]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/dax.c
ext4: do not perform data journaling when data is encrypted
[mirror_ubuntu-artful-kernel.git] / fs / dax.c
CommitLineData
d475c634
MW
1/*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17#include <linux/atomic.h>
18#include <linux/blkdev.h>
19#include <linux/buffer_head.h>
d77e92e2 20#include <linux/dax.h>
d475c634
MW
21#include <linux/fs.h>
22#include <linux/genhd.h>
f7ca90b1
MW
23#include <linux/highmem.h>
24#include <linux/memcontrol.h>
25#include <linux/mm.h>
d475c634 26#include <linux/mutex.h>
9973c98e 27#include <linux/pagevec.h>
2765cfbb 28#include <linux/pmem.h>
289c6aed 29#include <linux/sched.h>
d475c634 30#include <linux/uio.h>
f7ca90b1 31#include <linux/vmstat.h>
34c0fd54 32#include <linux/pfn_t.h>
0e749e54 33#include <linux/sizes.h>
a254e568
CH
34#include <linux/iomap.h>
35#include "internal.h"
d475c634 36
ac401cc7
JK
37/* We choose 4096 entries - same as per-zone page wait tables */
38#define DAX_WAIT_TABLE_BITS 12
39#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
40
ce95ab0f 41static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
ac401cc7
JK
42
43static int __init init_dax_wait_table(void)
44{
45 int i;
46
47 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
48 init_waitqueue_head(wait_table + i);
49 return 0;
50}
51fs_initcall(init_dax_wait_table);
52
b2e0d162
DW
53static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
54{
55 struct request_queue *q = bdev->bd_queue;
56 long rc = -EIO;
57
7a9eb206 58 dax->addr = ERR_PTR(-EIO);
b2e0d162
DW
59 if (blk_queue_enter(q, true) != 0)
60 return rc;
61
62 rc = bdev_direct_access(bdev, dax);
63 if (rc < 0) {
7a9eb206 64 dax->addr = ERR_PTR(rc);
b2e0d162
DW
65 blk_queue_exit(q);
66 return rc;
67 }
68 return rc;
69}
70
71static void dax_unmap_atomic(struct block_device *bdev,
72 const struct blk_dax_ctl *dax)
73{
74 if (IS_ERR(dax->addr))
75 return;
76 blk_queue_exit(bdev->bd_queue);
77}
78
642261ac
RZ
79static int dax_is_pmd_entry(void *entry)
80{
81 return (unsigned long)entry & RADIX_DAX_PMD;
82}
83
84static int dax_is_pte_entry(void *entry)
85{
86 return !((unsigned long)entry & RADIX_DAX_PMD);
87}
88
89static int dax_is_zero_entry(void *entry)
90{
91 return (unsigned long)entry & RADIX_DAX_HZP;
92}
93
94static int dax_is_empty_entry(void *entry)
95{
96 return (unsigned long)entry & RADIX_DAX_EMPTY;
97}
98
d1a5f2b4
DW
99struct page *read_dax_sector(struct block_device *bdev, sector_t n)
100{
101 struct page *page = alloc_pages(GFP_KERNEL, 0);
102 struct blk_dax_ctl dax = {
103 .size = PAGE_SIZE,
104 .sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
105 };
106 long rc;
107
108 if (!page)
109 return ERR_PTR(-ENOMEM);
110
111 rc = dax_map_atomic(bdev, &dax);
112 if (rc < 0)
113 return ERR_PTR(rc);
114 memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
115 dax_unmap_atomic(bdev, &dax);
116 return page;
117}
118
ac401cc7
JK
119/*
120 * DAX radix tree locking
121 */
122struct exceptional_entry_key {
123 struct address_space *mapping;
63e95b5c 124 pgoff_t entry_start;
ac401cc7
JK
125};
126
127struct wait_exceptional_entry_queue {
128 wait_queue_t wait;
129 struct exceptional_entry_key key;
130};
131
63e95b5c
RZ
132static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
133 pgoff_t index, void *entry, struct exceptional_entry_key *key)
134{
135 unsigned long hash;
136
137 /*
138 * If 'entry' is a PMD, align the 'index' that we use for the wait
139 * queue to the start of that PMD. This ensures that all offsets in
140 * the range covered by the PMD map to the same bit lock.
141 */
642261ac 142 if (dax_is_pmd_entry(entry))
63e95b5c
RZ
143 index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1);
144
145 key->mapping = mapping;
146 key->entry_start = index;
147
148 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
149 return wait_table + hash;
150}
151
ac401cc7
JK
152static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
153 int sync, void *keyp)
154{
155 struct exceptional_entry_key *key = keyp;
156 struct wait_exceptional_entry_queue *ewait =
157 container_of(wait, struct wait_exceptional_entry_queue, wait);
158
159 if (key->mapping != ewait->key.mapping ||
63e95b5c 160 key->entry_start != ewait->key.entry_start)
ac401cc7
JK
161 return 0;
162 return autoremove_wake_function(wait, mode, sync, NULL);
163}
164
165/*
166 * Check whether the given slot is locked. The function must be called with
167 * mapping->tree_lock held
168 */
169static inline int slot_locked(struct address_space *mapping, void **slot)
170{
171 unsigned long entry = (unsigned long)
172 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
173 return entry & RADIX_DAX_ENTRY_LOCK;
174}
175
176/*
177 * Mark the given slot is locked. The function must be called with
178 * mapping->tree_lock held
179 */
180static inline void *lock_slot(struct address_space *mapping, void **slot)
181{
182 unsigned long entry = (unsigned long)
183 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
184
185 entry |= RADIX_DAX_ENTRY_LOCK;
186 radix_tree_replace_slot(slot, (void *)entry);
187 return (void *)entry;
188}
189
190/*
191 * Mark the given slot is unlocked. The function must be called with
192 * mapping->tree_lock held
193 */
194static inline void *unlock_slot(struct address_space *mapping, void **slot)
195{
196 unsigned long entry = (unsigned long)
197 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
198
199 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
200 radix_tree_replace_slot(slot, (void *)entry);
201 return (void *)entry;
202}
203
204/*
205 * Lookup entry in radix tree, wait for it to become unlocked if it is
206 * exceptional entry and return it. The caller must call
207 * put_unlocked_mapping_entry() when he decided not to lock the entry or
208 * put_locked_mapping_entry() when he locked the entry and now wants to
209 * unlock it.
