arg)
1441{
1442 struct bh_lru *b = &get_cpu_var(bh_lrus);
1443 int i;
1444
1445 for (i = 0; i < BH_LRU_SIZE; i++) {
1446 brelse(b->bhs[i]);
1447 b->bhs[i] = NULL;
1448 }
1449 put_cpu_var(bh_lrus);
1450}
42be35d0
GBY
1451
1452static bool has_bh_in_lru(int cpu, void *dummy)
1453{
1454 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1455 int i;
1da177e4 1456
42be35d0
GBY
1457 for (i = 0; i < BH_LRU_SIZE; i++) {
1458 if (b->bhs[i])
1459 return 1;
1460 }
1461
1462 return 0;
1463}
1464
f9a14399 1465void invalidate_bh_lrus(void)
1da177e4 1466{
42be35d0 1467 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1da177e4 1468}
9db5579b 1469EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1da177e4
LT
1470
1471void set_bh_page(struct buffer_head *bh,
1472 struct page *page, unsigned long offset)
1473{
1474 bh->b_page = page;
e827f923 1475 BUG_ON(offset >= PAGE_SIZE);
1da177e4
LT
1476 if (PageHighMem(page))
1477 /*
1478 * This catches illegal uses and preserves the offset:
1479 */
1480 bh->b_data = (char *)(0 + offset);
1481 else
1482 bh->b_data = page_address(page) + offset;
1483}
1484EXPORT_SYMBOL(set_bh_page);
1485
1486/*
1487 * Called when truncating a buffer on a page completely.
1488 */
e7470ee8
MG
1489
1490/* Bits that are cleared during an invalidate */
1491#define BUFFER_FLAGS_DISCARD \
1492 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1493 1 << BH_Delay | 1 << BH_Unwritten)
1494
858119e1 1495static void discard_buffer(struct buffer_head * bh)
1da177e4 1496{
e7470ee8
MG
1497 unsigned long b_state, b_state_old;
1498
1da177e4
LT
1499 lock_buffer(bh);
1500 clear_buffer_dirty(bh);
1501 bh->b_bdev = NULL;
e7470ee8
MG
1502 b_state = bh->b_state;
1503 for (;;) {
1504 b_state_old = cmpxchg(&bh->b_state, b_state,
1505 (b_state & ~BUFFER_FLAGS_DISCARD));
1506 if (b_state_old == b_state)
1507 break;
1508 b_state = b_state_old;
1509 }
1da177e4
LT
1510 unlock_buffer(bh);
1511}
1512
1da177e4 1513/**
814e1d25 1514 * block_invalidatepage - invalidate part or all of a buffer-backed page
1da177e4
LT
1515 *
1516 * @page: the page which is affected
d47992f8
LC
1517 * @offset: start of the range to invalidate
1518 * @length: length of the range to invalidate
1da177e4
LT
1519 *
1520 * block_invalidatepage() is called when all or part of the page has become
814e1d25 1521 * invalidated by a truncate operation.
1da177e4
LT
1522 *
1523 * block_invalidatepage() does not have to release all buffers, but it must
1524 * ensure that no dirty buffer is left outside @offset and that no I/O
1525 * is underway against any of the blocks which are outside the truncation
1526 * point. Because the caller is about to free (and possibly reuse) those
1527 * blocks on-disk.
1528 */
d47992f8
LC
1529void block_invalidatepage(struct page *page, unsigned int offset,
1530 unsigned int length)
1da177e4
LT
1531{
1532 struct buffer_head *head, *bh, *next;
1533 unsigned int curr_off = 0;
d47992f8 1534 unsigned int stop = length + offset;
1da177e4
LT
1535
1536 BUG_ON(!PageLocked(page));
1537 if (!page_has_buffers(page))
1538 goto out;
1539
d47992f8
LC
1540 /*
1541 * Check for overflow
1542 */
1543 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1544
1da177e4
LT
1545 head = page_buffers(page);
1546 bh = head;
1547 do {
1548 unsigned int next_off = curr_off + bh->b_size;
1549 next = bh->b_this_page;
1550
d47992f8
LC
1551 /*
1552 * Are we still fully in range ?
1553 */
1554 if (next_off > stop)
1555 goto out;
1556
1da177e4
LT
1557 /*
1558 * is this block fully invalidated?
1559 */
1560 if (offset <= curr_off)
1561 discard_buffer(bh);
1562 curr_off = next_off;
1563 bh = next;
1564 } while (bh != head);
1565
1566 /*
1567 * We release buffers only if the entire page is being invalidated.
1568 * The get_block cached value has been unconditionally invalidated,
1569 * so real IO is not possible anymore.
1570 */
1571 if (offset == 0)
2ff28e22 1572 try_to_release_page(page, 0);
1da177e4 1573out:
2ff28e22 1574 return;
1da177e4
LT
1575}
1576EXPORT_SYMBOL(block_invalidatepage);
1577
d47992f8 1578
1da177e4
LT
1579/*
1580 * We attach and possibly dirty the buffers atomically wrt
1581 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1582 * is already excluded via the page lock.
1583 */
1584void create_empty_buffers(struct page *page,
1585 unsigned long blocksize, unsigned long b_state)
1586{
1587 struct buffer_head *bh, *head, *tail;
1588
1589 head = alloc_page_buffers(page, blocksize, 1);
1590 bh = head;
1591 do {
1592 bh->b_state |= b_state;
1593 tail = bh;
1594 bh = bh->b_this_page;
1595 } while (bh);
1596 tail->b_this_page = head;
1597
1598 spin_lock(&page->mapping->private_lock);
1599 if (PageUptodate(page) || PageDirty(page)) {
1600 bh = head;
1601 do {
1602 if (PageDirty(page))
1603 set_buffer_dirty(bh);
1604 if (PageUptodate(page))
1605 set_buffer_uptodate(bh);
1606 bh = bh->b_this_page;
1607 } while (bh != head);
1608 }
1609 attach_page_buffers(page, head);
1610 spin_unlock(&page->mapping->private_lock);
1611}
1612EXPORT_SYMBOL(create_empty_buffers);
1613
1614/*
1615 * We are taking a block for data and we don't want any output from any
1616 * buffer-cache aliases starting from return from that function and
1617 * until the moment when something will explicitly mark the buffer
1618 * dirty (hopefully that will not happen until we will free that block ;-)
1619 * We don't even need to mark it not-uptodate - nobody can expect
1620 * anything from a newly allocated buffer anyway. We used to used
1621 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1622 * don't want to mark the alias unmapped, for example - it would confuse
1623 * anyone who might pick it with bread() afterwards...
1624 *
1625 * Also.. Note that bforget() doesn't lock the buffer. So there can
1626 * be writeout I/O going on against recently-freed buffers. We don't
1627 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1628 * only if we really need to. That happens here.
1629 */
1630void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1631{
1632 struct buffer_head *old_bh;
1633
1634 might_sleep();
1635
385fd4c5 1636 old_bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1637 if (old_bh) {
1638 clear_buffer_dirty(old_bh);
1639 wait_on_buffer(old_bh);
1640 clear_buffer_req(old_bh);
1641 __brelse(old_bh);
1642 }
1643}
1644EXPORT_SYMBOL(unmap_underlying_metadata);
1645
45bce8f3
LT
1646/*
1647 * Size is a power-of-two in the range 512..PAGE_SIZE,
1648 * and the case we care about most is PAGE_SIZE.
1649 *
1650 * So this *could* possibly be written with those
1651 * constraints in mind (relevant mostly if some
1652 * architecture has a slow bit-scan instruction)
1653 */
1654static inline int block_size_bits(unsigned int blocksize)
1655{
1656 return ilog2(blocksize);
1657}
1658
1659static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1660{
1661 BUG_ON(!PageLocked(page));
1662
1663 if (!page_has_buffers(page))
1664 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1665 return page_buffers(page);
1666}
1667
1da177e4
LT
1668/*
1669 * NOTE! All mapped/uptodate combinations are valid:
1670 *
1671 * Mapped Uptodate Meaning
1672 *
1673 * No No "unknown" - must do get_block()
1674 * No Yes "hole" - zero-filled
1675 * Yes No "allocated" - allocated on disk, not read in
1676 * Yes Yes "valid" - allocated and up-to-date in memory.
1677 *
1678 * "Dirty" is valid only with the last case (mapped+uptodate).
1679 */
1680
1681/*
1682 * While block_write_full_page is writing back the dirty buffers under
1683 * the page lock, whoever dirtied the buffers may decide to clean them
1684 * again at any time. We handle that by only looking at the buffer
1685 * state inside lock_buffer().
1686 *
1687 * If block_write_full_page() is called for regular writeback
1688 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1689 * locked buffer. This only can happen if someone has written the buffer
1690 * directly, with submit_bh(). At the address_space level PageWriteback
1691 * prevents this contention from occurring.
6e34eedd
TT
1692 *
1693 * If block_write_full_page() is called with wbc->sync_mode ==
721a9602
JA
1694 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1695 * causes the writes to be flagged as synchronous writes.