210 *
211 * The function must be called with mapping->tree_lock held.
212 */
213static void *get_unlocked_mapping_entry(struct address_space *mapping,
214 pgoff_t index, void ***slotp)
215{
e3ad61c6 216 void *entry, **slot;
ac401cc7 217 struct wait_exceptional_entry_queue ewait;
63e95b5c 218 wait_queue_head_t *wq;
ac401cc7
JK
219
220 init_wait(&ewait.wait);
221 ewait.wait.func = wake_exceptional_entry_func;
ac401cc7
JK
222
223 for (;;) {
e3ad61c6 224 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
ac401cc7 225 &slot);
e3ad61c6 226 if (!entry || !radix_tree_exceptional_entry(entry) ||
ac401cc7
JK
227 !slot_locked(mapping, slot)) {
228 if (slotp)
229 *slotp = slot;
e3ad61c6 230 return entry;
ac401cc7 231 }
63e95b5c
RZ
232
233 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
ac401cc7
JK
234 prepare_to_wait_exclusive(wq, &ewait.wait,
235 TASK_UNINTERRUPTIBLE);
236 spin_unlock_irq(&mapping->tree_lock);
237 schedule();
238 finish_wait(wq, &ewait.wait);
239 spin_lock_irq(&mapping->tree_lock);
240 }
241}
242
422476c4
RZ
243static void put_locked_mapping_entry(struct address_space *mapping,
244 pgoff_t index, void *entry)
245{
246 if (!radix_tree_exceptional_entry(entry)) {
247 unlock_page(entry);
248 put_page(entry);
249 } else {
250 dax_unlock_mapping_entry(mapping, index);
251 }
252}
253
254/*
255 * Called when we are done with radix tree entry we looked up via
256 * get_unlocked_mapping_entry() and which we didn't lock in the end.
257 */
258static void put_unlocked_mapping_entry(struct address_space *mapping,
259 pgoff_t index, void *entry)
260{
261 if (!radix_tree_exceptional_entry(entry))
262 return;
263
264 /* We have to wake up next waiter for the radix tree entry lock */
265 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
266}
267
ac401cc7
JK
268/*
269 * Find radix tree entry at given index. If it points to a page, return with
270 * the page locked. If it points to the exceptional entry, return with the
271 * radix tree entry locked. If the radix tree doesn't contain given index,
272 * create empty exceptional entry for the index and return with it locked.
273 *
642261ac
RZ
274 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
275 * either return that locked entry or will return an error. This error will
276 * happen if there are any 4k entries (either zero pages or DAX entries)
277 * within the 2MiB range that we are requesting.
278 *
279 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
280 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
281 * insertion will fail if it finds any 4k entries already in the tree, and a
282 * 4k insertion will cause an existing 2MiB entry to be unmapped and
283 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
284 * well as 2MiB empty entries.
285 *
286 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
287 * real storage backing them. We will leave these real 2MiB DAX entries in
288 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
289 *
ac401cc7
JK
290 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
291 * persistent memory the benefit is doubtful. We can add that later if we can
292 * show it helps.
293 */
642261ac
RZ
294static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
295 unsigned long size_flag)
ac401cc7 296{
642261ac 297 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
e3ad61c6 298 void *entry, **slot;
ac401cc7
JK
299
300restart:
301 spin_lock_irq(&mapping->tree_lock);
e3ad61c6 302 entry = get_unlocked_mapping_entry(mapping, index, &slot);
642261ac
RZ
303
304 if (entry) {
305 if (size_flag & RADIX_DAX_PMD) {
306 if (!radix_tree_exceptional_entry(entry) ||
307 dax_is_pte_entry(entry)) {
308 put_unlocked_mapping_entry(mapping, index,
309 entry);
310 entry = ERR_PTR(-EEXIST);
311 goto out_unlock;
312 }
313 } else { /* trying to grab a PTE entry */
314 if (radix_tree_exceptional_entry(entry) &&
315 dax_is_pmd_entry(entry) &&
316 (dax_is_zero_entry(entry) ||
317 dax_is_empty_entry(entry))) {
318 pmd_downgrade = true;
319 }
320 }
321 }
322
ac401cc7 323 /* No entry for given index? Make sure radix tree is big enough. */
642261ac 324 if (!entry || pmd_downgrade) {
ac401cc7
JK
325 int err;
326
642261ac
RZ
327 if (pmd_downgrade) {
328 /*
329 * Make sure 'entry' remains valid while we drop
330 * mapping->tree_lock.
331 */
332 entry = lock_slot(mapping, slot);
333 }
334
ac401cc7
JK
335 spin_unlock_irq(&mapping->tree_lock);
336 err = radix_tree_preload(
337 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
642261ac
RZ
338 if (err) {
339 if (pmd_downgrade)
340 put_locked_mapping_entry(mapping, index, entry);
ac401cc7 341 return ERR_PTR(err);
642261ac
RZ
342 }
343
344 /*
345 * Besides huge zero pages the only other thing that gets
346 * downgraded are empty entries which don't need to be
347 * unmapped.