1da177e4
LT
1696 */
1697static int __block_write_full_page(struct inode *inode, struct page *page,
35c80d5f
CM
1698 get_block_t *get_block, struct writeback_control *wbc,
1699 bh_end_io_t *handler)
1da177e4
LT
1700{
1701 int err;
1702 sector_t block;
1703 sector_t last_block;
f0fbd5fc 1704 struct buffer_head *bh, *head;
45bce8f3 1705 unsigned int blocksize, bbits;
1da177e4 1706 int nr_underway = 0;
6e34eedd 1707 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
721a9602 1708 WRITE_SYNC : WRITE);
1da177e4 1709
45bce8f3 1710 head = create_page_buffers(page, inode,
1da177e4 1711 (1 << BH_Dirty)|(1 << BH_Uptodate));
1da177e4
LT
1712
1713 /*
1714 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1715 * here, and the (potentially unmapped) buffers may become dirty at
1716 * any time. If a buffer becomes dirty here after we've inspected it
1717 * then we just miss that fact, and the page stays dirty.
1718 *
1719 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1720 * handle that here by just cleaning them.
1721 */
1722
1da177e4 1723 bh = head;
45bce8f3
LT
1724 blocksize = bh->b_size;
1725 bbits = block_size_bits(blocksize);
1726
1727 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1728 last_block = (i_size_read(inode) - 1) >> bbits;
1da177e4
LT
1729
1730 /*
1731 * Get all the dirty buffers mapped to disk addresses and
1732 * handle any aliases from the underlying blockdev's mapping.
1733 */
1734 do {
1735 if (block > last_block) {
1736 /*
1737 * mapped buffers outside i_size will occur, because
1738 * this page can be outside i_size when there is a
1739 * truncate in progress.
1740 */
1741 /*
1742 * The buffer was zeroed by block_write_full_page()
1743 */
1744 clear_buffer_dirty(bh);
1745 set_buffer_uptodate(bh);
29a814d2
AT
1746 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1747 buffer_dirty(bh)) {
b0cf2321 1748 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1749 err = get_block(inode, block, bh, 1);
1750 if (err)
1751 goto recover;
29a814d2 1752 clear_buffer_delay(bh);
1da177e4
LT
1753 if (buffer_new(bh)) {
1754 /* blockdev mappings never come here */
1755 clear_buffer_new(bh);
1756 unmap_underlying_metadata(bh->b_bdev,
1757 bh->b_blocknr);
1758 }
1759 }
1760 bh = bh->b_this_page;
1761 block++;
1762 } while (bh != head);
1763
1764 do {
1da177e4
LT
1765 if (!buffer_mapped(bh))
1766 continue;
1767 /*
1768 * If it's a fully non-blocking write attempt and we cannot
1769 * lock the buffer then redirty the page. Note that this can
5b0830cb
JA
1770 * potentially cause a busy-wait loop from writeback threads
1771 * and kswapd activity, but those code paths have their own
1772 * higher-level throttling.
1da177e4 1773 */
1b430bee 1774 if (wbc->sync_mode != WB_SYNC_NONE) {
1da177e4 1775 lock_buffer(bh);
ca5de404 1776 } else if (!trylock_buffer(bh)) {
1da177e4
LT
1777 redirty_page_for_writepage(wbc, page);
1778 continue;
1779 }
1780 if (test_clear_buffer_dirty(bh)) {
35c80d5f 1781 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1782 } else {
1783 unlock_buffer(bh);
1784 }
1785 } while ((bh = bh->b_this_page) != head);
1786
1787 /*
1788 * The page and its buffers are protected by PageWriteback(), so we can
1789 * drop the bh refcounts early.
1790 */
1791 BUG_ON(PageWriteback(page));
1792 set_page_writeback(page);
1da177e4
LT
1793
1794 do {
1795 struct buffer_head *next = bh->b_this_page;
1796 if (buffer_async_write(bh)) {
a64c8610 1797 submit_bh(write_op, bh);
1da177e4
LT
1798 nr_underway++;
1799 }
1da177e4
LT
1800 bh = next;
1801 } while (bh != head);
05937baa 1802 unlock_page(page);
1da177e4
LT
1803
1804 err = 0;
1805done:
1806 if (nr_underway == 0) {
1807 /*
1808 * The page was marked dirty, but the buffers were
1809 * clean. Someone wrote them back by hand with
1810 * ll_rw_block/submit_bh. A rare case.
1811 */
1da177e4 1812 end_page_writeback(page);
3d67f2d7 1813
1da177e4
LT
1814 /*
1815 * The page and buffer_heads can be released at any time from
1816 * here on.
1817 */
1da177e4
LT
1818 }
1819 return err;
1820
1821recover:
1822 /*
1823 * ENOSPC, or some other error. We may already have added some
1824 * blocks to the file, so we need to write these out to avoid
1825 * exposing stale data.
1826 * The page is currently locked and not marked for writeback
1827 */
1828 bh = head;
1829 /* Recovery: lock and submit the mapped buffers */
1830 do {
29a814d2
AT
1831 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1832 !buffer_delay(bh)) {
1da177e4 1833 lock_buffer(bh);
35c80d5f 1834 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1835 } else {
1836 /*
1837 * The buffer may have been set dirty during
1838 * attachment to a dirty page.
1839 */
1840 clear_buffer_dirty(bh);
1841 }
1842 } while ((bh = bh->b_this_page) != head);
1843 SetPageError(page);
1844 BUG_ON(PageWriteback(page));
7e4c3690 1845 mapping_set_error(page->mapping, err);
1da177e4 1846 set_page_writeback(page);
1da177e4
LT
1847 do {
1848 struct buffer_head *next = bh->b_this_page;
1849 if (buffer_async_write(bh)) {
1850 clear_buffer_dirty(bh);
a64c8610 1851 submit_bh(write_op, bh);
1da177e4
LT
1852 nr_underway++;
1853 }
1da177e4
LT
1854 bh = next;
1855 } while (bh != head);
ffda9d30 1856 unlock_page(page);
1da177e4
LT
1857 goto done;
1858}
1859
afddba49
NP
1860/*
1861 * If a page has any new buffers, zero them out here, and mark them uptodate
1862 * and dirty so they'll be written out (in order to prevent uninitialised
1863 * block data from leaking). And clear the new bit.
1864 */
1865void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1866{
1867 unsigned int block_start, block_end;
1868 struct buffer_head *head, *bh;
1869
1870 BUG_ON(!PageLocked(page));
1871 if (!page_has_buffers(page))
1872 return;
1873
1874 bh = head = page_buffers(page);
1875 block_start = 0;
1876 do {
1877 block_end = block_start + bh->b_size;
1878
1879 if (buffer_new(bh)) {
1880 if (block_end > from && block_start < to) {
1881 if (!PageUptodate(page)) {
1882 unsigned start, size;
1883
1884 start = max(from, block_start);
1885 size = min(to, block_end) - start;
1886
eebd2aa3 1887 zero_user(page, start, size);
afddba49
NP
1888 set_buffer_uptodate(bh);
1889 }
1890
1891 clear_buffer_new(bh);
1892 mark_buffer_dirty(bh);
1893 }
1894 }
1895
1896 block_start = block_end;
1897 bh = bh->b_this_page;
1898 } while (bh != head);
1899}
1900EXPORT_SYMBOL(page_zero_new_buffers);
1901
ebdec241 1902int __block_write_begin(struct page *page, loff_t pos, unsigned len,
6e1db88d 1903 get_block_t *get_block)
1da177e4 1904{
ebdec241
CH
1905 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1906 unsigned to = from + len;
6e1db88d 1907 struct inode *inode = page->mapping->host;
1da177e4
LT
1908 unsigned block_start, block_end;
1909 sector_t block;
1910 int err = 0;
1911 unsigned blocksize, bbits;
1912 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1913
1914 BUG_ON(!PageLocked(page));
1915 BUG_ON(from > PAGE_CACHE_SIZE);
1916 BUG_ON(to > PAGE_CACHE_SIZE);
1917 BUG_ON(from > to);
1918
45bce8f3
LT
1919 head = create_page_buffers(page, inode, 0);
1920 blocksize = head->b_size;
1921 bbits = block_size_bits(blocksize);
1da177e4 1922
1da177e4
LT
1923 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1924
1925 for(bh = head, block_start = 0; bh != head || !block_start;
1926 block++, block_start=block_end, bh = bh->b_this_page) {
1927 block_end = block_start + blocksize;
1928 if (block_end <= from || block_start >= to) {
1929 if (PageUptodate(page)) {
1930 if (!buffer_uptodate(bh))
1931 set_buffer_uptodate(bh);
1932 }
1933 continue;
1934 }
1935 if (buffer_new(bh))
1936 clear_buffer_new(bh);
1937 if (!buffer_mapped(bh)) {
b0cf2321 1938 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1939 err = get_block(inode, block, bh, 1);
1940 if (err)
f3ddbdc6 1941 break;
1da177e4 1942 if (buffer_new(bh)) {
1da177e4
LT
1943 unmap_underlying_metadata(bh->b_bdev,
1944 bh->b_blocknr);
1945 if (PageUptodate(page)) {
637aff46 1946 clear_buffer_new(bh);
1da177e4 1947 set_buffer_uptodate(bh);
637aff46 1948 mark_buffer_dirty(bh);
1da177e4
LT
1949 continue;
1950 }
eebd2aa3
CL
1951 if (block_end > to || block_start < from)
1952 zero_user_segments(page,
1953 to, block_end,
1954 block_start, from);
1da177e4
LT
1955 continue;
1956 }
1957 }
1958 if (PageUptodate(page)) {
1959 if (!buffer_uptodate(bh))
1960 set_buffer_uptodate(bh);
1961 continue;
1962 }
1963 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 1964 !buffer_unwritten(bh) &&
1da177e4
LT
1965 (block_start < from || block_end > to)) {
1966 ll_rw_block(READ, 1, &bh);
1967 *wait_bh++=bh;
1968 }
1969 }
1970 /*
1971 * If we issued read requests - let them complete.
1972 */
1973 while(wait_bh > wait) {
1974 wait_on_buffer(*--wait_bh);
1975 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 1976 err = -EIO;
1da177e4 1977 }
f9f07b6c 1978 if (unlikely(err))
afddba49 1979 page_zero_new_buffers(page, from, to);
1da177e4
LT
1980 return err;
1981}
ebdec241 1982EXPORT_SYMBOL(__block_write_begin);
1da177e4
LT
1983
1984static int __block_commit_write(struct inode *inode, struct page *page,
1985 unsigned from, unsigned to)
1986{
1987 unsigned block_start, block_end;
1988 int partial = 0;
1989 unsigned blocksize;
1990 struct buffer_head *bh, *head;
1991
45bce8f3
LT
1992 bh = head = page_buffers(page);
1993 blocksize = bh->b_size;
1da177e4 1994
45bce8f3
LT
1995 block_start = 0;
1996 do {
1da177e4
LT
1997 block_end = block_start + blocksize;
1998 if (block_end <= from || block_start >= to) {
1999 if (!buffer_uptodate(bh))
2000 partial = 1;
2001 } else {
2002 set_buffer_uptodate(bh);
2003 mark_buffer_dirty(bh);
2004 }
afddba49 2005 clear_buffer_new(bh);
45bce8f3
LT
2006
2007 block_start = block_end;
2008 bh = bh->b_this_page;
2009 } while (bh != head);
1da177e4
LT
2010
2011 /*
2012 * If this is a partial write which happened to make all buffers
2013 * uptodate then we can optimize away a bogus readpage() for
2014 * the next read(). Here we 'discover' whether the page went
2015 * uptodate as a result of this (potentially partial) write.
2016 */
2017 if (!partial)
2018 SetPageUptodate(page);
2019 return 0;
2020}
2021
afddba49 2022/*
155130a4
CH
2023 * block_write_begin takes care of the basic task of block allocation and
2024 * bringing partial write blocks uptodate first.
2025 *
7bb46a67 2026 * The filesystem needs to handle block truncation upon failure.
afddba49 2027 */
155130a4
CH
2028int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2029 unsigned flags, struct page **pagep, get_block_t *get_block)
afddba49 2030{
6e1db88d 2031 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
afddba49 2032 struct page *page;
6e1db88d 2033 int status;
afddba49 2034
6e1db88d
CH
2035 page = grab_cache_page_write_begin(mapping, index, flags);
2036 if (!page)
2037 return -ENOMEM;
afddba49 2038
6e1db88d 2039 status = __block_write_begin(page, pos, len, get_block);
afddba49 2040 if (unlikely(status)) {
6e1db88d
CH
2041 unlock_page(page);
2042 page_cache_release(page);
2043 page = NULL;
afddba49
NP
2044 }
2045
6e1db88d 2046 *pagep = page;
afddba49
NP
2047 return status;
2048}
2049EXPORT_SYMBOL(block_write_begin);
2050
2051int block_write_end(struct file *file, struct address_space *mapping,
2052 loff_t pos, unsigned len, unsigned copied,
2053 struct page *page, void *fsdata)
2054{
2055 struct inode *inode = mapping->host;
2056 unsigned start;
2057
2058 start = pos & (PAGE_CACHE_SIZE - 1);
2059
2060 if (unlikely(copied < len)) {
2061 /*
2062 * The buffers that were written will now be uptodate, so we
2063 * don't have to worry about a readpage reading them and
2064 * overwriting a partial write. However if we have encountered
2065 * a short write and only partially written into a buffer, it
2066 * will not be marked uptodate, so a readpage might come in and
2067 * destroy our partial write.
2068 *
2069 * Do the simplest thing, and just treat any short write to a
2070 * non uptodate page as a zero-length write, and force the
2071 * caller to redo the whole thing.
2072 */
2073 if (!PageUptodate(page))
2074 copied = 0;
2075
2076 page_zero_new_buffers(page, start+copied, start+len);
2077 }
2078 flush_dcache_page(page);
2079
2080 /* This could be a short (even 0-length) commit */
2081 __block_commit_write(inode, page, start, start+copied);
2082
2083 return copied;
2084}
2085EXPORT_SYMBOL(block_write_end);
2086
2087int generic_write_end(struct file *file, struct address_space *mapping,
2088 loff_t pos, unsigned len, unsigned copied,
2089 struct page *page, void *fsdata)
2090{
2091 struct inode *inode = mapping->host;
90a80202 2092 loff_t old_size = inode->i_size;
c7d206b3 2093 int i_size_changed = 0;
afddba49
NP
2094
2095 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2096
2097 /*
2098 * No need to use i_size_read() here, the i_size
2099 * cannot change under us because we hold i_mutex.
2100 *
2101 * But it's important to update i_size while still holding page lock:
2102 * page writeout could otherwise come in and zero beyond i_size.
2103 */
2104 if (pos+copied > inode->i_size) {
2105 i_size_write(inode, pos+copied);
c7d206b3 2106 i_size_changed = 1;
afddba49
NP
2107 }
2108
2109 unlock_page(page);
2110 page_cache_release(page);
2111
90a80202
JK
2112 if (old_size < pos)
2113 pagecache_isize_extended(inode, old_size, pos);
c7d206b3
JK
2114 /*
2115 * Don't mark the inode dirty under page lock. First, it unnecessarily
2116 * makes the holding time of page lock longer. Second, it forces lock
2117 * ordering of page lock and transaction start for journaling
2118 * filesystems.
2119 */
2120 if (i_size_changed)
2121 mark_inode_dirty(inode);
2122
afddba49
NP
2123 return copied;
2124}
2125EXPORT_SYMBOL(generic_write_end);
2126
8ab22b9a
HH
2127/*
2128 * block_is_partially_uptodate checks whether buffers within a page are
2129 * uptodate or not.
2130 *
2131 * Returns true if all buffers which correspond to a file portion
2132 * we want to read are uptodate.
2133 */
c186afb4
AV
2134int block_is_partially_uptodate(struct page *page, unsigned long from,
2135 unsigned long count)
8ab22b9a 2136{
8ab22b9a
HH
2137 unsigned block_start, block_end, blocksize;
2138 unsigned to;
2139 struct buffer_head *bh, *head;
2140 int ret = 1;
2141
2142 if (!page_has_buffers(page))
2143 return 0;
2144
45bce8f3
LT
2145 head = page_buffers(page);
2146 blocksize = head->b_size;
c186afb4 2147 to = min_t(unsigned, PAGE_CACHE_SIZE - from, count);
8ab22b9a
HH
2148 to = from + to;
2149 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2150 return 0;
2151
8ab22b9a
HH
2152 bh = head;
2153 block_start = 0;
2154 do {
2155 block_end = block_start + blocksize;
2156 if (block_end > from && block_start < to) {
2157 if (!buffer_uptodate(bh)) {
2158 ret = 0;
2159 break;
2160 }
2161 if (block_end >= to)
2162 break;
2163 }
2164 block_start = block_end;
2165 bh = bh->b_this_page;
2166 } while (bh != head);
2167
2168 return ret;
2169}
2170EXPORT_SYMBOL(block_is_partially_uptodate);
2171
1da177e4
LT
2172/*
2173 * Generic "read page" function for block devices that have the normal
2174 * get_block functionality. This is most of the block device filesystems.
2175 * Reads the page asynchronously --- the unlock_buffer() and
2176 * set/clear_buffer_uptodate() functions propagate buffer state into the
2177 * page struct once IO has completed.
2178 */
2179int block_read_full_page(struct page *page, get_block_t *get_block)
2180{
2181 struct inode *inode = page->mapping->host;
2182 sector_t iblock, lblock;
2183 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
45bce8f3 2184 unsigned int blocksize, bbits;
1da177e4
LT
2185 int nr, i;
2186 int fully_mapped = 1;
2187
45bce8f3
LT
2188 head = create_page_buffers(page, inode, 0);
2189 blocksize = head->b_size;
2190 bbits = block_size_bits(blocksize);
1da177e4 2191
45bce8f3
LT
2192 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2193 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
1da177e4
LT
2194 bh = head;
2195 nr = 0;
2196 i = 0;
2197
2198 do {
2199 if (buffer_uptodate(bh))
2200 continue;
2201
2202 if (!buffer_mapped(bh)) {
c64610ba
AM
2203 int err = 0;
2204
1da177e4
LT
2205 fully_mapped = 0;
2206 if (iblock < lblock) {
b0cf2321 2207 WARN_ON(bh->b_size != blocksize);
c64610ba
AM
2208 err = get_block(inode, iblock, bh, 0);
2209 if (err)
1da177e4
LT
2210 SetPageError(page);
2211 }
2212 if (!buffer_mapped(bh)) {
eebd2aa3 2213 zero_user(page, i * blocksize, blocksize);
c64610ba
AM
2214 if (!err)
2215 set_buffer_uptodate(bh);
1da177e4
LT
2216 continue;
2217 }
2218 /*
2219 * get_block() might have updated the buffer
2220 * synchronously
2221 */
2222 if (buffer_uptodate(bh))
2223 continue;
2224 }
2225 arr[nr++] = bh;
2226 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2227
2228 if (fully_mapped)
2229 SetPageMappedToDisk(page);
2230
2231 if (!nr) {
2232 /*
2233 * All buffers are uptodate - we can set the page uptodate
2234 * as well. But not if get_block() returned an error.