348 */
349 if (pmd_downgrade && dax_is_zero_entry(entry))
350 unmap_mapping_range(mapping,
351 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
352
ac401cc7 353 spin_lock_irq(&mapping->tree_lock);
642261ac
RZ
354
355 if (pmd_downgrade) {
356 radix_tree_delete(&mapping->page_tree, index);
357 mapping->nrexceptional--;
358 dax_wake_mapping_entry_waiter(mapping, index, entry,
359 true);
360 }
361
362 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
363
364 err = __radix_tree_insert(&mapping->page_tree, index,
365 dax_radix_order(entry), entry);
ac401cc7
JK
366 radix_tree_preload_end();
367 if (err) {
368 spin_unlock_irq(&mapping->tree_lock);
642261ac
RZ
369 /*
370 * Someone already created the entry? This is a
371 * normal failure when inserting PMDs in a range
372 * that already contains PTEs. In that case we want
373 * to return -EEXIST immediately.
374 */
375 if (err == -EEXIST && !(size_flag & RADIX_DAX_PMD))
ac401cc7 376 goto restart;
642261ac
RZ
377 /*
378 * Our insertion of a DAX PMD entry failed, most
379 * likely because it collided with a PTE sized entry
380 * at a different index in the PMD range. We haven't
381 * inserted anything into the radix tree and have no
382 * waiters to wake.
383 */
ac401cc7
JK
384 return ERR_PTR(err);
385 }
386 /* Good, we have inserted empty locked entry into the tree. */
387 mapping->nrexceptional++;
388 spin_unlock_irq(&mapping->tree_lock);
e3ad61c6 389 return entry;
ac401cc7
JK
390 }
391 /* Normal page in radix tree? */
e3ad61c6
RZ
392 if (!radix_tree_exceptional_entry(entry)) {
393 struct page *page = entry;
ac401cc7
JK
394
395 get_page(page);
396 spin_unlock_irq(&mapping->tree_lock);
397 lock_page(page);
398 /* Page got truncated? Retry... */
399 if (unlikely(page->mapping != mapping)) {
400 unlock_page(page);
401 put_page(page);
402 goto restart;
403 }
404 return page;
405 }
e3ad61c6 406 entry = lock_slot(mapping, slot);
642261ac 407 out_unlock:
ac401cc7 408 spin_unlock_irq(&mapping->tree_lock);
e3ad61c6 409 return entry;
ac401cc7
JK
410}
411
63e95b5c
RZ
412/*
413 * We do not necessarily hold the mapping->tree_lock when we call this
414 * function so it is possible that 'entry' is no longer a valid item in the
642261ac
RZ
415 * radix tree. This is okay because all we really need to do is to find the
416 * correct waitqueue where tasks might be waiting for that old 'entry' and
417 * wake them.
63e95b5c 418 */
ac401cc7 419void dax_wake_mapping_entry_waiter(struct address_space *mapping,
63e95b5c 420 pgoff_t index, void *entry, bool wake_all)
ac401cc7 421{
63e95b5c
RZ
422 struct exceptional_entry_key key;
423 wait_queue_head_t *wq;
424
425 wq = dax_entry_waitqueue(mapping, index, entry, &key);
ac401cc7
JK
426
427 /*
428 * Checking for locked entry and prepare_to_wait_exclusive() happens
429 * under mapping->tree_lock, ditto for entry handling in our callers.
430 * So at this point all tasks that could have seen our entry locked
431 * must be in the waitqueue and the following check will see them.
432 */
63e95b5c 433 if (waitqueue_active(wq))
ac401cc7 434 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
ac401cc7
JK
435}
436
bc2466e4 437void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index)
ac401cc7 438{
e3ad61c6 439 void *entry, **slot;
ac401cc7
JK
440
441 spin_lock_irq(&mapping->tree_lock);
e3ad61c6
RZ
442 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
443 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
ac401cc7
JK
444 !slot_locked(mapping, slot))) {
445 spin_unlock_irq(&mapping->tree_lock);
446 return;
447 }
448 unlock_slot(mapping, slot);
449 spin_unlock_irq(&mapping->tree_lock);
63e95b5c 450 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
ac401cc7
JK
451}
452
ac401cc7
JK
453/*
454 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
455 * entry to get unlocked before deleting it.
456 */
457int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
458{
459 void *entry;
460
461 spin_lock_irq(&mapping->tree_lock);
462 entry = get_unlocked_mapping_entry(mapping, index, NULL);
463 /*
464 * This gets called from truncate / punch_hole path. As such, the caller
465 * must hold locks protecting against concurrent modifications of the
466 * radix tree (usually fs-private i_mmap_sem for writing). Since the
467 * caller has seen exceptional entry for this index, we better find it
468 * at that index as well...
469 */
470 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry))) {
471 spin_unlock_irq(&mapping->tree_lock);
472 return 0;
473 }
474 radix_tree_delete(&mapping->page_tree, index);
475 mapping->nrexceptional--;
476 spin_unlock_irq(&mapping->tree_lock);
63e95b5c 477 dax_wake_mapping_entry_waiter(mapping, index, entry, true);
ac401cc7
JK
478
479 return 1;
480}
481
f7ca90b1
MW
482/*
483 * The user has performed a load from a hole in the file. Allocating
484 * a new page in the file would cause excessive storage usage for
485 * workloads with sparse files. We allocate a page cache page instead.
486 * We'll kick it out of the page cache if it's ever written to,
487 * otherwise it will simply fall out of the page cache under memory
488 * pressure without ever having been dirtied.