2235 */
2236 if (!PageError(page))
2237 SetPageUptodate(page);
2238 unlock_page(page);
2239 return 0;
2240 }
2241
2242 /* Stage two: lock the buffers */
2243 for (i = 0; i < nr; i++) {
2244 bh = arr[i];
2245 lock_buffer(bh);
2246 mark_buffer_async_read(bh);
2247 }
2248
2249 /*
2250 * Stage 3: start the IO. Check for uptodateness
2251 * inside the buffer lock in case another process reading
2252 * the underlying blockdev brought it uptodate (the sct fix).
2253 */
2254 for (i = 0; i < nr; i++) {
2255 bh = arr[i];
2256 if (buffer_uptodate(bh))
2257 end_buffer_async_read(bh, 1);
2258 else
2259 submit_bh(READ, bh);
2260 }
2261 return 0;
2262}
1fe72eaa 2263EXPORT_SYMBOL(block_read_full_page);
1da177e4
LT
2264
2265/* utility function for filesystems that need to do work on expanding
89e10787 2266 * truncates. Uses filesystem pagecache writes to allow the filesystem to
1da177e4
LT
2267 * deal with the hole.
2268 */
89e10787 2269int generic_cont_expand_simple(struct inode *inode, loff_t size)
1da177e4
LT
2270{
2271 struct address_space *mapping = inode->i_mapping;
2272 struct page *page;
89e10787 2273 void *fsdata;
1da177e4
LT
2274 int err;
2275
c08d3b0e 2276 err = inode_newsize_ok(inode, size);
2277 if (err)
1da177e4
LT
2278 goto out;
2279
89e10787
NP
2280 err = pagecache_write_begin(NULL, mapping, size, 0,
2281 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2282 &page, &fsdata);
2283 if (err)
05eb0b51 2284 goto out;
05eb0b51 2285
89e10787
NP
2286 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2287 BUG_ON(err > 0);
05eb0b51 2288
1da177e4
LT
2289out:
2290 return err;
2291}
1fe72eaa 2292EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4 2293
f1e3af72
AB
2294static int cont_expand_zero(struct file *file, struct address_space *mapping,
2295 loff_t pos, loff_t *bytes)
1da177e4 2296{
1da177e4 2297 struct inode *inode = mapping->host;
1da177e4 2298 unsigned blocksize = 1 << inode->i_blkbits;
89e10787
NP
2299 struct page *page;
2300 void *fsdata;
2301 pgoff_t index, curidx;
2302 loff_t curpos;
2303 unsigned zerofrom, offset, len;
2304 int err = 0;
1da177e4 2305
89e10787
NP
2306 index = pos >> PAGE_CACHE_SHIFT;
2307 offset = pos & ~PAGE_CACHE_MASK;
2308
2309 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2310 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4
LT
2311 if (zerofrom & (blocksize-1)) {
2312 *bytes |= (blocksize-1);
2313 (*bytes)++;
2314 }
89e10787 2315 len = PAGE_CACHE_SIZE - zerofrom;
1da177e4 2316
89e10787
NP
2317 err = pagecache_write_begin(file, mapping, curpos, len,
2318 AOP_FLAG_UNINTERRUPTIBLE,
2319 &page, &fsdata);
2320 if (err)
2321 goto out;
eebd2aa3 2322 zero_user(page, zerofrom, len);
89e10787
NP
2323 err = pagecache_write_end(file, mapping, curpos, len, len,
2324 page, fsdata);
2325 if (err < 0)
2326 goto out;
2327 BUG_ON(err != len);
2328 err = 0;
061e9746
OH
2329
2330 balance_dirty_pages_ratelimited(mapping);
c2ca0fcd
MP
2331
2332 if (unlikely(fatal_signal_pending(current))) {
2333 err = -EINTR;
2334 goto out;
2335 }
89e10787 2336 }
1da177e4 2337
89e10787
NP
2338 /* page covers the boundary, find the boundary offset */
2339 if (index == curidx) {
2340 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4 2341 /* if we will expand the thing last block will be filled */
89e10787
NP
2342 if (offset <= zerofrom) {
2343 goto out;
2344 }
2345 if (zerofrom & (blocksize-1)) {
1da177e4
LT
2346 *bytes |= (blocksize-1);
2347 (*bytes)++;
2348 }
89e10787 2349 len = offset - zerofrom;
1da177e4 2350
89e10787
NP
2351 err = pagecache_write_begin(file, mapping, curpos, len,
2352 AOP_FLAG_UNINTERRUPTIBLE,
2353 &page, &fsdata);
2354 if (err)
2355 goto out;
eebd2aa3 2356 zero_user(page, zerofrom, len);
89e10787
NP
2357 err = pagecache_write_end(file, mapping, curpos, len, len,
2358 page, fsdata);
2359 if (err < 0)
2360 goto out;
2361 BUG_ON(err != len);
2362 err = 0;
1da177e4 2363 }
89e10787
NP
2364out:
2365 return err;
2366}
2367
2368/*
2369 * For moronic filesystems that do not allow holes in file.
2370 * We may have to extend the file.
2371 */
282dc178 2372int cont_write_begin(struct file *file, struct address_space *mapping,
89e10787
NP
2373 loff_t pos, unsigned len, unsigned flags,
2374 struct page **pagep, void **fsdata,
2375 get_block_t *get_block, loff_t *bytes)
2376{
2377 struct inode *inode = mapping->host;
2378 unsigned blocksize = 1 << inode->i_blkbits;
2379 unsigned zerofrom;
2380 int err;
2381
2382 err = cont_expand_zero(file, mapping, pos, bytes);
2383 if (err)
155130a4 2384 return err;
89e10787
NP
2385
2386 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2387 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2388 *bytes |= (blocksize-1);
2389 (*bytes)++;
1da177e4 2390 }
1da177e4 2391
155130a4 2392 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
1da177e4 2393}
1fe72eaa 2394EXPORT_SYMBOL(cont_write_begin);
1da177e4 2395
1da177e4
LT
2396int block_commit_write(struct page *page, unsigned from, unsigned to)
2397{
2398 struct inode *inode = page->mapping->host;
2399 __block_commit_write(inode,page,from,to);
2400 return 0;
2401}
1fe72eaa 2402EXPORT_SYMBOL(block_commit_write);
1da177e4 2403
54171690
DC
2404/*
2405 * block_page_mkwrite() is not allowed to change the file size as it gets
2406 * called from a page fault handler when a page is first dirtied. Hence we must
2407 * be careful to check for EOF conditions here. We set the page up correctly
2408 * for a written page which means we get ENOSPC checking when writing into
2409 * holes and correct delalloc and unwritten extent mapping on filesystems that
2410 * support these features.
2411 *
2412 * We are not allowed to take the i_mutex here so we have to play games to
2413 * protect against truncate races as the page could now be beyond EOF. Because
7bb46a67 2414 * truncate writes the inode size before removing pages, once we have the
54171690
DC
2415 * page lock we can determine safely if the page is beyond EOF. If it is not
2416 * beyond EOF, then the page is guaranteed safe against truncation until we
2417 * unlock the page.
ea13a864 2418 *
14da9200
JK
2419 * Direct callers of this function should protect against filesystem freezing
2420 * using sb_start_write() - sb_end_write() functions.
54171690 2421 */
24da4fab
JK
2422int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2423 get_block_t get_block)
54171690 2424{
c2ec175c 2425 struct page *page = vmf->page;
496ad9aa 2426 struct inode *inode = file_inode(vma->vm_file);
54171690
DC
2427 unsigned long end;
2428 loff_t size;
24da4fab 2429 int ret;
54171690
DC
2430
2431 lock_page(page);
2432 size = i_size_read(inode);
2433 if ((page->mapping != inode->i_mapping) ||
18336338 2434 (page_offset(page) > size)) {
24da4fab
JK
2435 /* We overload EFAULT to mean page got truncated */
2436 ret = -EFAULT;
2437 goto out_unlock;
54171690
DC
2438 }
2439
2440 /* page is wholly or partially inside EOF */
2441 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2442 end = size & ~PAGE_CACHE_MASK;
2443 else
2444 end = PAGE_CACHE_SIZE;
2445
ebdec241 2446 ret = __block_write_begin(page, 0, end, get_block);
54171690
DC
2447 if (!ret)
2448 ret = block_commit_write(page, 0, end);
2449
24da4fab
JK
2450 if (unlikely(ret < 0))
2451 goto out_unlock;
ea13a864 2452 set_page_dirty(page);
1d1d1a76 2453 wait_for_stable_page(page);
24da4fab
JK
2454 return 0;
2455out_unlock:
2456 unlock_page(page);
54171690 2457 return ret;
24da4fab
JK
2458}
2459EXPORT_SYMBOL(__block_page_mkwrite);
2460
2461int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2462 get_block_t get_block)
2463{
ea13a864 2464 int ret;
496ad9aa 2465 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
24da4fab 2466
14da9200 2467 sb_start_pagefault(sb);
041bbb6d
TT
2468
2469 /*
2470 * Update file times before taking page lock. We may end up failing the
2471 * fault so this update may be superfluous but who really cares...
2472 */
2473 file_update_time(vma->vm_file);
2474
ea13a864 2475 ret = __block_page_mkwrite(vma, vmf, get_block);
14da9200 2476 sb_end_pagefault(sb);
24da4fab 2477 return block_page_mkwrite_return(ret);
54171690 2478}
1fe72eaa 2479EXPORT_SYMBOL(block_page_mkwrite);
1da177e4
LT
2480
2481/*
03158cd7 2482 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
1da177e4
LT
2483 * immediately, while under the page lock. So it needs a special end_io
2484 * handler which does not touch the bh after unlocking it.
1da177e4
LT
2485 */
2486static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2487{
68671f35 2488 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
2489}
2490
03158cd7
NP
2491/*
2492 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2493 * the page (converting it to circular linked list and taking care of page
2494 * dirty races).
2495 */
2496static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2497{
2498 struct buffer_head *bh;
2499
2500 BUG_ON(!PageLocked(page));
2501
2502 spin_lock(&page->mapping->private_lock);
2503 bh = head;
2504 do {
2505 if (PageDirty(page))
2506 set_buffer_dirty(bh);
2507 if (!bh->b_this_page)
2508 bh->b_this_page = head;
2509 bh = bh->b_this_page;
2510 } while (bh != head);
2511 attach_page_buffers(page, head);
2512 spin_unlock(&page->mapping->private_lock);
2513}
2514
1da177e4 2515/*
ea0f04e5
CH
2516 * On entry, the page is fully not uptodate.
2517 * On exit the page is fully uptodate in the areas outside (from,to)
7bb46a67 2518 * The filesystem needs to handle block truncation upon failure.
1da177e4 2519 */
ea0f04e5 2520int nobh_write_begin(struct address_space *mapping,
03158cd7
NP
2521 loff_t pos, unsigned len, unsigned flags,
2522 struct page **pagep, void **fsdata,
1da177e4
LT
2523 get_block_t *get_block)
2524{
03158cd7 2525 struct inode *inode = mapping->host;
1da177e4
LT
2526 const unsigned blkbits = inode->i_blkbits;
2527 const unsigned blocksize = 1 << blkbits;
a4b0672d 2528 struct buffer_head *head, *bh;
03158cd7
NP
2529 struct page *page;
2530 pgoff_t index;
2531 unsigned from, to;
1da177e4 2532 unsigned block_in_page;
a4b0672d 2533 unsigned block_start, block_end;
1da177e4 2534 sector_t block_in_file;
1da177e4 2535 int nr_reads = 0;
1da177e4
LT
2536 int ret = 0;
2537 int is_mapped_to_disk = 1;
1da177e4 2538
03158cd7
NP
2539 index = pos >> PAGE_CACHE_SHIFT;
2540 from = pos & (PAGE_CACHE_SIZE - 1);
2541 to = from + len;
2542
54566b2c 2543 page = grab_cache_page_write_begin(mapping, index, flags);
03158cd7
NP
2544 if (!page)
2545 return -ENOMEM;
2546 *pagep = page;
2547 *fsdata = NULL;
2548
2549 if (page_has_buffers(page)) {
309f77ad
NK
2550 ret = __block_write_begin(page, pos, len, get_block);
2551 if (unlikely(ret))
2552 goto out_release;
2553 return ret;
03158cd7 2554 }
a4b0672d 2555
1da177e4
LT
2556 if (PageMappedToDisk(page))
2557 return 0;
2558
a4b0672d
NP
2559 /*
2560 * Allocate buffers so that we can keep track of state, and potentially
2561 * attach them to the page if an error occurs. In the common case of
2562 * no error, they will just be freed again without ever being attached
2563 * to the page (which is all OK, because we're under the page lock).
2564 *
2565 * Be careful: the buffer linked list is a NULL terminated one, rather
2566 * than the circular one we're used to.
2567 */
2568 head = alloc_page_buffers(page, blocksize, 0);
03158cd7
NP
2569 if (!head) {
2570 ret = -ENOMEM;
2571 goto out_release;
2572 }
a4b0672d 2573
1da177e4 2574 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
1da177e4
LT
2575
2576 /*
2577 * We loop across all blocks in the page, whether or not they are
2578 * part of the affected region. This is so we can discover if the
2579 * page is fully mapped-to-disk.
2580 */
a4b0672d 2581 for (block_start = 0, block_in_page = 0, bh = head;
1da177e4 2582 block_start < PAGE_CACHE_SIZE;
a4b0672d 2583 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
1da177e4
LT
2584 int create;
2585
a4b0672d
NP
2586 block_end = block_start + blocksize;
2587 bh->b_state = 0;
1da177e4
LT
2588 create = 1;
2589 if (block_start >= to)
2590 create = 0;
2591 ret = get_block(inode, block_in_file + block_in_page,
a4b0672d 2592 bh, create);
1da177e4
LT
2593 if (ret)
2594 goto failed;
a4b0672d 2595 if (!buffer_mapped(bh))
1da177e4 2596 is_mapped_to_disk = 0;
a4b0672d
NP
2597 if (buffer_new(bh))
2598 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2599 if (PageUptodate(page)) {
2600 set_buffer_uptodate(bh);
1da177e4 2601 continue;
a4b0672d
NP
2602 }
2603 if (buffer_new(bh) || !buffer_mapped(bh)) {
eebd2aa3
CL
2604 zero_user_segments(page, block_start, from,
2605 to, block_end);
1da177e4
LT
2606 continue;
2607 }
a4b0672d 2608 if (buffer_uptodate(bh))
1da177e4
LT
2609 continue; /* reiserfs does this */
2610 if (block_start < from || block_end > to) {
a4b0672d
NP
2611 lock_buffer(bh);
2612 bh->b_end_io = end_buffer_read_nobh;
2613 submit_bh(READ, bh);
2614 nr_reads++;
1da177e4
LT
2615 }
2616 }
2617
2618 if (nr_reads) {
1da177e4
LT
2619 /*
2620 * The page is locked, so these buffers are protected from
2621 * any VM or truncate activity. Hence we don't need to care
2622 * for the buffer_head refcounts.
2623 */
a4b0672d 2624 for (bh = head; bh; bh = bh->b_this_page) {
1da177e4
LT
2625 wait_on_buffer(bh);
2626 if (!buffer_uptodate(bh))
2627 ret = -EIO;
1da177e4
LT
2628 }
2629 if (ret)
2630 goto failed;
2631 }
2632
2633 if (is_mapped_to_disk)
2634 SetPageMappedToDisk(page);
1da177e4 2635
03158cd7 2636 *fsdata = head; /* to be released by nobh_write_end */
a4b0672d 2637
1da177e4
LT
2638 return 0;
2639
2640failed:
03158cd7 2641 BUG_ON(!ret);
1da177e4 2642 /*
a4b0672d
NP
2643 * Error recovery is a bit difficult. We need to zero out blocks that
2644 * were newly allocated, and dirty them to ensure they get written out.
2645 * Buffers need to be attached to the page at this point, otherwise
2646 * the handling of potential IO errors during writeout would be hard
2647 * (could try doing synchronous writeout, but what if that fails too?)
1da177e4 2648 */
03158cd7
NP
2649 attach_nobh_buffers(page, head);
2650 page_zero_new_buffers(page, from, to);
a4b0672d 2651
03158cd7
NP
2652out_release:
2653 unlock_page(page);
2654 page_cache_release(page);
2655 *pagep = NULL;
a4b0672d 2656
7bb46a67 2657 return ret;
2658}
03158cd7 2659EXPORT_SYMBOL(nobh_write_begin);
1da177e4 2660
03158cd7
NP
2661int nobh_write_end(struct file *file, struct address_space *mapping,
2662 loff_t pos, unsigned len, unsigned copied,
2663 struct page *page, void *fsdata)
1da177e4
LT
2664{
2665 struct inode *inode = page->mapping->host;
efdc3131 2666 struct buffer_head *head = fsdata;
03158cd7 2667 struct buffer_head *bh;
5b41e74a 2668 BUG_ON(fsdata != NULL && page_has_buffers(page));
1da177e4 2669
d4cf109f 2670 if (unlikely(copied < len) && head)
5b41e74a
DM
2671 attach_nobh_buffers(page, head);
2672 if (page_has_buffers(page))
2673 return generic_write_end(file, mapping, pos, len,
2674 copied, page, fsdata);
a4b0672d 2675
22c8ca78 2676 SetPageUptodate(page);
1da177e4 2677 set_page_dirty(page);
03158cd7
NP
2678 if (pos+copied > inode->i_size) {
2679 i_size_write(inode, pos+copied);
1da177e4
LT
2680 mark_inode_dirty(inode);
2681 }
03158cd7
NP
2682
2683 unlock_page(page);
2684 page_cache_release(page);
2685
03158cd7
NP
2686 while (head) {
2687 bh = head;
2688 head = head->b_this_page;
2689 free_buffer_head(bh);
2690 }
2691
2692 return copied;
1da177e4 2693}
03158cd7 2694EXPORT_SYMBOL(nobh_write_end);
1da177e4
LT
2695
2696/*
2697 * nobh_writepage() - based on block_full_write_page() except
2698 * that it tries to operate without attaching bufferheads to
2699 * the page.