489 */
ac401cc7
JK
490static int dax_load_hole(struct address_space *mapping, void *entry,
491 struct vm_fault *vmf)
f7ca90b1 492{
ac401cc7 493 struct page *page;
f7ca90b1 494
ac401cc7
JK
495 /* Hole page already exists? Return it... */
496 if (!radix_tree_exceptional_entry(entry)) {
497 vmf->page = entry;
498 return VM_FAULT_LOCKED;
499 }
f7ca90b1 500
ac401cc7
JK
501 /* This will replace locked radix tree entry with a hole page */
502 page = find_or_create_page(mapping, vmf->pgoff,
503 vmf->gfp_mask | __GFP_ZERO);
504 if (!page) {
505 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
506 return VM_FAULT_OOM;
507 }
f7ca90b1
MW
508 vmf->page = page;
509 return VM_FAULT_LOCKED;
510}
511
b0d5e82f
CH
512static int copy_user_dax(struct block_device *bdev, sector_t sector, size_t size,
513 struct page *to, unsigned long vaddr)
f7ca90b1 514{
b2e0d162 515 struct blk_dax_ctl dax = {
b0d5e82f
CH
516 .sector = sector,
517 .size = size,
b2e0d162 518 };
e2e05394
RZ
519 void *vto;
520
b2e0d162
DW
521 if (dax_map_atomic(bdev, &dax) < 0)
522 return PTR_ERR(dax.addr);
f7ca90b1 523 vto = kmap_atomic(to);
b2e0d162 524 copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
f7ca90b1 525 kunmap_atomic(vto);
b2e0d162 526 dax_unmap_atomic(bdev, &dax);
f7ca90b1
MW
527 return 0;
528}
529
642261ac
RZ
530/*
531 * By this point grab_mapping_entry() has ensured that we have a locked entry
532 * of the appropriate size so we don't have to worry about downgrading PMDs to
533 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
534 * already in the tree, we will skip the insertion and just dirty the PMD as
535 * appropriate.
536 */
ac401cc7
JK
537static void *dax_insert_mapping_entry(struct address_space *mapping,
538 struct vm_fault *vmf,
642261ac
RZ
539 void *entry, sector_t sector,
540 unsigned long flags)
9973c98e
RZ
541{
542 struct radix_tree_root *page_tree = &mapping->page_tree;
ac401cc7
JK
543 int error = 0;
544 bool hole_fill = false;
545 void *new_entry;
546 pgoff_t index = vmf->pgoff;
9973c98e 547
ac401cc7 548 if (vmf->flags & FAULT_FLAG_WRITE)
d2b2a28e 549 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
9973c98e 550
ac401cc7
JK
551 /* Replacing hole page with block mapping? */
552 if (!radix_tree_exceptional_entry(entry)) {
553 hole_fill = true;
554 /*
555 * Unmap the page now before we remove it from page cache below.
556 * The page is locked so it cannot be faulted in again.
557 */
558 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
559 PAGE_SIZE, 0);
560 error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
561 if (error)
562 return ERR_PTR(error);
642261ac
RZ
563 } else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) {
564 /* replacing huge zero page with PMD block mapping */
565 unmap_mapping_range(mapping,
566 (vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
9973c98e
RZ
567 }
568
ac401cc7 569 spin_lock_irq(&mapping->tree_lock);
642261ac
RZ
570 new_entry = dax_radix_locked_entry(sector, flags);
571
ac401cc7
JK
572 if (hole_fill) {
573 __delete_from_page_cache(entry, NULL);
574 /* Drop pagecache reference */
575 put_page(entry);
642261ac
RZ
576 error = __radix_tree_insert(page_tree, index,
577 dax_radix_order(new_entry), new_entry);
ac401cc7
JK
578 if (error) {
579 new_entry = ERR_PTR(error);
9973c98e
RZ
580 goto unlock;
581 }
ac401cc7 582 mapping->nrexceptional++;
642261ac
RZ
583 } else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
584 /*
585 * Only swap our new entry into the radix tree if the current
586 * entry is a zero page or an empty entry. If a normal PTE or
587 * PMD entry is already in the tree, we leave it alone. This
588 * means that if we are trying to insert a PTE and the
589 * existing entry is a PMD, we will just leave the PMD in the
590 * tree and dirty it if necessary.
591 */
ac401cc7
JK
592 void **slot;
593 void *ret;
9973c98e 594
ac401cc7
JK
595 ret = __radix_tree_lookup(page_tree, index, NULL, &slot);
596 WARN_ON_ONCE(ret != entry);
597 radix_tree_replace_slot(slot, new_entry);
9973c98e 598 }
ac401cc7 599 if (vmf->flags & FAULT_FLAG_WRITE)
9973c98e
RZ
600 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
601 unlock:
602 spin_unlock_irq(&mapping->tree_lock);
ac401cc7
JK
603 if (hole_fill) {
604 radix_tree_preload_end();
605 /*
606 * We don't need hole page anymore, it has been replaced with
607 * locked radix tree entry now.
608 */
609 if (mapping->a_ops->freepage)
610 mapping->a_ops->freepage(entry);
611 unlock_page(entry);
612 put_page(entry);
613 }
614 return new_entry;
9973c98e
RZ
615}
616
617static int dax_writeback_one(struct block_device *bdev,
618 struct address_space *mapping, pgoff_t index, void *entry)
619{
620 struct radix_tree_root *page_tree = &mapping->page_tree;
9973c98e
RZ
621 struct radix_tree_node *node;
622 struct blk_dax_ctl dax;
623 void **slot;
624 int ret = 0;
625
626 spin_lock_irq(&mapping->tree_lock);
627 /*
628 * Regular page slots are stabilized by the page lock even
629 * without the tree itself locked. These unlocked entries
630 * need verification under the tree lock.