2700 */
2701int nobh_writepage(struct page *page, get_block_t *get_block,
2702 struct writeback_control *wbc)
2703{
2704 struct inode * const inode = page->mapping->host;
2705 loff_t i_size = i_size_read(inode);
2706 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2707 unsigned offset;
1da177e4
LT
2708 int ret;
2709
2710 /* Is the page fully inside i_size? */
2711 if (page->index < end_index)
2712 goto out;
2713
2714 /* Is the page fully outside i_size? (truncate in progress) */
2715 offset = i_size & (PAGE_CACHE_SIZE-1);
2716 if (page->index >= end_index+1 || !offset) {
2717 /*
2718 * The page may have dirty, unmapped buffers. For example,
2719 * they may have been added in ext3_writepage(). Make them
2720 * freeable here, so the page does not leak.
2721 */
2722#if 0
2723 /* Not really sure about this - do we need this ? */
2724 if (page->mapping->a_ops->invalidatepage)
2725 page->mapping->a_ops->invalidatepage(page, offset);
2726#endif
2727 unlock_page(page);
2728 return 0; /* don't care */
2729 }
2730
2731 /*
2732 * The page straddles i_size. It must be zeroed out on each and every
2733 * writepage invocation because it may be mmapped. "A file is mapped
2734 * in multiples of the page size. For a file that is not a multiple of
2735 * the page size, the remaining memory is zeroed when mapped, and
2736 * writes to that region are not written out to the file."
2737 */
eebd2aa3 2738 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1da177e4
LT
2739out:
2740 ret = mpage_writepage(page, get_block, wbc);
2741 if (ret == -EAGAIN)
35c80d5f
CM
2742 ret = __block_write_full_page(inode, page, get_block, wbc,
2743 end_buffer_async_write);
1da177e4
LT
2744 return ret;
2745}
2746EXPORT_SYMBOL(nobh_writepage);
2747
03158cd7
NP
2748int nobh_truncate_page(struct address_space *mapping,
2749 loff_t from, get_block_t *get_block)
1da177e4 2750{
1da177e4
LT
2751 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2752 unsigned offset = from & (PAGE_CACHE_SIZE-1);
03158cd7
NP
2753 unsigned blocksize;
2754 sector_t iblock;
2755 unsigned length, pos;
2756 struct inode *inode = mapping->host;
1da177e4 2757 struct page *page;
03158cd7
NP
2758 struct buffer_head map_bh;
2759 int err;
1da177e4 2760
03158cd7
NP
2761 blocksize = 1 << inode->i_blkbits;
2762 length = offset & (blocksize - 1);
2763
2764 /* Block boundary? Nothing to do */
2765 if (!length)
2766 return 0;
2767
2768 length = blocksize - length;
2769 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4 2770
1da177e4 2771 page = grab_cache_page(mapping, index);
03158cd7 2772 err = -ENOMEM;
1da177e4
LT
2773 if (!page)
2774 goto out;
2775
03158cd7
NP
2776 if (page_has_buffers(page)) {
2777has_buffers:
2778 unlock_page(page);
2779 page_cache_release(page);
2780 return block_truncate_page(mapping, from, get_block);
2781 }
2782
2783 /* Find the buffer that contains "offset" */
2784 pos = blocksize;
2785 while (offset >= pos) {
2786 iblock++;
2787 pos += blocksize;
2788 }
2789
460bcf57
TT
2790 map_bh.b_size = blocksize;
2791 map_bh.b_state = 0;
03158cd7
NP
2792 err = get_block(inode, iblock, &map_bh, 0);
2793 if (err)
2794 goto unlock;
2795 /* unmapped? It's a hole - nothing to do */
2796 if (!buffer_mapped(&map_bh))
2797 goto unlock;
2798
2799 /* Ok, it's mapped. Make sure it's up-to-date */
2800 if (!PageUptodate(page)) {
2801 err = mapping->a_ops->readpage(NULL, page);
2802 if (err) {
2803 page_cache_release(page);
2804 goto out;
2805 }
2806 lock_page(page);
2807 if (!PageUptodate(page)) {
2808 err = -EIO;
2809 goto unlock;
2810 }
2811 if (page_has_buffers(page))
2812 goto has_buffers;
1da177e4 2813 }
eebd2aa3 2814 zero_user(page, offset, length);
03158cd7
NP
2815 set_page_dirty(page);
2816 err = 0;
2817
2818unlock:
1da177e4
LT
2819 unlock_page(page);
2820 page_cache_release(page);
2821out:
03158cd7 2822 return err;
1da177e4
LT
2823}
2824EXPORT_SYMBOL(nobh_truncate_page);
2825
2826int block_truncate_page(struct address_space *mapping,
2827 loff_t from, get_block_t *get_block)
2828{
2829 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2830 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2831 unsigned blocksize;
54b21a79 2832 sector_t iblock;
1da177e4
LT
2833 unsigned length, pos;
2834 struct inode *inode = mapping->host;
2835 struct page *page;
2836 struct buffer_head *bh;
1da177e4
LT
2837 int err;
2838
2839 blocksize = 1 << inode->i_blkbits;
2840 length = offset & (blocksize - 1);
2841
2842 /* Block boundary? Nothing to do */
2843 if (!length)
2844 return 0;
2845
2846 length = blocksize - length;
54b21a79 2847 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
2848
2849 page = grab_cache_page(mapping, index);
2850 err = -ENOMEM;
2851 if (!page)
2852 goto out;
2853
2854 if (!page_has_buffers(page))
2855 create_empty_buffers(page, blocksize, 0);
2856
2857 /* Find the buffer that contains "offset" */
2858 bh = page_buffers(page);
2859 pos = blocksize;
2860 while (offset >= pos) {
2861 bh = bh->b_this_page;
2862 iblock++;
2863 pos += blocksize;
2864 }
2865
2866 err = 0;
2867 if (!buffer_mapped(bh)) {
b0cf2321 2868 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2869 err = get_block(inode, iblock, bh, 0);
2870 if (err)
2871 goto unlock;
2872 /* unmapped? It's a hole - nothing to do */
2873 if (!buffer_mapped(bh))
2874 goto unlock;
2875 }
2876
2877 /* Ok, it's mapped. Make sure it's up-to-date */
2878 if (PageUptodate(page))
2879 set_buffer_uptodate(bh);
2880
33a266dd 2881 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
1da177e4
LT
2882 err = -EIO;
2883 ll_rw_block(READ, 1, &bh);
2884 wait_on_buffer(bh);
2885 /* Uhhuh. Read error. Complain and punt. */
2886 if (!buffer_uptodate(bh))
2887 goto unlock;
2888 }
2889
eebd2aa3 2890 zero_user(page, offset, length);
1da177e4
LT
2891 mark_buffer_dirty(bh);
2892 err = 0;
2893
2894unlock:
2895 unlock_page(page);
2896 page_cache_release(page);
2897out:
2898 return err;
2899}
1fe72eaa 2900EXPORT_SYMBOL(block_truncate_page);
1da177e4
LT
2901
2902/*
2903 * The generic ->writepage function for buffer-backed address_spaces
2904 */
1b938c08
MW
2905int block_write_full_page(struct page *page, get_block_t *get_block,
2906 struct writeback_control *wbc)
1da177e4
LT
2907{
2908 struct inode * const inode = page->mapping->host;
2909 loff_t i_size = i_size_read(inode);
2910 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2911 unsigned offset;
1da177e4
LT
2912
2913 /* Is the page fully inside i_size? */
2914 if (page->index < end_index)
35c80d5f 2915 return __block_write_full_page(inode, page, get_block, wbc,
1b938c08 2916 end_buffer_async_write);
1da177e4
LT
2917
2918 /* Is the page fully outside i_size? (truncate in progress) */
2919 offset = i_size & (PAGE_CACHE_SIZE-1);
2920 if (page->index >= end_index+1 || !offset) {
2921 /*
2922 * The page may have dirty, unmapped buffers. For example,
2923 * they may have been added in ext3_writepage(). Make them
2924 * freeable here, so the page does not leak.
2925 */
d47992f8 2926 do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1da177e4
LT
2927 unlock_page(page);
2928 return 0; /* don't care */
2929 }
2930
2931 /*
2932 * The page straddles i_size. It must be zeroed out on each and every
2a61aa40 2933 * writepage invocation because it may be mmapped. "A file is mapped
1da177e4
LT
2934 * in multiples of the page size. For a file that is not a multiple of
2935 * the page size, the remaining memory is zeroed when mapped, and
2936 * writes to that region are not written out to the file."