631 */
632 if (!__radix_tree_lookup(page_tree, index, &node, &slot))
633 goto unlock;
634 if (*slot != entry)
635 goto unlock;
636
637 /* another fsync thread may have already written back this entry */
638 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
639 goto unlock;
640
642261ac
RZ
641 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
642 dax_is_zero_entry(entry))) {
9973c98e
RZ
643 ret = -EIO;
644 goto unlock;
645 }
646
642261ac
RZ
647 /*
648 * Even if dax_writeback_mapping_range() was given a wbc->range_start
649 * in the middle of a PMD, the 'index' we are given will be aligned to
650 * the start index of the PMD, as will the sector we pull from
651 * 'entry'. This allows us to flush for PMD_SIZE and not have to
652 * worry about partial PMD writebacks.
653 */
654 dax.sector = dax_radix_sector(entry);
655 dax.size = PAGE_SIZE << dax_radix_order(entry);
9973c98e
RZ
656 spin_unlock_irq(&mapping->tree_lock);
657
658 /*
659 * We cannot hold tree_lock while calling dax_map_atomic() because it
660 * eventually calls cond_resched().
661 */
662 ret = dax_map_atomic(bdev, &dax);
663 if (ret < 0)
664 return ret;
665
666 if (WARN_ON_ONCE(ret < dax.size)) {
667 ret = -EIO;
668 goto unmap;
669 }
670
671 wb_cache_pmem(dax.addr, dax.size);
672
673 spin_lock_irq(&mapping->tree_lock);
674 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
675 spin_unlock_irq(&mapping->tree_lock);
676 unmap:
677 dax_unmap_atomic(bdev, &dax);
678 return ret;
679
680 unlock:
681 spin_unlock_irq(&mapping->tree_lock);
682 return ret;
683}
684
685/*
686 * Flush the mapping to the persistent domain within the byte range of [start,
687 * end]. This is required by data integrity operations to ensure file data is
688 * on persistent storage prior to completion of the operation.
689 */
7f6d5b52
RZ
690int dax_writeback_mapping_range(struct address_space *mapping,
691 struct block_device *bdev, struct writeback_control *wbc)
9973c98e
RZ
692{
693 struct inode *inode = mapping->host;
642261ac 694 pgoff_t start_index, end_index;
9973c98e
RZ
695 pgoff_t indices[PAGEVEC_SIZE];
696 struct pagevec pvec;
697 bool done = false;
698 int i, ret = 0;
9973c98e
RZ
699
700 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
701 return -EIO;
702
7f6d5b52
RZ
703 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
704 return 0;
705
09cbfeaf
KS
706 start_index = wbc->range_start >> PAGE_SHIFT;
707 end_index = wbc->range_end >> PAGE_SHIFT;
9973c98e
RZ
708
709 tag_pages_for_writeback(mapping, start_index, end_index);
710
711 pagevec_init(&pvec, 0);
712 while (!done) {
713 pvec.nr = find_get_entries_tag(mapping, start_index,
714 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
715 pvec.pages, indices);
716
717 if (pvec.nr == 0)
718 break;
719
720 for (i = 0; i < pvec.nr; i++) {
721 if (indices[i] > end_index) {
722 done = true;
723 break;
724 }
725
726 ret = dax_writeback_one(bdev, mapping, indices[i],
727 pvec.pages[i]);
728 if (ret < 0)
729 return ret;
730 }
731 }
9973c98e
RZ
732 return 0;
733}
734EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
735
ac401cc7 736static int dax_insert_mapping(struct address_space *mapping,
1aaba095
CH
737 struct block_device *bdev, sector_t sector, size_t size,
738 void **entryp, struct vm_area_struct *vma, struct vm_fault *vmf)
f7ca90b1 739{
f7ca90b1 740 unsigned long vaddr = (unsigned long)vmf->virtual_address;
b2e0d162 741 struct blk_dax_ctl dax = {
1aaba095
CH
742 .sector = sector,
743 .size = size,
b2e0d162 744 };
ac401cc7
JK
745 void *ret;
746 void *entry = *entryp;
f7ca90b1 747
4d9a2c87
JK
748 if (dax_map_atomic(bdev, &dax) < 0)
749 return PTR_ERR(dax.addr);
b2e0d162 750 dax_unmap_atomic(bdev, &dax);
f7ca90b1 751
642261ac 752 ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector, 0);
4d9a2c87
JK
753 if (IS_ERR(ret))
754 return PTR_ERR(ret);
ac401cc7 755 *entryp = ret;
9973c98e 756
4d9a2c87 757 return vm_insert_mixed(vma, vaddr, dax.pfn);
f7ca90b1
MW
758}
759
0e3b210c
BH
760/**
761 * dax_pfn_mkwrite - handle first write to DAX page
762 * @vma: The virtual memory area where the fault occurred
763 * @vmf: The description of the fault
0e3b210c
BH
764 */
765int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
766{
9973c98e 767 struct file *file = vma->vm_file;
ac401cc7
JK
768 struct address_space *mapping = file->f_mapping;
769 void *entry;
770 pgoff_t index = vmf->pgoff;
30f471fd 771
ac401cc7
JK
772 spin_lock_irq(&mapping->tree_lock);
773 entry = get_unlocked_mapping_entry(mapping, index, NULL);
774 if (!entry || !radix_tree_exceptional_entry(entry))
775 goto out;
776 radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
777 put_unlocked_mapping_entry(mapping, index, entry);
778out:
779 spin_unlock_irq(&mapping->tree_lock);
0e3b210c
BH
780 return VM_FAULT_NOPAGE;
781}
782EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
783
4b0228fa
VV
784static bool dax_range_is_aligned(struct block_device *bdev,
785 unsigned int offset, unsigned int length)
786{
787 unsigned short sector_size = bdev_logical_block_size(bdev);
788
789 if (!IS_ALIGNED(offset, sector_size))
790 return false;
791 if (!IS_ALIGNED(length, sector_size))
792 return false;
793
794 return true;
795}
796
679c8bd3
CH
797int __dax_zero_page_range(struct block_device *bdev, sector_t sector,
798 unsigned int offset, unsigned int length)
799{
800 struct blk_dax_ctl dax = {
801 .sector = sector,
802 .size = PAGE_SIZE,
803 };
804
4b0228fa
VV
805 if (dax_range_is_aligned(bdev, offset, length)) {
806 sector_t start_sector = dax.sector + (offset >> 9);
807
808 return blkdev_issue_zeroout(bdev, start_sector,
809 length >> 9, GFP_NOFS, true);
810 } else {
811 if (dax_map_atomic(bdev, &dax) < 0)
812 return PTR_ERR(dax.addr);
813 clear_pmem(dax.addr + offset, length);
4b0228fa
VV
814 dax_unmap_atomic(bdev, &dax);
815 }
679c8bd3
CH
816 return 0;
817}
818EXPORT_SYMBOL_GPL(__dax_zero_page_range);
819
a254e568 820#ifdef CONFIG_FS_IOMAP
333ccc97
RZ
821static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
822{
823 return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
824}
825
a254e568 826static loff_t
11c59c92 827dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
a254e568
CH
828 struct iomap *iomap)
829{
830 struct iov_iter *iter = data;
831 loff_t end = pos + length, done = 0;
832 ssize_t ret = 0;
833
834 if (iov_iter_rw(iter) == READ) {
835 end = min(end, i_size_read(inode));
836 if (pos >= end)
837 return 0;
838
839 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
840 return iov_iter_zero(min(length, end - pos), iter);
841 }
842
843 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
844 return -EIO;
845
846 while (pos < end) {
847 unsigned offset = pos & (PAGE_SIZE - 1);
848 struct blk_dax_ctl dax = { 0 };
849 ssize_t map_len;
850
333ccc97 851 dax.sector = dax_iomap_sector(iomap, pos);
a254e568
CH
852 dax.size = (length + offset + PAGE_SIZE - 1) & PAGE_MASK;
853 map_len = dax_map_atomic(iomap->bdev, &dax);
854 if (map_len < 0) {
855 ret = map_len;
856 break;
857 }
858
859 dax.addr += offset;
860 map_len -= offset;
861 if (map_len > end - pos)
862 map_len = end - pos;
863
864 if (iov_iter_rw(iter) == WRITE)
865 map_len = copy_from_iter_pmem(dax.addr, map_len, iter);
866 else
867 map_len = copy_to_iter(dax.addr, map_len, iter);
868 dax_unmap_atomic(iomap->bdev, &dax);
869 if (map_len <= 0) {
870 ret = map_len ? map_len : -EFAULT;
871 break;
872 }
873
874 pos += map_len;
875 length -= map_len;
876 done += map_len;
877 }
878
879 return done ? done : ret;
880}
881
882/**
11c59c92 883 * dax_iomap_rw - Perform I/O to a DAX file
a254e568
CH
884 * @iocb: The control block for this I/O
885 * @iter: The addresses to do I/O from or to
886 * @ops: iomap ops passed from the file system
887 *
888 * This function performs read and write operations to directly mapped
889 * persistent memory. The callers needs to take care of read/write exclusion
890 * and evicting any page cache pages in the region under I/O.
891 */
892ssize_t
11c59c92 893dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
a254e568
CH
894 struct iomap_ops *ops)
895{
896 struct address_space *mapping = iocb->ki_filp->f_mapping;
897 struct inode *inode = mapping->host;
898 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
899 unsigned flags = 0;
900
901 if (iov_iter_rw(iter) == WRITE)
902 flags |= IOMAP_WRITE;
903
904 /*
905 * Yes, even DAX files can have page cache attached to them: A zeroed
906 * page is inserted into the pagecache when we have to serve a write
907 * fault on a hole. It should never be dirtied and can simply be
908 * dropped from the pagecache once we get real data for the page.
909 *
910 * XXX: This is racy against mmap, and there's nothing we can do about
911 * it. We'll eventually need to shift this down even further so that
912 * we can check if we allocated blocks over a hole first.
913 */
914 if (mapping->nrpages) {
915 ret = invalidate_inode_pages2_range(mapping,
916 pos >> PAGE_SHIFT,
917 (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT);
918 WARN_ON_ONCE(ret);
919 }
920
921 while (iov_iter_count(iter)) {
922 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
11c59c92 923 iter, dax_iomap_actor);
a254e568
CH
924 if (ret <= 0)
925 break;
926 pos += ret;
927 done += ret;
928 }
929
930 iocb->ki_pos += done;
931 return done ? done : ret;
932}
11c59c92 933EXPORT_SYMBOL_GPL(dax_iomap_rw);
a7d73fe6
CH
934
935/**
11c59c92 936 * dax_iomap_fault - handle a page fault on a DAX file
a7d73fe6
CH
937 * @vma: The virtual memory area where the fault occurred
938 * @vmf: The description of the fault
939 * @ops: iomap ops passed from the file system
940 *
941 * When a page fault occurs, filesystems may call this helper in their fault
942 * or mkwrite handler for DAX files. Assumes the caller has done all the
943 * necessary locking for the page fault to proceed successfully.
944 */
11c59c92 945int dax_iomap_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
a7d73fe6
CH
946 struct iomap_ops *ops)
947{
948 struct address_space *mapping = vma->vm_file->f_mapping;
949 struct inode *inode = mapping->host;
950 unsigned long vaddr = (unsigned long)vmf->virtual_address;
951 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
952 sector_t sector;
953 struct iomap iomap = { 0 };
9484ab1b 954 unsigned flags = IOMAP_FAULT;
a7d73fe6 955 int error, major = 0;
1550290b 956 int locked_status = 0;
a7d73fe6
CH
957 void *entry;
958
959 /*
960 * Check whether offset isn't beyond end of file now. Caller is supposed
961 * to hold locks serializing us with truncate / punch hole so this is
962 * a reliable test.