2937 */
eebd2aa3 2938 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1b938c08
MW
2939 return __block_write_full_page(inode, page, get_block, wbc,
2940 end_buffer_async_write);
35c80d5f 2941}
1fe72eaa 2942EXPORT_SYMBOL(block_write_full_page);
35c80d5f 2943
1da177e4
LT
2944sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2945 get_block_t *get_block)
2946{
2947 struct buffer_head tmp;
2948 struct inode *inode = mapping->host;
2949 tmp.b_state = 0;
2950 tmp.b_blocknr = 0;
b0cf2321 2951 tmp.b_size = 1 << inode->i_blkbits;
1da177e4
LT
2952 get_block(inode, block, &tmp, 0);
2953 return tmp.b_blocknr;
2954}
1fe72eaa 2955EXPORT_SYMBOL(generic_block_bmap);
1da177e4 2956
6712ecf8 2957static void end_bio_bh_io_sync(struct bio *bio, int err)
1da177e4
LT
2958{
2959 struct buffer_head *bh = bio->bi_private;
2960
1da177e4
LT
2961 if (err == -EOPNOTSUPP) {
2962 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
1da177e4
LT
2963 }
2964
08bafc03
KM
2965 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2966 set_bit(BH_Quiet, &bh->b_state);
2967
1da177e4
LT
2968 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2969 bio_put(bio);
1da177e4
LT
2970}
2971
57302e0d
LT
2972/*
2973 * This allows us to do IO even on the odd last sectors
59d43914 2974 * of a device, even if the block size is some multiple
57302e0d
LT
2975 * of the physical sector size.
2976 *
2977 * We'll just truncate the bio to the size of the device,
2978 * and clear the end of the buffer head manually.
2979 *
2980 * Truly out-of-range accesses will turn into actual IO
2981 * errors, this only handles the "we need to be able to
2982 * do IO at the final sector" case.
2983 */
4db96b71 2984void guard_bio_eod(int rw, struct bio *bio)
57302e0d
LT
2985{
2986 sector_t maxsector;
59d43914
AM
2987 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
2988 unsigned truncated_bytes;
57302e0d
LT
2989
2990 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2991 if (!maxsector)
2992 return;
2993
2994 /*
2995 * If the *whole* IO is past the end of the device,
2996 * let it through, and the IO layer will turn it into
2997 * an EIO.
2998 */
4f024f37 2999 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
57302e0d
LT
3000 return;
3001
4f024f37 3002 maxsector -= bio->bi_iter.bi_sector;
59d43914 3003 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
57302e0d
LT
3004 return;
3005
59d43914
AM
3006 /* Uhhuh. We've got a bio that straddles the device size! */
3007 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
57302e0d
LT
3008
3009 /* Truncate the bio.. */
59d43914
AM
3010 bio->bi_iter.bi_size -= truncated_bytes;
3011 bvec->bv_len -= truncated_bytes;
57302e0d
LT
3012
3013 /* ..and clear the end of the buffer for reads */
27d7c2a0 3014 if ((rw & RW_MASK) == READ) {
59d43914
AM
3015 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3016 truncated_bytes);
57302e0d
LT
3017 }
3018}
3019
71368511 3020int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
1da177e4
LT
3021{
3022 struct bio *bio;
3023 int ret = 0;
3024
3025 BUG_ON(!buffer_locked(bh));
3026 BUG_ON(!buffer_mapped(bh));
3027 BUG_ON(!bh->b_end_io);
8fb0e342
AK
3028 BUG_ON(buffer_delay(bh));
3029 BUG_ON(buffer_unwritten(bh));
1da177e4 3030
1da177e4 3031 /*
48fd4f93 3032 * Only clear out a write error when rewriting
1da177e4 3033 */
48fd4f93 3034 if (test_set_buffer_req(bh) && (rw & WRITE))
1da177e4
LT
3035 clear_buffer_write_io_error(bh);
3036
3037 /*
3038 * from here on down, it's all bio -- do the initial mapping,
3039 * submit_bio -> generic_make_request may further map this bio around
3040 */
3041 bio = bio_alloc(GFP_NOIO, 1);
3042
4f024f37 3043 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
1da177e4
LT
3044 bio->bi_bdev = bh->b_bdev;
3045 bio->bi_io_vec[0].bv_page = bh->b_page;
3046 bio->bi_io_vec[0].bv_len = bh->b_size;
3047 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3048
3049 bio->bi_vcnt = 1;
4f024f37 3050 bio->bi_iter.bi_size = bh->b_size;
1da177e4
LT
3051
3052 bio->bi_end_io = end_bio_bh_io_sync;
3053 bio->bi_private = bh;
71368511 3054 bio->bi_flags |= bio_flags;
1da177e4 3055
57302e0d 3056 /* Take care of bh's that straddle the end of the device */
59d43914 3057 guard_bio_eod(rw, bio);
57302e0d 3058
877f962c
TT
3059 if (buffer_meta(bh))
3060 rw |= REQ_META;
3061 if (buffer_prio(bh))
3062 rw |= REQ_PRIO;
3063
1da177e4
LT
3064 bio_get(bio);
3065 submit_bio(rw, bio);
3066
3067 if (bio_flagged(bio, BIO_EOPNOTSUPP))
3068 ret = -EOPNOTSUPP;
3069
3070 bio_put(bio);
3071 return ret;
3072}
71368511
DW
3073EXPORT_SYMBOL_GPL(_submit_bh);
3074
3075int submit_bh(int rw, struct buffer_head *bh)
3076{
3077 return _submit_bh(rw, bh, 0);
3078}
1fe72eaa 3079EXPORT_SYMBOL(submit_bh);
1da177e4
LT
3080
3081/**
3082 * ll_rw_block: low-level access to block devices (DEPRECATED)
9cb569d6 3083 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
1da177e4
LT
3084 * @nr: number of &struct buffer_heads in the array
3085 * @bhs: array of pointers to &struct buffer_head
3086 *
a7662236
JK
3087 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3088 * requests an I/O operation on them, either a %READ or a %WRITE. The third
9cb569d6
CH
3089 * %READA option is described in the documentation for generic_make_request()
3090 * which ll_rw_block() calls.
1da177e4
LT
3091 *
3092 * This function drops any buffer that it cannot get a lock on (with the
9cb569d6
CH
3093 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3094 * request, and any buffer that appears to be up-to-date when doing read
3095 * request. Further it marks as clean buffers that are processed for
3096 * writing (the buffer cache won't assume that they are actually clean
3097 * until the buffer gets unlocked).
1da177e4
LT
3098 *
3099 * ll_rw_block sets b_end_io to simple completion handler that marks
e227867f 3100 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
1da177e4
LT
3101 * any waiters.
3102 *
3103 * All of the buffers must be for the same device, and must also be a
3104 * multiple of the current approved size for the device.
3105 */
3106void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3107{
3108 int i;
3109
3110 for (i = 0; i < nr; i++) {
3111 struct buffer_head *bh = bhs[i];
3112
9cb569d6 3113 if (!trylock_buffer(bh))
1da177e4 3114 continue;
9cb569d6 3115 if (rw == WRITE) {
1da177e4 3116 if (test_clear_buffer_dirty(bh)) {
76c3073a 3117 bh->b_end_io = end_buffer_write_sync;
e60e5c50 3118 get_bh(bh);
9cb569d6 3119 submit_bh(WRITE, bh);
1da177e4
LT
3120 continue;
3121 }
3122 } else {
1da177e4 3123 if (!buffer_uptodate(bh)) {
76c3073a 3124 bh->b_end_io = end_buffer_read_sync;
e60e5c50 3125 get_bh(bh);
1da177e4
LT
3126 submit_bh(rw, bh);
3127 continue;
3128 }
3129 }
3130 unlock_buffer(bh);
1da177e4
LT
3131 }
3132}
1fe72eaa 3133EXPORT_SYMBOL(ll_rw_block);
1da177e4 3134
9cb569d6
CH
3135void write_dirty_buffer(struct buffer_head *bh, int rw)
3136{
3137 lock_buffer(bh);
3138 if (!test_clear_buffer_dirty(bh)) {
3139 unlock_buffer(bh);
3140 return;
3141 }
3142 bh->b_end_io = end_buffer_write_sync;
3143 get_bh(bh);
3144 submit_bh(rw, bh);
3145}
3146EXPORT_SYMBOL(write_dirty_buffer);
3147
1da177e4
LT
3148/*
3149 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3150 * and then start new I/O and then wait upon it. The caller must have a ref on
3151 * the buffer_head.
3152 */
87e99511 3153int __sync_dirty_buffer(struct buffer_head *bh, int rw)
1da177e4
LT
3154{
3155 int ret = 0;
3156
3157 WARN_ON(atomic_read(&bh->b_count) < 1);
3158 lock_buffer(bh);
3159 if (test_clear_buffer_dirty(bh)) {
3160 get_bh(bh);
3161 bh->b_end_io = end_buffer_write_sync;
87e99511 3162 ret = submit_bh(rw, bh);
1da177e4 3163 wait_on_buffer(bh);
1da177e4
LT
3164 if (!ret && !buffer_uptodate(bh))
3165 ret = -EIO;
3166 } else {
3167 unlock_buffer(bh);
3168 }
3169 return ret;
3170}
87e99511
CH
3171EXPORT_SYMBOL(__sync_dirty_buffer);
3172
3173int sync_dirty_buffer(struct buffer_head *bh)
3174{
3175 return __sync_dirty_buffer(bh, WRITE_SYNC);
3176}
1fe72eaa 3177EXPORT_SYMBOL(sync_dirty_buffer);
1da177e4
LT
3178
3179/*
3180 * try_to_free_buffers() checks if all the buffers on this particular page
3181 * are unused, and releases them if so.
3182 *
3183 * Exclusion against try_to_free_buffers may be obtained by either
3184 * locking the page or by holding its mapping's private_lock.