963 */
964 if (pos >= i_size_read(inode))
965 return VM_FAULT_SIGBUS;
966
642261ac 967 entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
a7d73fe6
CH
968 if (IS_ERR(entry)) {
969 error = PTR_ERR(entry);
970 goto out;
971 }
972
973 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
974 flags |= IOMAP_WRITE;
975
976 /*
977 * Note that we don't bother to use iomap_apply here: DAX required
978 * the file system block size to be equal the page size, which means
979 * that we never have to deal with more than a single extent here.
980 */
981 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
982 if (error)
983 goto unlock_entry;
984 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
985 error = -EIO; /* fs corruption? */
1550290b 986 goto finish_iomap;
a7d73fe6
CH
987 }
988
333ccc97 989 sector = dax_iomap_sector(&iomap, pos);
a7d73fe6
CH
990
991 if (vmf->cow_page) {
992 switch (iomap.type) {
993 case IOMAP_HOLE:
994 case IOMAP_UNWRITTEN:
995 clear_user_highpage(vmf->cow_page, vaddr);
996 break;
997 case IOMAP_MAPPED:
998 error = copy_user_dax(iomap.bdev, sector, PAGE_SIZE,
999 vmf->cow_page, vaddr);
1000 break;
1001 default:
1002 WARN_ON_ONCE(1);
1003 error = -EIO;
1004 break;
1005 }
1006
1007 if (error)
1550290b 1008 goto finish_iomap;
a7d73fe6
CH
1009 if (!radix_tree_exceptional_entry(entry)) {
1010 vmf->page = entry;
1550290b
RZ
1011 locked_status = VM_FAULT_LOCKED;
1012 } else {
1013 vmf->entry = entry;
1014 locked_status = VM_FAULT_DAX_LOCKED;
a7d73fe6 1015 }
1550290b 1016 goto finish_iomap;
a7d73fe6
CH
1017 }
1018
1019 switch (iomap.type) {
1020 case IOMAP_MAPPED:
1021 if (iomap.flags & IOMAP_F_NEW) {
1022 count_vm_event(PGMAJFAULT);
1023 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1024 major = VM_FAULT_MAJOR;
1025 }
1026 error = dax_insert_mapping(mapping, iomap.bdev, sector,
1027 PAGE_SIZE, &entry, vma, vmf);
1028 break;
1029 case IOMAP_UNWRITTEN:
1030 case IOMAP_HOLE:
1550290b
RZ
1031 if (!(vmf->flags & FAULT_FLAG_WRITE)) {
1032 locked_status = dax_load_hole(mapping, entry, vmf);
1033 break;
1034 }
a7d73fe6
CH
1035 /*FALLTHRU*/
1036 default:
1037 WARN_ON_ONCE(1);
1038 error = -EIO;
1039 break;
1040 }
1041
1550290b
RZ
1042 finish_iomap:
1043 if (ops->iomap_end) {
1044 if (error) {
1045 /* keep previous error */
1046 ops->iomap_end(inode, pos, PAGE_SIZE, 0, flags,
1047 &iomap);
1048 } else {
1049 error = ops->iomap_end(inode, pos, PAGE_SIZE,
1050 PAGE_SIZE, flags, &iomap);
1051 }
1052 }
a7d73fe6 1053 unlock_entry:
1550290b
RZ
1054 if (!locked_status || error)
1055 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
a7d73fe6
CH
1056 out:
1057 if (error == -ENOMEM)
1058 return VM_FAULT_OOM | major;
1059 /* -EBUSY is fine, somebody else faulted on the same PTE */
1060 if (error < 0 && error != -EBUSY)
1061 return VM_FAULT_SIGBUS | major;
1550290b
RZ
1062 if (locked_status) {
1063 WARN_ON_ONCE(error); /* -EBUSY from ops->iomap_end? */
1064 return locked_status;
1065 }
a7d73fe6
CH
1066 return VM_FAULT_NOPAGE | major;
1067}
11c59c92 1068EXPORT_SYMBOL_GPL(dax_iomap_fault);
642261ac
RZ
1069
1070#ifdef CONFIG_FS_DAX_PMD
1071/*
1072 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
1073 * more often than one might expect in the below functions.
1074 */
1075#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
1076
1077static int dax_pmd_insert_mapping(struct vm_area_struct *vma, pmd_t *pmd,
1078 struct vm_fault *vmf, unsigned long address,
1079 struct iomap *iomap, loff_t pos, bool write, void **entryp)
1080{
1081 struct address_space *mapping = vma->vm_file->f_mapping;
1082 struct block_device *bdev = iomap->bdev;
1083 struct blk_dax_ctl dax = {
1084 .sector = dax_iomap_sector(iomap, pos),
1085 .size = PMD_SIZE,
1086 };
1087 long length = dax_map_atomic(bdev, &dax);
1088 void *ret;
1089
1090 if (length < 0) /* dax_map_atomic() failed */
1091 return VM_FAULT_FALLBACK;
1092 if (length < PMD_SIZE)
1093 goto unmap_fallback;
1094 if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR)
1095 goto unmap_fallback;
1096 if (!pfn_t_devmap(dax.pfn))
1097 goto unmap_fallback;
1098
1099 dax_unmap_atomic(bdev, &dax);
1100
1101 ret = dax_insert_mapping_entry(mapping, vmf, *entryp, dax.sector,
1102 RADIX_DAX_PMD);
1103 if (IS_ERR(ret))
1104 return VM_FAULT_FALLBACK;
1105 *entryp = ret;
1106
1107 return vmf_insert_pfn_pmd(vma, address, pmd, dax.pfn, write);
1108
1109 unmap_fallback:
1110 dax_unmap_atomic(bdev, &dax);
1111 return VM_FAULT_FALLBACK;
1112}
1113
1114static int dax_pmd_load_hole(struct vm_area_struct *vma, pmd_t *pmd,
1115 struct vm_fault *vmf, unsigned long address,
1116 struct iomap *iomap, void **entryp)
1117{
1118 struct address_space *mapping = vma->vm_file->f_mapping;
1119 unsigned long pmd_addr = address & PMD_MASK;
1120 struct page *zero_page;
1121 spinlock_t *ptl;
1122 pmd_t pmd_entry;
1123 void *ret;
1124
1125 zero_page = mm_get_huge_zero_page(vma->vm_mm);
1126
1127 if (unlikely(!zero_page))
1128 return VM_FAULT_FALLBACK;
1129
1130 ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0,
1131 RADIX_DAX_PMD | RADIX_DAX_HZP);
1132 if (IS_ERR(ret))
1133 return VM_FAULT_FALLBACK;
1134 *entryp = ret;
1135
1136 ptl = pmd_lock(vma->vm_mm, pmd);
1137 if (!pmd_none(*pmd)) {
1138 spin_unlock(ptl);
1139 return VM_FAULT_FALLBACK;
1140 }
1141
1142 pmd_entry = mk_pmd(zero_page, vma->vm_page_prot);
1143 pmd_entry = pmd_mkhuge(pmd_entry);
1144 set_pmd_at(vma->vm_mm, pmd_addr, pmd, pmd_entry);
1145 spin_unlock(ptl);
1146 return VM_FAULT_NOPAGE;
1147}
1148
1149int dax_iomap_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1150 pmd_t *pmd, unsigned int flags, struct iomap_ops *ops)
1151{
1152 struct address_space *mapping = vma->vm_file->f_mapping;
1153 unsigned long pmd_addr = address & PMD_MASK;
1154 bool write = flags & FAULT_FLAG_WRITE;
9484ab1b 1155 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
642261ac
RZ
1156 struct inode *inode = mapping->host;
1157 int result = VM_FAULT_FALLBACK;
1158 struct iomap iomap = { 0 };
1159 pgoff_t max_pgoff, pgoff;
1160 struct vm_fault vmf;
1161 void *entry;
1162 loff_t pos;
1163 int error;
1164
1165 /* Fall back to PTEs if we're going to COW */
1166 if (write && !(vma->vm_flags & VM_SHARED))
1167 goto fallback;
1168
1169 /* If the PMD would extend outside the VMA */
1170 if (pmd_addr < vma->vm_start)
1171 goto fallback;
1172 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1173 goto fallback;
1174
1175 /*
1176 * Check whether offset isn't beyond end of file now. Caller is
1177 * supposed to hold locks serializing us with truncate / punch hole so
1178 * this is a reliable test.
1179 */
1180 pgoff = linear_page_index(vma, pmd_addr);
1181 max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1182
1183 if (pgoff > max_pgoff)
1184 return VM_FAULT_SIGBUS;
1185
1186 /* If the PMD would extend beyond the file size */
1187 if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
1188 goto fallback;
1189
1190 /*
1191 * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX
1192 * PMD or a HZP entry. If it can't (because a 4k page is already in
1193 * the tree, for instance), it will return -EEXIST and we just fall
1194 * back to 4k entries.
1195 */
1196 entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1197 if (IS_ERR(entry))
1198 goto fallback;
1199
1200 /*
1201 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1202 * setting up a mapping, so really we're using iomap_begin() as a way
1203 * to look up our filesystem block.
1204 */
1205 pos = (loff_t)pgoff << PAGE_SHIFT;
1206 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1207 if (error)
1208 goto unlock_entry;
1209 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1210 goto finish_iomap;
1211
1212 vmf.pgoff = pgoff;
1213 vmf.flags = flags;
1214 vmf.gfp_mask = mapping_gfp_mask(mapping) | __GFP_IO;
1215
1216 switch (iomap.type) {
1217 case IOMAP_MAPPED:
1218 result = dax_pmd_insert_mapping(vma, pmd, &vmf, address,
1219 &iomap, pos, write, &entry);
1220 break;
1221 case IOMAP_UNWRITTEN:
1222 case IOMAP_HOLE:
1223 if (WARN_ON_ONCE(write))
1224 goto finish_iomap;
1225 result = dax_pmd_load_hole(vma, pmd, &vmf, address, &iomap,
1226 &entry);
1227 break;
1228 default:
1229 WARN_ON_ONCE(1);
1230 break;
1231 }
1232
1233 finish_iomap:
1234 if (ops->iomap_end) {
1235 if (result == VM_FAULT_FALLBACK) {
1236 ops->iomap_end(inode, pos, PMD_SIZE, 0, iomap_flags,
1237 &iomap);
1238 } else {
1239 error = ops->iomap_end(inode, pos, PMD_SIZE, PMD_SIZE,
1240 iomap_flags, &iomap);
1241 if (error)
1242 result = VM_FAULT_FALLBACK;
1243 }
1244 }
1245 unlock_entry:
1246 put_locked_mapping_entry(mapping, pgoff, entry);
1247 fallback:
1248 if (result == VM_FAULT_FALLBACK) {
1249 split_huge_pmd(vma, pmd, address);
1250 count_vm_event(THP_FAULT_FALLBACK);
1251 }
1252 return result;
1253}
1254EXPORT_SYMBOL_GPL(dax_iomap_pmd_fault);
1255#endif /* CONFIG_FS_DAX_PMD */
a254e568 1256#endif /* CONFIG_FS_IOMAP */