3185 *
3186 * If the page is dirty but all the buffers are clean then we need to
3187 * be sure to mark the page clean as well. This is because the page
3188 * may be against a block device, and a later reattachment of buffers
3189 * to a dirty page will set *all* buffers dirty. Which would corrupt
3190 * filesystem data on the same device.
3191 *
3192 * The same applies to regular filesystem pages: if all the buffers are
3193 * clean then we set the page clean and proceed. To do that, we require
3194 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3195 * private_lock.
3196 *
3197 * try_to_free_buffers() is non-blocking.
3198 */
3199static inline int buffer_busy(struct buffer_head *bh)
3200{
3201 return atomic_read(&bh->b_count) |
3202 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3203}
3204
3205static int
3206drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3207{
3208 struct buffer_head *head = page_buffers(page);
3209 struct buffer_head *bh;
3210
3211 bh = head;
3212 do {
de7d5a3b 3213 if (buffer_write_io_error(bh) && page->mapping)
1da177e4
LT
3214 set_bit(AS_EIO, &page->mapping->flags);
3215 if (buffer_busy(bh))
3216 goto failed;
3217 bh = bh->b_this_page;
3218 } while (bh != head);
3219
3220 do {
3221 struct buffer_head *next = bh->b_this_page;
3222
535ee2fb 3223 if (bh->b_assoc_map)
1da177e4
LT
3224 __remove_assoc_queue(bh);
3225 bh = next;
3226 } while (bh != head);
3227 *buffers_to_free = head;
3228 __clear_page_buffers(page);
3229 return 1;
3230failed:
3231 return 0;
3232}
3233
3234int try_to_free_buffers(struct page *page)
3235{
3236 struct address_space * const mapping = page->mapping;
3237 struct buffer_head *buffers_to_free = NULL;
3238 int ret = 0;
3239
3240 BUG_ON(!PageLocked(page));
ecdfc978 3241 if (PageWriteback(page))
1da177e4
LT
3242 return 0;
3243
3244 if (mapping == NULL) { /* can this still happen? */
3245 ret = drop_buffers(page, &buffers_to_free);
3246 goto out;
3247 }
3248
3249 spin_lock(&mapping->private_lock);
3250 ret = drop_buffers(page, &buffers_to_free);
ecdfc978
LT
3251
3252 /*
3253 * If the filesystem writes its buffers by hand (eg ext3)
3254 * then we can have clean buffers against a dirty page. We
3255 * clean the page here; otherwise the VM will never notice
3256 * that the filesystem did any IO at all.
3257 *
3258 * Also, during truncate, discard_buffer will have marked all
3259 * the page's buffers clean. We discover that here and clean
3260 * the page also.
87df7241
NP
3261 *
3262 * private_lock must be held over this entire operation in order
3263 * to synchronise against __set_page_dirty_buffers and prevent the
3264 * dirty bit from being lost.
ecdfc978
LT
3265 */
3266 if (ret)
3267 cancel_dirty_page(page, PAGE_CACHE_SIZE);
87df7241 3268 spin_unlock(&mapping->private_lock);
1da177e4
LT
3269out:
3270 if (buffers_to_free) {
3271 struct buffer_head *bh = buffers_to_free;
3272
3273 do {
3274 struct buffer_head *next = bh->b_this_page;
3275 free_buffer_head(bh);
3276 bh = next;
3277 } while (bh != buffers_to_free);
3278 }
3279 return ret;
3280}
3281EXPORT_SYMBOL(try_to_free_buffers);
3282
1da177e4
LT
3283/*
3284 * There are no bdflush tunables left. But distributions are
3285 * still running obsolete flush daemons, so we terminate them here.
3286 *
3287 * Use of bdflush() is deprecated and will be removed in a future kernel.
5b0830cb 3288 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
1da177e4 3289 */
bdc480e3 3290SYSCALL_DEFINE2(bdflush, int, func, long, data)
1da177e4
LT
3291{
3292 static int msg_count;
3293
3294 if (!capable(CAP_SYS_ADMIN))
3295 return -EPERM;
3296
3297 if (msg_count < 5) {
3298 msg_count++;
3299 printk(KERN_INFO
3300 "warning: process `%s' used the obsolete bdflush"
3301 " system call\n", current->comm);
3302 printk(KERN_INFO "Fix your initscripts?\n");
3303 }
3304
3305 if (func == 1)
3306 do_exit(0);
3307 return 0;
3308}
3309
3310/*
3311 * Buffer-head allocation
3312 */
a0a9b043 3313static struct kmem_cache *bh_cachep __read_mostly;
1da177e4
LT
3314
3315/*
3316 * Once the number of bh's in the machine exceeds this level, we start
3317 * stripping them in writeback.
3318 */
43be594a 3319static unsigned long max_buffer_heads;
1da177e4
LT
3320
3321int buffer_heads_over_limit;
3322
3323struct bh_accounting {
3324 int nr; /* Number of live bh's */
3325 int ratelimit; /* Limit cacheline bouncing */
3326};
3327
3328static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3329
3330static void recalc_bh_state(void)
3331{
3332 int i;
3333 int tot = 0;
3334
ee1be862 3335 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
1da177e4 3336 return;
c7b92516 3337 __this_cpu_write(bh_accounting.ratelimit, 0);
8a143426 3338 for_each_online_cpu(i)
1da177e4
LT
3339 tot += per_cpu(bh_accounting, i).nr;
3340 buffer_heads_over_limit = (tot > max_buffer_heads);
3341}
c7b92516 3342
dd0fc66f 3343struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 3344{
019b4d12 3345 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
1da177e4 3346 if (ret) {
a35afb83 3347 INIT_LIST_HEAD(&ret->b_assoc_buffers);
c7b92516
CL
3348 preempt_disable();
3349 __this_cpu_inc(bh_accounting.nr);
1da177e4 3350 recalc_bh_state();
c7b92516 3351 preempt_enable();
1da177e4
LT
3352 }
3353 return ret;
3354}
3355EXPORT_SYMBOL(alloc_buffer_head);
3356
3357void free_buffer_head(struct buffer_head *bh)
3358{
3359 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3360 kmem_cache_free(bh_cachep, bh);
c7b92516
CL
3361 preempt_disable();
3362 __this_cpu_dec(bh_accounting.nr);
1da177e4 3363 recalc_bh_state();
c7b92516 3364 preempt_enable();
1da177e4
LT
3365}
3366EXPORT_SYMBOL(free_buffer_head);
3367
1da177e4
LT
3368static void buffer_exit_cpu(int cpu)
3369{
3370 int i;
3371 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3372
3373 for (i = 0; i < BH_LRU_SIZE; i++) {
3374 brelse(b->bhs[i]);
3375 b->bhs[i] = NULL;
3376 }
c7b92516 3377 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
8a143426 3378 per_cpu(bh_accounting, cpu).nr = 0;
1da177e4
LT
3379}
3380
3381static int buffer_cpu_notify(struct notifier_block *self,
3382 unsigned long action, void *hcpu)
3383{
8bb78442 3384 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1da177e4
LT
3385 buffer_exit_cpu((unsigned long)hcpu);
3386 return NOTIFY_OK;
3387}
1da177e4 3388
389d1b08 3389/**
a6b91919 3390 * bh_uptodate_or_lock - Test whether the buffer is uptodate
389d1b08
AK
3391 * @bh: struct buffer_head
3392 *
3393 * Return true if the buffer is up-to-date and false,
3394 * with the buffer locked, if not.
3395 */
3396int bh_uptodate_or_lock(struct buffer_head *bh)
3397{
3398 if (!buffer_uptodate(bh)) {
3399 lock_buffer(bh);
3400 if (!buffer_uptodate(bh))
3401 return 0;
3402 unlock_buffer(bh);
3403 }
3404 return 1;
3405}
3406EXPORT_SYMBOL(bh_uptodate_or_lock);
3407
3408/**
a6b91919 3409 * bh_submit_read - Submit a locked buffer for reading
389d1b08
AK
3410 * @bh: struct buffer_head
3411 *
3412 * Returns zero on success and -EIO on error.
3413 */
3414int bh_submit_read(struct buffer_head *bh)
3415{
3416 BUG_ON(!buffer_locked(bh));
3417
3418 if (buffer_uptodate(bh)) {
3419 unlock_buffer(bh);
3420 return 0;
3421 }
3422
3423 get_bh(bh);
3424 bh->b_end_io = end_buffer_read_sync;
3425 submit_bh(READ, bh);
3426 wait_on_buffer(bh);
3427 if (buffer_uptodate(bh))
3428 return 0;
3429 return -EIO;
3430}
3431EXPORT_SYMBOL(bh_submit_read);
3432
1da177e4
LT
3433void __init buffer_init(void)
3434{
43be594a 3435 unsigned long nrpages;
1da177e4 3436
b98938c3
CL
3437 bh_cachep = kmem_cache_create("buffer_head",
3438 sizeof(struct buffer_head), 0,
3439 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3440 SLAB_MEM_SPREAD),
019b4d12 3441 NULL);
1da177e4
LT
3442
3443 /*
3444 * Limit the bh occupancy to 10% of ZONE_NORMAL
3445 */
3446 nrpages = (nr_free_buffer_pages() * 10) / 100;
3447 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3448 hotcpu_notifier(buffer_cpu_notify, 0);
3449}